1
|
Fotiadis P, McKinstry-Wu AR, Weinstein SM, Cook PA, Elliott M, Cieslak M, Duda JT, Satterthwaite TD, Shinohara RT, Proekt A, Kelz MB, Detre JA, Bassett DS. Changes in brain connectivity and neurovascular dynamics during dexmedetomidine-induced loss of consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616650. [PMID: 39416182 PMCID: PMC11482825 DOI: 10.1101/2024.10.04.616650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Understanding the neurophysiological changes that occur during loss and recovery of consciousness is a fundamental aim in neuroscience and has marked clinical relevance. Here, we utilize multimodal magnetic resonance neuroimaging to investigate changes in regional network connectivity and neurovascular dynamics as the brain transitions from wakefulness to dexmedetomidine-induced unconsciousness, and finally into early-stage recovery of consciousness. We observed widespread decreases in functional connectivity strength across the whole brain, and targeted increases in structure-function coupling (SFC) across select networks -- especially the cerebellum -- as individuals transitioned from wakefulness to hypnosis. We also observed robust decreases in cerebral blood flow (CBF) across the whole brain -- especially within the brainstem, thalamus, and cerebellum. Moreover, hypnosis was characterized by significant increases in the amplitude of low-frequency fluctuations (ALFF) of the resting-state blood oxygen level-dependent signal, localized within visual and somatomotor regions. Critically, when transitioning from hypnosis to the early stages of recovery, functional connectivity strength and SFC -- but not CBF -- started reverting towards their awake levels, even before behavioral arousal. By further testing for a relationship between connectivity and neurovascular alterations, we observed that during wakefulness, brain regions with higher ALFF displayed lower functional connectivity with the rest of the brain. During hypnosis, brain regions with higher ALFF displayed weaker coupling between structural and functional connectivity. Correspondingly, brain regions with stronger functional connectivity strength during wakefulness showed greater reductions in CBF with the onset of hypnosis. Earlier recovery of consciousness was associated with higher baseline (awake) levels of functional connectivity strength, CBF, and ALFF, as well as female sex. Across our findings, we also highlight the role of the cerebellum as a recurrent marker of connectivity and neurovascular changes between states of consciousness. Collectively, these results demonstrate that induction of, and emergence from dexmedetomidine-induced unconsciousness are characterized by widespread changes in connectivity and neurovascular dynamics.
Collapse
|
2
|
Zhou P, Deng H, Zeng J, Ran H, Yu C. Unconscious classification of quantitative electroencephalogram features from propofol versus propofol combined with etomidate anesthesia using one-dimensional convolutional neural network. Front Med (Lausanne) 2024; 11:1447951. [PMID: 39359920 PMCID: PMC11445052 DOI: 10.3389/fmed.2024.1447951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Objective Establishing a convolutional neural network model for the recognition of characteristic raw electroencephalogram (EEG) signals is crucial for monitoring consciousness levels and guiding anesthetic drug administration. Methods This trial was conducted from December 2023 to March 2024. A total of 40 surgery patients were randomly divided into either a propofol group (1% propofol injection, 10 mL: 100 mg) (P group) or a propofol-etomidate combination group (1% propofol injection, 10 mL: 100 mg, and 0.2% etomidate injection, 10 mL: 20 mg, mixed at a 2:1 volume ratio) (EP group). In the P group, target-controlled infusion (TCI) was employed for sedation induction, with an initial effect site concentration set at 5-6 μg/mL. The EP group received an intravenous push with a dosage of 0.2 mL/kg. Six consciousness-related EEG features were extracted from both groups and analyzed using four prediction models: support vector machine (SVM), Gaussian Naive Bayes (GNB), artificial neural network (ANN), and one-dimensional convolutional neural network (1D CNN). The performance of the models was evaluated based on accuracy, precision, recall, and F1-score. Results The power spectral density (94%) and alpha/beta ratio (72%) demonstrated higher accuracy as indicators for assessing consciousness. The classification accuracy of the 1D CNN model for anesthesia-induced unconsciousness (97%) surpassed that of the SVM (83%), GNB (81%), and ANN (83%) models, with a significance level of p < 0.05. Furthermore, the mean and mean difference ± standard error of the primary power values for the EP and P groups during the induced period were as follows: delta (23.85 and 16.79, 7.055 ± 0.817, p < 0.001), theta (10.74 and 8.743, 1.995 ± 0.7045, p < 0.02), and total power (24.31 and 19.72, 4.588 ± 0.7107, p < 0.001). Conclusion Large slow-wave oscillations, power spectral density, and the alpha/beta ratio are effective indicators of changes in consciousness during intravenous anesthesia with a propofol-etomidate combination. These indicators can aid anesthesiologists in evaluating the depth of anesthesia and adjusting dosages accordingly. The 1D CNN model, which incorporates consciousness-related EEG features, represents a promising tool for assessing the depth of anesthesia. Clinical Trial Registration https://www.chictr.org.cn/index.html.
Collapse
Affiliation(s)
- Pan Zhou
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haixia Deng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zeng
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Haosong Ran
- College of Artificial Intelligent, Chongqing University of Technology, Chongqing, China
| | - Cong Yu
- Department of Anesthesiology, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
3
|
Tu Z, Zhang Y, Lv X, Wang Y, Zhang T, Wang J, Yu X, Chen P, Pang S, Li S, Yu X, Zhao X. Accurate Machine Learning-based Monitoring of Anesthesia Depth with EEG Recording. Neurosci Bull 2024:10.1007/s12264-024-01297-w. [PMID: 39289330 DOI: 10.1007/s12264-024-01297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 09/19/2024] Open
Abstract
General anesthesia, pivotal for surgical procedures, requires precise depth monitoring to mitigate risks ranging from intraoperative awareness to postoperative cognitive impairments. Traditional assessment methods, relying on physiological indicators or behavioral responses, fall short of accurately capturing the nuanced states of unconsciousness. This study introduces a machine learning-based approach to decode anesthesia depth, leveraging EEG data across different anesthesia states induced by propofol and esketamine in rats. Our findings demonstrate the model's robust predictive accuracy, underscored by a novel intra-subject dataset partitioning and a 5-fold cross-validation method. The research diverges from conventional monitoring by utilizing anesthetic infusion rates as objective indicators of anesthesia states, highlighting distinct EEG patterns and enhancing prediction accuracy. Moreover, the model's ability to generalize across individuals suggests its potential for broad clinical application, distinguishing between anesthetic agents and their depths. Despite relying on rat EEG data, which poses questions about real-world applicability, our approach marks a significant advance in anesthesia monitoring.
Collapse
Affiliation(s)
- Zhiyi Tu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuehan Zhang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xueyang Lv
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yanyan Wang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tingting Zhang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Juan Wang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xinren Yu
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Pei Chen
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Suocheng Pang
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Shengtian Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiongjie Yu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310027, China.
| | - Xuan Zhao
- Department of Anesthesiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
4
|
Misirocchi F, Mutti C, Hirsch LJ, Parrino L, Florindo I. Cyclic Alternating EEG Patterns: From Sleep to Encephalopathy. J Clin Neurophysiol 2024; 41:485-494. [PMID: 39186585 DOI: 10.1097/wnp.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
SUMMARY In the 2021 version of the Standardized Critical Care EEG Terminology, the American Clinical Neurophysiology Society introduced new definitions, including for the cyclic alternating pattern of encephalopathy (CAPE). CAPE refers to changes in background EEG activity, with two patterns alternating spontaneously in a regular manner. CAPE shares remarkable similarities with the cyclic alternating pattern, a natural EEG phenomenon occurring in normal non-rapid eye movement sleep, considered the main electrophysiological biomarker of sleep instability. This review explores similarities and differences between cyclic alternating pattern and CAPE and, leveraging the existing expertise on cyclic alternating pattern, aims to extend knowledge on CAPE. A standardized assessment of CAPE features is key to ascertain its prevalence and clinical significance among critically ill patients and to encompass the impact of confounding factors such as anesthetic and sedative agents. Although the preservation of non-rapid eye movement sleep-related elements has a well-known prognostic value in the critical care setting, the clinical importance of cyclic oscillating patterns and the prognostic significance of CAPE remain to be elucidated.
Collapse
Affiliation(s)
- Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Carlotta Mutti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of General and Specialized Medicine, Unit of Neurology, University Hospital of Parma, Parma, Italy; and
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A
| | - Liborio Parrino
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of General and Specialized Medicine, Unit of Neurology, University Hospital of Parma, Parma, Italy; and
| | - Irene Florindo
- Department of General and Specialized Medicine, Unit of Neurology, University Hospital of Parma, Parma, Italy; and
| |
Collapse
|
5
|
Mehler DM, Kreuzer M, Obert DP, Cardenas LF, Barra I, Zurita F, Lobo FA, Kratzer S, Schneider G, Sepúlveda PO. Electroencephalographic guided propofol-remifentanil TCI anesthesia with and without dexmedetomidine in a geriatric population: electroencephalographic signatures and clinical evaluation. J Clin Monit Comput 2024; 38:803-815. [PMID: 38451341 DOI: 10.1007/s10877-024-01127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024]
Abstract
Elderly and multimorbid patients are at high risk for developing unfavorable postoperative neurocognitive outcomes; however, well-adjusted and EEG-guided anesthesia may help titrate anesthesia and improve postoperative outcomes. Over the last decade, dexmedetomidine has been increasingly used as an adjunct in the perioperative setting. Its synergistic effect with propofol decreases the dose of propofol needed to induce and maintain general anesthesia. In this pilot study, we evaluate two highly standardized anesthetic regimens for their potential to prevent burst suppression and postoperative neurocognitive dysfunction in a high-risk population. Prospective, randomized clinical trial with non-blinded intervention. Operating room and post anesthesia care unit at Hospital Base San José, Osorno/Universidad Austral, Valdivia, Chile. 23 patients with scheduled non-neurologic, non-cardiac surgeries with age > 69 years and a planned intervention time > 60 min. Patients were randomly assigned to receive either a propofol-remifentanil based anesthesia or an anesthetic regimen with dexmedetomidine-propofol-remifentanil. All patients underwent a slow titrated induction, followed by a target controlled infusion (TCI) of propofol and remifentanil (n = 10) or propofol, remifentanil and continuous dexmedetomidine infusion (n = 13). We compared the perioperative EEG signatures, drug-induced changes, and neurocognitive outcomes between two anesthetic regimens in geriatric patients. We conducted a pre- and postoperative Montreal Cognitive Assessment (MoCa) test and measured the level of alertness postoperatively using a sedation agitation scale to assess neurocognitive status. During slow induction, maintenance, and emergence, burst suppression was not observed in either group; however, EEG signatures differed significantly between the two groups. In general, EEG activity in the propofol group was dominated by faster rhythms than in the dexmedetomidine group. Time to responsiveness was not significantly different between the two groups (p = 0.352). Finally, no significant differences were found in postoperative cognitive outcomes evaluated by the MoCa test nor sedation agitation scale up to one hour after extubation. This pilot study demonstrates that the two proposed anesthetic regimens can be safely used to slowly induce anesthesia and avoid EEG burst suppression patterns. Despite the patients being elderly and at high risk, we did not observe postoperative neurocognitive deficits. The reduced alpha power in the dexmedetomidine-treated group was not associated with adverse neurocognitive outcomes.
Collapse
Affiliation(s)
- Dominik M Mehler
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, Germany
| | - David P Obert
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts's General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Luis F Cardenas
- Department of Anesthesiology, Hospital Base San José, Osorno/Universidad Austral, Valdivia, Chile
| | - Ignacio Barra
- Department of Anesthesiology, Hospital Base San José, Osorno/Universidad Austral, Valdivia, Chile
| | - Fernando Zurita
- Department of Anesthesiology, Hospital Base San José, Osorno/Universidad Austral, Valdivia, Chile
| | - Francisco A Lobo
- Anesthesiology Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates, Abu Dhabi, UAE
| | - Stephan Kratzer
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, Germany
| | - Pablo O Sepúlveda
- Department of Anesthesiology, Hospital Base San José, Osorno/Universidad Austral, Valdivia, Chile.
| |
Collapse
|
6
|
Ramaswamy SM, Kuizenga MH, Weerink MAS, Vereecke HEM, Nagaraj SB, Struys MMRF. Do all sedatives promote biological sleep electroencephalogram patterns? A machine learning framework to identify biological sleep promoting sedatives using electroencephalogram. PLoS One 2024; 19:e0304413. [PMID: 38954679 PMCID: PMC11218986 DOI: 10.1371/journal.pone.0304413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Sedatives are commonly used to promote sleep in intensive care unit patients. However, it is not clear whether sedation-induced states are similar to the biological sleep. We explored if sedative-induced states resemble biological sleep using multichannel electroencephalogram (EEG) recordings. METHODS Multichannel EEG datasets from two different sources were used in this study: (1) sedation dataset consisting of 102 healthy volunteers receiving propofol (N = 36), sevoflurane (N = 36), or dexmedetomidine (N = 30), and (2) publicly available sleep EEG dataset (N = 994). Forty-four quantitative time, frequency and entropy features were extracted from EEG recordings and were used to train the machine learning algorithms on sleep dataset to predict sleep stages in the sedation dataset. The predicted sleep states were then compared with the Modified Observer's Assessment of Alertness/ Sedation (MOAA/S) scores. RESULTS The performance of the model was poor (AUC = 0.55-0.58) in differentiating sleep stages during propofol and sevoflurane sedation. In the case of dexmedetomidine, the AUC of the model increased in a sedation-dependent manner with NREM stages 2 and 3 highly correlating with deep sedation state reaching an AUC of 0.80. CONCLUSIONS We addressed an important clinical question to identify biological sleep promoting sedatives using EEG signals. We demonstrate that propofol and sevoflurane do not promote EEG patterns resembling natural sleep while dexmedetomidine promotes states resembling NREM stages 2 and 3 sleep, based on current sleep staging standards.
Collapse
Affiliation(s)
- Sowmya M. Ramaswamy
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Merel H. Kuizenga
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maud A. S. Weerink
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hugo E. M. Vereecke
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Anesthesiology and Reanimation, AZ St.-Jan Brugge Oostende AV, Brugge, Belgium
| | - Sunil B. Nagaraj
- School of Physics, Maths and Computing, Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Basic and Applied Medical Sciences, Ghent University, Gent, Belgium
| |
Collapse
|
7
|
Mintz NB, Andrews N, Pan K, Bessette E, Asaad WF, Sherif M, Rubinos C, Mahta A, Girard TD, Reznik ME. Prevalence of clinical electroencephalography findings in stroke patients with delirium. Clin Neurophysiol 2024; 162:229-234. [PMID: 38548493 PMCID: PMC11185045 DOI: 10.1016/j.clinph.2024.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVE Delirium is an acute cognitive disorder associated with multiple electroencephalographic (EEG) abnormalities in non-neurological patients, though specific EEG characteristics in patients with stroke remain unclear. We aimed to compare the prevalence of EEG abnormalities in stroke patients during delirium episodes with periods that did not correspond to delirium. METHODS We retrospectively analyzed clinical EEG reports for stroke patients who received daily delirium assessments as part of a prospective study. We compared the prevalence of EEG features corresponding to patient-days with vs. without delirium, including focal and generalized slowing, and focal and generalized epileptiform abnormalities (EAs). RESULTS Among 58 patients who received EEGs, there were 192 days of both EEG and delirium monitoring (88% [n = 169] corresponding to delirium). Generalized slowing was significantly more prevalent on days with vs. without delirium (96% vs. 57%, p = 0.03), as were bilateral or generalized EAs (38% vs. 13%, p = 0.03). In contrast, focal slowing (53% vs. 74%, p = 0.11) and focal EAs were less prevalent on days with delirium (38% vs. 48%, p = 0.37), though these differences were not statistically significant. CONCLUSIONS We found a higher prevalence of generalized but not focal EEG abnormalities in stroke patients with delirium. SIGNIFICANCE These findings may reinforce the diffuse nature of delirium-associated encephalopathy, even in patients with discrete structural lesions.
Collapse
Affiliation(s)
- Noa B Mintz
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Nicholas Andrews
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Kelly Pan
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Eric Bessette
- Department of Neurology, Brown University, Alpert Medical School, United States
| | - Wael F Asaad
- Department of Neurosurgery, Brown University, Alpert Medical School, United States; Department of Neuroscience, Brown University, United States; Carney Institute for Brain Science, Brown University, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States
| | - Mohamed Sherif
- Carney Institute for Brain Science, Brown University, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States; Department of Psychiatry and Human Behavior, Brown University, Alpert Medical School, United States
| | - Clio Rubinos
- Department of Neurology, University of North Carolina School of Medicine, United States
| | - Ali Mahta
- Department of Neurology, Brown University, Alpert Medical School, United States; Department of Neurosurgery, Brown University, Alpert Medical School, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States
| | - Timothy D Girard
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, United States
| | - Michael E Reznik
- Department of Neurology, Brown University, Alpert Medical School, United States; Department of Neurosurgery, Brown University, Alpert Medical School, United States; Carney Institute for Brain Science, Brown University, United States; Norman Prince Neurosciences Institute, Rhode Island Hospital, United States; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, United States.
| |
Collapse
|
8
|
Obert DP, Killing D, Happe T, Tamas P, Altunkaya A, Dragovic SZ, Kreuzer M, Schneider G, Fenzl T. Substance specific EEG patterns in mice undergoing slow anesthesia induction. BMC Anesthesiol 2024; 24:167. [PMID: 38702608 PMCID: PMC11067159 DOI: 10.1186/s12871-024-02552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
The exact mechanisms and the neural circuits involved in anesthesia induced unconsciousness are still not fully understood. To elucidate them valid animal models are necessary. Since the most commonly used species in neuroscience are mice, we established a murine model for commonly used anesthetics/sedatives and evaluated the epidural electroencephalographic (EEG) patterns during slow anesthesia induction and emergence. Forty-four mice underwent surgery in which we inserted a central venous catheter and implanted nine intracranial electrodes above the prefrontal, motor, sensory, and visual cortex. After at least one week of recovery, mice were anesthetized either by inhalational sevoflurane or intravenous propofol, ketamine, or dexmedetomidine. We evaluated the loss and return of righting reflex (LORR/RORR) and recorded the electrocorticogram. For spectral analysis we focused on the prefrontal and visual cortex. In addition to analyzing the power spectral density at specific time points we evaluated the changes in the spectral power distribution longitudinally. The median time to LORR after start anesthesia ranged from 1080 [1st quartile: 960; 3rd quartile: 1080]s under sevoflurane anesthesia to 1541 [1455; 1890]s with ketamine. Around LORR sevoflurane as well as propofol induced a decrease in the theta/alpha band and an increase in the beta/gamma band. Dexmedetomidine infusion resulted in a shift towards lower frequencies with an increase in the delta range. Ketamine induced stronger activity in the higher frequencies. Our results showed substance-specific changes in EEG patterns during slow anesthesia induction. These patterns were partially identical to previous observations in humans, but also included significant differences, especially in the low frequencies. Our study emphasizes strengths and limitations of murine models in neuroscience and provides an important basis for future studies investigating complex neurophysiological mechanisms.
Collapse
Affiliation(s)
- David P Obert
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts's General Hospital, Boston, MA, 02114, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - David Killing
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Tom Happe
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Philipp Tamas
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Alp Altunkaya
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Srdjan Z Dragovic
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Matthias Kreuzer
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Gerhard Schneider
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany
| | - Thomas Fenzl
- School of Medicine and Health, Department of Anesthesiology and Intensive Care, Technical University of Munich, 81675, Munich, Germany.
| |
Collapse
|
9
|
Ma Y, Zhang H, Bai J, Zhu J. EEG Characteristics Before and After Dexmedetomidine Treatment in Severe Patients: A Prospective Study. Clin EEG Neurosci 2024; 55:384-390. [PMID: 36540002 DOI: 10.1177/15500594221144570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background. Bedside electroencephalography (EEG) can monitor the changes in brain function in critical patients. Light sedation is recommended in intensive care unit (ICU) patients, but sedation might confuse the EEG readings. There are few studies on the changes of EEG in severe patients with dexmedetomidine. This study aimed to explore the EEG characteristics before and after dexmedetomidine in severe patients in the ICU. Methods. This prospective study enrolled severe patients with sepsis who needed light sedation, we sedated the patients with dexmedetomidine. EEG was recorded for at least 60 min using a quantitative EEG (qEEG) bedside monitor. Amplitude-EEG (aEEG), relative spectral energy, alpha variation, and spectral entropy were recorded and compared before/after dexmedetomidine. Results. Sixty-three participants were enrolled. The relative spectral energy and alpha variation were not different before and after the use of dexmedetomidine (P > .05). The amplitude of the upper and lower boundaries in aEEG and spectral entropy were significantly lower after light sedation with dexmedetomidine compared with before (P < .05). When grouped according to the Glasgow Coma Scale (GCS), the amplitude of qEEG in participants with moderate GCS decreased significantly(P < .05), but not in mild or severe GCS. Conclusion. Relative spectral energy and alpha variation derived from qEEG could be used to evaluate the state of brain function even under light sedation with dexmedetomidine in severe patients during their ICU stay.
Collapse
Affiliation(s)
- Yujie Ma
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hongbin Zhang
- 942nd Hospital of Chinese People's Liberation Army Joint Service Support Force, Yinchuan, Ningxia, China
| | - Jijia Bai
- General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jinyuan Zhu
- General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
10
|
Ekkapat G, Kampitak W, Theerasuwipakorn N, Kittipongpattana J, Engsusophon P, Phannajit J, Chokengarmwong N. A Comparison of Efficacy between Low-dose Dexmedetomidine and Propofol for Prophylaxis of Postoperative Delirium in Elderly Patients Undergoing Hip Fracture Surgery: A Randomized Controlled Trial. Indian J Crit Care Med 2024; 28:467-474. [PMID: 38738208 PMCID: PMC11080087 DOI: 10.5005/jp-journals-10071-24710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024] Open
Abstract
Aims and background The efficacy of dexmedetomidine and propofol in preventing postoperative delirium is controversial. This study aims to evaluate the efficacy of dexmedetomidine and propofol for preventing postoperative delirium in extubated elderly patients undergoing hip fracture surgery. Materials and methods This randomized controlled trial included participants undergoing hip fracture surgery. Participants were randomly assigned to receive dexmedetomidine, propofol, or placebo intravenously during intensive care unit (ICU) admission (8 p.m. to 6 a.m.). The drug dosages were adjusted to achieve the Richmond Agitation Sedation Scale (RASS) of 0 to -1. The primary outcome was postoperative delirium. The secondary outcomes were postoperative complications, fentanyl consumption, and length of hospital stay. Results 108 participants were enrolled (n = 36 per group). Postoperative delirium incidences were 8.3%, 22.2%, and 5.6% in the dexmedetomidine, propofol, and placebo groups, respectively. The hazard ratios of dexmedetomidine and propofol compared with placebo were 1.49 (95% CI, 0.25, 8.95; p = 0.66) and 4.18 (95% CI, 0.88, 19.69; p = 0.07). The incidence of bradycardia was higher in the dexmedetomidine group compared with others (13.9%; p = 0.01) but not for hypotension (8.3%; p = 0.32). The median length of hospital stays (8 days, IQR: 7, 11) and fentanyl consumption (240 µg, IQR: 120, 400) were not different among groups. Conclusion This study did not successfully demonstrate the impact of nocturnal low-dose dexmedetomidine and propofol in preventing postoperative delirium among elderly patients undergoing hip fracture surgery. While not statistically significant, it is noteworthy that propofol exhibited a comparatively higher delirium rate. How to cite this article Ekkapat G, Kampitak W, Theerasuwipakorn N, Kittipongpattana J, Engsusophon P, Phannajit J, et al. A Comparison of Efficacy between Low-dose Dexmedetomidine and Propofol for Prophylaxis of Postoperative Delirium in Elderly Patients Undergoing Hip Fracture Surgery: A Randomized Controlled Trial. Indian J Crit Care Med 2024;28(5):467-474.
Collapse
Affiliation(s)
- Gamonmas Ekkapat
- Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Wirinaree Kampitak
- Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nonthikorn Theerasuwipakorn
- Division of Cardiovascular Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, and Cardiac Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Jirapat Kittipongpattana
- Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Phatthanaphol Engsusophon
- Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Jeerath Phannajit
- Division of Nephrology and Clinical Epidemiology, Department of Medicine, and Center of Excellence for Metabolic Bone Disease in CKD patients, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nalin Chokengarmwong
- Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
11
|
Liu J, Zhang W, Hu S, Wu C, Dong K, Wei Q, Wang G, Fang J, Zhang D, Lan M, Zhang F, Sun H. Analysis of Amplitude Modulation of EEG Based on Holo-Hilbert Spectrum Analysis During General Anesthesia. IEEE Trans Biomed Eng 2024; 71:1607-1616. [PMID: 38285584 DOI: 10.1109/tbme.2023.3345942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
OBJECTIVE The study aims to investigate the relationship between amplitude modulation (AM) of EEG and anesthesia depth during general anesthesia. METHODS In this study, Holo-Hilbert spectrum analysis (HHSA) was used to decompose the multichannel EEG signals of 15 patients to obtain the spatial distribution of AM in the brain. Subsequently, HHSA was applied to the prefrontal EEG (Fp1) obtained during general anesthesia surgery in 15 and 34 patients, and the α-θ and α-δ regions of feature (ROFs) were defined in Holo-Hilbert spectrum (HHS) and three features were derived to quantify AM in ROFs. RESULTS During anesthetized phase, an anteriorization of the spatial distribution of AMs of α-carrier in brain was observed, as well as AMs of α-θ and α-δ in the EEG of Fp1. The total power ([Formula: see text]), mean carrier frequency ([Formula: see text]) and mean amplitude frequency ([Formula: see text]) of AMs changed during different anesthesia states. CONCLUSION HHSA can effectively analyze the cross-frequency coupling of EEG during anesthesia and the AM features may be applied to anesthesia monitoring. SIGNIFICANCE The study provides a new perspective for the characterization of brain states during general anesthesia, which is of great significance for exploring new features of anesthesia monitoring.
Collapse
|
12
|
Hermann G, Tödt I, Tagliazucchi E, Todtenhaupt IK, Laufs H, von Wegner F. Propofol Reversibly Attenuates Short-Range Microstate Ordering and 20 Hz Microstate Oscillations. Brain Topogr 2024; 37:329-342. [PMID: 38228923 DOI: 10.1007/s10548-023-01023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Microstate sequences summarize the changing voltage patterns measured by electroencephalography, using a clustering approach to reduce the high dimensionality of the underlying data. A common approach is to restrict the pattern matching step to local maxima of the global field power (GFP) and to interpolate the microstate fit in between. In this study, we investigate how the anesthetic propofol affects microstate sequence periodicity and predictability, and how these metrics are changed by interpolation. We performed two frequency analyses on microstate sequences, one based on time-lagged mutual information, the other based on Fourier transform methodology, and quantified the effects of interpolation. Resting-state microstate sequences had a 20 Hz frequency peak related to dominant 10 Hz (alpha) rhythms, and the Fourier approach demonstrated that all five microstate classes followed this frequency. The 20 Hz periodicity was reversibly attenuated under moderate propofol sedation, as shown by mutual information and Fourier analysis. Characteristic microstate frequencies could only be observed in non-interpolated microstate sequences and were masked by smoothing effects of interpolation. Information-theoretic analysis revealed faster microstate dynamics and larger entropy rates under propofol, whereas Shannon entropy did not change significantly. In moderate sedation, active information storage decreased for non-interpolated sequences. Signatures of non-equilibrium dynamics were observed in non-interpolated sequences, but no changes were observed between sedation levels. All changes occurred while subjects were able to perform an auditory perception task. In summary, we show that low dose propofol reversibly increases the randomness of microstate sequences and attenuates microstate oscillations without correlation to cognitive task performance. Microstate dynamics between GFP peaks reflect physiological processes that are not accessible in interpolated sequences.
Collapse
Affiliation(s)
- Gesine Hermann
- Department of Neurology, Christian-Albrechts University, University Hospital Schleswig Holstein, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Inken Tödt
- Institute of Sexual Medicine & Forensic Psychiatry and Psychotherapy, Christian-Albrechts University, Schwanenweg 24, 24105, Kiel, Germany
| | - Enzo Tagliazucchi
- Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Inga Karin Todtenhaupt
- Department of Neurology, Christian-Albrechts University, University Hospital Schleswig Holstein, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Helmut Laufs
- Department of Neurology, Christian-Albrechts University, University Hospital Schleswig Holstein, Arnold-Heller-Strasse 3, 24105, Kiel, Germany
| | - Frederic von Wegner
- School of Biomedical Sciences, UNSW, Wallace Wurth Building, Kensington, NSW, 2052, Australia.
| |
Collapse
|
13
|
Boncompte G, Freedman I, Qu J, Turco I, Khawaja ZQ, Cortinez I, Pedemonte JC, Akeju O. Cognitive function mediates the relationship between age and anaesthesia-induced oscillatory-specific alpha power. Brain Commun 2024; 6:fcae023. [PMID: 38370449 PMCID: PMC10873139 DOI: 10.1093/braincomms/fcae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Cognitive decline is common among older individuals, and although the underlying brain mechanisms are not entirely understood, researchers have suggested using EEG frontal alpha activity during general anaesthesia as a potential biomarker for cognitive decline. This is because frontal alpha activity associated with GABAergic general anaesthetics has been linked to cognitive function. However, oscillatory-specific alpha power has also been linked with chronological age. We hypothesize that cognitive function mediates the association between chronological age and (oscillatory-specific) alpha power. We analysed data from 380 participants (aged over 60) with baseline screening assessments and intraoperative EEG. We utilized the telephonic Montreal Cognitive Assessment to assess cognitive function. We computed total band power, oscillatory-specific alpha power, and aperiodics to measure anaesthesia-induced alpha activity. To test our mediation hypotheses, we employed structural equation modelling. Pairwise correlations between age, cognitive function and alpha activity were significant. Cognitive function mediated the association between age and classical alpha power [age → cognitive function → classical alpha; β = -0.0168 (95% confidence interval: -0.0313 to -0.00521); P = 0.0016] as well as the association between age and oscillatory-specific alpha power [age → cognitive function → oscillatory-specific alpha power; β = -0.00711 (95% confidence interval: -0.0154 to -0.000842); P = 0.028]. However, cognitive function did not mediate the association between age and aperiodic activity (1/f slope, P = 0.43; offset, P = 0.0996). This study is expected to provide valuable insights for anaesthesiologists, enabling them to make informed inferences about a patient's age and cognitive function from an analysis of anaesthetic-induced EEG signals in the operating room. To ensure generalizability, further studies across different populations are needed.
Collapse
Affiliation(s)
- Gonzalo Boncompte
- Division of Anesthesiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Neurodynamics of Cognition Lab, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Isaac Freedman
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jason Qu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Isabella Turco
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zain Q Khawaja
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ignacio Cortinez
- Division of Anesthesiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Juan C Pedemonte
- Division of Anesthesiology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Programa de Farmacología y Toxicología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
14
|
Langnas E, Maze M. Clinical Use of Adrenergic Receptor Ligands in Acute Care Settings. Handb Exp Pharmacol 2024; 285:617-637. [PMID: 38177400 DOI: 10.1007/164_2023_705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In this chapter, we review how ligands, both agonists and antagonists, for the major classes of adrenoreceptors, are utilized in acute care clinical settings. Adrenergic ligands exert their effects by interacting with the three major classes of adrenoceptors. Adrenoceptor agonists and antagonists have important applications, ranging from treatment of hypotension to asthma, and have proven to be extremely useful in a variety of clinical settings of acute care from the operating room to the critical care environment. Continued research interpreting the mechanisms of adrenoreceptors may help the discovery of new drugs with more desirable clinical profiles.
Collapse
Affiliation(s)
- Erica Langnas
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA
| | - Mervyn Maze
- Department of Anesthesia and Perioperative Care, UCSF, San Francisco, CA, USA.
- Center for Cerebrovascular Research, UCSF, San Francisco, CA, USA.
| |
Collapse
|
15
|
Zhang Y, Wang Y, Cheng H, Yan F, Li D, Song D, Wang Q, Huang L. EEG spectral slope: A reliable indicator for continuous evaluation of consciousness levels during propofol anesthesia. Neuroimage 2023; 283:120426. [PMID: 37898378 DOI: 10.1016/j.neuroimage.2023.120426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023] Open
Abstract
The level of consciousness undergoes continuous alterations during anesthesia. Prior to the onset of propofol-induced complete unconsciousness, degraded levels of behavioral responsiveness can be observed. However, a reliable index to monitor altered consciousness levels during anesthesia has not been sufficiently investigated. In this study, we obtained 60-channel EEG data from 24 healthy participants during an ultra-slow propofol infusion protocol starting with an initial concentration of 1 μg/ml and a stepwise increase of 0.2 μg/ml in concentration. Consecutive auditory stimuli were delivered every 5 to 6 s, and the response time to the stimuli was used to assess the responsiveness levels. We calculated the spectral slope in a time-resolved manner by extracting 5-second EEG segments at each auditory stimulus and estimated their correlation with the corresponding response time. Our results demonstrated that during slow propofol infusion, the response time to external stimuli increased, while the EEG spectral slope, fitted at 15-45 Hz, became steeper, and a significant negative correlation was observed between them. Moreover, the spectral slope further steepened at deeper anesthetic levels and became flatter during anesthesia recovery. We verified these findings using an external dataset. Additionally, we found that the spectral slope of frontal electrodes over the prefrontal lobe had the best performance in predicting the response time. Overall, this study used a time-resolved analysis to suggest that the EEG spectral slope could reliably track continuously altered consciousness levels during propofol anesthesia. Furthermore, the frontal spectral slope may be a promising index for clinical monitoring of anesthesia depth.
Collapse
Affiliation(s)
- Yun Zhang
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Huanhuan Cheng
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Fei Yan
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Dingning Li
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China
| | - Dawei Song
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an 710061, China.
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, No.2 TaiBai South Road, Xi'an 710061, China.
| |
Collapse
|
16
|
Palepu K, Sadeghi K, Kleinschmidt DF, Donoghue J, Chapman S, Arslan AR, Westover MB, Cash SS, Pathmanathan J. An examination of sleep spindle metrics in the Sleep Heart Health Study: superiority of automated spindle detection over total sigma power in assessing age-related spindle decline. BMC Neurol 2023; 23:359. [PMID: 37803266 PMCID: PMC10557170 DOI: 10.1186/s12883-023-03376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/08/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Sleep spindle activity is commonly estimated by measuring sigma power during stage 2 non-rapid eye movement (NREM2) sleep. However, spindles account for little of the total NREM2 interval and therefore sigma power over the entire interval may be misleading. This study compares derived spindle measures from direct automated spindle detection with those from gross power spectral analyses for the purposes of clinical trial design. METHODS We estimated spindle activity in a set of 8,440 overnight electroencephalogram (EEG) recordings from 5,793 patients from the Sleep Heart Health Study using both sigma power and direct automated spindle detection. Performance of the two methods was evaluated by determining the sample size required to detect decline in age-related spindle coherence with each method in a simulated clinical trial. RESULTS In a simulated clinical trial, sigma power required a sample size of 115 to achieve 95% power to identify age-related changes in sigma coherence, while automated spindle detection required a sample size of only 60. CONCLUSIONS Measurements of spindle activity utilizing automated spindle detection outperformed conventional sigma power analysis by a wide margin, suggesting that many studies would benefit from incorporation of automated spindle detection. These results further suggest that some previous studies which have failed to detect changes in sigma power or coherence may have failed simply because they were underpowered.
Collapse
Affiliation(s)
- Kalyan Palepu
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - Kolia Sadeghi
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - Dave F Kleinschmidt
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - Jacob Donoghue
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - Seth Chapman
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - Alexander R Arslan
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
| | - M Brandon Westover
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
| | - Sydney S Cash
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA
- Clinical Data Animation Center (CDAC), Massachusetts General Hospital, 50 Staniford Street, Fruit St, Boston, MA, 02114, USA
| | - Jay Pathmanathan
- Beacon Biosignals, 22 Boston Wharf Rd 7th Floor, Suite 41, Boston, MA, 02210, USA.
| |
Collapse
|
17
|
Cotter EKH, Jacobs M, Jain N, Chow J, Estimé SR. Post-cardiac arrest care in the intensive care unit. Int Anesthesiol Clin 2023; 61:71-78. [PMID: 37678200 DOI: 10.1097/aia.0000000000000418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Affiliation(s)
- Elizabeth K H Cotter
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Matthew Jacobs
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois
| | - Nisha Jain
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois
| | - Jarva Chow
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois
| | - Stephen R Estimé
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois
| |
Collapse
|
18
|
Zhai Q, Zhang Y, Ye M, Zhu S, Sun J, Wang Y, Deng B, Ma D, Wang Q. Reducing complement activation during sleep deprivation yields cognitive improvement by dexmedetomidine. Br J Anaesth 2023; 131:542-555. [PMID: 37517957 DOI: 10.1016/j.bja.2023.04.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 08/01/2023] Open
Abstract
BACKGROUND Sleep loss and its associated conditions (e.g. cognitive deficits) represent a large societal burden, but the underlying mechanisms of these cognitive deficits remain unknown. This study assessed the effect of dexmedetomidine (DEX) on cognitive decline induced by sleep loss. METHODS C57BL/6 mice were subjected to chronic sleep restriction (CSR) for 20 h (5 pm-1 pm the next day) daily for 7 days, and cognitive tests were subsequently carried out. The neuromolecular and cellular changes that occurred in the presence and absence of DEX (100 μg kg-1, i.v., at 1 pm and 3 pm every day) were also investigated. RESULTS CSR mice displayed a decline in learning and memory by 12% (P<0.05) in the Y-maze and by 18% (P<0.01) in the novel object recognition test; these changes were associated with increases in microglial activation, CD68+ microglial phagosome counts, astrocyte-derived complement C3 secretion, and microglial C3a receptor expression (all P<0.05). Synapse elimination, as indicated by a 66% decrease in synaptophysin expression (P=0.0004) and a 45% decrease in postsynaptic density protein-95 expression (P=0.0003), was associated with the occurrence of cognitive deficits. DEX activated astrocytic α2A adrenoceptors and inhibited astrocytic complement C3 release to attenuate synapse elimination through microglial phagocytosis. DEX restored synaptic connections and reversed cognitive deficits induced by CSR. CONCLUSIONS The results demonstrate that complement pathway activation associated with synapse elimination contributes to sleep loss-related cognitive deficits and that dexmedetomidine protects against sleep deprivation-induced complement activation. Dexmedetomidine holds potential for preventing cognitive deficits associated with sleep loss, which warrants further study.
Collapse
Affiliation(s)
- Qian Zhai
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Zhang
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mao Ye
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shan Zhu
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jianyu Sun
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Wang
- Department of Anaesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bin Deng
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK; Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Qiang Wang
- Department of Anaesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
19
|
Xu Q, Zhang J, Gao Z, Li S, Li G. Analysis of the relationship between EEG burst suppression and poor prognosis in children under general anaesthesia: study protocol for a prospective, observational, single-centre study. Trials 2023; 24:481. [PMID: 37501064 PMCID: PMC10375778 DOI: 10.1186/s13063-023-07478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Emergence delirium (ED) in children refers to the immediate postoperative period when children experience decreased perception of their surroundings, accompanied by disorientation and altered perception. Burst suppression (BS) is recognised as periods longer than 0.50 s during which the EEG does not exceed approximately + 5.0 mV, which is an electroencephalographic state associated with profound inactivation of the brain. Our primary objective was to determine the association between BS on electroencephalogram (EEG) under general anaesthesia with postoperative wake-up delirium and multiple adverse outcomes, such as prolonged awakening and extubation. METHODS In this prospective, observational cohort study at Beijing Children's Hospital, Capital Medical University, Beijing, China, children aged 6 months to 9 years who underwent surgery under general anaesthesia and underwent EEG monitoring between January 2022 and January 2023 were included. Patients' prefrontal EEGs were recorded intraoperatively as well as analysed for the occurrence and duration of BS and scored postoperatively for delirium by the PAED scale, with a score of no less than 10 considered as having developed wake-up delirium. DISCUSSION This study identified a relationship between EEG BS and postoperative awakening delirium under general anaesthesia in children and provides a novel preventive strategy for postoperative awakening delirium and multiple adverse outcomes in paediatric patients. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2200055256. Registered on January 5, 2022.
Collapse
Affiliation(s)
- Qian Xu
- Department of Anesthesiology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No.56, South Lishi Road, Beijing, 100045, China
| | - Jianmin Zhang
- Department of Anesthesiology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No.56, South Lishi Road, Beijing, 100045, China.
| | - Zhengzheng Gao
- Department of Anesthesiology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No.56, South Lishi Road, Beijing, 100045, China
| | - Shanshan Li
- Department of Anesthesiology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No.56, South Lishi Road, Beijing, 100045, China
| | - Gan Li
- Department of Anesthesiology, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, No.56, South Lishi Road, Beijing, 100045, China
| |
Collapse
|
20
|
Han L, Drover DR, Chen MC, Saxena AR, Eagleman SL, Nekhendzy V, Pritchard A, Capasso R. EEG response of dexmedetomidine during drug induced sleep endoscopy. Front Neurosci 2023; 17:1144141. [PMID: 37521700 PMCID: PMC10375416 DOI: 10.3389/fnins.2023.1144141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Dexmedetomidine is one of the anesthetics of choice for drug induced sleep endoscopy (DISE), with advantages including limited respiratory depression, analgesia, and decreased incidence of emergence delirium. However, challenges with determining sedation levels and prolonged recovery have limited its usage. An improved understanding of the effect of dexmedetomidine on the level of sedation and the corresponding electroencephalographic (EEG) changes could help overcome these barriers. Methods Fifty-one patients received dexmedetomidine sedation with Richmond Agitation-Sedation Scale (RASS) score assessment and continuous EEG monitoring via SedLine for DISE. We constructed a pharmacokinetic model to determine continuous dexmedetomidine blood concentration. From the SedLine, we extracted the patient state index (PSI), and from the EEG we calculated the spectral edge frequency 95% (SEF95) and the correlation dimension (CD), a type of fractal dimension used to assess the complexity of a system. These metrics were subsequently compared against one another and with the dexmedetomidine concentration. Results Our pharmacokinetic model yielded a two-compartment model with volumes of 51.8 L and 106.2 L, with clearances of 69.5 and 168.9 L/h, respectively, and a time to effect of 9 min, similar to prior studies. Based on this model, decreasing RASS score, SEF95, CD, and PSI were all significantly associated with increasing dexmedetomidine concentration (p < 0.001, p = 0.006, p < 0.001 respectively). The CD, SEF95, and PSI better captured the effects of increasing dexmedetomidine concentration as compared to the RASS score. Simulating dexmedetomidine concentration based on titration to target levels derived from CD and PSI confirmed commonly used dexmedetomidine infusion dosages. Conclusion Dexmedetomidine use for DISE confirmed previous pharmacokinetic models seen with dexmedetomidine. Complex EEG metrics such as PSI and CD, as compared to RASS score and SEF95, better captured changes in brain state from dexmedetomidine and have potential to improve the monitoring of dexmedetomidine sedation.
Collapse
Affiliation(s)
- Lichy Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - David R. Drover
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Marianne C. Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Amit R. Saxena
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Sarah L. Eagleman
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Vladimir Nekhendzy
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Angelica Pritchard
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Robson Capasso
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
21
|
Bong CL, Balanza GA, Khoo CEH, Tan JSK, Desel T, Purdon PL. A Narrative Review Illustrating the Clinical Utility of Electroencephalogram-Guided Anesthesia Care in Children. Anesth Analg 2023; 137:108-123. [PMID: 36729437 DOI: 10.1213/ane.0000000000006267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The major therapeutic end points of general anesthesia include hypnosis, amnesia, and immobility. There is a complex relationship between general anesthesia, responsiveness, hemodynamic stability, and reaction to noxious stimuli. This complexity is compounded in pediatric anesthesia, where clinicians manage children from a wide range of ages, developmental stages, and body sizes, with their concomitant differences in physiology and pharmacology. This renders anesthetic requirements difficult to predict based solely on a child's age, body weight, and vital signs. Electroencephalogram (EEG) monitoring provides a window into children's brain states and may be useful in guiding clinical anesthesia management. However, many clinicians are unfamiliar with EEG monitoring in children. Young children's EEGs differ substantially from those of older children and adults, and there is a lack of evidence-based guidance on how and when to use the EEG for anesthesia care in children. This narrative review begins by summarizing what is known about EEG monitoring in pediatric anesthesia care. A key knowledge gap in the literature relates to a lack of practical information illustrating the utility of the EEG in clinical management. To address this gap, this narrative review illustrates how the EEG spectrogram can be used to visualize, in real time, brain responses to anesthetic drugs in relation to hemodynamic stability, surgical stimulation, and other interventions such as cardiopulmonary bypass. This review discusses anesthetic management principles in a variety of clinical scenarios, including infants, children with altered conscious levels, children with atypical neurodevelopment, children with hemodynamic instability, children undergoing total intravenous anesthesia, and those undergoing cardiopulmonary bypass. Each scenario is accompanied by practical illustrations of how the EEG can be visualized to help titrate anesthetic dosage to avoid undersedation or oversedation when patients experience hypotension or other physiological challenges, when surgical stimulation increases, and when a child's anesthetic requirements are otherwise less predictable. Overall, this review illustrates how well-established clinical management principles in children can be significantly complemented by the addition of EEG monitoring, thus enabling personalized anesthesia care to enhance patient safety and experience.
Collapse
Affiliation(s)
- Choon Looi Bong
- From the Department of Pediatric Anesthesia, KK Women's and Children's Hospital, Duke-NUS Medical School, Singapore
| | - Gustavo A Balanza
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charis Ern-Hui Khoo
- From the Department of Pediatric Anesthesia, KK Women's and Children's Hospital, Duke-NUS Medical School, Singapore
| | - Josephine Swee-Kim Tan
- From the Department of Pediatric Anesthesia, KK Women's and Children's Hospital, Duke-NUS Medical School, Singapore
| | - Tenzin Desel
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Patrick Lee Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Zakaria L, Desowska A, Berde CB, Cornelissen L. Electroencephalographic delta and alpha oscillations reveal phase-amplitude coupling in paediatric patients undergoing sevoflurane-based general anaesthesia. Br J Anaesth 2023; 130:595-602. [PMID: 36922266 DOI: 10.1016/j.bja.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Sevoflurane-induced anaesthesia generates frontal alpha oscillations as early as 6 months of age, whereas strong delta oscillations are present at birth. In adults, delta oscillations and alpha oscillations are coupled: the phase of delta waves modulates the amplitude of alpha oscillations in a phenomenon known as phase-amplitude coupling. We hypothesise that delta-alpha phase-amplitude coupling exists in young children and is a feature of sevoflurane-based general anaesthesia distinct from emergence after anaesthesia. METHODS Electroencephalographic data from 31 paediatric patients aged 10 months to 3 yr undergoing elective surgery with sevoflurane-based anaesthesia were analysed retrospectively. Delta-alpha phase-amplitude coupling was evaluated during maintenance of anaesthesia and during emergence. RESULTS Delta-alpha phase-amplitude coupling was observed in the study population. Strength of phase-amplitude coupling, represented by the delta-alpha mean amplitude vector, was greater during general anaesthesia than during emergence (Wilcoxon paired signed-rank test, Z=3.107, P=0.002). Frontal alpha amplitude during anaesthesia was not uniformly distributed across all delta phases. During general anaesthesia, alpha power was restricted to the positive phase of the delta wave (omnibus circular uniformity, general anaesthesia: P<0.001, mean phase: 114º; 99% confidence interval: 90º-139º; emergence: P=0.35, mean phase 181º, 99% confidence interval: 110º-253º). CONCLUSIONS Sevoflurane-based anaesthesia is associated with delta-alpha phase-amplitude coupling in paediatric patients. These findings improve our understanding of cortical dynamics in children undergoing general anaesthesia, which might improve paediatric intraoperative depth of anaesthesia monitoring techniques.
Collapse
Affiliation(s)
- Luai Zakaria
- Department of Anesthesiology, Perioperative & Pain Medicine, Brigham & Women's Hospital, Boston, USA; Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Adela Desowska
- Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Charles B Berde
- Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Laura Cornelissen
- Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
23
|
Yuechen Z, Shaosong X, Zhouxing Z, Fuli G, Wei H. A summary of the current diagnostic methods for, and exploration of the value of microRNAs as biomarkers in, sepsis-associated encephalopathy. Front Neurosci 2023; 17:1125888. [PMID: 37008225 PMCID: PMC10060640 DOI: 10.3389/fnins.2023.1125888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Sepsis-associated encephalopathy (SAE) is an acute neurological deficit caused by severe sepsis without signs of direct brain infection, characterized by the systemic inflammation and disturbance of the blood-brain barrier. SAE is associated with a poor prognosis and high mortality in patients with sepsis. Survivors may exhibit long-term or permanent sequelae, including behavioral changes, cognitive impairment, and decreased quality of life. Early detection of SAE can help ameliorate long-term sequelae and reduce mortality. Half of the patients with sepsis suffer from SAE in the intensive care unit, but its physiopathological mechanism remains unknown. Therefore, the diagnosis of SAE remains a challenge. The current clinical diagnosis of SAE is a diagnosis of exclusion; this makes the process complex and time-consuming and delays early intervention by clinicians. Furthermore, the scoring scales and laboratory indicators involved have many problems, including insufficient specificity or sensitivity. Thus, a new biomarker with excellent sensitivity and specificity is urgently needed to guide the diagnosis of SAE. MicroRNAs have attracted attention as putative diagnostic and therapeutic targets for neurodegenerative diseases. They exist in various body fluids and are highly stable. Based on the outstanding performance of microRNAs as biomarkers for other neurodegenerative diseases, it is reasonable to infer that microRNAs will be excellent biomarkers for SAE. This review explores the current diagnostic methods for sepsis-associated encephalopathy (SAE). We also explore the role that microRNAs could play in SAE diagnosis and if they can be used to make the SAE diagnosis faster and more specific. We believe that our review makes a significant contribution to the literature because it summarizes some of the important diagnostic methods for SAE, highlighting their advantages and disadvantages in clinical use, and could benefit the field as it highlights the potential of miRNAs as SAE diagnostic markers.
Collapse
Affiliation(s)
| | - Xi Shaosong
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Hu Wei
- Department of Critical Care Medicine, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
24
|
Qu JZ, Mueller A, McKay TB, Westover MB, Shelton KT, Shaefi S, D'Alessandro DA, Berra L, Brown EN, Houle TT, Akeju O. Nighttime dexmedetomidine for delirium prevention in non-mechanically ventilated patients after cardiac surgery (MINDDS): A single-centre, parallel-arm, randomised, placebo-controlled superiority trial. EClinicalMedicine 2023; 56:101796. [PMID: 36590787 PMCID: PMC9800196 DOI: 10.1016/j.eclinm.2022.101796] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The delirium-sparing effect of nighttime dexmedetomidine has not been studied after surgery. We hypothesised that a nighttime dose of dexmedetomidine would reduce the incidence of postoperative delirium as compared to placebo. METHODS This single-centre, parallel-arm, randomised, placebo-controlled superiority trial evaluated whether a short nighttime dose of intravenous dexmedetomidine (1 μg/kg over 40 min) would reduce the incidence of postoperative delirium in patients 60 years of age or older undergoing elective cardiac surgery with cardiopulmonary bypass. Patients were randomised to receive dexmedetomidine or placebo in a 1:1 ratio. The primary outcome was delirium on postoperative day one. Secondary outcomes included delirium within three days of surgery, 30-, 90-, and 180-day abbreviated Montreal Cognitive Assessment scores, Patient Reported Outcome Measures Information System quality of life scores, and all-cause mortality. The study was registered as NCT02856594 on ClinicalTrials.gov on August 5, 2016, before the enrolment of any participants. FINDINGS Of 469 patients that underwent randomisation to placebo (n = 235) or dexmedetomidine (n = 234), 75 met a prespecified drop criterion before the study intervention. Thus, 394 participants (188 dexmedetomidine; 206 placebo) were analysed in the modified intention-to-treat cohort (median age 69 [IQR 64, 74] years; 73.1% male [n = 288]; 26·9% female [n = 106]). Postoperative delirium status on day one was missing for 30 (7.6%) patients. Among those in whom it could be assessed, the primary outcome occurred in 5 of 175 patients (2.9%) in the dexmedetomidine group and 16 of 189 patients (8.5%) in the placebo group (OR 0.32, 95% CI: 0.10-0.83; P = 0.029). A non-significant but higher proportion of participants experienced delirium within three days postoperatively in the placebo group (25/177; 14.1%) compared to the dexmedetomidine group (14/160; 8.8%; OR 0.58; 95% CI, 0.28-1.15). No significant differences between groups were observed in secondary outcomes or safety. INTERPRETATION Our findings suggested that in elderly cardiac surgery patients with a low baseline risk of postoperative delirium and extubated within 12 h of ICU admission, a short nighttime dose of dexmedetomidine decreased the incidence of delirium on postoperative day one. Although non-statistically significant, our findings also suggested a clinical meaningful difference in the three-day incidence of postoperative delirium. FUNDING National Institute on Aging (R01AG053582).
Collapse
Affiliation(s)
- Jason Z. Qu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ariel Mueller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tina B. McKay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - M. Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kenneth T. Shelton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shahzad Shaefi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David A. D'Alessandro
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Respiratory Care Services, Massachusetts General Hospital, Boston, MA, USA
| | - Emery N. Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy T. Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Corresponding author. Massachusetts General Hospital, 55 Fruit Street, Gray Bigelow 444, Boston, MA 02114, USA.
| | | |
Collapse
|
25
|
Sedative Properties of Dexmedetomidine Are Mediated Independently from Native Thalamic Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Function at Clinically Relevant Concentrations. Int J Mol Sci 2022; 24:ijms24010519. [PMID: 36613961 PMCID: PMC9820684 DOI: 10.3390/ijms24010519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Dexmedetomidine is a selective α2-adrenoceptor agonist and appears to disinhibit endogenous sleep-promoting pathways, as well as to attenuate noradrenergic excitation. Recent evidence suggests that dexmedetomidine might also directly inhibit hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. We analyzed the effects of dexmedetomidine on native HCN channel function in thalamocortical relay neurons of the ventrobasal complex of the thalamus from mice, performing whole-cell patch-clamp recordings. Over a clinically relevant range of concentrations (1-10 µM), the effects of dexmedetomidine were modest. At a concentration of 10 µM, dexmedetomidine significantly reduced maximal Ih amplitude (relative reduction: 0.86 [0.78-0.91], n = 10, and p = 0.021), yet changes to the half-maximal activation potential V1/2 occurred exclusively in the presence of the very high concentration of 100 µM (-4,7 [-7.5--4.0] mV, n = 10, and p = 0.009). Coincidentally, only the very high concentration of 100 µM induced a significant deceleration of the fast component of the HCN activation time course (τfast: +135.1 [+64.7-+151.3] ms, n = 10, and p = 0.002). With the exception of significantly increasing the membrane input resistance (starting at 10 µM), dexmedetomidine did not affect biophysical membrane properties and HCN channel-mediated parameters of neuronal excitability. Hence, the sedative qualities of dexmedetomidine and its effect on the thalamocortical network are not decisively shaped by direct inhibition of HCN channel function.
Collapse
|
26
|
Ikeda T, Amorim E, Miyazaki Y, Kato R, Marutani E, Silverman MG, Malhotra R, Solt K, Ichinose F. Post-cardiac arrest Sedation Promotes Electroencephalographic Slow-wave Activity and Improves Survival in a Mouse Model of Cardiac Arrest. Anesthesiology 2022; 137:716-732. [PMID: 36170545 PMCID: PMC11079777 DOI: 10.1097/aln.0000000000004390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Patients resuscitated from cardiac arrest are routinely sedated during targeted temperature management, while the effects of sedation on cerebral physiology and outcomes after cardiac arrest remain to be determined. The authors hypothesized that sedation would improve survival and neurologic outcomes in mice after cardiac arrest. METHODS Adult C57BL/6J mice of both sexes were subjected to potassium chloride-induced cardiac arrest and cardiopulmonary resuscitation. Starting at the return of spontaneous circulation or at 60 min after return of spontaneous circulation, mice received intravenous infusion of propofol at 40 mg · kg-1 · h-1, dexmedetomidine at 1 µg · kg-1 · h-1, or normal saline for 2 h. Body temperature was lowered and maintained at 33°C during sedation. Cerebral blood flow was measured for 4 h postresuscitation. Telemetric electroencephalogram (EEG) was recorded in freely moving mice from 3 days before up to 7 days after cardiac arrest. RESULTS Sedation with propofol or dexmedetomidine starting at return of spontaneous circulation improved survival in hypothermia-treated mice (propofol [13 of 16, 81%] vs. no sedation [4 of 16, 25%], P = 0.008; dexmedetomidine [14 of 16, 88%] vs. no sedation [4 of 16, 25%], P = 0.002). Mice receiving no sedation exhibited cerebral hyperemia immediately after resuscitation and EEG power remained less than 30% of the baseline in the first 6 h postresuscitation. Administration of propofol or dexmedetomidine starting at return of spontaneous circulation attenuated cerebral hyperemia and increased EEG slow oscillation power during and early after sedation (40 to 80% of the baseline). In contrast, delayed sedation failed to improve outcomes, without attenuating cerebral hyperemia and inducing slow-wave activity. CONCLUSIONS Early administration of sedation with propofol or dexmedetomidine improved survival and neurologic outcomes in mice resuscitated from cardiac arrest and treated with hypothermia. The beneficial effects of sedation were accompanied by attenuation of the cerebral hyperemic response and enhancement of electroencephalographic slow-wave activity. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Takamitsu Ikeda
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Edilberto Amorim
- Department of Neurology, University of California San Francisco, San Francisco, California
- Neurology Service, Zuckerberg San Francisco Hospital, San Francisco, California
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Risako Kato
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Department of Physiology and Oral Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Ken Solt
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
27
|
Perioperative Brain Function Monitoring with Electroencephalography in Horses Anesthetized with Multimodal Balanced Anesthetic Protocol Subjected to Surgeries. Animals (Basel) 2022; 12:ani12202851. [PMID: 36290236 PMCID: PMC9597736 DOI: 10.3390/ani12202851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/07/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary This study aimed to investigate the use of electroencephalography (EEG) and EEG-derived (processed) indices for detecting brain activity changes perioperatively in 12 anesthetized adult horses subjected to various surgery. Frontal electrodes together with Sedline/Root monitor were used on these horses from soon after anesthesia induction and continued until the horse first attempted to stand in recovery. The EEG waves were characterized by low-frequency high amplitude alpha, theta, and alpha waves during the isoflurane maintenance and surgery, which is commonly observed in profound anesthesia. The processed EEG indices including Patient State Index, Burst Suppression Ratio, and 95% Spectral Edge Frequency changed significantly between the stages (induction, surgery, and recovery) of anesthesia. Collectively, the presence of the slow EEG wave activities and the presence of burst suppression implies that these horses were profoundly unconscious during the anesthesia. We concluded that the use of EEG in conjunction with traditional cardiorespiratory monitoring provides clinically relevant information about perioperative brain state changes in the anesthetized horses. Abstract This study aimed to investigate the use of electroencephalography (EEG) for detecting brain activity changes perioperatively in anesthetized horses subjected to surgery. Twelve adult horses undergoing various surgeries were evaluated after premedication with xylazine and butorphanol, induction with ketamine, midazolam, and guaifenesin, and maintenance with isoflurane. The frontal EEG electrodes were placed after the horse was intubated and mechanically ventilated. The EEG data were collected continuously from Stage (S)1—transition from induction to isoflurane maintenance, S2—during surgery, S3—early recovery before xylazine sedation (0.2 mg kg IV), and S4—recovery after xylazine sedation. The Patient State Index (PSI), (Burst) Suppression Ratio (SR), and 95% Spectral Edge Frequency (SEF95) were compared across the stages. The PSI was lowest in S2 (20.8 ± 2.6) and increased to 30.0 ± 27.7 (p = 0.005) in S3. The SR increased from S1 (5.5 ± 10.7%) to S3 (32.7 ± 33.8%, p = 0.0001). The spectral power analysis showed that S3 had a significantly higher content of delta wave activity (0.1–4 Hz) in the EEG and lower relative power in the 3 Hz to 15 Hz range when compared to S1 and S2. A similar result was observed in S4, but the lower power was in a narrower range, from 3 Hz to 7 Hz, which indicate profound central nervous system depression potentiated by xylazine, despite the cessation of isoflurane anesthesia. We concluded that the use of EEG provides clinically relevant information about perioperative brain state changes of the isoflurane-anesthetized horse.
Collapse
|
28
|
Nociception-Induced Changes in Electroencephalographic Activity and FOS Protein Expression in Piglets Undergoing Castration under Isoflurane Anaesthesia. Animals (Basel) 2022; 12:ani12182309. [PMID: 36139169 PMCID: PMC9494976 DOI: 10.3390/ani12182309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to investigate the electroencephalographic reaction pattern and FOS protein expression in male piglets undergoing surgical castration under light isoflurane anaesthesia with or without local anaesthesia. The experiment was conducted under isoflurane anaesthesia to exclude the effect of the affective components of pain on the measurements. Changes in the oscillatory activity of the cerebral cortex over a 90 s period after noxious stimulation or simulated interventions were analysed. FOS expression was determined postmortem by performing immunohistochemistry in the dorsal horn of the spinal cord. The analysis of the response to an interdigital pinch revealed a biphasic reaction pattern in the electroencephalogram (EEG) that similarly was observed for the surgical stimuli during the castration procedure in the group without analgesia. This EEG response was attenuated or altered by the application of local anaesthetics. Immunohistochemical staining for FOS indicated a lower expression in the handling and in three local anaesthetic groups than in the animals castrated without pain relief. The findings indicate that EEG and FOS expression may serve as indicators for nociception in piglets under light isoflurane anaesthesia. A lower activation of nociceptive pathways occurs during castration after the application of local anaesthetics. However, EEG and FOS analyses should be combined with additional parameters to assess nociception, e.g., haemodynamic monitoring.
Collapse
|
29
|
Vacas S, Canales C, Deiner SG, Cole DJ. Perioperative Brain Health in the Older Adult: A Patient Safety Imperative. Anesth Analg 2022; 135:316-328. [PMID: 35584550 PMCID: PMC9288500 DOI: 10.1213/ane.0000000000006090] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
While people 65 years of age and older represent 16% of the population in the United States, they account for >40% of surgical procedures performed each year. Maintaining brain health after anesthesia and surgery is not only important to our patients, but it is also an increasingly important patient safety imperative for the specialty of anesthesiology. Aging is a complex process that diminishes the reserve of every organ system and often results in a patient who is vulnerable to the stress of surgery. The brain is no exception, and many older patients present with preoperative cognitive impairment that is undiagnosed. As we age, a number of changes occur in the human brain, resulting in a patient who is less resilient to perioperative stress, making older adults more susceptible to the phenotypic expression of perioperative neurocognitive disorders. This review summarizes the current scientific and clinical understanding of perioperative neurocognitive disorders and recommends patient-centered, age-focused interventions that can better mitigate risk, prevent harm, and improve outcomes for our patients. Finally, it discusses the emerging topic of sleep and cognitive health and other future frontiers of scientific inquiry that might inform clinical best practices.
Collapse
Affiliation(s)
- Susana Vacas
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Cecilia Canales
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Stacie G Deiner
- Department of Anesthesiology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Daniel J Cole
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
30
|
Zhou H, Han R, Chen L, Zhang Z, Zhang X, Wang J, Liu Z, Huang D. Effect of Implantable Electrical Nerve Stimulation on Cortical Dynamics in Patients With Herpes Zoster–Related Pain: A Prospective Pilot Study. Front Bioeng Biotechnol 2022; 10:862353. [PMID: 35651542 PMCID: PMC9149165 DOI: 10.3389/fbioe.2022.862353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/08/2022] [Indexed: 02/05/2023] Open
Abstract
Implantable electrical nerve stimulation (ENS) can be used to treat neuropathic pain caused by herpes zoster. However, little is known about the cortical mechanism underlying neuromodulation therapy. Here, we recorded a 16-channel resting-state electroencephalogram after the application of spinal cord stimulation (n = 5) or peripheral nerve stimulation (n = 3). The neuromodulatory effect was compared between specific conditions (active ENS versus rest). To capture the cortical responses of ENS, spectral power and coherence analysis were performed. ENS therapy achieved satisfactory relief from pain with a mean visual analog scale score reduction of 5.9 ± 1.1. The spectral analysis indicated that theta and alpha oscillations increased significantly during active neuromodulation compared with the resting state. Furthermore, ENS administration significantly increased frontal-frontal coherence in the alpha band. Our findings demonstrate that, despite methodological differences, both spinal cord and peripheral nerve stimulation can induce cortical alpha oscillation changes in patients with zoster-related pain. The dynamic change may, in part, mediate the analgesic effect of ENS on herpes zoster–related pain.
Collapse
Affiliation(s)
- Haocheng Zhou
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Brain Homeostasis, Central South University, Changsha, China
| | - Rui Han
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Li Chen
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Zhen Zhang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
| | - Xiaobo Zhang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianlong Wang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuoliang Liu
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, China
- Hunan Key Laboratory of Brain Homeostasis, Central South University, Changsha, China
- *Correspondence: Dong Huang,
| |
Collapse
|
31
|
Casey CP, Tanabe S, Farahbakhsh Z, Parker M, Bo A, White M, Ballweg T, Mcintosh A, Filbey W, Saalmann Y, Pearce RA, Sanders RD. Distinct EEG signatures differentiate unconsciousness and disconnection during anaesthesia and sleep. Br J Anaesth 2022; 128:1006-1018. [PMID: 35148892 DOI: 10.1016/j.bja.2022.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND How conscious experience becomes disconnected from the environment, or disappears, across arousal states is unknown. We sought to identify the neural correlates of sensory disconnection and unconsciousness using a novel serial awakening paradigm. METHODS Volunteers were recruited for sedation with dexmedetomidine i.v., propofol i.v., or natural sleep with high-density EEG monitoring and serial awakenings to establish whether subjects were in states of disconnected consciousness or unconsciousness in the preceding 20 s. The primary outcome was classification of conscious states by occipital delta power (0.5-4 Hz). Secondary analyses included derivation (dexmedetomidine) and validation (sleep/propofol) studies of EEG signatures of conscious states. RESULTS Occipital delta power differentiated disconnected and unconscious states for dexmedetomidine (area under the curve [AUC] for receiver operating characteristic 0.605 [95% confidence interval {CI}: 0.516; 0.694]) but not for sleep/propofol (AUC 0.512 [95% CI: 0.380; 0.645]). Distinct source localised signatures of sensory disconnection (AUC 0.999 [95% CI: 0.9954; 1.0000]) and unconsciousness (AUC 0.972 [95% CI: 0.9507; 0.9879]) were identified using support vector machine classification of dexmedetomidine data. These findings generalised to sleep/propofol (validation data set: sensory disconnection [AUC 0.743 {95% CI: 0.6784; 0.8050}]) and unconsciousness (AUC 0.622 [95% CI: 0.5176; 0.7238]). We identified that sensory disconnection was associated with broad spatial and spectral changes. In contrast, unconsciousness was associated with focal decreases in activity in anterior and posterior cingulate cortices. CONCLUSIONS These findings may enable novel monitors of the anaesthetic state that can distinguish sensory disconnection and unconsciousness, and these may provide novel insights into the biology of arousal. CLINICAL TRIAL REGISTRATION NCT03284307.
Collapse
Affiliation(s)
- Cameron P Casey
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Sean Tanabe
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Zahra Farahbakhsh
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Margaret Parker
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Amber Bo
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Marissa White
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Tyler Ballweg
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Andrew Mcintosh
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - William Filbey
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Yuri Saalmann
- Department of Psychology, University of Wisconsin, Madison, WI, USA
| | - Robert A Pearce
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Robert D Sanders
- Specialty of Anaesthetics, University of Sydney, Camperdown, Sydney, Australia; Department of Anaesthetics, Royal Prince Alfred Hospital, Camperdown, Sydney, Australia; Institute of Academic Surgery, Royal Prince Alfred Hospital, Camperdown, Sydney, Australia.
| |
Collapse
|
32
|
Zhang X, Chang L, Pan SD, Yan FX. Dexmedetomidine Improves Non-rapid Eye Movement Stage 2 Sleep in Children in the Intensive Care Unit on the First Night After Laparoscopic Surgery. Front Pediatr 2022; 10:871809. [PMID: 35573948 PMCID: PMC9091560 DOI: 10.3389/fped.2022.871809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/04/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Previous studies have reported that children who were admitted to the ICU experienced a significant decrease in sleep quality compared to home. We investigated the effects of dexmedetomidine as an adjunct to sufentanil on the sleep in children admitted to the ICU on the first night after major surgery. METHODS This is a prospective study From January to February 2022. Clinical trial number: ChiCTR2200055768, http://www.chictr.org.cn. Fifty-four children aged 1-10 years old children undergoing major laparoscopic surgery were recruited and randomly assigned to either the DEX group, in which intravenous dexmedetomidine (0.3 ug/kg/h) and sufentanil (0.04 ug/kg/h) were continuously infused intravenously for post-operative analgesia; or the SUF group, in which only sufentanil (0.04 ug/kg/h) was continuously infused. Patients were monitored with polysomnography (PSG) on the first night after surgery for 12 h. PSG, sleep architecture, physiologic variables and any types of side effects related to anesthesia and analgesia were recorded. The differences between the two groups were assessed using the chi-square and Wilcoxon rank-sum tests. RESULTS Fifty-four children completed data collection, of which thirty-four were 1-6 years old and twenty were aged >6 years. Compared to the SUF group, subjects in the DEX group aged 1-6 years displayed increased stage 2 sleep duration (P = 0.02) and light sleep duration (P = 0.02). Subjects aged >6 years in the DEX group also displayed increased stage 2 sleep duration (P = 0.035) and light sleep duration (P = 0.018), but decreased REM sleep percentage (P = 0). Additionally, the heart rate and blood pressure results differed between age groups, with the heart rates of subjects aged >6 years in DEX group decreasing at most time points compared to SUF group (P < 0.05). CONCLUSION Dexmedetomidine prolonged N2 sleep and light sleep duration in the pediatric ICU after surgery but had different effects on the heart rate and blood pressure of subjects in different age groups.
Collapse
Affiliation(s)
- Xian Zhang
- Department of Anesthesiology, Capital Institute of Pediatrics Affiliated Children's Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Li Chang
- Department of Respiratory Medicine, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Shou-Dong Pan
- Department of Anesthesiology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Fu-Xia Yan
- Department of Anesthesiology, Fuwai Hospital, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
Bi H, Cao S, Yan H, Jiang Z, Zhang J, Zou L. Resting State Functional Connectivity Analysis During General Anesthesia: A High-Density EEG Study. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3-13. [PMID: 34156946 DOI: 10.1109/tcbb.2021.3091000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The depth of anesthesia monitoring is helpful to guide administrations of general anesthetics during surgical procedures,however, the conventional 2-4 channels electroencephalogram (EEG) derived monitors have their limitations in monitoring conscious states due to low spatial resolution and suboptimal algorithm. In this study, 256-channel high-density EEG signals in 24 subjects receiving three types of general anesthetics (propofol, sevoflurane and ketamine) respectively were recorded both before and after anesthesia. The raw EEG signals were preprocessed by EEGLAB 14.0. Functional connectivity (FC) analysis by traditional coherence analysis (CA) method and a novel sparse representation (SR) method. And the network parameters, average clustering coefficient (ACC) and average shortest path length (ASPL) before and after anesthesia were calculated. The results show SR method find more significant FC differences in frontal and occipital cortices, and whole brain network (p<0.05). In contrast, CA can hardly obtain consistent ASPL in the whole brain network (p>0.05). Further, ASPL calculated by SR for whole brain connections in all of three anesthesia groups increased, which can be a unified EEG biomarker of general anesthetics-induced loss of consciousness (LOC). Therefore FC analysis based on SR analysis has better performance in distinguishing anesthetic-induced LOC from awake state.
Collapse
|
34
|
Zhang L, Fang K, Tao S, Deng L, Li H, Cao Y, Wang L, Yu F, Gu E. Electroencephalography-demonstrated mechanisms of dexmedetomidine-mediated deepening of propofol anesthesia: an observational study. Perioper Med (Lond) 2021; 10:44. [PMID: 34879867 PMCID: PMC8656083 DOI: 10.1186/s13741-021-00213-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although dexmedetomidine (Dex) is known to reduce bispectral index (BIS) values and propofol dosage, there is little information regarding raw electroencephalography (EEG) changes related to Dex deepening of propofol general anesthesia (GA). This study investigated the Dex effects on propofol GA via analysis of EEG changes. METHODS A study cohort of 21 surgical patients (age range, 20-60 years) categorized as American Society of Anesthesiologists (ASA) class I or II was enrolled. We used time-varying spectral and bicoherence methods to compare electroencephalogram signatures 5 min before versus 10 min after intravenous Dex injection under propofol GA. The means and medians are reported with 95% confidence intervals (CIs) and inter-quartile ranges (IQRs), respectively. RESULTS Dex augmented the slow waves power and theta (θ) oscillation bicoherence peak from a mean (95% CI) of 22.1% (19.0, 25.2) to 25.2% (21.8, 28.6). Meanwhile, Dex reduced alpha (α) peak power and bicoherence from 3.5 dB (1.0, 6.0) and 41.5% (34.0, 49.0) to 1.7 dB (- 0.6, 4.0) and 35.4% (29.0, 41.8), respectively, while diminishing the median frequency of α oscillation peak values and the mean frequency of α peaks in bicoherence spectra from 12.0 Hz (IQR 11.2, 12.6) and 11.7 Hz (11.3, 12.2) to 11.1 Hz (IQR 10.3, 11.8) and 11.2 Hz (10.9, 11.6), respectively. CONCLUSIONS Profound EEG changes support the supposition that Dex enhances propofol-induced GA from a moderate to a deeper state. The present findings provide a theoretical basis and reference regarding protocols aimed at reducing anesthetic/sedative dosage while maintaining sufficient depth of GA. CLINICAL TRIAL REGISTRATION ChiCTR, ChiCTR1900026955 . Registered on 27 October 2019.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Kun Fang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Shengwei Tao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Liyun Deng
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Hua Li
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.,First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Yuanyuan Cao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Lei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Fengqiong Yu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Erwei Gu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
35
|
Saxena N, Muthukumaraswamy SD, Richmond L, Babic A, Singh KD, Hall JE, Wise RG, Shaw AD. A comparison of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation on visual and motor cortical oscillations, using magnetoencephalography. Neuroimage 2021; 245:118659. [PMID: 34767940 PMCID: PMC9227747 DOI: 10.1016/j.neuroimage.2021.118659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/22/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Studying changes in cortical oscillations can help elucidate the mechanistic link between receptor physiology and the clinical effects of anaesthetic drugs. Propofol, a GABA-ergic drug produces divergent effects on visual cortical activity: increasing induced gamma-band responses (GBR) while decreasing evoked responses. Dexmedetomidine, an α2- adrenergic agonist, differs from GABA-ergic sedatives both mechanistically and clinically as it allows easy arousability from deep sedation with less cognitive side-effects. Here we use magnetoencephalography (MEG) to characterize and compare the effects of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation, on visual and motor cortical oscillations. Sixteen male participants received target-controlled infusions of propofol and dexmedetomidine, producing mild-sedation, in a placebo-controlled, cross-over study. MEG data was collected during a combined visuomotor task. The key findings were that propofol significantly enhanced visual stimulus induced GBR (44% increase in amplitude) while dexmedetomidine decreased it (40%). Propofol also decreased the amplitudes of the Mv100 (visual M100) (27%) and Mv150 (52%) visual evoked fields (VEF), whilst dexmedetomidine had no effect on these. During the motor task, neither drug had any significant effect on movement related gamma synchrony (MRGS), movement related beta de-synchronisation (MRBD) or Mm100 (movement-related M100) movement-related evoked fields (MEF), although dexmedetomidine slowed the Mm300. Dexmedetomidine increased (92%) post-movement beta synchronisation/rebound (PMBR) power while propofol reduced it (70%, statistically non- significant). Overall, dexmedetomidine and propofol, at equi-sedative doses, produce contrasting effects on visual induced GBR, VEF, PMBR and MEF. These findings provide a mechanistic link between the known receptor physiology of these sedative drugs with their known clinical effects and may be used to explore mechanisms of other anaesthetic drugs on human consciousness.
Collapse
Affiliation(s)
- Neeraj Saxena
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Anaesthetics, Intensive Care and Pain Medicine, Cwm Taf Morgannwg University Health Board, Llantrisant CF72 8XR, United Kingdom.
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, Auckland University, Auckland 1123, New Zealand; School of Psychology, Faculty of Medical and Health Sciences, Auckland University, Auckland 1123, New Zealand
| | - Lewys Richmond
- Department of Anaesthetics, Morriston Hospital, Swansea, SA6 6NL, United Kingdom
| | - Adele Babic
- Department of Anaesthetics, Royal Gwent Hospital, Newport, NP20 2UB, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Judith E Hall
- Department of Anaesthetics, Intensive Care and Pain Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XW, United Kingdom
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Institute for Advanced Biomedical Technologies, "G. D'Annunzio University" of Chieti-Pescara, 66100, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio University" of Chieti-Pescara, 66100, Chieti, Italy
| | - Alexander D Shaw
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Psychology, University of Exeter, United Kingdom
| |
Collapse
|
36
|
Zhang JF, Williams JP, Zhao QN, Liu H, Shi WR, Wang Y, Fang QW, An JX. Multimodal sleep, an innovation for treating chronic insomnia: case report and literature review. J Clin Sleep Med 2021; 17:1737-1742. [PMID: 34165072 DOI: 10.5664/jcsm.9310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The authors present the clinical case of a 67-year-old man with severe insomnia for 5 years with an exacerbation about 1 year before consultation. He did not have enough concentration and energy for his daily work and developed depression and anxiety because of his excessive daytime sleepiness. During his insomniac state, a drug treatment provided partial relief, but the effects were not long-lasting. Consequently, the drug dosage increased, and major side effects gradually manifested. We decided to use a completely new therapeutic strategy for this patient to improve his sleep quality and mental symptoms. In time, the patient could stop oral medications and that is multimodal sleep. After the end of multimodal sleep, the patient typically experiences improvement in sleep quality and architecture. Additionally, the dosage of hypnotics used before multimodal sleep is discontinued without severe withdrawal symptoms. CITATION Zhang J-F, Williams JP, Zhao Q-N, et al. Multimodal sleep, an innovation for treating chronic insomnia: case report and literature review. J Clin Sleep Med. 2021;17(8):1737-1742.
Collapse
Affiliation(s)
- Jian-Feng Zhang
- Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China
| | - John P Williams
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Qian-Nan Zhao
- Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Hui Liu
- Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Wan-Rui Shi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yong Wang
- Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Qi-Wu Fang
- Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Jian-Xiong An
- Department of Anesthesiology, Pain and Sleep Medicine, Aviation General Hospital of China Medical University and Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, China.,School of Medical Science & Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
37
|
Abstract
The electroencephalogram (EEG) can be analyzed in its raw form for characteristic drug-induced patterns of change or summarized using mathematical parameters as a processed electroencephalogram (pEEG). In this article we aim to summarize the contemporary literature pertaining to the commonly available pEEG monitors including the effects of commonly used anesthetic drugs on the EEG and pEEG parameters, pEEG monitor pitfalls, and the clinical implications of pEEG monitoring for anesthesia, pediatrics, and intensive care.
Collapse
Affiliation(s)
- David Roche
- Department of Anaesthesiology and Critical Care, Cork University Hospital, Wilton Road, Wilton, Cork T12 DC4A, Ireland.
| | - Padraig Mahon
- Department of Anaesthesiology and Critical Care, Cork University Hospital, Wilton Road, Wilton, Cork T12 DC4A, Ireland
| |
Collapse
|
38
|
|
39
|
Yuan I, Xu T, Kurth CD. Using Electroencephalography (EEG) to Guide Propofol and Sevoflurane Dosing in Pediatric Anesthesia. Anesthesiol Clin 2021; 38:709-725. [PMID: 32792193 DOI: 10.1016/j.anclin.2020.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sevoflurane and propofol-based anesthetics are dosed according to vital signs, movement, and expired sevoflurane concentrations, which do not assess the anesthetic state of the brain and, therefore, risk underdose and overdose. Electroencephalography (EEG) measures cortical brain activity and can assess hypnotic depth, a key component of the anesthetic state. Application of sevoflurane and propofol pharmacology along with EEG parameters can more precisely guide dosing to achieve the desired anesthetic state for an individual pediatric patient. This article reviews the principles underlying EEG use for sevoflurane and propofol dosing in pediatric anesthesia and offers case examples to illustrate their use in individual patients.
Collapse
Affiliation(s)
- Ian Yuan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Ting Xu
- Department of Anesthesiology, Laboratory of anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University and The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, Sichuan, China; Department of Anesthesiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32#, 2nd Section (West), 1st Ring Road, Chengdu 610072, China
| | - Charles Dean Kurth
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
40
|
Huang X, Lin D, Sun Y, Wu A, Wei C. Effect of Dexmedetomidine on Postoperative Sleep Quality: A Systematic Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2161-2170. [PMID: 34045850 PMCID: PMC8149279 DOI: 10.2147/dddt.s304162] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022]
Abstract
In this article, we conduct a systematic review of the literature to explore the specific role of dexmedetomidine (DEX) on postoperative sleep and its associated mechanisms at present. The electronic database Embase, MEDLINE/PubMed, the Cochrane Library, Web of Science, and Google Scholar were searched. The restriction terms included “dexmedetomidine”, “sleep” and “surgery”. The inclusion criteria were as following: 1) patients 18 years old or older; 2) DEX used in the perioperative period not just for critically ill patients in the intensive care unit (ICU); 3) prospective or retrospective studies. The review articles, conference abstracts, and animal studies were excluded. Out of the 22 articles which met the above criteria, 20 of them were randomized controlled studies and 2 of them were retrospective cohort studies. Infusion of DEX including during the surgery and after surgery at a low or high dose was shown to improve subjective and objective sleep quality, although 2 studies showed there is no evidence that the use of DEX improves sleep quality and 1 showed less sleep efficiency and shorter total sleep time in the DEX group. Other postoperative outcomes evaluated postoperative nausea and vomiting, pain, postoperative delirium bradycardia and hypotension. Outcomes of our systematic review showed that DEX has advantages in improving patients’ postoperative sleep quality. Combined with the use of general anesthetic, DEX provides a reliable choice for procedural sedation.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dandan Lin
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
41
|
Kato R, Zhang ER, Mallari OG, Moody OA, Vincent KF, Melonakos ED, Siegmann MJ, Nehs CJ, Houle TT, Akeju O, Solt K. D-Amphetamine Rapidly Reverses Dexmedetomidine-Induced Unconsciousness in Rats. Front Pharmacol 2021; 12:668285. [PMID: 34084141 PMCID: PMC8167047 DOI: 10.3389/fphar.2021.668285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022] Open
Abstract
D-amphetamine induces emergence from sevoflurane and propofol anesthesia in rats. Dexmedetomidine is an α2-adrenoreceptor agonist that is commonly used for procedural sedation, whereas ketamine is an anesthetic that acts primarily by inhibiting NMDA-type glutamate receptors. These drugs have different molecular mechanisms of action from propofol and volatile anesthetics that enhance inhibitory neurotransmission mediated by GABAA receptors. In this study, we tested the hypothesis that d-amphetamine accelerates recovery of consciousness after dexmedetomidine and ketamine. Sixteen rats (Eight males, eight females) were used in a randomized, blinded, crossover experimental design and all drugs were administered intravenously. Six additional rats with pre-implanted electrodes in the prefrontal cortex (PFC) were used to analyze changes in neurophysiology. After dexmedetomidine, d-amphetamine dramatically decreased mean time to emergence compared to saline (saline:112.8 ± 37.2 min; d-amphetamine:1.8 ± 0.6 min, p < 0.0001). This arousal effect was abolished by pre-administration of the D1/D5 dopamine receptor antagonist, SCH-23390. After ketamine, d-amphetamine did not significantly accelerate time to emergence compared to saline (saline:19.7 ± 18.0 min; d-amphetamine:20.3 ± 16.5 min, p = 1.00). Prefrontal cortex local field potential recordings revealed that d-amphetamine broadly decreased spectral power at frequencies <25 Hz and restored an awake-like pattern after dexmedetomidine. However, d-amphetamine did not produce significant spectral changes after ketamine. The duration of unconsciousness was significantly longer in females for both dexmedetomidine and ketamine. In conclusion, d-amphetamine rapidly restores consciousness following dexmedetomidine, but not ketamine. Dexmedetomidine reversal by d-amphetamine is inhibited by SCH-23390, suggesting that the arousal effect is mediated by D1 and/or D5 receptors. These findings suggest that d-amphetamine may be clinically useful as a reversal agent for dexmedetomidine.
Collapse
Affiliation(s)
- Risako Kato
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Edlyn R Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Olivia G Mallari
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Olivia A Moody
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Kathleen F Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Eric D Melonakos
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Morgan J Siegmann
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Christa J Nehs
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Timothy T Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
42
|
Moody OA, Zhang ER, Vincent KF, Kato R, Melonakos ED, Nehs CJ, Solt K. The Neural Circuits Underlying General Anesthesia and Sleep. Anesth Analg 2021; 132:1254-1264. [PMID: 33857967 DOI: 10.1213/ane.0000000000005361] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
General anesthesia is characterized by loss of consciousness, amnesia, analgesia, and immobility. Important molecular targets of general anesthetics have been identified, but the neural circuits underlying the discrete end points of general anesthesia remain incompletely understood. General anesthesia and natural sleep share the common feature of reversible unconsciousness, and recent developments in neuroscience have enabled elegant studies that investigate the brain nuclei and neural circuits underlying this important end point. A common approach to measure cortical activity across the brain is electroencephalogram (EEG), which can reflect local neuronal activity as well as connectivity among brain regions. The EEG oscillations observed during general anesthesia depend greatly on the anesthetic agent as well as dosing, and only some resemble those observed during sleep. For example, the EEG oscillations during dexmedetomidine sedation are similar to those of stage 2 nonrapid eye movement (NREM) sleep, but high doses of propofol and ether anesthetics produce burst suppression, a pattern that is never observed during natural sleep. Sleep is primarily driven by withdrawal of subcortical excitation to the cortex, but anesthetics can directly act at both subcortical and cortical targets. While some anesthetics appear to activate specific sleep-active regions to induce unconsciousness, not all sleep-active regions play a significant role in anesthesia. Anesthetics also inhibit cortical neurons, and it is likely that each class of anesthetic drugs produces a distinct combination of subcortical and cortical effects that lead to unconsciousness. Conversely, arousal circuits that promote wakefulness are involved in anesthetic emergence and activating them can induce emergence and accelerate recovery of consciousness. Modern neuroscience techniques that enable the manipulation of specific neural circuits have led to new insights into the neural circuitry underlying general anesthesia and sleep. In the coming years, we will continue to better understand the mechanisms that generate these distinct states of reversible unconsciousness.
Collapse
Affiliation(s)
- Olivia A Moody
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Edlyn R Zhang
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Kathleen F Vincent
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Risako Kato
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Eric D Melonakos
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Christa J Nehs
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ken Solt
- From the Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
43
|
Loss of spectral alpha power during spine surgery: what could be wrong? J Clin Monit Comput 2021; 35:1531-1533. [PMID: 33991269 DOI: 10.1007/s10877-021-00720-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
The electroencephalographic signatures of anesthetic drugs relate to a specific set of action mechanisms within the neural circuits. During intraoperative care, the recognition and correct interpretation of the EEG spectrogram can be used as a tool to guide anesthetic administration. For example, loss of alpha power during propofol anesthesia may be a sign of lighter level of hypnosis and/or of an increase in nociceptive inputs. We describe a case report of inadvertent interruption of propofol delivery that was first detected by changes in the electroencephalogram spectrogram.
Collapse
|
44
|
Obert DP, Schweizer C, Zinn S, Kratzer S, Hight D, Sleigh J, Schneider G, García PS, Kreuzer M. The influence of age on EEG-based anaesthesia indices. J Clin Anesth 2021; 73:110325. [PMID: 33975095 DOI: 10.1016/j.jclinane.2021.110325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
STUDY OBJECTIVE In the upcoming years there will be a growing number of elderly patients requiring general anaesthesia. As age is an independent risk factor for postoperative delirium (POD) the incidence of POD will increase concordantly. One approach to reduce the risk of POD would be to avoid excessively high doses of anaesthetics by using neuromonitoring to guide anaesthesia titration. Therefore, we evaluated the influence of patient's age on various electroencephalogram (EEG)-based anaesthesia indices. DESIGN AND PATIENTS We conducted an analysis of previously published data by replaying single electrode EEG episodes of maintenance of general anaesthesia from 180 patients (18-90 years; ASA I-IV) into the five different commercially available monitoring systems and evaluated their indices. We included the State/Response Entropy, Narcotrend, qCON/qNOX, bispectral index (BIS), and Treaton MGA-06. For a non-commercial comparison, we extracted the spectral edge frequency (SEF) from the BIS. To evaluate the influence of the age we generated linear regression models. We also assessed the correlation between the various indices. MAIN RESULTS During anaesthetic maintenance the values of the SEF, State/Response Entropy, qCON/qNOX and BIS all significantly increased (0.05 Hz/0.19-0.26 index points per year) with the patient's age (p < 0.001); whereas the Narcotrend did not change significantly with age (0.06 index points per year; p = 0.28). The index values of the Treaton device significantly decreased with age (-0.09 index points per year; p < 0.001). These findings were independent of the administered dose of anaesthetics. CONCLUSIONS Almost all current neuromonitoring devices are influenced by age, with the potential to result in inappropriately high dosage of anaesthetics. Therefore, anaesthesiologists should be aware of this phenomenon, and the next generation of monitors should correct for these changes.
Collapse
Affiliation(s)
- David P Obert
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine, Munich, Germany
| | - Catrin Schweizer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sebastian Zinn
- Department of Anesthesiology, Goethe University, Frankfurt am Main, Germany
| | - Stephan Kratzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine, Munich, Germany
| | - Darren Hight
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Jamie Sleigh
- Department of Anaesthesia, Waikato Clinical School, University of Auckland, Hamilton, New Zealand
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine, Munich, Germany
| | - Paul S García
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine, Munich, Germany.
| |
Collapse
|
45
|
Ramaswamy SM, Weerink MAS, Struys MMRF, Nagaraj SB. Dexmedetomidine-induced deep sedation mimics non-rapid eye movement stage 3 sleep: large-scale validation using machine learning. Sleep 2021; 44:5899036. [PMID: 32860500 PMCID: PMC7879420 DOI: 10.1093/sleep/zsaa167] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/17/2020] [Indexed: 11/24/2022] Open
Abstract
Study Objectives Dexmedetomidine-induced electroencephalogram (EEG) patterns during deep sedation are comparable with natural sleep patterns. Using large-scale EEG recordings and machine learning techniques, we investigated whether dexmedetomidine-induced deep sedation indeed mimics natural sleep patterns. Methods We used EEG recordings from three sources in this study: 8,707 overnight sleep EEG and 30 dexmedetomidine clinical trial EEG. Dexmedetomidine-induced sedation levels were assessed using the Modified Observer’s Assessment of Alertness/Sedation (MOAA/S) score. We extracted 22 spectral features from each EEG recording using a multitaper spectral estimation method. Elastic-net regularization method was used for feature selection. We compared the performance of several machine learning algorithms (logistic regression, support vector machine, and random forest), trained on individual sleep stages, to predict different levels of the MOAA/S sedation state. Results The random forest algorithm trained on non-rapid eye movement stage 3 (N3) predicted dexmedetomidine-induced deep sedation (MOAA/S = 0) with area under the receiver operator characteristics curve >0.8 outperforming other machine learning models. Power in the delta band (0–4 Hz) was selected as an important feature for prediction in addition to power in theta (4–8 Hz) and beta (16–30 Hz) bands. Conclusions Using a large-scale EEG data-driven approach and machine learning framework, we show that dexmedetomidine-induced deep sedation state mimics N3 sleep EEG patterns. Clinical Trials Name—Pharmacodynamic Interaction of REMI and DMED (PIRAD), URL—https://clinicaltrials.gov/ct2/show/NCT03143972, and registration—NCT03143972.
Collapse
Affiliation(s)
- Sowmya M Ramaswamy
- University of Groningen, University Medical Center Groningen, Department of Anesthesiology, Groningen, The Netherlands
| | - Maud A S Weerink
- University of Groningen, University Medical Center Groningen, Department of Anesthesiology, Groningen, The Netherlands
| | - Michel M R F Struys
- University of Groningen, University Medical Center Groningen, Department of Anesthesiology, Groningen, The Netherlands.,Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Sunil B Nagaraj
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy & Pharmacology, Groningen, The Netherlands
| |
Collapse
|
46
|
Martinez-Simon A, Valencia M, Cacho-Asenjo E, Honorato-Cia C, Nuñez-Cordoba JM, Manzanilla O, Aldaz A, Panadero A, Guridi J, Alegre M. Effects of dexmedetomidine on subthalamic local field potentials in Parkinson's disease. Br J Anaesth 2021; 127:245-253. [PMID: 33896591 PMCID: PMC8362272 DOI: 10.1016/j.bja.2021.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/17/2020] [Accepted: 01/23/2021] [Indexed: 01/06/2023] Open
Abstract
Background Dexmedetomidine is frequently used for sedation during deep brain stimulator implantation in patients with Parkinson's disease, but its effect on subthalamic nucleus activity is not well known. The aim of this study was to quantify the effect of increasing doses of dexmedetomidine in this population. Methods Controlled clinical trial assessing changes in subthalamic activity with increasing doses of dexmedetomidine (from 0.2 to 0.6 μg kg−1 h−1) in a non-operating theatre setting. We recorded local field potentials in 12 patients with Parkinson's disease with bilateral deep brain stimulators (24 nuclei) and compared basal activity in the nuclei of each patient and activity recorded with different doses. Plasma levels of dexmedetomidine were obtained and correlated with the dose administered. Results With dexmedetomidine infusion, patients became clinically sedated, and at higher doses (0.5–0.6 μg kg−1 h−1) a significant decrease in the characteristic Parkinsonian subthalamic activity was observed (P<0.05 in beta activity). All subjects awoke to external stimulus over a median of 1 (range: 0–9) min, showing full restoration of subthalamic activity. Dexmedetomidine dose administered and plasma levels showed a positive correlation (repeated measures correlation coefficient=0.504; P<0.001). Conclusions Patients needing some degree of sedation throughout subthalamic deep brain stimulator implantation for Parkinson's disease can probably receive dexmedetomidine up to 0.6 μg kg−1 h−1 without significant alteration of their characteristic subthalamic activity. If patients achieve a ‘sedated’ state, subthalamic activity decreases, but they can be easily awakened with a non-pharmacological external stimulus and recover baseline subthalamic activity patterns in less than 10 min. Clinical trial registration EudraCT 2016-002680-34; NCT-02982512.
Collapse
Affiliation(s)
- Antonio Martinez-Simon
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| | - Miguel Valencia
- University of Navarra, CIMA, Program of Neuroscience, Systems Neuroscience Lab, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Elena Cacho-Asenjo
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Cristina Honorato-Cia
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Jorge M Nuñez-Cordoba
- Research Support Service, Central Clinical Trials Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | - Oscar Manzanilla
- Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain
| | - Azucena Aldaz
- Department of Pharmacy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alfredo Panadero
- Department of Anaesthesia, Perioperative Medicine and Critical Care, Clínica Universidad de Navarra, Pamplona, Spain
| | - Jorge Guridi
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Department of Neurosurgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel Alegre
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; Clinical Neurophysiology Section, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
47
|
Michalak AJ, Mendiratta A, Eliseyev A, Ramnath B, Chung J, Rasnow J, Reid L, Salerno S, García PS, Agarwal S, Roh D, Park S, Bazil C, Claassen J. Frontotemporal EEG to guide sedation in COVID-19 related acute respiratory distress syndrome. Clin Neurophysiol 2021; 132:730-736. [PMID: 33567379 PMCID: PMC7817418 DOI: 10.1016/j.clinph.2021.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Objective To study if limited frontotemporal electroencephalogram (EEG) can guide sedation changes in highly infectious novel coronavirus disease 2019 (COVID-19) patients receiving neuromuscular blocking agent. Methods 98 days of continuous frontotemporal EEG from 11 consecutive patients was evaluated daily by an epileptologist to recommend reduction or maintenance of the sedative level. We evaluated the need to increase sedation in the 6 h following this recommendation. Post-hoc analysis of the quantitative EEG was correlated with the level of sedation using a machine learning algorithm. Results Eleven patients were studied for a total of ninety-eight sedation days. EEG was consistent with excessive sedation on 57 (58%) and adequate sedation on 41 days (42%). Recommendations were followed by the team on 59% (N = 58; 19 to reduce and 39 to keep the sedation level). In the 6 h following reduction in sedation, increases of sedation were needed in 7 (12%). Automatized classification of EEG sedation levels reached 80% (±17%) accuracy. Conclusions Visual inspection of a limited EEG helped sedation depth guidance. In a secondary analysis, our data supported that this determination may be automated using quantitative EEG analysis. Significance Our results support the use of frontotemporal EEG for guiding sedation in patients with COVID-19.
Collapse
Affiliation(s)
- Andrew J Michalak
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anil Mendiratta
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrey Eliseyev
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Jane Chung
- NewYork Presbyterian Hospital, New York, NY, USA
| | | | | | | | - Paul S García
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachin Agarwal
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Roh
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Soojin Park
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Carl Bazil
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
48
|
Seo KH, Kim K, Lee SK, Cho J, Hong JH. Changes in electroencephalographic power and bicoherence spectra according to depth of dexmedetomidine sedation in patients undergoing spinal anesthesia. Int J Med Sci 2021; 18:2117-2127. [PMID: 33859518 PMCID: PMC8040410 DOI: 10.7150/ijms.54677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/01/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Assessment the depth of dexmedetomidine sedation using electroencephalographic (EEG) features can improve the quality of procedural sedation. Previous volunteer studies of dexmedetomidine-induced EEG changes need to be validated, and changes in bicoherence spectra during dexmedetomidine sedation has not been revealed yet. We aimed to investigate the dexmedetomidine-induced EEG change using power spectral and bicoherence analyses in the clinical setting. Patients and Methods: Thirty-six patients undergoing orthopedic surgery under spinal anesthesia were enrolled in this study. Dexmedetomidine sedation was conducted by the stepwise increase in target effect site concentration (Ce) while assessing sedation levels. Bispectral index (BIS) and frontal electroencephalography were recorded continuously, and the performance of BIS and changes in power and bicoherence spectra were analyzed with the data from the F3 electrode. Results: The prediction probability values for detecting different sedation levels were 0.847, 0.841, and 0.844 in BIS, 95% spectral edge frequency, and dexmedetomidine Ce, respectively. As the depth of sedation increased, δ power increased, but high β and γ power decreased significantly (P <0.001). α and spindle power increased significantly under light and moderate sedation (P <0.001 in light vs baseline and deep sedation; P = 0.002 and P <0.001 in moderate sedation vs baseline and deep sedation, respectively). The bicoherence peaks of the δ and α-spindle regions along the diagonal line of the bicoherence matrix emerged during moderate and deep sedation. Peak bicoherence in the δ area showed sedation-dependent increases (29.93%±7.38%, 36.72%±9.70%, 44.88%±12.90%; light, moderate, and deep sedation; P = 0.008 and P <0.001 in light sedation vs moderate and deep sedation, respectively; P = 0.007 in moderate sedation vs deep sedation), whereas peak bicoherence in the α-spindle area did not change (22.92%±4.90%, 24.72%±4.96%, and 26.96%±8.42%, respectively; P=0.053). Conclusions: The increase of δ power and the decrease of high-frequency power were associated with the gradual deepening of dexmedetomidine sedation. The δ bicoherence peak increased with increasing sedation level and can serve as an indicator reflecting dexmedetomidine sedation levels.
Collapse
Affiliation(s)
- Kwon Hui Seo
- Department of Anesthesiology and Pain Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Republic of Korea
| | - Kiseong Kim
- Strategic R&D Center, Biobrain Inc. 723, 408 Daedeok-daero Seo-gu, Daejeon City, Republic of Korea
| | - Soo Kyung Lee
- Department of Anesthesiology and Pain Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Republic of Korea
| | - Jeonghoon Cho
- Department of Anesthesiology and Pain Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Republic of Korea
| | - Ji Hyung Hong
- Division of Oncology, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
49
|
Chamadia S, Hobbs L, Marota S, Ibala R, Hahm E, Gitlin J, Mekonnen J, Ethridge B, Colon KM, Sheppard KS, Manoach DS, DiBiasio A, Nguyen S, Pedemonte JC, Akeju O. Oral Dexmedetomidine Promotes Non-rapid Eye Movement Stage 2 Sleep in Humans. Anesthesiology 2020; 133:1234-1243. [PMID: 33001139 DOI: 10.1097/aln.0000000000003567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The administration of dexmedetomidine is limited to highly monitored care settings because it is only available for use in humans as intravenous medication. An oral formulation of dexmedetomidine may broaden its use to all care settings. The authors investigated the effect of a capsule-based solid oral dosage formulation of dexmedetomidine on sleep polysomnography. METHODS The authors performed a single-site, placebo-controlled, randomized, crossover, double-blind phase II study of a solid oral dosage formulation of dexmedetomidine (700 mcg; n = 15). The primary outcome was polysomnography sleep quality. Secondary outcomes included performance on the motor sequence task and psychomotor vigilance task administered to each subject at night and in the morning to assess motor memory consolidation and psychomotor function, respectively. Sleep questionnaires were also administered. RESULTS Oral dexmedetomidine increased the duration of non-rapid eye movement (non-REM) stage 2 sleep by 63 (95% CI, 19 to 107) min (P = 0.010) and decreased the duration of rapid eye movement (REM) sleep by 42 (5 to 78) min (P = 0.031). Overnight motor sequence task performance improved after placebo sleep (7.9%; P = 0.003) but not after oral dexmedetomidine-induced sleep (-0.8%; P = 0.900). In exploratory analyses, we found a positive correlation between spindle density during non-REM stage 2 sleep and improvement in the overnight test performance (Spearman rho = 0.57; P = 0.028; n = 15) for placebo but not oral dexmedetomidine (Spearman rho = 0.04; P = 0.899; n = 15). Group differences in overnight motor sequence task performance, psychomotor vigilance task metrics, and sleep questionnaires did not meet the threshold for statistical significance. CONCLUSIONS These results demonstrate that the nighttime administration of a solid oral dosage formulation of dexmedetomidine is associated with increased non-REM 2 sleep and decreased REM sleep. Spindle density during dexmedetomidine sleep was not associated with overnight improvement in the motor sequence task. EDITOR’S PERSPECTIVE
Collapse
|
50
|
Abstract
BACKGROUND Dexmedetomidine is only approved for use in humans as an intravenous medication. An oral formulation may broaden the use and benefits of dexmedetomidine to numerous care settings. The authors hypothesized that oral dexmedetomidine (300 mcg to 700 mcg) would result in plasma concentrations consistent with sedation while maintaining hemodynamic stability. METHODS The authors performed a single-site, open-label, phase I dose-escalation study of a solid oral dosage formulation of dexmedetomidine in healthy volunteers (n = 5, 300 mcg; followed by n = 5, 500 mcg; followed by n = 5, 700 mcg). The primary study outcome was hemodynamic stability defined as lack of hypertension, hypotension, or bradycardia. The authors assessed this outcome by analyzing raw hemodynamic data. Plasma dexmedetomidine concentrations were determined by liquid chromatograph-tandem mass spectrometry. Nonlinear mixed effect models were used for pharmacokinetic and pharmacodynamic analyses. RESULTS Oral dexmedetomidine was associated with plasma concentration-dependent decreases in heart rate and mean arterial pressure. All but one subject in the 500-mcg group met our criteria for hemodynamic stability. The plasma concentration profile was adequately described by a 2-compartment, weight allometric, first-order absorption, first-order elimination pharmacokinetic model. The standardized estimated parameters for an individual of 70 kg was V1 = 35.6 [95% CI, 23.8 to 52.8] l; V2 = 54.7 [34.2 to 81.7] l; CL = 0.56 [0.49 to 0.64] l/min; and F = 7.2 [4.7 to 14.4]%. Linear models with effect sites adequately described the decreases in mean arterial pressure and heart rate associated with oral dexmedetomidine administration. However, only the 700-mcg group reached plasma concentrations that have previously been associated with sedation (>0.2 ng/ml). CONCLUSIONS Oral administration of dexmedetomidine in doses between 300 and 700 mcg was associated with decreases in heart rate and mean arterial pressure. Despite low oral absorption, the 700-mcg dose scheme reached clinically relevant concentrations for possible use as a sleep-enhancing medication. EDITOR’S PERSPECTIVE
Collapse
|