1
|
Rojas-Solé C, Pinilla-González V, Lillo-Moya J, González-Fernández T, Saso L, Rodrigo R. Integrated approach to reducing polypharmacy in older people: exploring the role of oxidative stress and antioxidant potential therapy. Redox Rep 2024; 29:2289740. [PMID: 38108325 PMCID: PMC10732214 DOI: 10.1080/13510002.2023.2289740] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Increased life expectancy, attributed to improved access to healthcare and drug development, has led to an increase in multimorbidity, a key contributor to polypharmacy. Polypharmacy is characterised by its association with a variety of adverse events in the older persons. The mechanisms involved in the development of age-related chronic diseases are largely unknown; however, altered redox homeostasis due to ageing is one of the main theories. In this context, the present review explores the development and interaction between different age-related diseases, mainly linked by oxidative stress. In addition, drug interactions in the treatment of various diseases are described, emphasising that the holistic management of older people and their pathologies should prevail over the individual treatment of each condition.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Víctor Pinilla-González
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Tommy González-Fernández
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
2
|
Qian J, Feng C, Wu Z, Yang Y, Gao X, Zhu L, Liu Y, Gao Y. Phytochemistry, pharmacology, toxicology and detoxification of Polygonum multiflorum Thunb.: a comprehensive review. Front Pharmacol 2024; 15:1427019. [PMID: 38953108 PMCID: PMC11215120 DOI: 10.3389/fphar.2024.1427019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
Background Polygonum multiflorum Thunb. (PM), a kind of perennial plant, belongs to the genus Polygonum of the family polygonaceae.The dry root of PM (also called Heshouwu), is a traditional Chinese medicine, which has a series of functions and is widely used in clinic for hair lossing, aging, and insomnia. While, PM also has some toxicity, its clinical drug safety has been concerned. In this paper, the chemical components, toxic mechanisms and detoxification strategies of PM were reviewed in order to provide evidence for its clinical application. Materials and methods We conducted a systematic review of published literature of PM, including English and Chinese databases, such as PubMed, Web of Science, CNKI, and Wanfang. Results PM contains a variety of chemical compounds, including stilbenes, quinones, flavonoids, phospholipids, and has many pharmacological activities such as anti-aging, wound healing, antioxidant, and anti-inflammatory properties. The PE has certain therapeutic effect, and it has certain toxicity like hepatotoxicity, nephrotoxicity, and embryotoxicity at the same time, but.these toxic effects could be effectively reduced by processing and compatibility. Conclusion It is necessary to further explore the pharmacological and toxicological mechanisms of the main active compounds of PE.This article provides scientific basis for the safe clinical application of PM.
Collapse
Affiliation(s)
- Jiawen Qian
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chenhang Feng
- The Third Affiliated Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ziyang Wu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yuanmei Yang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Xiangfu Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Lingyan Zhu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi’an, China
| | - Yuancheng Gao
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
3
|
Shafqat F, Ur Rehman S, Khan MS, Niaz K. Liver. ENCYCLOPEDIA OF TOXICOLOGY 2024:897-913. [DOI: 10.1016/b978-0-12-824315-2.00138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Li X, Zhi Y, Li J, Lei X, Ju Y, Zhang Y, Zheng Y, Kong X, Xue F, Zhong W, Chen X, Tang J, Li X, Mao Y. Single-cell RNA sequencing to reveal non-parenchymal cell heterogeneity and immune network of acetaminophen-induced liver injury in mice. Arch Toxicol 2023; 97:1979-1995. [PMID: 37202523 DOI: 10.1007/s00204-023-03513-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
The role of non-parenchymal cells (NPCs) in the early phase of acetaminophen (APAP)-induced liver injury (AILI) remains unclear. Therefore, single-cell sequencing (scRNA-seq) was performed to explore the heterogeneity and immune network of NPCs in the livers of mice with AILI. Mice were challenged with saline, 300 mg/kg APAP, or 750 mg/kg APAP (n = 3 for each group). After 3 h, the liver samples were collected, digested, and subjected to scRNA-seq. Immunohistochemistry and immunofluorescence were performed to confirm the expression of Makorin ring finger protein 1 (Mkrn1). We identified 14 distinct cell subtypes among the 120,599 cells. A variety of NPCs were involved, even in the early stages of AILI, indicating highly heterogeneous transcriptome dynamics. Cholangiocyte cluster 3, which had high deleted in malignant brain tumors 1 (Dmbt1) expression, was found to perform drug metabolism and detoxification functions. Liver sinusoidal endothelial cells exhibited fenestrae loss and angiogenesis. Macrophage cluster 1 displayed a M1 polarization phenotype, whereas cluster 3 tended to exhibit M2 polarization. Kupffer cells (KCs) exhibited pro-inflammatory effects due to the high expression of Cxcl2. qRT-PCR and western blotting verified that the LIFR-OSM axis might promote the activation of MAPK signaling pathway in RAW264.7 macrophages. Mkrn1 was highly expressed in the liver macrophages of AILI mice and AILI patients. Interaction patterns between macrophages/KCs and other NPCs were complex and diverse. NPCs were highly heterogeneous and were involved in the immune network during the early phase of AILI. In addition, we propose that Mkrn1 may serve as a potential biomarker of AILI.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhi
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohong Lei
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ju
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yufan Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaming Kong
- Singleron Biotechnologies Ltd, Nanjing, Jiangsu, China
| | - Feng Xue
- Department of Liver Surgery and Liver Transplantation Center, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Zhong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jieting Tang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Diseases, NHC Key Laboratory of Digestive Diseases, Shanghai Research Center of Fatty Liver Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Jiang H, Zuo J, Li B, Chen R, Luo K, Xiang X, Lu S, Huang C, Liu L, Tang J, Gao F. Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol 2023; 63:102754. [PMID: 37224697 DOI: 10.1016/j.redox.2023.102754] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Oxidative stress (OS), defined as redox imbalance in favor of oxidant burden, is one of the most significant biological events in cancer progression. Cancer cells generally represent a higher oxidant level, which suggests a dual therapeutic strategy by regulating redox status (i.e., pro-oxidant therapy and/or antioxidant therapy). Indeed, pro-oxidant therapy exhibits a great anti-cancer capability, attributing to a higher oxidant accumulation within cancer cells, whereas antioxidant therapy to restore redox homeostasis has been claimed to fail in several clinical practices. Targeting the redox vulnerability of cancer cells by pro-oxidants capable of generating excessive reactive oxygen species (ROS) has surfaced as an important anti-cancer strategy. However, multiple adverse effects caused by the indiscriminate attacks of uncontrolled drug-induced OS on normal tissues and the drug-tolerant capacity of some certain cancer cells greatly limit their further applications. Herein, we review several representative oxidative anti-cancer drugs and summarize their side effects on normal tissues and organs, emphasizing that seeking a balance between pro-oxidant therapy and oxidative damage is of great value in exploiting next-generation OS-based anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Hao Jiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Jing Zuo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bowen Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Chen
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Kangjia Luo
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Xionghua Xiang
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Shuaijun Lu
- The First Hospital of Ningbo University, Ningbo, 315020, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Liu
- Ningbo Women & Children's Hospital, Ningbo, 315012, China.
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Feng Gao
- The First Hospital of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
6
|
Chen Y, Cui T, Xiao S, Li T, Zhong Y, Tang K, Guo J, Huang S, Chen J, Li J, Wang Q, Huang J, Pan H, Gao Y. Hepatic ZBTB22-mediated detoxification ameliorates acetaminophen-induced liver injury by inhibiting pregnane X receptor signaling. iScience 2023; 26:106318. [PMID: 36950116 PMCID: PMC10025966 DOI: 10.1016/j.isci.2023.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Overdose acetaminophen (APAP) can cause acute liver injury (ALI), but the underlying mechanism remains undetermined. This study explored the role of hepatic Zinc Finger And BTB Domain Containing 22 (ZBTB22) in defense against APAP-mediated hepatotoxicity. The results showed that hepatic ZBTB22 expression was significantly reduced in patients with ALI and mice. In mouse primary hepatocytes (MPHs), ZBTB22 deletion aggravated APAP overdose-induced ALI, whereas ZBTB22 overexpression attenuated that pathological progression. The results were further verified in ZBTB22 over-express or knockout mice models. In parallel, hepatocyte-specific ZBTB22 knockout also enhanced ALI. Furthermore, ZBTB22 decreased pregnane X receptor (PXR) expression, and the PXR activator pregnane-16α-carbonitrile suppressed the protective effect of ZBTB22 in APAP-induced ZBTB22-overexpressing mice. Collectively, our findings highlight the protective effect of ZBTB22 against APAP-induced ALI and unravel PXR signaling as the potential mechanism. Strategies to increase hepatic ZBTB22 expression represent a promising therapeutic approach for APAP overdose-induced ALI.
Collapse
Affiliation(s)
- Yingjian Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Tianqi Cui
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Shaorong Xiao
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Yadi Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Kaijia Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Jingyi Guo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Shangyi Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Jiabing Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Jiayu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Corresponding author
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Corresponding author
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Corresponding author
| | - Yong Gao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510080, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Corresponding author
| |
Collapse
|
7
|
Manna K, Khan ZS, Saha M, Mishra S, Gaikwad N, Bhakta JN, Banerjee K, Das Saha K. Manjari Medika Grape Seed Extract Protects Methotrexate-Induced Hepatic Inflammation: Involvement of NF-κB/NLRP3 and Nrf2/HO-1 Signaling System. J Inflamm Res 2023; 16:467-492. [PMID: 36785716 PMCID: PMC9922067 DOI: 10.2147/jir.s338888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 08/20/2022] [Indexed: 02/09/2023] Open
Abstract
Objective Grape Seed Extract is a natural source of various polyphenols, which have been shown to possess potent antioxidant and free radical-scavenging activities. The earlier studies have reported that grape seed extract exhibits broad-spectrum pharmacological activities. Therefore, studying the hepatoprotective effects and elucidation of mechanisms of action of the Indian Variety, Manjari Medika grape seed extract (GSE), may give an insight into therapeutic benefits. Methotrexate (MTX) is the first-line pharmacological therapy for different rheumatic diseases. The major adverse events such as hepatotoxicity are evident even in the low doses used for the treatment. The present study investigated the role of MTX on hepatic damage in murine liver and the plausible protective effects of the Indian grape variety, Manjari Medika grape seed extract, in ameliorating it. Methods and Results To assess the hepatological modulation, mice were divided into eight groups to investigate the ameliorative potential of this GSE (75 and 125 mg/kg) and correlate the experimental findings. The active components of the extract were assessed through UPLC-(ESI)-QToF-MS analysis. On the other hand, various biochemical and immunological indices were carried out to correlate the experimental data. The result demonstrated that the prophylactic administration of GSE reduced MTX-induced hepatic toxicity indices, which subsequently restored the hepatic morphological architecture. Moreover, the application of GSE in a dual dosage (75 and 125 mg/kg) suppressed MTX-induced reactive oxygen species generation, followed by lipid peroxidation and cellular nitrite formation. MTX-induced inflammasome activation through the redox-assisted cascade of TLR4/NF-κB signaling was further reduced by applying the GSE. The results showed that the activation of cytoprotective transcription factor Nrf2 enhanced the level of endogenous antioxidants. Furthermore, through the regulation of TLR4/NF-κB and Nrf2/HO-1 axis, this extract could reduce the MTX-mediated hepatic damage. Conclusion Our findings suggest that Manjari Medika seed extract could be used as a therapeutic agent to relieve the side effects of MTX and other hepatic disorders.
Collapse
Affiliation(s)
- Krishnendu Manna
- Department of Food & Nutrition, University of Kalyani, Nadia, West Bengal, India
| | - Zareen S Khan
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India
| | - Moumita Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, 700032, India
| | - Snehasis Mishra
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, 700032, India
| | - Nilesh Gaikwad
- ICAR-National Research Centre on Pomegranate, Solapur, Maharashtra, 413255, India
| | - Jatindra Nath Bhakta
- Department of Food & Nutrition, University of Kalyani, Nadia, West Bengal, India
| | - Kaushik Banerjee
- National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India,Kaushik Banerjee, National Referral Laboratory, ICAR-National Research Centre for Grapes, Pune, Maharashtra, 412307, India, Email
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, 700032, India,Correspondence: Krishna Das Saha, Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, West Bengal, 700032, India, Tel +91 33 2499 5810, Fax +91 33 2473 5197, Email
| |
Collapse
|
8
|
El-Kashef DH, Sharawy MH. Hepatoprotective effect of nicorandil against acetaminophen-induced oxidative stress and hepatotoxicity in mice via modulating NO synthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14253-14264. [PMID: 36149558 PMCID: PMC9908717 DOI: 10.1007/s11356-022-23139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Acetaminophen (APAP) overdose can produce hepatotoxicity and consequently liver damage. This study investigated the hepatoprotective impacts of nicorandil on hepatic damage induced by APAP. Nicorandil was administered orally (100 mg/kg) for seven days before APAP challenge (500 mg/kg, ip). Pretreatment with nicorandil reduced serum levels of aminotransferases, bilirubin, GGT and LDH, and increased serum level of albumin. Moreover, nicorandil inhibited the increase in liver MDA levels and reversed the decline in GSH content and SOD activity. Besides, it notably alleviated APAP-induced necrosis observed in histopathological findings. Additionally, nicorandil alleviated APAP-induced NO overproduction and iNOS expression; however, the protein expression of eNOS was significantly increased. Moreover, nicorandil markedly reduced hepatic TNF-α and NF-κB levels, in addition to decreasing the protein expression of MPO in hepatic tissues. Furthermore, flow cytometry (annexin V-FITC/PI) displayed a significant decline in late apoptotic and necrotic cells, and an increase in viable cells in nicorandil group. Also, nicorandil caused a significant boost in hepatic antiapoptotic marker bcl-2 level. The presented data proposed that the protective effect of nicorandil might be attributed to its antioxidant, its impact on NO homeostasis, and its anti-inflammatory properties. Therefore, nicorandil may be a promising candidate for protection from liver injury induced by APAP.
Collapse
Affiliation(s)
- Dalia H. El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Maha H. Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
9
|
Metabolic activation of drugs by cytochrome P450 enzymes: Biochemical insights into mechanism-based inactivation by fibroblast growth factor receptor inhibitors and chemical approaches to attenuate reactive metabolite formation. Biochem Pharmacol 2022; 206:115336. [DOI: 10.1016/j.bcp.2022.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
10
|
Jiang XL, Luo PY, Zhou YY, Luo ZH, Hao YJ, Fan MZ, Wu XH, Gao H, Bi HC, Zhao ZB, Lian ML, Lian ZX. Hepatoprotective Effect of Oplopanax elatus Nakai Adventitious Roots Extract by Regulating CYP450 and PPAR Signaling Pathway. Front Pharmacol 2022; 13:761618. [PMID: 35586046 PMCID: PMC9108204 DOI: 10.3389/fphar.2022.761618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
O. elatus Nakai is a traditional medicine that has been confirmed to exert effective antioxidant and anti-inflammatory functions, and is used for the treatment of different disorders. However, its potential beneficial effects on drug induced hepatotoxicity and relevant molecular mechanisms remain unclear. This study investigated the protective effect and further elucidated the mechanisms of action of O. elatus on liver protection. O. elatus chlorogenic acids-enriched fraction (OEB), which included chlorogenic acid and isochlorogenic acid A, were identified by HPLC-MS/MS. OEB was administrated orally daily for seven consecutive days, followed by a single intraperitoneal injection of an overdose of APAP after the final OEB administration. The effects of OEB on immune cells in mice liver were analyzed using flow cytometry. APAP metabolite content in serum was detected using HPLC-MS/MS in order to investigate whether OEB affects CYP450 activities. The intestinal content samples were processed for 16 s microbiota sequencing. Results demonstrated that OEB decreased alanine aminotransferase, aspartate aminotransferase contents, affected the metabolism of APAP, and decreased the concentrates of APAP, APAP-CYS and APAP-NAC by inhibiting CYP2E1 and CYP3A11 activity. Furthermore, OEB pretreatment regulated lipid metabolism by affecting the peroxisome proliferator-activated receptors (PPAR) signaling pathway in mice and also increased the abundance of Akkermansia and Parabacteroides. This study indicated that OEB is a potential drug candidate for treating hepatotoxicity because of its ability to affect drug metabolism and regulate lipid metabolism.
Collapse
Affiliation(s)
- Xiao-Long Jiang
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - Pan-Yue Luo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China
| | - Yan-Ying Zhou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Hui Luo
- College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China
| | - Yue-Jun Hao
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - Ming-Zhi Fan
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - Xiao-Han Wu
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
| | - Hao Gao
- College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China
| | - Hui-Chang Bi
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhi-Bin Zhao
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Zhi-Bin Zhao, ; Mei-Lan Lian, ; Zhe-Xiong Lian,
| | - Mei-Lan Lian
- Key Laboratory for Natural Resource of ChangBai Mountain & Functional Molecules, Ministry of Education, Yanbian University, Yanji, China
- *Correspondence: Zhi-Bin Zhao, ; Mei-Lan Lian, ; Zhe-Xiong Lian,
| | - Zhe-Xiong Lian
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Zhi-Bin Zhao, ; Mei-Lan Lian, ; Zhe-Xiong Lian,
| |
Collapse
|
11
|
Cerezo-Arias MDLO, Gómez-Tabales J, Martí M, García-Martín E, Agúndez JAG. Common UGT1A6 Variant Alleles Determine Acetaminophen Pharmacokinetics in Man. J Pers Med 2022; 12:jpm12050720. [PMID: 35629143 PMCID: PMC9143054 DOI: 10.3390/jpm12050720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/18/2022] Open
Abstract
Acetaminophen (paracetamol) is a widely used drug that causes adverse drug events that are often dose-dependent and related to plasma drug concentrations. Acetaminophen metabolism strongly depends on UGT1A enzymes. We aimed to investigate putative factors influencing acetaminophen pharmacokinetics. We analyzed acetaminophen pharmacokinetics after intravenous administration in 186 individuals, and we determined the effect of sex; body mass index (BMI); previous and concomitant therapy with UGT1A substrates, inhibitors, and inducers; as well as common variations in the genes coding for UGT1A1, UGT1A6, and UGT1A9. We identified sex and UGT1A6 genetic variants as major factors influencing acetaminophen pharmacokinetics, with women showing lower clearance (p < 0.001) and higher area under the plasma drug concentration-time curve (AUC) values than men (p < 0.001). UGT1A6 genetic variants were related to decreased acetaminophen biodisposition. Individuals who were homozygous or double-heterozygous for variant UGT1A6 alleles showed a 22.5% increase in t1/2 values and a 22.8 increase in drug exposure (p < 0.001, and 0.006, respectively) after correction by sex. The effect is related to the UGT1A6*2 and UGT1A6*4 variant alleles, whereas no effect of UGT1A6*3 and UGT1A9*3 alleles, BMI, or drug−drug interaction was identified in this study. We conclude that sex and UGT1A6 variants determine acetaminophen pharmacokinetics, thus providing evidence to eventually developing pharmacogenomics procedures and recommendations for acetaminophen use.
Collapse
Affiliation(s)
- María de las Olas Cerezo-Arias
- Intensive Care Medicine Department, University Hospital, Badajoz, University of Extremadura (UEX), 06006 Badajoz, Spain;
| | - Javier Gómez-Tabales
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, ARADyAL Instituto de Salud Carlos III, 10071 Caceres, Spain; (J.G.-T.); (M.M.)
| | - Manuel Martí
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, ARADyAL Instituto de Salud Carlos III, 10071 Caceres, Spain; (J.G.-T.); (M.M.)
| | - Elena García-Martín
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, ARADyAL Instituto de Salud Carlos III, 10071 Caceres, Spain; (J.G.-T.); (M.M.)
- Correspondence: (E.G.-M.); (J.A.G.A.); Tel.: +34-927251514 (E.G.-M.); +34-927251323 (J.A.G.A)
| | - José A. G. Agúndez
- Universidad de Extremadura, University Institute of Molecular Pathology Biomarkers, ARADyAL Instituto de Salud Carlos III, 10071 Caceres, Spain; (J.G.-T.); (M.M.)
- Correspondence: (E.G.-M.); (J.A.G.A.); Tel.: +34-927251514 (E.G.-M.); +34-927251323 (J.A.G.A)
| |
Collapse
|
12
|
Tang LWT, Lim RYR, Venkatesan G, Chan ECY. Rational deuteration of dronedarone attenuates its toxicity in human hepatic HepG2 cells. Toxicol Res (Camb) 2022; 11:311-324. [PMID: 35510231 PMCID: PMC9052316 DOI: 10.1093/toxres/tfac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
Deuteration is a chemical modification strategy that has recently gained traction in drug development. The replacement of one or more hydrogen atom(s) in a drug molecule with its heavier stable isotope deuterium can enhance its metabolic stability and pharmacokinetic properties. However, it remains uninterrogated if rational deuteration at bioactivation "hot-spots" could attenuate its associated toxicological consequences. Here, our preliminary screening with benzofuran antiarrhythmic agents first revealed that dronedarone and its major metabolite N-desbutyldronedarone elicited a greater loss of viability and cytotoxicity in human hepatoma G2 (HepG2) cells as compared with amiodarone and its corresponding metabolite N-desethylamiodarone. A comparison of dronedarone and its in-house synthesized deuterated analogue (termed poyendarone) demonstrated that deuteration could attenuate its in vitro toxicity in HepG2 cells by modulating the extent of mitochondrial dysfunction, reducing the dissipation of mitochondrial membrane potential, and evoking a distinct apoptotic kinetic signature. Furthermore, although pretreatment with the CYP3A inducer rifampicin or the substitution of glucose with galactose in the growth media significantly augmented the loss of cell viability elicited by dronedarone and poyendarone, a lower loss of cell viability was consistently observed in poyendarone across all concentrations. Taken together, our preliminary investigations suggested that the rational deuteration of dronedarone at its benzofuran ring reduces aberrant cytochrome P450 3A4/5-mediated bioactivation, which attenuated its mitochondrial toxicity in human hepatic HepG2 cells.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Royden Yu Ren Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Gopalakrishnan Venkatesan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| |
Collapse
|
13
|
Skobelskaya T, Lemeshchenko V, Saenko N, Sokolov V, Nekhaichuk E. Adaptive morphogenesis of lamb liver under Anthropobiocenosis conditions lamb liver morphogenesis. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224201006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Investigated the histological features of the structure of hepar of one-day-old lambs (ODL) using a complex of morphological techniques. It was found that hepar in ODL is formed by stroma and parenchyma. The stromal elements of the organ are formed by loose lugs of hematopoietic connective tissue, which in turn forms a capsule (2.80-7.23 microns thick), as well as the septa of the lobules, which include the hepar triads and paravasal tissue of efferent blood vessels. As a result of the studies, the prevalence of the stroma in the hematopoietic foci around large afferent blood vessels, especially in the hepar hilus, was revealed. The hepar parenchyma in ODL has structural incompleteness. It is formed by hepar cells and numerous resinusoidal cells located in the subcapsular, peripheral, central zones in the lobus hepatis. Hepar cells located in the subcapsular zone (SZ) have a more optically cleared (OC) cytoplasm, and the practically cleared cytoplasm of the hepatocyte diameter (HD) decreases towards the central zone (CZ). In the hepar parenchyma of the ODL, hematopoiesis foci (HF) are established in each of the lobes, which tend to decrease from the periphery to the center of the lobes. Hemopoetic cells (HC) are located between hepatocytes, densely layering on top of each other, and there are also cells located sparsely between the liver cells (LC). The number of hepatocytes per 1 mm2 of the area of the histological specimen in the left lobe (LL) of the ODL reaches the highest value 5983.79 ± 90.40, in the right lobe (RL) of the liver it is 5358.80 ± 646.60, while in the middle it has a minimum value and reaches 5133.10 ± 205.75.
Collapse
|
14
|
Maksimova E, Kliaritskaia I, Grigorenko E, Moshko Y. Prevention and treatment of drug-induced liver injury in patients with breast cancer and ovarian cancer. THE NEW ARMENIAN MEDICAL JOURNAL 2022:78-85. [DOI: 10.56936/18290825-2022.16.3-78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Introduction: Drug-induced liver injury is one of the most serious problems in hepatology. In most cases the abolition of the “causative” drug is a sufficient condition for the reverse development of pathological changes. However, in the case of chemotherapy for cancer patients, the abolition of hepatotoxic drug is impossible without creating an immediate or delayed threat to the patient’s life.
Objective: To develop optimal schemes for the prevention and treatment of drug-induced liver injury by studying of its characteristics of with various chemotherapy regimens in patients with breast cancer and ovarian cancer.
Material and methods: The screening group included 291 patients who underwent chemotherapy courses for breast cancer and ovarian cancer. The diagnosis and type of drug-induced liver injury was based on laboratory data (alanine aminotransferase and/or alkaline phosphatase increased above 2 norms) and the exclusion of other etiologies of liver diseases. Chemotherapy hepatotoxicity was assessed using the Shaposhnikov scale. The degree of hepatic encephalopathy was determined using a critical flicker frequency test. Depending on chemotherapy mode, groups of the patients were divided into subgroups: cyclophosphamide + Methotrexate+ Fluorouracil, Doxorubici + Cyclophosphamide, Epirubicin + Cyclophosphamide + 5-fluorouracil, Paclitaxel + Cisplatin, Carboplatin + Cyclophosphamide. According to the type of drug-induced liver injury, patients with cholestatic type received preparations, with cytolytic type – S-adenosylmethionine for 8 weeks.
Results and its discussion: It was found that the most common side effect of chemotherapy is leukopenia, anemia and increase in level of alanine aminotransferase and alkaline phosphatase. The use of ursodeoxycholic acid and S-adenosylmethionine as an accompanying therapy significantly reduces the level of alanine aminotransferase and alkaline phosphatase degree of hepatotoxicity and hepatic encephalopathy, clinical improves the quality of life of patients and contributes to a more rapid elimination of symptoms of astheno-vegetative, dyspeptic and pain syndromes.
Conclusion: It has been proven that the use of a differentiated approach to the choice of a hepatoprotector: S-adenosylmethionine in hepatocellular type, ursodeoxycholic acid - in cholestatic type of drug-induced liver injury for 8 weeks in patients with oncological profile allowed to carry out the planned therapy without deviations from the protocol.
Collapse
Affiliation(s)
- E.V. Maksimova
- Department of Therapy, Gastroenterology, Cardiology, General Practice (family medicine), V.I. Vernadskiy Crimean Federal University, Institute "S.I. Georgievsky Medical Academy", Simferopol, Russia
| | - I.L. Kliaritskaia
- Department of Therapy, Gastroenterology, Cardiology, General Practice (family medicine), V.I. Vernadskiy Crimean Federal University, Institute "S.I. Georgievsky Medical Academy", Simferopol, Russia
| | - E.I. Grigorenko
- Department of Therapy, Gastroenterology, Cardiology, General Practice (family medicine), V.I. Vernadskiy Crimean Federal University, Institute "S.I. Georgievsky Medical Academy", Simferopol, Russia
| | - Yu.A. Moshko
- Department of Therapy, Gastroenterology, Cardiology, General Practice (family medicine), V.I. Vernadskiy Crimean Federal University, Institute "S.I. Georgievsky Medical Academy", Simferopol, Russia
| |
Collapse
|
15
|
Tang LWT, Teng JW, Verma RK, Koh SK, Zhou L, Go ML, Fan H, Chan ECY. Infigratinib is a Reversible Inhibitor and Mechanism-based Inactivator of Cytochrome P450 3A4. Drug Metab Dispos 2021; 49:856-868. [PMID: 34326139 DOI: 10.1124/dmd.121.000508] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
Infigratinib (INF) is a promising selective inhibitor of fibroblast growth factor receptors 1-3 that has recently been accorded both orphan drug designation and priority review status by the U.S Food and Drug Administration for the treatment of advanced cholangiocarcinoma. Its propensity to undergo bioactivation to electrophilic species was recently expounded upon. However, other than causing aberrant idiosyncratic toxicities, these reactive intermediates may elicit mechanism-based inactivation (MBI) of cytochrome P450 enzymes (CYP450). In this study, we investigated the interactions between INF and the most abundant hepatic cytochrome P450 3A4 (CYP3A4). Our findings revealed that apart from being a potent noncompetitive reversible inhibitor of CYP3A4, INF inactivated CYP3A4 in a time-, concentration- and NADPH-dependent manner with K I, k inact and partition ratio of 2.45 µM, 0.053 min-1 and 41 respectively when rivaroxaban was employed as the probe substrate. Co-incubation with testosterone (alternative CYP3A substrate) or ketoconazole (direct CYP3A inhibitor) attenuated the rate of inactivation whereas the inclusion of glutathione and catalase did not confer such protection. The lack of enzyme activity recovery following dialysis for 4 hours and oxidation with potassium ferricyanide, coupled with the absence of the characteristic Soret peak signature collectively substantiated that inactivation of CYP3A4 by INF was not mediated by the formation of quasi-irreversible metabolite-intermediate complexes but rather through irreversible covalent adduction to the prosthetic heme and/or apoprotein. Finally, glutathione trapping and high-resolution mass spectrometry experimental results unravelled two plausible bioactivation mechanisms of INF arising from the generation of a p-benzoquinone diimine and epoxide reactive intermediate. Significance Statement The potential of infigratinib (INF) to cause mechanism-based inactivation (MBI) of CYP3A4 was unknown. We report the reversible noncompetitive inhibition and irreversible covalent MBI of CYP3A4 by INF and proposed two potential bioactivation pathways implicating p-benzoquinone diimine and epoxide reactive intermediates. Findings from this study lay the groundwork for future investigation of clinically-relevant drug-drug interactions between INF and concomitant substrates of CYP3A4.
Collapse
Affiliation(s)
| | | | - Ravi Kumar Verma
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Lei Zhou
- Singapore Eye Research Institute, Singapore
| | - Mei Lin Go
- National University of Singapore, Singapore
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | | |
Collapse
|
16
|
Zhuo Y, Zhang Y, Li M, Wu H, Gong S, Hu X, Fu Y, Shen X, Sun B, Wu JL, Li N. Hepatotoxic evaluation of toosendanin via biomarker quantification and pathway mapping of large-scale chemical proteomics. Food Chem Toxicol 2021; 153:112257. [PMID: 34000341 DOI: 10.1016/j.fct.2021.112257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 01/15/2023]
Abstract
Drug-induced liver injury (DILI) is a major side effect, sometimes can't be exactly evaluated by current approaches partly as the covalent modification of drug or its reactive metabolites (RMs) with proteins is a possible reason. In this study, we developed a rapid, sensitive, and specific analytical method to assess the hepatotoxicity induced by drug covalently modified proteins based on the quantification of the modified amino acids using toosendanin (TSN), a hepatotoxic chemical, as an example. TSN RM-protein adducts both in rat liver and blood showed good correlation with the severity of hepatotoxicity. Thus, TSN RM-protein adducts in serum can potentially serve as minimally invasive biomarkers of hepatotoxicity. Meanwhile, large-scale chemical proteomics analysis showed that at least 84 proteins were modified by TSN RMs in rat liver, and the bioinformatics analysis revealed that TSN might induce hepatotoxicity through multi-target protein-protein interaction especially involved in energy metabolism. These findings suggest that our approach may serve as a valuable tool to evaluate DILI and investigate the possible mechanism, especially for complex compounds.
Collapse
Affiliation(s)
- Yue Zhuo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, PR China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yida Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, PR China; State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Meng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, PR China
| | - Haiying Wu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, PR China
| | - Xiaolan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, PR China
| | - Yu Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, PR China
| | - Xinzi Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, PR China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, PR China.
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, PR China.
| |
Collapse
|
17
|
Flynn NR, Ward MD, Schleiff MA, Laurin CMC, Farmer R, Conway SJ, Boysen G, Swamidass SJ, Miller GP. Bioactivation of Isoxazole-Containing Bromodomain and Extra-Terminal Domain (BET) Inhibitors. Metabolites 2021; 11:metabo11060390. [PMID: 34203690 PMCID: PMC8232216 DOI: 10.3390/metabo11060390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
The 3,5-dimethylisoxazole motif has become a useful and popular acetyl-lysine mimic employed in isoxazole-containing bromodomain and extra-terminal (BET) inhibitors but may introduce the potential for bioactivations into toxic reactive metabolites. As a test, we coupled deep neural models for quinone formation, metabolite structures, and biomolecule reactivity to predict bioactivation pathways for 32 BET inhibitors and validate the bioactivation of select inhibitors experimentally. Based on model predictions, inhibitors were more likely to undergo bioactivation than reported non-bioactivated molecules containing isoxazoles. The model outputs varied with substituents indicating the ability to scale their impact on bioactivation. We selected OXFBD02, OXFBD04, and I-BET151 for more in-depth analysis. OXFBD’s bioactivations were evenly split between traditional quinones and novel extended quinone-methides involving the isoxazole yet strongly favored the latter quinones. Subsequent experimental studies confirmed the formation of both types of quinones for OXFBD molecules, yet traditional quinones were the dominant reactive metabolites. Modeled I-BET151 bioactivations led to extended quinone-methides, which were not verified experimentally. The differences in observed and predicted bioactivations reflected the need to improve overall bioactivation scaling. Nevertheless, our coupled modeling approach predicted BET inhibitor bioactivations including novel extended quinone methides, and we experimentally verified those pathways highlighting potential concerns for toxicity in the development of these new drug leads.
Collapse
Affiliation(s)
- Noah R. Flynn
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Michael D. Ward
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Mary A. Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | | | - Rohit Farmer
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
| | - Stuart J. Conway
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK; (C.M.C.L.); (S.J.C.)
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - S. Joshua Swamidass
- Department of Pathology and Immunology, Washington University-St. Louis, St. Louis, MO 63130, USA; (N.R.F.); (M.D.W.); (R.F.)
- Correspondence: (S.J.S.); (G.P.M.)
| | - Grover P. Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Correspondence: (S.J.S.); (G.P.M.)
| |
Collapse
|
18
|
Ommati MM, Niknahad H, Farshad O, Azarpira N, Heidari R. In Vitro and In Vivo Evidence on the Role of Mitochondrial Impairment as a Mechanism of Lithium-Induced Nephrotoxicity. Biol Trace Elem Res 2021; 199:1908-1918. [PMID: 32712907 DOI: 10.1007/s12011-020-02302-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
Abstract
Lithium is abundantly administered against bipolar disorder. On the other hand, the lithium-induced renal injury is a clinical complication which commonly reveals as drug-induced diabetes insipidus. However, lithium-induced cytotoxicity might also play a role in the adverse effects of this drug on the kidney. There is no clear cellular and molecular mechanism(s) for lithium-induced nephrotoxicity. The current study was designed to assess the effect of lithium on kidney tissue oxidative stress biomarkers and mitochondrial function and its relevance to drug-induced nephrotoxicity and electrolyte imbalance. Rats were treated with lithium (lithium carbonate, 25 and 50 mg/kg/day, i.p., for 28 consecutive days). Kidney mitochondria were also isolated from rats and exposed to increasing concentrations of lithium (0.01-10 mM). Serum and urine biomarkers of kidney injury, kidney tissue markers of oxidative stress, and renal histopathological changes were assessed. Moreover, several mitochondrial indices were monitored. Lithium-induced renal injury revealed a significant increase in urine and serum biomarkers of renal impairment. Lithium caused an increase in the kidney reactive oxygen species (ROS) level and lipid peroxidation (LPO). Renal glutathione (GSH) reservoirs were also depleted, and tissue antioxidant capacity decreased in lithium-treated animals. Significant tissue histopathological changes, including necrosis, Bowman capsule dilation, and interstitial inflammation, were evident in lithium-treated animals. On the other hand, significant alterations in kidney mitochondrial function were detected in lithium-treated groups. These data mention oxidative stress, mitochondrial dysfunction, and cellular energy crisis as the potential primary mechanisms for lithium-induced renal injury.
Collapse
Affiliation(s)
- Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 1583; 71345. Roknabad, Karafarin St., Shiraz, Fars, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 1583; 71345. Roknabad, Karafarin St., Shiraz, Fars, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, P. O. Box 1583; 71345. Roknabad, Karafarin St., Shiraz, Fars, Iran.
| |
Collapse
|
19
|
Villanueva-Paz M, Morán L, López-Alcántara N, Freixo C, Andrade RJ, Lucena MI, Cubero FJ. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants (Basel) 2021; 10:390. [PMID: 33807700 PMCID: PMC8000729 DOI: 10.3390/antiox10030390] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a type of hepatic injury caused by an uncommon drug adverse reaction that can develop to conditions spanning from asymptomatic liver laboratory abnormalities to acute liver failure (ALF) and death. The cellular and molecular mechanisms involved in DILI are poorly understood. Hepatocyte damage can be caused by the metabolic activation of chemically active intermediate metabolites that covalently bind to macromolecules (e.g., proteins, DNA), forming protein adducts-neoantigens-that lead to the generation of oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, which can eventually lead to cell death. In parallel, damage-associated molecular patterns (DAMPs) stimulate the immune response, whereby inflammasomes play a pivotal role, and neoantigen presentation on specific human leukocyte antigen (HLA) molecules trigger the adaptive immune response. A wide array of antioxidant mechanisms exists to counterbalance the effect of oxidants, including glutathione (GSH), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX), which are pivotal in detoxification. These get compromised during DILI, triggering an imbalance between oxidants and antioxidants defense systems, generating oxidative stress. As a result of exacerbated oxidative stress, several danger signals, including mitochondrial damage, cell death, and inflammatory markers, and microRNAs (miRNAs) related to extracellular vesicles (EVs) have already been reported as mechanistic biomarkers. Here, the status quo and the future directions in DILI are thoroughly discussed, with a special focus on the role of oxidative stress and the development of new biomarkers.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- Health Research Institute Gregorio Marañón (IiSGM), 28009 Madrid, Spain
| | - Nuria López-Alcántara
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
| | - Cristiana Freixo
- CINTESIS, Center for Health Technology and Services Research, do Porto University School of Medicine, 4200-319 Porto, Portugal;
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - M Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, CIBERehd, 29071 Málaga, Spain; (M.V.-P.); (M.I.L.)
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; (L.M.); (N.L.-A.)
- 12 de Octubre Health Research Institute (imas12), 28041 Madrid, Spain
| |
Collapse
|
20
|
Koubaa FG, Chaâbane M, Turki M, Ayadi FM, El Feki A. Anti-oxidant and hepatoprotective effects of Salvia officinalis essential oil against vanadium-induced oxidative stress and histological changes in the rat liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11001-11015. [PMID: 33106906 DOI: 10.1007/s11356-020-11303-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The present study was designed to evaluate the protective effects of Salvia officinalis essential oil (SOEO) against vanadium-induced hepatotoxicity in Wistar rats. Animals were divided into three groups: the first group served as the control (C), where rats received daily 0.5 mL of saline solution (0.9%) given by intraperitoneal (i.p.) way. Rats in the second group (V) received daily by i.p. way 5 mg/kg BW of NH4VO3 (V). Rats in the third group (SV) received daily V (5 mg/kg BW) by i.p. way and SOEO (15 mg/kg BW) by gavage. Animals were sacrificed after 4 or 10 days of treatment. Administration of V increased plasma ALT, AST, ALP, and LDH activities, and cholesterol, bilirubin, triglyceride, and NO levels in rats and reduced anti-oxidant enzyme activities in the liver. Treatment with SOEO significantly attenuated these changes. Moreover, the histopathological changes and the overexpression of Hsp72/73 proteins induced by V were significantly improved by SOEO. Therefore, our results suggested that SOEO could protect against V-induced oxidative damage in rat livers. The hepatoprotective effect of SOEO might be attributed to its modulation of detoxification enzymes and/or to its anti-oxidant and free radical scavenging effects.
Collapse
Affiliation(s)
- Fatma Ghorbel Koubaa
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3000, Sfax, Tunisia.
| | - Mariem Chaâbane
- Enzymes and Bioconversion Unit, National Engineering School of Sfax, University of Sfax, 3038, Sfax, Tunisia
| | - Mouna Turki
- Laboratory of Biochemistry, Faculty of Medicine, University of Sfax, 3029, Sfax, Tunisia
| | - Fatma Makni Ayadi
- Laboratory of Biochemistry, Faculty of Medicine, University of Sfax, 3029, Sfax, Tunisia
| | - Abdelfattah El Feki
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Sfax, 3000, Sfax, Tunisia
| |
Collapse
|
21
|
Tang LWT, Verma RK, Fan H, Chan ECY. Mechanism-Based Inactivation of Cytochrome P450 3A4 by Benzbromarone. Mol Pharmacol 2021; 99:266-276. [PMID: 33436520 DOI: 10.1124/molpharm.120.000086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Benzbromarone (BBR), a potent uricosuric agent for the management of gout, is known to cause fatal fulminant hepatitis. Although the mechanism of BBR-induced idiosyncratic hepatotoxicity remains unelucidated, cytochrome P450 enzyme-mediated bioactivation of BBR to electrophilic reactive metabolites is commonly regarded as a key molecular initiating event. However, apart from causing aberrant toxicities, reactive metabolites may result in mechanism-based inactivation (MBI) of cytochrome P450. Here, we investigated and confirmed that BBR inactivated CYP3A4 in a time-, concentration-, and NADPH-dependent manner with K I, k inact, and partition ratio of 11.61 µM, 0.10 minutes-1, and 110, respectively. Coincubation with ketoconazole, a competitive inhibitor of CYP3A4, attenuated the MBI of CYP3A4 by BBR, whereas the presence of glutathione and catalase did not confer such protection. The lack of substantial recovery of enzyme activity postdialysis and after oxidation with potassium ferricyanide, combined with the absence of a Soret peak in spectral difference scans, implied that MBI of CYP3A4 by BBR did not occur through the formation of quasi-irreversible metabolite-intermediate complexes. Analysis of the reduced CO-difference spectrum revealed an ∼44% reduction in ferrous-CO binding and hinted that inactivation is mediated via irreversible covalent adduction to both the prosthetic heme moiety and the apoprotein. Finally, our in silico covalent docking analysis further suggested the modulation of substrate binding to CYP3A4 via the covalent adduction of epoxide-derived reactive intermediates of BBR to two key cysteine residues (Cys239 and Cys58) vicinal to the entrance of the orthosteric binding site. SIGNIFICANCE STATEMENT: Although the bioactivation of benzbromarone (BBR) to reactive metabolites has been well characterized, its potential to cause mechanism-based inactivation (MBI) of cytochrome P450 has not been fully investigated. This study reports the MBI of CYP3A4 by BBR via irreversible covalent adduction and develops a unique covalent docking methodology to predict the structural molecular determinants underpinning the inactivation for the first time. These findings lay the groundwork for future investigation of clinically relevant drug-drug interactions implicating BBR and mechanisms of BBR-induced idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.W.T.T., E.C.Y.C.) and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Ravi Kumar Verma
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.W.T.T., E.C.Y.C.) and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Hao Fan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.W.T.T., E.C.Y.C.) and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.W.T.T., E.C.Y.C.) and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| |
Collapse
|
22
|
Protective effect of ISO-1 with inhibition of RIPK3 up-regulation and neutrophilic accumulation on acetaminophen-induced liver injury in mice. Toxicol Lett 2020; 339:51-59. [PMID: 33370591 DOI: 10.1016/j.toxlet.2020.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/03/2020] [Accepted: 12/22/2020] [Indexed: 11/22/2022]
Abstract
Overdose use of acetaminophen (APAP) often occurs a severe liver injury, and its liver injury is lethal in some cases. Macrophage migration inhibitory factor (MIF) is expressed in a variety of cells and has multifunctional roles. However, the role of MIF in APAP-induced liver injury has not been fully investigated. In this study, we investigated whether treatment with (S,R)-3-(4-hydroxyphenil)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1), a MIF inhibitor, protected mice from acute APAP-induced liver injury. Acute liver injury was induced by injection of APAP (300 mg/kg body weight). Mice were treated with a single injection of ISO-1(15 mg/kg body weight) 1 h (h) before APAP administration. Histological, biochemical and molecular analyses were performed in liver of mice 12 h after APAP administration. ISO-1 remarkably improved the histological findings of APAP-induced liver injury in mice. The increases in serum levels of alanine aminotransferase (ALT), and macrophage inflammatory protein-2 (MIP-2) by APAP were inhibited by ISO-1. In addition, ISO-1 reduced the increased number of the myeloperoxidase-staining cells and that of TUNEL-positive staining cells in the liver of mice with APAP-induced liver injury. Up-regulation of hepatic receptor interacting protein kinase (RIPK)3 and heat shock protein70 by APAP was suppressed in the liver of mice given ISO-1. These results provide the additional evidence that inhibition of MIF activity may be clinically effective for treatment of acute APAP-induced liver injury.
Collapse
|
23
|
Oda S, Uchida Y, Aleo MD, Koza-Taylor PH, Matsui Y, Hizue M, Marroquin LD, Whritenour J, Uchida E, Yokoi T. An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Arch Toxicol 2020; 95:149-168. [PMID: 32816093 DOI: 10.1007/s00204-020-02882-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Preventing clinical drug-induced liver injury (DILI) remains a major challenge, because DILI develops via multifactorial mechanisms. Immune and inflammatory reactions are considered important mechanisms of DILI; however, biomarkers from in vitro systems using immune cells have not been comprehensively studied. The aims of this study were (1) to identify promising biomarker genes for predicting DILI in an in vitro coculture model of peripheral blood mononuclear cells (PBMCs) with a human liver cell line, and (2) to evaluate these genes as predictors of DILI using a panel of drugs with different clinical DILI risk. Transcriptome-wide analysis of PBMCs cocultured with HepG2 or differentiated HepaRG cells that were treated with several drugs revealed an appropriate separation of DILI-positive and DILI-negative drugs, from which 12 putative biomarker genes were selected. To evaluate the predictive performance of these genes, PBMCs cocultured with HepG2 cells were exposed to 77 different drugs, and gene expression levels in PBMCs were determined. The MET proto-oncogene receptor tyrosine kinase (MET) showed the highest area under the receiver-operating characteristic curve (AUC) value of 0.81 among the 12 genes with a high sensitivity/specificity (85/66%). However, a stepwise logistic regression model using the 12 identified genes showed the highest AUC value of 0.94 with a high sensitivity/specificity (93/86%). Taken together, we established a coculture system using PBMCs and HepG2 cells and selected biomarkers that can predict DILI risk. The established model would be useful in detecting the DILI potential of compounds, in particular those that involve an immune mechanism.
Collapse
Affiliation(s)
- Shingo Oda
- Division of Clinical Pharmacology, Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yuka Uchida
- Division of Clinical Pharmacology, Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Michael D Aleo
- Drug Safety Research and Development, Pfizer Inc, Groton, CT, USA
- TOXinsights LLC, East Lyme, CT, USA
| | | | - Yusuke Matsui
- Laboratory of Intelligence Healthcare, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanori Hizue
- Drug Safety Research and Development, Pfizer Inc, Tokyo, Japan
| | - Lisa D Marroquin
- Drug Safety Research and Development, Pfizer Inc, Groton, CT, USA
| | | | - Eri Uchida
- Drug Safety Research and Development, Pfizer Inc, Tokyo, Japan
| | - Tsuyoshi Yokoi
- Division of Clinical Pharmacology, Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
24
|
Wang J, Bwayi M, Florke Gee RR, Chen T. PXR-mediated idiosyncratic drug-induced liver injury: mechanistic insights and targeting approaches. Expert Opin Drug Metab Toxicol 2020; 16:711-722. [PMID: 32500752 PMCID: PMC7429329 DOI: 10.1080/17425255.2020.1779701] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The human liver is the center for drug metabolism and detoxification and is, therefore, constantly exposed to toxic chemicals. The loss of liver function as a result of this exposure is referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) is the primary regulator of the hepatic drug-clearance system, which plays a critical role in mediating idiosyncratic DILI. AREAS COVERED This review is focused on common mechanisms of PXR-mediated DILI and on in vitro and in vivo models developed to predict and assess DILI. It also provides an update on the development of PXR antagonists that may manage PXR-mediated DILI. EXPERT OPINION DILI can be caused by many factors, and PXR is clearly linked to DILI. Although emerging data illustrate how PXR mediates DILI and how PXR activity can be modulated, many questions concerning the development of effective PXR modulators remain. Future research should be focused on determining the mechanisms regulating PXR functions in different cellular contexts.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Monicah Bwayi
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Rebecca R. Florke Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
25
|
Peng Y, Wu Z, Yang H, Cai Y, Liu G, Li W, Tang Y. Insights into mechanisms and severity of drug-induced liver injury via computational systems toxicology approach. Toxicol Lett 2019; 312:22-33. [DOI: 10.1016/j.toxlet.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/10/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]
|
26
|
Zhu P, Li J, Fu X, Yu Z. Schisandra fruits for the management of drug-induced liver injury in China: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152760. [PMID: 31004881 DOI: 10.1016/j.phymed.2018.11.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND With increasing use of pharmaceuticals, drug-induced liver injury (DILI) has become a significant therapeutic challenge to physicians all over the world. Drugs based on Schisandra fruits (SF for short, the fruits of Schisandra chinensis or Schisandra sphenanthera) or synthetic analogues of schisandrin C, are commonly prescribed for treating DILI in China. PURPOSE This review summarizes the literature regarding the application of SF-derived drugs in patients with DILI and current understanding of mechanisms underlying the protective effects of SF against liver injury. METHODS Keywords related to drug-induced liver injury and Schisandra fruits were searched in the following databases: Pubmed, Cochrane Library, Google Scholar, LiverTox, China National Knowledge Infrastructure (CNKI), Chinese Scientific Journal database (VIP), and Wanfang database. All studies, published in English or Chinese, were included. Clinical study exclusion criteria: if patients received other Chinese herbal medicines in a study, the study will not be included in this review. RESULTS Clinical studies have shown that SF-derived drugs are effective in inhibiting drug-induced elevation of serum levels of alanine aminotransferase, aspartate transaminase and total bilirubin. Cellular and animal studies have demonstrated that crude SF extracts, lignan compounds found in SF, and SF-derived drugs are effective in protecting the liver against xenobiotic-induced injury. Regulation of cytochrome P450 enzyme activity, anti-oxidation, anti-inflammation and acceleration of liver regeneration are involved in the hepatoprotective mechanisms of SF. CONCLUSION SF-derived drugs are effective in ameliorating DILI in China. To verify the clinical efficacy of these drugs, high-quality clinical studies are needed.
Collapse
Affiliation(s)
- Peili Zhu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Junkui Li
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiuqiong Fu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zhiling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
27
|
Ivashkin VT, Baranovsky AY, Raikhelson KL, Palgova LK, Maevskaya MV, Kondrashina EA, Marchenko NV, Nekrasova TP, Nikitin IG. Drug-Induced Liver Injuries (Clinical Guidelines for Physicians). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2019; 29:101-131. [DOI: 10.22416/1382-4376-2019-29-1-101-131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Aim.Clinical guidelines for the management of adult patients suffering from drug-induced liver injuries (DILI) are intended for all medical specialists, who treat such patients in their clinical practice.Key findings.The presented recommendations contain information about the epidemiological data, terminology, diagnostic principles, classification, prognosis and management of patients with DILI. The recommendations list pharmacological agents that most commonly cause DILI, including its fatal cases. Dose-dependent and predictable (hepatotoxic), as well as dose-independent and unpredictable (idiosyncratic) DILI forms are described in detail, which information has a particular practical significance. The criteria and types of DILI are described in detail, with the most reliable diagnostic and prognostic scales and indices being provided. The pathogenesis and risk factors for the development of DILI are considered. The clinical and morphological forms (phenotypes) of DILI are described. The diseases that are included into the differential diagnosis of DILI, as well as the principles of its implementation, are given. The role and significance of various diagnostic methods for examining a patient with suspected DILI is described, with the liver biopsy role being discussed. Clinical situations, in which DILI can acquire a chronic course, are described. A section on the assessment of causal relationships in the diagnosis of DILI is presented; the practical value of using the CIOMS-RUCAM scale is shown. All possible therapeutic measures and pharmacological approaches to the treatment of patients with various DILI phenotypes are investigated in detail. A particular attention is paid to the use of glucocorticosteroids in the treatment of DILI.Conclusion.The presented clinical recommendations are important for improving the quality of medical care in the field of hepatology.
Collapse
|
28
|
Taylor JG, Zipfel S, Ramey K, Vivian R, Schrier A, Karki KK, Katana A, Kato D, Kobayashi T, Martinez R, Sangi M, Siegel D, Tran CV, Yang ZY, Zablocki J, Yang CY, Wang Y, Wang K, Chan K, Barauskas O, Cheng G, Jin D, Schultz BE, Appleby T, Villaseñor AG, Link JO. Discovery of the pan-genotypic hepatitis C virus NS3/4A protease inhibitor voxilaprevir (GS-9857): A component of Vosevi ®. Bioorg Med Chem Lett 2019; 29:2428-2436. [PMID: 31133531 DOI: 10.1016/j.bmcl.2019.03.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/20/2022]
Abstract
Treatment of hepatitis C virus (HCV) infection has been historically challenging due the high viral genetic complexity wherein there are eight distinct genotypes and at least 86 viral subtypes. While HCV NS3/4A protease inhibitors are an established treatment option for genotype 1 infection, limited coverage of genotypes 2 and/or 3 combined with serum alanine transaminase (ALT) elevations for some compounds has limited the broad utility of this therapeutic class. Our discovery efforts were focused on identifying an NS3/4A protease inhibitor with pan-genotypic antiviral activity, improved coverage of resistance associated substitutions, and a decreased risk of hepatotoxicity. Towards this goal, distinct interactions with the conserved catalytic triad of the NS3/4A protease were identified that improved genotype 3 antiviral activity. We further discovered that protein adduct formation strongly correlated with clinical ALT elevation for this therapeutic class. Improving metabolic stability and decreasing protein adduct formation through structural modifications ultimately resulted in voxilaprevir. Voxilaprevir, in combination with sofosbuvir and velpatasvir, has demonstrated pan-genotypic antiviral clinical activity. Furthermore, hepatotoxicity was not observed in Phase 3 clinical trials with voxilaprevir, consistent with our design strategy. Vosevi® (sofosbuvir, velpatasvir, and voxilaprevir) is now an approved pan-genotypic treatment option for the most difficult-to-cure individuals who have previously failed direct acting antiviral therapy.
Collapse
Affiliation(s)
- James G Taylor
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States.
| | - Sheila Zipfel
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Kyla Ramey
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Randy Vivian
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Adam Schrier
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Kapil K Karki
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Ashley Katana
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Darryl Kato
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Tetsuya Kobayashi
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Ruben Martinez
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Michael Sangi
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Dustin Siegel
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Chinh V Tran
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Zheng-Yu Yang
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Jeff Zablocki
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Cheng Y Yang
- Drug Metabolism, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Yujin Wang
- Drug Metabolism, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Kelly Wang
- Drug Metabolism, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Katie Chan
- Biology, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Ona Barauskas
- Biology, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Guofeng Cheng
- Biology, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Debi Jin
- Biology, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Brian E Schultz
- Biology, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Todd Appleby
- Structural Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - Armando G Villaseñor
- Structural Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| | - John O Link
- Medicinal Chemistry, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States
| |
Collapse
|
29
|
Heidari R, Arabnezhad MR, Ommati MM, Azarpira N, Ghodsimanesh E, Niknahad H. Boldine Supplementation Regulates Mitochondrial Function and Oxidative Stress in a Rat Model of Hepatotoxicity. PHARMACEUTICAL SCIENCES 2019. [DOI: 10.15171/ps.2019.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: The xenobiotics-induced liver injury is a clinical complication. Hence, finding new hepatoprotective strategies has clinical value. Oxidative stress and its subsequent complications are major mechanisms involved in xenobiotics-induced hepatotoxicity. Boldine is one of the most potent antioxidant molecules widely investigated for its protective properties in different experimental models. In the current study, the hepatoprotective properties of boldine and its potential mechanisms of hepatoprotection have been investigated. Methods: Rats received thioacetamide (TAA; 200 mg/kg, i.p) as a model of acute liver injury. Boldine (5, 10, 1nd 20 mg/kg; 24 hours intervals; oral) was administered as the hepatoprotective agent. Results: Liver injury was evident in TAA-treated animals (48 hours after TAA exposure) as a severe increase in serum level of liver injury biomarkers and histopathological alterations. Moreover, markers of oxidative stress were increased in liver tissue of TAA-treated rats. Assessment of mitochondrial indices of functionality revealed a significant decrease in mitochondrial dehydrogenases activity, the collapse of mitochondrial membrane potential, mitochondrial swelling and depletion of ATP content. It was found that boldine supplementation mitigated liver tissue markers of oxidative stress and improved mitochondrial indices of functionality in TAA-treated animals. Conclusion: The hepatoprotective properties of boldine might primarily rely on antioxidant and mitochondria protecting effects of this alkaloid.
Collapse
Affiliation(s)
- Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Arabnezhad
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mehdi Ommati
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Ghodsimanesh
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmacology and Toxicology Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Wang Y, Zhang H, Jiang JM, Zheng D, Chen YY, Wan SJ, Tan HS, Tang LM, Xu HX. Hepatotoxicity induced by psoralen and isopsoralen from Fructus Psoraleae: Wistar rats are more vulnerable than ICR mice. Food Chem Toxicol 2019; 125:133-140. [PMID: 30597224 DOI: 10.1016/j.fct.2018.12.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022]
|
31
|
Cholangiocyte death in ductopenic cholestatic cholangiopathies: Mechanistic basis and emerging therapeutic strategies. Life Sci 2019; 218:324-339. [DOI: 10.1016/j.lfs.2018.12.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
|
32
|
Chen M, Zhu J, Ashby K, Wu L, Liu Z, Gong P, Zhang C, Borlak J, Hong H, Tong W. Predicting the Risks of Drug-Induced Liver Injury in Humans Utilizing Computational Modeling. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019:259-278. [DOI: 10.1007/978-3-030-16443-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
33
|
Shabat Y, Ya’acov AB, Ilan Y. Alpha-1 Anti-trypsin Exerts a Hepatoprotective Effect on Immune-mediated Hepatitis and Acetaminophen-induced Liver Injury. J Clin Transl Hepatol 2018; 6:345-349. [PMID: 30637210 PMCID: PMC6328735 DOI: 10.14218/jcth.2018.00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 12/21/2022] Open
Abstract
Background and Aims: The serine proteinase inhibitor alpha-1 anti-trypsin (AAT) protects the body against protease activity. Several functions of AAT beyond those attributed to its anti-protease activity have been described, among them immunomodulatory and anti-inflammatory properties. The present study aimed to determine the efficacy of AAT for the treatment of immune-mediated liver injury using the models of concanavalin A-induced immune-mediated hepatitis and acetaminophen -induced liver damage. Methods: AAT was administered to mice subjected to concanavalin A-induced immune-mediated hepatitis or 2 h after acetaminophen-induced liver damage. Mice were followed for changes in serum levels of liver enzymes, liver histology, and for interferon gamma serum levels. Results: Treatment with AAT alleviated concanavalin A-induced immune-mediated liver damage, as demonstrated by a reduction in the serum levels of liver enzymes and interferon gamma, and an improved lymphocyte infiltration into the liver on liver biopsies. Moreover, treatment with AAT was associated with alleviation of the acetaminophen-induced liver injury. Conclusions: AAT exerts an hepatoprotective effect on immune-mediated and drug-induced liver damage. The data support its potential use in patients with immune-associated liver disorders.
Collapse
Affiliation(s)
- Yehudit Shabat
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Ami Ben Ya’acov
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
- *Correspondence to: Yaron Ilan, Department of Medicine, Hebrew University-Hadassah Medical Center, P.O.B 12000, Jerusalem, IL-91120, Israel. Tel: +972-2-6778231, Fax: +972-2-6431021, E-mail:
| |
Collapse
|
34
|
Ohe T, Umezawa R, Kitagawara Y, Yasuda D, Takahashi K, Nakamura S, Abe A, Sekine S, Ito K, Okunushi K, Morio H, Furihata T, Anzai N, Mashino T. Synthesis of novel benzbromarone derivatives designed to avoid metabolic activation. Bioorg Med Chem Lett 2018; 28:3708-3711. [DOI: 10.1016/j.bmcl.2018.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
|
35
|
Soussi A, Gargouri M, El Feki A. Potential immunomodulatory and antioxidant effects of walnut Juglans regia vegetable oil against lead-mediated hepatic damage and their interaction with lipase activity in rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:1261-1271. [PMID: 30251767 DOI: 10.1002/tox.22634] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/19/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
Environmental pollutants, particularly lead, pose a serious threat to human and animal health that causes disturbances of several functions, including hepatotoxicity. Therefore, the search for a new treatment that could safely and effectively block or reverse liver injuries remains a challenge. This study was carried out to investigate the protective efficacy of Juglans regia vegetable oil (JRVO) against the hepatotoxicity induced by lead. To achieve this aim, adults male rats were treated for 10 days with Pb (0.344 g/kg bw) associated or not with JRVO (0.9 g/kg bw). The rats intoxicated by lead exhibited oxidative stress determined by TBARS, protein carbonyls, liver tumor necrosis factor-α (TNF-α), caspase-3, and antioxidant status: SOD, CAT, GPx, and GSH. Administration of lead increased the levels of plasma hepatic markers (AST, ALT, LDH) and bilirubin, the lipid profiles (total cholesterol, triglycerides, VLDL-Ch, LDL-Ch levels, TBARS, NOx, and PCO), the plasmatic lipase activity and the inflammatory markers, while the plasmatic ALP decreased. Coadministration of JRVO restored all the hepatic markers, the lipid profiles and the antioxidants to near-normal values and lowered the plasmatic lipase activity as well as the elevated thiobarbituric acid reactive substances. Hepatic histological studies confirmed the beneficial role of JRVO through the amelioration of all biochemical parameters. Our results suggest that Juglans regia vegetable oil contains promising substances to counteract the lead intoxication and may be efficient in the prevention of hepatotoxicity complications.
Collapse
Affiliation(s)
- Ahlem Soussi
- Laboratory of Animal Eco-physiology, Faculty of Sciences, Sfax University, Sfax, Tunisia
| | - Manel Gargouri
- Laboratory of Animal Eco-physiology, Faculty of Sciences, Sfax University, Sfax, Tunisia
| | - Abdelfattah El Feki
- Laboratory of Animal Eco-physiology, Faculty of Sciences, Sfax University, Sfax, Tunisia
| |
Collapse
|
36
|
Han H, Li Z, Gao Z, Yin X, Dong P, Yang B, Kuang H. Synthesis and biological evaluation of picroside derivatives as hepatoprotective agents. Nat Prod Res 2018; 33:2845-2850. [PMID: 30406689 DOI: 10.1080/14786419.2018.1508143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Picrorhizae Rhizoma as a hepatoprotective herb, has been applied for thousands of years, and picroside was proved to be its active constituent. In this study, twelve derivatives of picroside were synthesized and the hepatoprotective activity of the derivatives was evaluated on SMMC-7721 cells. Six out of the derivatives had shown a better protective effect on H2O2-induced SMMC-7221 cells than picroside, and the activity of two derivatives (2 and 4) was stronger than that of the reference compound, silybin. Compound 2 shown the strongest protective effect (EC50 = 6.064 ± 1.295 μM).
Collapse
Affiliation(s)
- Hua Han
- a Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education , Harbin 150040 , People's Republic of China
| | - ZhengQing Li
- a Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education , Harbin 150040 , People's Republic of China
| | - ZhenLei Gao
- a Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education , Harbin 150040 , People's Republic of China
| | - Xin Yin
- a Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education , Harbin 150040 , People's Republic of China
| | - PeiLiang Dong
- a Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education , Harbin 150040 , People's Republic of China
| | - BingYou Yang
- a Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education , Harbin 150040 , People's Republic of China
| | - HaiXue Kuang
- a Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education , Harbin 150040 , People's Republic of China
| |
Collapse
|
37
|
Heidari R, Niknahad H, Sadeghi A, Mohammadi H, Ghanbarinejad V, Ommati MM, Hosseini A, Azarpira N, Khodaei F, Farshad O, Rashidi E, Siavashpour A, Najibi A, Ahmadi A, Jamshidzadeh A. Betaine treatment protects liver through regulating mitochondrial function and counteracting oxidative stress in acute and chronic animal models of hepatic injury. Biomed Pharmacother 2018; 103:75-86. [DOI: 10.1016/j.biopha.2018.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/29/2022] Open
|
38
|
Stephens C, Lucena MI, Andrade RJ. Host Risk Modifiers in Idiosyncratic Drug-Induced Liver Injury (DILI) and Its Interplay with Drug Properties. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-1-4939-7677-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Effect of gene-gene and gene-environment interactions associated with antituberculosis drug-induced hepatotoxicity. Pharmacogenet Genomics 2018; 27:363-371. [PMID: 28799976 DOI: 10.1097/fpc.0000000000000300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES This study evaluated the association between environmental factors and genetic variations in enzymes that metabolize antituberculosis (anti-TB) drugs [arylamine N-acetyltransferase 2, cytochrome P450 2E1 (CYP2E1), glutathione S-transferase theta 1 (GSTT1), and glutathione S-transferase mu 1] with antituberculosis drug-induced hepatotoxicity (ATDH). We also investigated the potential gene-gene and gene-environment interactions as well as their association with ATDH development in a population of hospitalized TB patients from Buenos Aires. PATIENTS AND METHODS We investigated 364 TB patients who received anti-TB drugs. Physicians collected demographic and clinical data to identify environmental risk factors for ATDH development. Polymorphisms were detected using gene sequencing, PCR, and PCR-restriction fragment length polymorphisms. A binary logistic regression analysis was carried out to compare the results of TB patients with and without the development of hepatotoxicity. The multifactor dimensionality reduction method was used to examine genetic and environmental interactions in association with ATDH. RESULTS This study suggests that the slow acetylator profile [odds ratio (OR): 3.02; 95% confidence interval (CI): 1.82-5.00; P<0.001], genotypes carrying the c2 variant (OR: 2.16; 95% CI: 1.33-3.51; P=0.002) or the A4 variant of CYP2E1 (OR: 2.13; 95% CI: 1.06-4.29; P=0.050), and female sex (OR: 1.94; 95% CI: 1.20-3.14; P=0.006) were independent predictor variables for ATDH. Patients carrying the slow acetylator profile and the c2 variant showed an increased risk (OR: 7.068; 95% CI: 3.34-14.95; P<0.001). We also identified a synergic interaction (epistasis) between GSTT1 and CYP2E1 associated with an increased risk for ATDH. A meaningful gene-environment interaction was associated with an increased risk of ATDH [testing balance accuracy=0.675 (P=0.001) and cross-validation consistency=10/10]. CONCLUSION ATDH is a severe and prevalent adverse drug reaction and leads to drug discontinuation in 11% of TB patients. Our study created a prediction model that properly classified the 67.5% of TB patients in their risk of developing ATDH. The considerable number of TB patients in our country supports the use of pharmacogenetic testing and a comprehensive clinical history to identify patients with a high risk of suffering hepatotoxicity.
Collapse
|
40
|
The exposure-effect-toxicity correlation of docetaxel and magnesium isoglycyrrhizinate in non-small cell lung tumor-bearing mice. Biomed Pharmacother 2018; 97:1000-1010. [DOI: 10.1016/j.biopha.2017.10.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/01/2017] [Accepted: 10/28/2017] [Indexed: 02/07/2023] Open
|
41
|
Ahmed Abdel-Reheim M, Messiha BAS, Abo-Saif AA. Quillaja saponaria bark saponin protects Wistar rats against ferrous sulphate-induced oxidative and inflammatory liver damage. PHARMACEUTICAL BIOLOGY 2017; 55:1972-1983. [PMID: 28728456 PMCID: PMC6130630 DOI: 10.1080/13880209.2017.1345950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 05/09/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Saponins from different sources are historically reported in Chinese medicine to possess many beneficial effects. However, insufficient experimental data are available regarding the hepatoprotective potential of Quillaja bark saponin. OBJECTIVE The protective effect of Quillaja saponaria Molina (Quillajaceae) bark triterpenoid saponin against iron-induced hepatotoxicity is compared to the standard N-acetylcysteine in adult male Wistar rats. MATERIALS AND METHODS Animals were divided into (six) groups, namely a normal control, an N-acetylcysteine control (300 mg/kg/day, p.o., 10 days), a saponin control (100 mg/kg/day, p.o., for 10 days), a hepatotoxicity control (two doses of ferrous sulphate, 30 mg/kg/day each, i.p., on 9th and 10th day), an N-acetylcysteine plus ferrous sulphate (standard treatment) and a saponin plus ferrous sulphate (test treatment) group. Hepatocyte integrity loss markers (serum ALT, AST, ALP, GGT and LDH), oxidative stress markers (hepatic MDA, GSH and NOx), dyslipidaemic markers (serum TC and TG) and hepatocyte functioning markers (serum bilirubin and albumin) were assessed. RESULTS Quillaja bark saponin decreased iron-induced elevation of ALT (reaching 57% of hepatotoxicity control), AST (66%), ALP (76%), GGT (60%), LDH (54%), MDA (65%), NOx (77%), TC (70%), TG (54%), and total (54%), direct (54%) and indirect (54%) bilirubin, coupled with increased GSH (219%) and albumin (159%) levels. Histopathological study strongly supported biochemical estimations, while immunohistochemical study showed marked effect on eNOS and iNOS expression. CONCLUSIONS Quillaja bark saponin has a good hepatoprotective effect. Amelioration of oxidative stress and suppression of NOS expression, with resultant maintenance of hepatocyte integrity and functioning, may explain this beneficial effect.
Collapse
Affiliation(s)
| | | | - Ali Ahmed Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| |
Collapse
|
42
|
Abstract
The newer atypical antipsychotic agents (AAPs) represent an attractive therapeutic option for a wide range of psychotic disorders, including schizophrenia and bipolar mania, because of the reduced risk of disabling extrapyramidal symptoms. However, their growing use has raised questions about their tolerability over the endocrine, metabolic, and cardiovascular axes. Indeed, atypical antipsychotic drugs are associated, to differing extents, with mild elevation of aminotransferases related to weight gain, AAP-induced metabolic syndrome, and nonalcoholic fatty liver disease. Although the hepatic safety of new AAPs seems improved over that of chlorpromazine, they can occasionally cause idiosyncratic liver injury with varying phenotypes and, rarely, lead to acute liver failure. However, AAPs are a group of heterogeneous, chemically unrelated compounds with distinct pharmacological and pharmacokinetic properties and substantially different safety profiles, which precludes the notion of a class effect for hepatotoxicity risk and highlights the need for an individualized therapeutic approach. We discuss the current evidence on the hepatotoxicity potential of AAPs, the emerging underlying mechanisms, and the limitations inherent to this group of drugs for both establishing a proper causality assessment and developing strategies for risk management.
Collapse
|
43
|
Ming YN, Zhang JY, Wang XL, Li CM, Ma SC, Wang ZY, Liu XL, Li XB, Mao YM. Liquid chromatography mass spectrometry-based profiling of phosphatidylcholine and phosphatidylethanolamine in the plasma and liver of acetaminophen-induced liver injured mice. Lipids Health Dis 2017; 16:153. [PMID: 28807032 PMCID: PMC5556666 DOI: 10.1186/s12944-017-0540-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022] Open
Abstract
Background Acetaminophen (APAP) overdose is one of the most common causes of acute liver failure in many countries. The aim of the study was to describe the profiling of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in the plasma and liver of Acetaminophen -induced liver injured mice. Methods A time course study was carried out using C57BL/6 mice after intraperitoneal administration of 300 mg/kg Acetaminophen 1 h, 3 h, 6 h, 12 h and 24 h. A high-throughput liquid chromatography mass spectrometry (LC-MS) lipidomic method was utilized to detect phosphatidylcholine and phosphatidylethanolamine species in the plasma and liver. The expressions of phosphatidylcholine and phosphatidylethanolamine metabolism related genes in liver were detected by quantitative Reverse transcription polymerase chain reaction (qRT-PCR) and Western-blot. Results Following Acetaminophen treatment, the content of many PC and PE species in plasma increased from 1 h time point, peaked at 3 h or 6 h, and tended to return to baseline at 24 h time point. The relative contents of almost all PC species in liver decreased from 1 h, appeared to be lowest at 6 h, and then return to normality at 24 h, which might be partly explained by the suppression of phospholipases mRNA expressions and the induction of choline kinase (Chka) expression. Inconsistent with PC profile, the relative contents of many PE species in liver increased upon Acetaminophen treatment, which might be caused by the down-regulation of phosphatidylethanolamine N-methyltransferase (Pemt). Conclusions Acetaminophen overdose induced dramatic change of many PC and PE species in plasma and liver, which might be caused by damaging hepatocytes and interfering the phospholipid metabolism in Acetaminophen -injured liver. Electronic supplementary material The online version of this article (doi:10.1186/s12944-017-0540-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Nan Ming
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jing-Yi Zhang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao-Lin Wang
- Department of Pharmacology, School of Medicine, Shanghai Jiao Tong University, Institute of Medical Sciences, Shanghai, China
| | - Chun-Min Li
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Si-Cong Ma
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng-Yang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiao-Lin Liu
- Division of Gastroenterology and Hepatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Bo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yi-Min Mao
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
44
|
Yang C, Yi J, Gong X, Ge P, Dai J, Lin L, Xing Y, Zhang L. Anti-oxidative and anti-inflammatory benefits of the ribonucleoside analogue 5-azacitidine in mice with acetaminophen-induced toxic hepatitis. Int Immunopharmacol 2017; 48:91-95. [DOI: 10.1016/j.intimp.2017.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 01/12/2023]
|
45
|
Weaver RJ, Betts C, Blomme EAG, Gerets HHJ, Gjervig Jensen K, Hewitt PG, Juhila S, Labbe G, Liguori MJ, Mesens N, Ogese MO, Persson M, Snoeys J, Stevens JL, Walker T, Park BK. Test systems in drug discovery for hazard identification and risk assessment of human drug-induced liver injury. Expert Opin Drug Metab Toxicol 2017; 13:767-782. [PMID: 28604124 DOI: 10.1080/17425255.2017.1341489] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The liver is an important target for drug-induced toxicities. Early detection of hepatotoxic drugs requires use of well-characterized test systems, yet current knowledge, gaps and limitations of tests employed remains an important issue for drug development. Areas Covered: The current state of the science, understanding and application of test systems in use for the detection of drug-induced cytotoxicity, mitochondrial toxicity, cholestasis and inflammation is summarized. The test systems highlighted herein cover mostly in vitro and some in vivo models and endpoint measurements used in the assessment of small molecule toxic liabilities. Opportunities for research efforts in areas necessitating the development of specific tests and improved mechanistic understanding are highlighted. Expert Opinion: Use of in vitro test systems for safety optimization will remain a core activity in drug discovery. Substantial inroads have been made with a number of assays established for human Drug-induced Liver Injury. There nevertheless remain significant gaps with a need for improved in vitro tools and novel tests to address specific mechanisms of human Drug-Induced Liver Injury. Progress in these areas will necessitate not only models fit for application, but also mechanistic understanding of how chemical insult on the liver occurs in order to identify translational and quantifiable readouts for decision-making.
Collapse
Affiliation(s)
- Richard J Weaver
- a Research & Biopharmacy, Institut de Recherches Internationales Servier , Suresnes , France
| | - Catherine Betts
- b Pathology Sciences, Drug Safety and Metabolism , AstraZeneca R&D , Cambridge , UK
| | | | - Helga H J Gerets
- d Non Clinical Development, Chemin du Foriest , UCB BioPharma SPRL , Braine L'Alleud , Belgium
| | | | - Philip G Hewitt
- f Non-Clinical Development, Merck KGaA , Darmstadt , Germany
| | - Satu Juhila
- g In Vitro Biology , Orion Pharma , Espoo , Finland
| | - Gilles Labbe
- h Investigative Toxicology, Preclinical Safety , Sanofi R&D , Paris , France
| | | | - Natalie Mesens
- i Preclinical Development & Safety, Janssen (Pharmaceutical Companies of Johnson & Johnson) Turnhoutseweg 30 , Beerse , Belgium
| | - Monday O Ogese
- j Pathology Sciences, Drug Safety and Metabolism , AstraZeneca R&D , Cambridge , UK
| | - Mikael Persson
- k Innovative Medicines and Early Clinical Development, Drug Safety and Metabolism, Discovery Safety , AstraZeneca R&D , Mölndal , Sweden
| | - Jan Snoeys
- l Pharmacokinetics Dynamics & Metabolism, Janssen (Pharmaceutical Companies of Johnson & Johnson) Turnhoutseweg 30 , Beerse , Belgium
| | - James L Stevens
- m Dept of Toxicology , Lilly Research Laboratories, Eli Lilly and Company , Indianapolis , Indiana , USA
| | - Tracy Walker
- n Investigative Safety & Drug Metabolism , GlaxoSmithKline, David Jack Centre for Research and Development , Ware , Herts , Hertfordshire, UK
| | - B Kevin Park
- o Institute of Translational Medicine , University of Liverpool , Liverpool , UK
| |
Collapse
|
46
|
Bailey WJ, Glaab W. Derisking drug-induced liver injury from bench to bedside. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Yu YC, Mao YM, Chen CW, Chen JJ, Chen J, Cong WM, Ding Y, Duan ZP, Fu QC, Guo XY, Hu P, Hu XQ, Jia JD, Lai RT, Li DL, Liu YX, Lu LG, Ma SW, Ma X, Nan YM, Ren H, Shen T, Wang H, Wang JY, Wang TL, Wang XJ, Wei L, Xie Q, Xie W, Yang CQ, Yang DL, Yu YY, Zeng MD, Zhang L, Zhao XY, Zhuang H. CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatol Int 2017; 11:221-241. [PMID: 28405790 PMCID: PMC5419998 DOI: 10.1007/s12072-017-9793-2] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is an important clinical problem, which has received more attention in recent decades. It can be induced by small chemical molecules, biological agents, traditional Chinese medicines (TCM), natural medicines (NM), health products (HP), and dietary supplements (DS). Idiosyncratic DILI is far more common than intrinsic DILI clinically and can be classified into hepatocellular injury, cholestatic injury, hepatocellular-cholestatic mixed injury, and vascular injury based on the types of injured target cells. The CSH guidelines summarized the epidemiology, pathogenesis, pathology, and clinical manifestation and gives 16 evidence-based recommendations on diagnosis, differential diagnosis, treatment, and prevention of DILI.
Collapse
Affiliation(s)
- Yue-Cheng Yu
- Liver Disease Center of PLA, Bayi Hospital, Nanjing University of Chinese Medicine, Nanjing, 210002, China
| | - Yi-Min Mao
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China.
| | - Cheng-Wei Chen
- Shanghai Liver Diseases Research Center, 85th Hospital, Nanjing Military Command, Shanghai, 200235, China.
| | - Jin-Jun Chen
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Chen
- Liver Diseases Center, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 201805, China
| | - Yang Ding
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhong-Ping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qing-Chun Fu
- Shanghai Liver Diseases Research Center, 85th Hospital, Nanjing Military Command, Shanghai, 200235, China
| | - Xiao-Yan Guo
- Department of Gastroenterology, Second Affiliated Hospital, Xi'an Jiaotong University, Xian, 710004, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xi-Qi Hu
- Department of Pathology, School of Medicine, Fudan University, Shanghai, 200433, China
| | - Ji-Dong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medial University, Beijing, 100069, China
| | - Rong-Tao Lai
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Dong-Liang Li
- Department of Hepatobiliary Disease, Fuzhou General Hospital of PLA, Fuzhou, 350025, China
| | - Ying-Xia Liu
- Department of Liver Disease, Shenzhen Third People's Hospital, Shenzhen, 518040, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Shi-Wu Ma
- Department of Infectious Diseases, Kunming General Hospital of PLA, Kunming, 650032, China
| | - Xiong Ma
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Yue-Min Nan
- Department of Traditional and Western Medical Hepatology, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| | - Hong Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Tao Shen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Beijing University, Beijing, 100083, China
| | - Hao Wang
- Institute of Hepatology, People's Hospital, Beijing University, Beijing, 100044, China
| | - Ji-Yao Wang
- Department of Gastroenterology, Zhongshan Hospital, School of Medicine, Fudan University, Shanghai, 200032, China
| | - Tai-Ling Wang
- Department of Pathology, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Xiao-Jin Wang
- Shanghai Liver Diseases Research Center, 85th Hospital, Nanjing Military Command, Shanghai, 200235, China
| | - Lai Wei
- Institute of Hepatology, People's Hospital, Beijing University, Beijing, 100044, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100011, China
| | - Chang-Qing Yang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065c, China
| | - Dong-Liang Yang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan-Yan Yu
- Department of Infectious Disease, Beijing University First Hospital, Beijing, 100034, China
| | - Min-de Zeng
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Li Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078c, China
| | - Xin-Yan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medial University, Beijing, 100069, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Beijing University, Beijing, 100083, China
| |
Collapse
|
48
|
Alempijevic T, Zec S, Milosavljevic T. Drug-induced liver injury: Do we know everything? World J Hepatol 2017; 9:491-502. [PMID: 28443154 PMCID: PMC5387361 DOI: 10.4254/wjh.v9.i10.491] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
Interest in drug-induced liver injury (DILI) has dramatically increased over the past decade, and it has become a hot topic for clinicians, academics, pharmaceutical companies and regulatory bodies. By investigating the current state of the art, the latest scientific findings, controversies, and guidelines, this review will attempt to answer the question: Do we know everything? Since the first descriptions of hepatotoxicity over 70 years ago, more than 1000 drugs have been identified to date, however, much of our knowledge of diagnostic and pathophysiologic principles remains unchanged. Clinically ranging from asymptomatic transaminitis and acute or chronic hepatitis, to acute liver failure, DILI remains a leading causes of emergent liver transplant. The consumption of unregulated herbal and dietary supplements has introduced new challenges in epidemiological assessment and clinician management. As such, numerous registries have been created, including the United States Drug-Induced Liver Injury Network, to further our understanding of all aspects of DILI. The launch of LiverTox and other online hepatotoxicity resources has increased our awareness of DILI. In 2013, the first guidelines for the diagnosis and management of DILI, were offered by the Practice Parameters Committee of the American College of Gastroenterology, and along with the identification of risk factors and predictors of injury, novel mechanisms of injury, refined causality assessment tools, and targeted treatment options have come to define the current state of the art, however, gaps in our knowledge still undoubtedly remain.
Collapse
Affiliation(s)
- Tamara Alempijevic
- Tamara Alempijevic, Simon Zec, Tomica Milosavljevic, University of Belgrade, School of Medicine, 11000 Belgrade, Serbia
| | - Simon Zec
- Tamara Alempijevic, Simon Zec, Tomica Milosavljevic, University of Belgrade, School of Medicine, 11000 Belgrade, Serbia
| | - Tomica Milosavljevic
- Tamara Alempijevic, Simon Zec, Tomica Milosavljevic, University of Belgrade, School of Medicine, 11000 Belgrade, Serbia
| |
Collapse
|
49
|
Diphenhydramine as a Cause of Drug-Induced Liver Injury. Case Reports Hepatol 2017; 2017:3864236. [PMID: 28246565 PMCID: PMC5299161 DOI: 10.1155/2017/3864236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/10/2017] [Indexed: 01/13/2023] Open
Abstract
Drug-induced liver injury (DILI) is the most common cause of acute liver failure in the Unites States and accounts for 10% of acute hepatitis cases. We report the only known case of diphenhydramine-induced acute liver injury in the absence of concomitant medications. A 28-year-old man with history of 13/14-chromosomal translocation presented with fevers, vomiting, and jaundice. Aspartate-aminotransferase and alanine-aminotransferase levels peaked above 20,000 IU/L and 5,000 IU/L, respectively. He developed coagulopathy but without altered mental status. Patient reported taking up to 400 mg diphenhydramine nightly, without concomitant acetaminophen, for insomnia. He denied taking other medications, supplements, antibiotics, and herbals. A thorough workup of liver injury ruled out viral hepatitis (including A, B, C, and E), autoimmune, toxic, ischemic, and metabolic etiologies including Wilson's disease. A liver biopsy was consistent with DILI without evidence of iron or copper deposition. Diphenhydramine was determined to be the likely culprit. This is the first reported case of diphenhydramine-induced liver injury without concomitant use of acetaminophen.
Collapse
|
50
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|