1
|
Dabravolski SA, Churov AV, Starodubtseva IA, Beloyartsev DF, Kovyanova TI, Sukhorukov VN, Orekhov NA. Vitamin D in Primary Sjogren's Syndrome (pSS) and the Identification of Novel Single-Nucleotide Polymorphisms Involved in the Development of pSS-Associated Diseases. Diagnostics (Basel) 2024; 14:2035. [PMID: 39335717 PMCID: PMC11431467 DOI: 10.3390/diagnostics14182035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disorder characterised by lymphocytic infiltration of the exocrine glands, which leads to dryness of the eyes and mouth; systemic manifestations such as arthritis, vasculitis, and interstitial lung disease; and increased risks of lymphoma and cardiovascular diseases. SS predominantly affects women, with a strong genetic component linked to sex chromosomes. Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms (SNPs) associated with primary SS (pSS), revealing insights into its pathogenesis. The adaptive and innate immune systems are crucial to SS's development, with viral infections implicated as environmental triggers that exacerbate autoimmune responses in genetically susceptible individuals. Moreover, recent research has highlighted the role of vitamin D in modulating immune responses in pSS patients, suggesting its potential therapeutic implications. In this review, we focus on the recently identified SNPs in genes like OAS1, NUDT15, LINC00243, TNXB, and THBS1, which have been associated with increased risks of developing more severe symptoms and other diseases such as fatigue, lymphoma, neuromyelitis optica spectrum disorder (NMOSD), dry eye syndrome (DES), and adverse drug reactions. Future studies should focus on larger, multi-ethnic cohorts with standardised protocols to validate findings and identify new associations. Integrating genetic testing into clinical practise holds promise for improving SS management and treatment strategies, enabling personalised interventions based on comprehensive genetic profiles. By focusing on specific SNPs, vitamin D, and their implications, future research can lead to more effective and personalised approaches for managing pSS and its complications.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel
| | - Alexey V. Churov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute on Aging Research, Russian Gerontology Clinical Research Center, Pirogov Russian National Research Medical University, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Irina A. Starodubtseva
- Department of Polyclinic Therapy, NN Burdenko Voronezh State Medical University, 10 Studencheskaya Street, 394036 Voronezh, Russia;
| | - Dmitry F. Beloyartsev
- Vascular Surgery Department, A. V. Vishnevsky National Medical Research Center of Surgery, 27 Bolshaya Serpukhovskaya Street, 117997 Moscow, Russia;
| | - Tatiana I. Kovyanova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia
| | - Vasily N. Sukhorukov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| | - Nikolay A. Orekhov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, 125315 Moscow, Russia; (A.V.C.); (T.I.K.); (V.N.S.); (N.A.O.)
| |
Collapse
|
2
|
Liu X, Zhang X, Shi J, Li S, Zhang X, Wang H. Serum biomarker-based risk model construction for primary Sjögren's syndrome with interstitial lung disease. Front Mol Biosci 2024; 11:1448946. [PMID: 39234569 PMCID: PMC11371626 DOI: 10.3389/fmolb.2024.1448946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Background Cytokine network disturbances in primary Sjögren's syndrome (pSS) have been reported in many studies. However, their functions in patients with primary Sjögren's syndrome and interstitial lung disease (pSS-ILD) is controversial. In this study, we aim to investigate the associations of immunological characteristics and cytokine profiles with pSS-ILD pathogenesis and explore their predictive values for pSS progression. Methods A total of 256 patients initially diagnosed with pSS at Henan Provincial People's Hospital were enrolled. After excluding the patients previously diagnosed with various serious acute and chronic respiratory system diseases and cases with other connective tissue diseases or congenital heart diseases, 94 pSS patients were included for further analysis, including 40 patients with ILD (pSS-ILD) and 54 patients without ILD (pSS-N-ILD). For comparison, 41 age- and sex-matched healthy individuals were included as normal controls. Their clinical symptoms and serological data including cyclic citrullinated peptide (CCP) antibody (anti-CCP), antinuclear antibody (ANA), anti-Ro52, anti-SSA, anti-SSB, C-reactive protein, IgG, IgM, IgA, C3, C4, and 10 cytokines and chemokines were obtained. Wilcoxon test, chi-square test, Spearman correlation analysis, and logistics regression analysis were performed. Results Higher positive rates of anti-SSB and higher incidence of dry cough, dyspnea, and arthrosis symptoms were shown in pSS-ILD patients than in the pSS-N-ILD cases. Anti-CCP antibodies and cytokines (IL-1β, TNFα, IL-6, IL-5, IL-12p70, and IL-17) were higher, while C3 was lower in pSS-ILD patients than in pSS-N-ILD cases. Significant negative correlations of IgG with C3 and C4 and positive correlations of IL-12p70 and IL-17 with IL-6 were only shown in pSS-ILD patients. The anti-CCP antibody was positively correlated with IL-5 in pSS-ILD patients, but not in pSS-N-ILD cases. Multi-variable logistics regression analysis revealed the combination of anti-CCP, IL-17, IL-12p70, and IL-5 was effective in predicting the status of pSS-ILD in the pSS cases. Conclusion There were significant differences in serum marker levels between pSS-ILD and pSS-N-ILD cases. The combination of anti-CCP, IL-17, IL-12p70, and IL-5 might be a potential risk predictor for pSS-ILD occurrence. The cytokines might be involved in the development and progression of pSS-ILD. These results would provide new therapeutic targets for pSS-ILD treatment.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xia Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Juan Shi
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiqing Li
- Department of Ophthalmology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Huiling Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Baldini C, Fulvio G, La Rocca G, Ferro F. Update on the pathophysiology and treatment of primary Sjögren syndrome. Nat Rev Rheumatol 2024; 20:473-491. [PMID: 38982205 DOI: 10.1038/s41584-024-01135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
Sjögren syndrome or Sjögren disease is a chronic form of autoimmune epithelitis characterized by lymphocytic infiltration of the exocrine glands, particularly the salivary and lacrimal glands, leading to progressive glandular dysfunction and subsequent xerostomia and xerophthalmia. Other common manifestations include pain and fatigue, various systemic manifestations and non-Hodgkin's lymphoma. Sjögren syndrome is therefore a complex and disabling disease associated with a reduced quality of life and with considerable long-term damage. Most of the available treatments are merely symptomatic with limited efficacy in both preventing glandular damage and suppressing systemic disease activity. In the past 10 years, great progress has been made in understanding the pathophysiology of Sjögren syndrome, opening new avenues towards a more targeted and individualized therapeutic approach to the disease. Indeed, several randomized controlled trials have just been completed or are poised to commence evaluating the effectiveness of novel drugs targeting both innate and adaptive immune pathways, including pro-inflammatory cytokines, the type I interferon system, B cell activation, B cell and T cell co-stimulation pathway, and ectopic germinal centre formation. Novel clinical trials are also ongoing exploring various targeted approaches (that is, IgG recycling inhibition, nuclease therapy and CAR-T cell therapy) for Sjögren syndrome.
Collapse
Affiliation(s)
- Chiara Baldini
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Giovanni Fulvio
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gaetano La Rocca
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Ferro
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Chen Y, Luo X, Deng C, Zhao L, Gao H, Zhou J, Peng L, Yang H, Li M, Zhang W, Zhao Y, Fei Y. Immunometabolic alteration of CD4 + T cells in the pathogenesis of primary Sjögren's syndrome. Clin Exp Med 2024; 24:163. [PMID: 39039306 PMCID: PMC11263433 DOI: 10.1007/s10238-024-01429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
Primary Sjögren's syndrome (pSS) is a prevalent autoimmune disorder wherein CD4+ T cells play a pivotal role in its pathogenesis. However, the underlying mechanisms driving the hyperactivity of CD4+ T cells in pSS remain poorly understood. This study aimed to investigate the potential role of immunometabolic alterations in driving the hyperactivity of CD4+ T cells in pSS. We employed Seahorse XF assay to evaluate the metabolic phenotype of CD4+ T cells, conducted flow cytometry to assess the effector function and differentiation of CD4+ T cells and measured the level of intracellular reactive oxygen species (ROS). Additionally, transcriptome sequencing, PCR, and Western blotting were utilized to examine the expression of glycolytic genes. Our investigation revealed that activated CD4+ T cells from pSS patients exhibited elevated aerobic glycolysis, rather than oxidative phosphorylation, resulting in excessive production of IFN-γ and IL-17A. Inhibition of glycolysis by 2-Deoxy-D-glucose reduced the expression of IFN-γ and IL-17A in activated CD4+ T cells and mitigated the differentiation of Th1 and Th17 cells. Furthermore, the expression of glycolytic genes, including CD3E, CD28, PIK3CA, AKT1, mTOR, MYC, LDHA, PFKL, PFKFB3, and PFKFB4, was upregulated in activated CD4+ T cells from pSS patients. Specifically, the expression and activity of LDHA were enhanced, contributing to an increased level of intracellular ROS. Targeting LDHA with FX-11 or inhibiting ROS with N-acetyl-cysteine had a similar effect on reversing the dysfunction of activated CD4+ T cells from pSS patients. Our study unveils heightened aerobic glycolysis in activated CD4+ T cells from pSS patients, and inhibition of glycolysis or its metabolite normalizes the dysfunction of activated CD4+ T cells. These findings suggest that aerobic glycolysis may be a promising therapeutic target for the treatment of pSS.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
- Department of Rheumatology and Clinical Immunology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xuan Luo
- Department of Rheumatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chuiwen Deng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Hui Gao
- Department of Rheumatology and Immunology, Peking University International Hospital, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Linyi Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Yan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Yunyun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, Beijing, 100730, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
- Department of Health Medicine, Peking Union Medical College Hospital (Dongdan Campus), Chinese Academy of Medical Science, No. 1 Shuaifuyuan Wangfujing, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
5
|
Qi W, Tian J, Wang G, Yan Y, Wang T, Wei Y, Wang Z, Zhang G, Zhang Y, Wang J. Advances in cellular and molecular pathways of salivary gland damage in Sjögren's syndrome. Front Immunol 2024; 15:1405126. [PMID: 39050857 PMCID: PMC11266040 DOI: 10.3389/fimmu.2024.1405126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 07/27/2024] Open
Abstract
Sjögren's Syndrome (SS) is an autoimmune disorder characterized by dysfunction of exocrine glands. Primarily affected are the salivary glands, which exhibit the most frequent pathological changes. The pathogenesis involves susceptibility genes, non-genetic factors such as infections, immune cells-including T and B cells, macrophage, dendritic cells, and salivary gland epithelial cells. Inflammatory mediators such as autoantibodies, cytokines, and chemokines also play a critical role. Key signaling pathways activated include IFN, TLR, BAFF/BAFF-R, PI3K/Akt/mTOR, among others. Comprehensive understanding of these mechanisms is crucial for developing targeted therapeutic interventions. Thus, this study explores the cellular and molecular mechanisms underlying SS-related salivary gland damage, aiming to propose novel targeted therapeutic approaches.
Collapse
Affiliation(s)
- Wenxia Qi
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Jiexiang Tian
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Gang Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yanfeng Yan
- Fourth Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Respiratory and Critical Care Medicine, Lanzhou, China
| | - Tao Wang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Yong Wei
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Zhandong Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Guohua Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| | - Yuanyuan Zhang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Department of Rheumatology and Orthopedics, Lanzhou, China
| | - Jia Wang
- Gansu University of Traditional Chinese Medicine, College of Integrative Medicine, Lanzhou, China
| |
Collapse
|
6
|
Zhu W, Wang Y, Guan Y, Lu Y, Li Y, Sun L, Wang Y. Rapamycin can alleviate the submandibular gland pathology of Sjögren's syndrome by limiting the activation of cGAS-STING signaling pathway. Inflammopharmacology 2024; 32:1113-1131. [PMID: 38114798 DOI: 10.1007/s10787-023-01393-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Sjögren's Syndrome (SS) is also known as autoimmune exocrine gland disease. Previous studies have confirmed that adaptive immunity plays an important role in the development of this disease. But less is known about the role of the innate immune system. METHODS To identify the core pathways, and local infiltrated immune cells in the local immune microenvironment of SS. We verified the activation of these core genes and core signaling pathways in SS model mice by in vivo experiment and transcriptome sequencing. RESULTS Finally, we identified 6 core genes EPSTI1, IFI44L, MX1, CXCL10, IFIT3, and IFI44. All the 6 genes had good diagnostic value. Based on multi-omics sequencing results and experimental studies, we found that cGAS-STING signaling pathway is most relevant to the pathogenesis of SS. By in vivo experiments, we verified that autophagy is the key brake to limit the activation of cGAS-STING signaling pathway. CONCLUSIONS Maladaptive activation of autophagy and cGAS-STING signaling pathway are central contributors to the SG pathogenesis of pSS patient. Regulating autophagy by rapamycin may be a possible treatment for Sjögren's syndrome in the future.
Collapse
Affiliation(s)
- Wen Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China
| | - Yabei Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China
| | - Yin Guan
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China
| | - Yun Lu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China
| | - Yehui Li
- Gansu Provincial Hospital of Chinese Medicine, Lanzhou, 730000, People's Republic of China
| | - Lixia Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China.
| | - Yue Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210032, People's Republic of China.
| |
Collapse
|
7
|
Wang Y, Riaz F, Wang W, Pu J, Liang Y, Wu Z, Pan S, Song J, Yang L, Zhang Y, Wu H, Han F, Tang J, Wang X. Functional significance of DNA methylation: epigenetic insights into Sjögren's syndrome. Front Immunol 2024; 15:1289492. [PMID: 38510251 PMCID: PMC10950951 DOI: 10.3389/fimmu.2024.1289492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
Sjögren's syndrome (SjS) is a systemic, highly diverse, and chronic autoimmune disease with a significant global prevalence. It is a complex condition that requires careful management and monitoring. Recent research indicates that epigenetic mechanisms contribute to the pathophysiology of SjS by modulating gene expression and genome stability. DNA methylation, a form of epigenetic modification, is the fundamental mechanism that modifies the expression of various genes by modifying the transcriptional availability of regulatory regions within the genome. In general, adding a methyl group to DNA is linked with the inhibition of genes because it changes the chromatin structure. DNA methylation changes the fate of multiple immune cells, such as it leads to the transition of naïve lymphocytes to effector lymphocytes. A lack of central epigenetic enzymes frequently results in abnormal immune activation. Alterations in epigenetic modifications within immune cells or salivary gland epithelial cells are frequently detected during the pathogenesis of SjS, representing a robust association with autoimmune responses. The analysis of genome methylation is a beneficial tool for establishing connections between epigenetic changes within different cell types and their association with SjS. In various studies related to SjS, most differentially methylated regions are in the human leukocyte antigen (HLA) locus. Notably, the demethylation of various sites in the genome is often observed in SjS patients. The most strongly linked differentially methylated regions in SjS patients are found within genes regulated by type I interferon. This demethylation process is partly related to B-cell infiltration and disease progression. In addition, DNA demethylation of the runt-related transcription factor (RUNX1) gene, lymphotoxin-α (LTA), and myxovirus resistance protein A (MxA) is associated with SjS. It may assist the early diagnosis of SjS by serving as a potential biomarker. Therefore, this review offers a detailed insight into the function of DNA methylation in SjS and helps researchers to identify potential biomarkers in diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Farooq Riaz
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Wei Wang
- Department of Radiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengnan Pan
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Youwei Zhang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihong Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
De Francesco MA. Herpesviridae, Neurodegenerative Disorders and Autoimmune Diseases: What Is the Relationship between Them? Viruses 2024; 16:133. [PMID: 38257833 PMCID: PMC10818483 DOI: 10.3390/v16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease represent the most common forms of cognitive impairment. Multiple sclerosis is a chronic inflammatory disease of the central nervous system responsible for severe disability. An aberrant immune response is the cause of myelin destruction that covers axons in the brain, spinal cord, and optic nerves. Systemic lupus erythematosus is an autoimmune disease characterized by alteration of B cell activation, while Sjögren's syndrome is a heterogeneous autoimmune disease characterized by altered immune responses. The etiology of all these diseases is very complex, including an interrelationship between genetic factors, principally immune associated genes, and environmental factors such as infectious agents. However, neurodegenerative and autoimmune diseases share proinflammatory signatures and a perturbation of adaptive immunity that might be influenced by herpesviruses. Therefore, they might play a critical role in the disease pathogenesis. The aim of this review was to summarize the principal findings that link herpesviruses to both neurodegenerative and autoimmune diseases; moreover, briefly underlining the potential therapeutic approach of virus vaccination and antivirals.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
9
|
Akgul A, Freguia CF, Maddaloni M, Hoffman C, Voigt A, Nguyen CQ, Fanger NA, Fanger GR, Pascual DW. Treatment with a Lactococcus lactis that chromosomally express E. coli cfaI mitigates salivary flow loss in a Sjögren's syndrome-like disease. Sci Rep 2023; 13:19489. [PMID: 37945636 PMCID: PMC10636062 DOI: 10.1038/s41598-023-46557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
Sjögren's Syndrome (SjS) results in loss of salivary and lacrimal gland excretion due to an autoimmune attack on these secretory glands. Conventional SjS treatments address the symptoms, but not the cause of disease. Recognizing this deficit of treatments to reverse SjS disease, studies were pursued using the fimbriae from enterotoxigenic E. coli, colonization factor antigen I (CFA/I), which has anti-inflammatory properties. To determine if CFA/I fimbriae could attenuate SjS-like disease in C57BL/6.NOD-Aec1Aec2 (SjS) females, the Lactococcus lactis (LL) 301 strain was developed to chromosomally express the cfaI operon. Western blot analysis confirmed CFA/I protein expression, and this was tested in SjS females at different stages of disease. Repeated dosing with LL 301 proved effective in mitigating salivary flow loss and in reducing anti-nuclear antibodies (ANA) and inflammation in the submandibular glands (SMGs) in SjS females and in restoring salivary flow in diseased mice. LL 301 treatment reduced proinflammatory cytokine production with concomitant increases in TGF-β+ CD25+ CD4+ T cells. Moreover, LL 301 treatment reduced draining lymph and SMG follicular T helper (Tfh) cell levels and proinflammatory cytokines, IFN-γ, IL-6, IL-17, and IL-21. Such evidence points to the therapeutic capacity of CFA/I protein to suppress SjS disease and to have restorative properties in combating autoimmune disease.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | - Massimo Maddaloni
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Carol Hoffman
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | - Cuong Q Nguyen
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA
| | | | | | - David W Pascual
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Li F, Lu J, Shi X, Li D, Zhou T, Jiang T, Wang S. Effect of adipose tissue-derived stem cells therapy on clinical response in patients with primary Sjogren's syndrome. Sci Rep 2023; 13:13521. [PMID: 37598237 PMCID: PMC10439962 DOI: 10.1038/s41598-023-40802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
The purpose of this trial was to clinically assess the effect and safety of Adipose Tissue-derived Stem Cells (ADSCs) treatment on primary Sjogren's Syndrome (pSS). In this 6-month randomized, triple-blind, placebo-controlled clinical trial, pSS patients were randomly assigned to two groups. After demographic characteristics and clinical examination were achieved, local injection of ADSCs into bilateral glands was performed with patients in ADSCs group (n = 35) and placebo solution was used for another group (n = 39) at three time points. Patients were followed up at 1-, 3- and 6-month. At each visit, studies of clinical and laboratory outcomes, as well as subjective symptoms, were conducted. A total of 74 subjects who met the including criteria were allocated in two groups and eventually 64 subjects (86.5%) completed the treatments and the follow-up assessments. Secretion of salivary and lachrymal glands were significantly improved in 3-month (P < 0.05). A great improvement of European League Against Rheumatism Sjögren's Syndrome Disease Activity Index (ESSDAI) was found after ADSCs treatment with intergroup comparison from baseline to follow-up (P < 0.05). There is also a significant difference of European Alliance of Associations for Rheumatology SS Patient Reported Index (ESSPRI) between the two groups in the follow-up (P < 0.05). A significant abatement of IgG, IgM, C3, C4 and ESR between two groups was observed in part of follow-up time points (P < 0.05). The ADSCs therapy can provide relief of oral and eye's dryness in our trial in a short time and has potential improvement of subjective and systemic syndromes of pSS.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Ophthalmology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Junhui Lu
- Department of Rheumatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Xinlian Shi
- Department of Stomatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Dongya Li
- Department of Stomatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Tingting Zhou
- Department of Stomatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Tianqi Jiang
- Department of Stomatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China
| | - Shengming Wang
- Department of Stomatology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an City, China.
| |
Collapse
|
11
|
Luo D, Li L, Yang Y, Ye Y, Hu J, Zong Y, Zhao J, Gao Y, Xu H, Li N, Xie Y, Jiang L. Unraveling the transcriptome-based network of tfh cells in primary sjogren syndrome: insights from a systems biology approach. Front Immunol 2023; 14:1216379. [PMID: 37638029 PMCID: PMC10448518 DOI: 10.3389/fimmu.2023.1216379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background Primary Sjogren Syndrome (pSS) is an autoimmune disease characterized by immune cell infiltration. While the presence of follicular T helper (Tfh) cells in the glandular microenvironment has been observed, their biological functions and clinical significance remain poorly understood. Methods We enrolled a total of 106 patients with pSS and 46 patients without pSS for this study. Clinical data and labial salivary gland (LSG) biopsies were collected from all participants. Histological staining was performed to assess the distribution of Tfh cells and B cells. Transcriptome analysis using RNA-sequencing (RNA-seq) was conducted on 56 patients with pSS and 26 patients without pSS to uncover the underlying molecular mechanisms of Tfh cells. To categorize patients, we employed the single-sample gene set enrichment analysis (ssGSEA) algorithm, dividing them into low- and high-Tfh groups. We then utilized gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and deconvolution tools to explore functional and immune infiltration differences between the low- and high-Tfh groups. Results Patients with pSS had a higher positive rate of the antinuclear antibody (ANA), anti-Ro52, anti-SSA, anti-SSB and hypergammaglobulinaemia and higher levels of serum IgG compared to the non-pSS. Histopathologic analyses revealed the presence of Tfh cells (CD4+CXCR5+ICOS+) in germinal centers (GC) within the labial glands of pSS patients. GSEA, WGCNA, and correlation analysis indicated that the high-Tfh group was associated with an immune response related to virus-mediated IFN response and metabolic processes, primarily characterized by hypoxia, elevated glycolysis, and oxidative phosphorylation levels. In pSS, most immune cell types exhibited significantly higher infiltration levels in the high-Tfh group compared to the low-Tfh group. Additionally, patients in the Tfh-high group demonstrated a higher positive rate of the ANA, rheumatoid factor (RF), and hypergammaglobulinaemia, as well as higher serum IgG levels. Conclusion Our study suggests that Tfh cells may play a crucial role in the pathogenesis of pSS and could serve as potential therapeutic targets in pSS patients.
Collapse
Affiliation(s)
- Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Yang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yulin Ye
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Zong
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawen Zhao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Shanghai, China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Mihai A, Caruntu C, Jurcut C, Blajut FC, Casian M, Opris-Belinski D, Ionescu R, Caruntu A. The Spectrum of Extraglandular Manifestations in Primary Sjögren's Syndrome. J Pers Med 2023; 13:961. [PMID: 37373950 DOI: 10.3390/jpm13060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Extraglandular manifestations (EGMs) in primary Sjogren's syndrome (pSS) represent the clinical expression of the systemic involvement in this disease. EGMs are characterized by a wide heterogeneity; virtually any organ or system can be affected, with various degrees of dysfunction. The existing gaps of knowledge in this complex domain of extraglandular extension in pSS need to be overcome in order to increase the diagnostic accuracy of EGMs in pSS. The timely identification of EGMs, as early as from subclinical stages, can be facilitated using highly specific biomarkers, thus preventing decompensated disease and severe complications. To date, there is no general consensus on the diagnostic criteria for the wide range of extraglandular involvement in pSS, which associates important underdiagnosing of EGMs, subsequent undertreatment and progression to severe organ dysfunction in these patients. This review article presents the most recent basic and clinical science research conducted to investigate pathogenic mechanisms leading to EGMs in pSS patients. In addition, it presents the current diagnostic and treatment recommendations and the trends for future therapeutic strategies based on personalized treatment, as well as the latest research in the field of diagnostic and prognostic biomarkers for extraglandular involvement in pSS.
Collapse
Affiliation(s)
- Ancuta Mihai
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Rheumatology, Faculty of General Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Dermatology, Prof. N.C. Paulescu National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Ciprian Jurcut
- Department of Internal Medicine, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Florin Cristian Blajut
- Department of General Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Medical-Surgical Specialties, "Titu Maiorescu" University of Bucharest, 040441 Bucharest, Romania
| | - Mihnea Casian
- Emergency Institute for Cardiovascular Diseases Prof. Dr. C.C. Iliescu, 022328 Bucharest, Romania
- Department of Cardiology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Daniela Opris-Belinski
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
- Internal Medicine and Rheumatology Department, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ruxandra Ionescu
- Internal Medicine and Rheumatology Department, Sfanta Maria Clinical Hospital, 011172 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, Carol Davila Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| |
Collapse
|
13
|
Zhou J, Onodera S, Yu Q. Inhibition of NLRP3 inflammasome activity by MCC950 leads to exacerbation of Sjӧgren's syndrome pathologies in non-obese diabetic mice. Immunology 2023; 168:697-708. [PMID: 36353754 PMCID: PMC10038882 DOI: 10.1111/imm.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Sjӧgren's syndrome (SS) is an autoimmune inflammatory disease characterized by chronic inflammation and dysfunction of exocrine glands and causes dry mouth, dry eyes and various systemic health problems. The objective of this study is to define the in vivo actions of the endogenous NLRP3 inflammasome, a key initiator and mediator of various immune and inflammatory conditions, in newly established SS disease. MCC950, a highly specific small-molecule inhibitor of NLRP3 inflammasome formation and activation, was intraperitoneally administered to the female non-obese diabetic (NOD) mice aged 11 weeks, which have newly established SS-like hyposalivation and pathologies. The injection was conducted three times weekly for three consecutive weeks and mice were analysed for characteristic SS pathologies at the end of the treatments. MCC950 treatment resulted in a marked reduction in salivary secretion and an exacerbation of leukocyte infiltration of submandibular glands. The disease-worsening effect of MCC950 treatment was accompanied by increased T and B cell numbers, enhanced T helper 1 response and reduced aquaporin 5 expression in submandibular glands. Hence, ablation of endogenous NLRP3 inflammasome activity by MCC950 with established autoimmune exocrinopathy exacerbates salivary gland dysfunction and inflammation, indicating a disease-alleviating and inflammation-dampening action of the endogenous NLRP3 inflammasome activity during established SS disease in the non-obese diabetic mouse model.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
- These two authors contributed equally to this work
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kanda Misaki-chou, Chiyoda-ku, Tokyo 101-0061, Japan
- These two authors contributed equally to this work
| | - Qing Yu
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, The Forsyth Institute, 245 First Street, Cambridge, MA 02142, USA
| |
Collapse
|
14
|
Wang X, Pang K, Wang J, Zhang B, Liu Z, Lu S, Xu X, Zhu L, Zhou Z, Niu M, Gao J, Li J, Zhao F, Wu J. Microbiota dysbiosis in primary Sjögren's syndrome and the ameliorative effect of hydroxychloroquine. Cell Rep 2022; 40:111352. [PMID: 36103827 DOI: 10.1016/j.celrep.2022.111352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/17/2022] [Accepted: 08/23/2022] [Indexed: 11/03/2022] Open
Abstract
The human microbiome plays an important role in autoimmune diseases. However, there is limited knowledge regarding the microbiota in individuals with primary Sjögren's syndrome (pSS). Here, we perform 16S ribosomal RNA gene sequencing of fecal, oral, and vaginal samples from a cohort of 133 individuals with pSS, 56 with non-pSS, and 40 healthy control (HC) individuals. Dysbiosis in the gut, oral, and vaginal microbiome is evident in patients with pSS, and oral samples demonstrate the greatest extent of microbial variation. Multiple key indicator bacteria and clinical characteristics are identified across different body sites, implying that microbial dysbiosis has important roles in the pathogenesis of pSS. Furthermore, we observe pSS-like dysbiosis in individuals with pre-clinical pSS or non-pSS-related disease, revealing that microbial shifts could appear prior to pSS. After hydroxychloroquine (HCQ) treatment, microbial dysbiosis in individuals with pSS is partially resolved, although the microbiota composition remain disordered. These results contribute to the overall understanding of the relationship between the microbiome and pSS.
Collapse
Affiliation(s)
- Xiaobing Wang
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kun Pang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100091, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Saisai Lu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xin Xu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Lingxiao Zhu
- Rheumatology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zihao Zhou
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Miaomiao Niu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianxia Gao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Jianmin Li
- Pathology Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
15
|
The Role of Decorin in Autoimmune and Inflammatory Diseases. J Immunol Res 2022; 2022:1283383. [PMID: 36033387 PMCID: PMC9402370 DOI: 10.1155/2022/1283383] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Decorin is an extracellular matrix protein that belongs to the family of small leucine-rich proteoglycans. As a matrix protein, the first discovered role of decorin is participating in collagen fibril formation. Many other functions of decorin in various biological processes have been subsequently identified. Decorin is involved in an extensive signaling network and can interact with other extracellular matrix components, growth factors, receptor tyrosine kinases, and various proteases. Decorin has been shown to be involved in wound repair, cell cycle, angiogenesis, tumor metastasis, and autophagy. Recent evidence indicates that it also plays a role in immune regulation and inflammatory diseases. This review summarizes the characteristics of decorin in immune and inflammatory diseases, including inflammatory bowel disease (IBD), Sjögren's syndrome (SS), chronic obstructive pulmonary disease (COPD), IgA nephropathy, rheumatoid arthritis (RA), spondyloarthritis (SpA), osteoarthritis, multiple sclerosis (MS), idiopathic inflammatory myopathies (IIM), and systemic sclerosis (SSc) and discusses the potential role in these disorders.
Collapse
|
16
|
Yang J, Su J, Chai K, Liu H. The role of Th9 CD4 + T cells and IL-9 during primary Sjogren's syndrome. J Clin Lab Anal 2022; 36:e24646. [PMID: 35944186 PMCID: PMC9459269 DOI: 10.1002/jcla.24646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE The objective of this study is to investigate the expression levels of Th9 CD4+ T cells and IL-9 secretion in peripheral blood mononuclear cells of patients with primary Sjogren's syndrome. Further, this study aimed to investigate the role of Th9 cells in the occurrence and development of pSS. METHODS A total of 20 pSS patients and 20 healthy people, matched with age and gender, were selected as the experimental and control group, respectively. Flow cytometry and ELISA were used to detect the expression of Th9 cytokines in peripheral blood mononuclear cells and IL-9 in serum, respectively. These factors were then correlated to other clinical indicators. RESULTS The levels of Th9 CD4+ T cells and IL-9 of pSS patients were significantly higher than those of the control group. Th9 CD4+ T cells and IL-9 levels in peripheral blood of pSS patients were negatively correlated with salivary flow rate, while IL-9 level was positively correlated with globulin. The transcription levels of IL-9 and immune-related genes including IL-4, IL-7, IL-17, SMAD3, STAT5 and JAK3 were dramatically increased in serum of pSS patients. CONCLUSION The expression levels of Th9 in peripheral blood and serum IL-9 of patients with pSS were significantly increased, which were correlated with clinical immunological indexes. Together, these data suggest that Th9 cells and IL-9 may be involved in the pathogenesis of pSS.
Collapse
Affiliation(s)
- Jie Yang
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| | - Juan Su
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| | - Kexia Chai
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| | - Huihui Liu
- Department of Rheumatology, Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
17
|
Dong Y, Ming B, Gao R, Mo Q, Wu X, Zheng F, Zhong J, Dong L. The IL-33/ST2 Axis Promotes Primary Sjögren's Syndrome by Enhancing Salivary Epithelial Cell Activation and Type 1 Immune Response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2652-2662. [PMID: 35649629 DOI: 10.4049/jimmunol.2101070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms of primary Sjögren's syndrome (pSS) are poorly understood. In this study, we explored the role of the IL-33/ST2 axis in the development of pSS. In the mouse model of experimental Sjögren's syndrome, we found that the saliva flow rate at weeks 4 and 30 was preserved in IL-33-/- and ST2-/- mice, compared with that of wild-type mice. At week 30 of experimental Sjögren's syndrome induction, the histological score, anti-nuclear Ab levels, and numbers of Th1 and B cells in draining lymph nodes of the salivary gland were lower in the IL-33-/- and ST2-/- mice, whereas Th17 cells and regulatory T cells were not changed. Primary salivary gland epithelial cells expressed the IL-33 receptor ST2. After stimulation with rIL-33, salivary gland epithelial cells increased the transcriptional levels of CD86 and CCL2, accompanied by the activation of the NF-κB inflammatory pathway. There was a synergistic effect between rIL-33 and rIL-12 in augmenting the production of IFN-γ in CD4+ T cells. In the pSS patients, the expression of IL-33 was elevated in the labial salivary gland, with the number of IL-33+ cells positively correlated with the score of the EULAR (European Alliance of Associations for Rheumatology) Sjögren's syndrome disease activity index (ESSDAI). ST2 was highly expressed in the cytoplasm of ductal epithelial cells, with low levels of expression in lymphatic infiltration sites. Our data suggest that the IL-33/ST2 axis may promote the development of pSS by enhancing salivary epithelial cell activation and the type 1 immune response.
Collapse
Affiliation(s)
- Yuanji Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfen Gao
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Mo
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| | - Lingli Dong
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
| |
Collapse
|
18
|
Ma KSK, Wang LT, Chong W, Lin CL, Li H, Chen A, Wei JCC. Exposure to environmental air pollutants as a risk factor for primary Sjögren's syndrome. Front Immunol 2022; 13:1044462. [PMID: 36865525 PMCID: PMC9972220 DOI: 10.3389/fimmu.2022.1044462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/14/2022] [Indexed: 02/16/2023] Open
Abstract
Background Environmental etiology of primary Sjögren's syndrome (pSS), an autoimmune disease, has been proposed. This study determined whether the exposure to air pollutants was an independent risk factor for pSS. Methods Participants were enrolled from a population-based cohort registry. Daily average concentrations of air pollutants from 2000 to 2011 were divided into 4 quartiles. Adjusted hazard ratios (aHRs) of pSS for exposure to air pollutants were estimated in a Cox proportional regression model adjusting for age, sex, socioeconomic status, and residential areas. A subgroup analysis stratified by sex was conducted to validate the findings. Windows of susceptibility indicated years of exposure which contributed the most to the observed association. Ingenuity Pathway Analysis was used to identify underlying pathways of air pollutant-associated pSS pathogenesis, using Z-score visualization. Results Two hundred patients among 177,307 participants developed pSS, with a mean age of 53.1 years at acumulative incidence of 0.11% from 2000 to 2011. Exposure to carbon monoxide (CO), nitric oxide (NO), and methane (CH4) was associated with a higher risk of pSS. Compared to those exposed to the lowest concentration level, the aHRs for pSS were 2.04 (95%CI=1.29-3.25), 1.86 (95%CI=1.22-2.85), and 2.21 (95%CI=1.47-3.31) for those exposed to high levels of CO, NO, and CH4, respectively. The findings persisted in the subgroup analysis, in which females exposed to high levels of CO, NO, and CH4 and males exposed to high levels of CO were associated with significantly great risk of pSS. The cumulative effect of air pollution on pSS was time-dependent. The underlying cellular mechanisms involved chronic inflammatory pathways including the interleukin-6 signaling pathway. Conclusion Exposure to CO, NO, and CH4 was associated with a high risk of pSS, which was biologically plausible.
Collapse
Affiliation(s)
- Kevin Sheng-Kai Ma
- Department of Pediatrics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States.,Center for Global Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Orthodontics and Dentofacial Orthopedics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Li-Tzu Wang
- Department of Obstetrics & Gynecology, National Taiwan University Hospital & College of Medicine, Taipei, Taiwan
| | - Weikun Chong
- Department of Pediatrics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng-Li Lin
- Clinical Trial Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hailang Li
- Department of Pediatrics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, United States.,Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
19
|
Barcelos F, Hipólito‐Fernandes D, Martins C, Ângelo‐Dias M, Cardigos J, Monteiro R, Alves N, Vaz‐Patto J, Cunha‐Branco J, Borrego L. Corneal sub-basal nerve plexus assessment and its association with phenotypic features and lymphocyte subsets in Sjögren's Syndrome. Acta Ophthalmol 2021; 99:e1315-e1325. [PMID: 33683020 DOI: 10.1111/aos.14811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/15/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To assess and compare corneal sub-basal nerve plexus morphology with circulating lymphocyte subsets, immunologic status and disease activity in Sjögren syndrome (SjS) patients. METHODS Fifty-five SjS patients, 63 Sicca patients (not fulfilling SjS criteria), 18 rheumatoid arthritis (RA) patients and 20 healthy controls (HC) were included. Systemic disease activity in SjS was assessed with the ESSDAI score. Lymphocyte subpopulations were studied with flow cytometry. Corneal confocal microscopy and ImageJ software were used to characterize corneal sub-basal nerve plexus in terms of nerve density (CNFD), length (CNFL) and tortuosity (CNFT). Conventional dry eye tests were also performed. RESULTS CNFL and CNFD were lower in SjS, Sicca and RA groups, compared to HC (p < 0.001 for both SjS and Sicca); CNFL p = 0.005, CNFD p = 0.018 in RA). CNFT was higher in SjS, followed by Sicca, RA and HC. A negative correlation was found between ESSDAI score and CNFL (r=-0.735, p = 0.012). CNFL correlated negatively with IL21+ CD8+ T cells (r=-0.279, p = 0.039) and a positively with total memory (r = 0.299, p = 0.027), unswitched memory (r = 0.281, p = 0.038) and CD24Hi CD27+ (r = 0.278, p = 0.040) B cells. CNFD showed a tendency to significance in its negative correlation with ESSDAI (r=-0.592, p = 0.071) and in its positive correlation with switched memory B cells (r = 0.644, p = 0.068). CONCLUSIONS This is the first study aiming to correlate ocular findings with lymphocyte subsets in SjS. The associations founded between CNFL and CNFD and disease activity, IL21+ follicular T cells and some B-cell subsets suggest that corneal nerve damage may parallel systemic disease activity and inflammatory cells' dynamics.
Collapse
Affiliation(s)
- Filipe Barcelos
- Chronic Diseases Research Center NOVA Medical School FCM, Universidade Nova de Lisboa Lisbon Portugal
- Department of Rheumatology Instituto Português de Reumatologia Lisbon Portugal
- Department of Rheumatology Hospital Cuf Descobertas Lisbon Portugal
| | - Diogo Hipólito‐Fernandes
- Department of Ophthalmology Centro Hospitalar de Lisboa Central, Hospital de Santo António dos Capuchos Lisbon Portugal
| | - Catarina Martins
- Chronic Diseases Research Center NOVA Medical School FCM, Universidade Nova de Lisboa Lisbon Portugal
| | - Miguel Ângelo‐Dias
- Chronic Diseases Research Center NOVA Medical School FCM, Universidade Nova de Lisboa Lisbon Portugal
| | - Joana Cardigos
- Department of Ophthalmology Centro Hospitalar de Lisboa Central, Hospital de Santo António dos Capuchos Lisbon Portugal
| | | | - Nuno Alves
- Department of Ophthalmology Centro Hospitalar de Lisboa Central, Hospital de Santo António dos Capuchos Lisbon Portugal
- Department of Ophthalmology Hospital Cuf Descobertas Lisbon Portugal
| | - José Vaz‐Patto
- Department of Rheumatology Instituto Português de Reumatologia Lisbon Portugal
| | - Jaime Cunha‐Branco
- Chronic Diseases Research Center NOVA Medical School FCM, Universidade Nova de Lisboa Lisbon Portugal
- Department of Rheumatology Hospital Cuf Descobertas Lisbon Portugal
- NOVA Medical School FCM Universidade Nova de Lisboa Lisbon Portugal
- Department of Rheumatology Centro Hospitalar de Lisboa Ocidental, Hospital de Egas Moniz Lisbon Portugal
| | - Luís‐Miguel Borrego
- Chronic Diseases Research Center NOVA Medical School FCM, Universidade Nova de Lisboa Lisbon Portugal
- Department of Immunoalergy Hospital da Luz Lisbon Portugal
| |
Collapse
|
20
|
Qi X, Wang XQ, Jin L, Gao LX, Guo HF. Uncovering potential single nucleotide polymorphisms, copy number variations and related signaling pathways in primary Sjogren's syndrome. Bioengineered 2021; 12:9313-9331. [PMID: 34723755 PMCID: PMC8809958 DOI: 10.1080/21655979.2021.2000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Primary Sjogren’s syndrome (pSS) is a complex systemic autoimmune disease, which is difficult to accurately diagnose due to symptom diversity in patients, especially at earlier stages. We tried to find potential single nucleotide polymorphisms (SNPs), copy number variations (CNVs) and related signaling pathways. Genomic DNA was extracted from peripheral blood of 12 individuals (7 individuals from 3 pSS pedigrees and 5 sporadic cases) for whole-exome sequencing (WES) analysis. SNPs and CNVs were identified, followed by functional annotation of genes with SNPs and CNVs. Gene expression profile (involving 64 normal controls and 166 cases) was downloaded from the Gene Expression Omnibus database (GEO) dataset for differentially expression analysis. Sanger sequencing and in vitro validation was used to validate the identified SNPs and differentially expressed genes, respectively. A total of 5 SNPs were identified in both pedigrees and sporadic cases, such as FES, PPM1J, and TRAPPC9. A total of 3402 and 19 CNVs were identified in pedigrees and sporadic cases, respectively. Fifty-one differentially expressed genes were associated with immunity, such as BATF3, LAP3, BATF2, PARP9, and IL15RA. AMPK signaling pathway and cell adhesion molecules (CAMs) were the most significantly enriched signaling pathways of identified SNPs. Identified CNVs were associated with systemic lupus erythematosus, mineral absorption, and HTLV-I infection. IL2-STAT5 signaling, interferon-gamma response, and interferon-alpha response were significantly enriched immune related signaling pathways of identified differentially expressed genes. In conclusion, our study found some potential SNPs, CNVs, and related signaling pathways, which could be useful in understanding the pathological mechanism of pSS.
Collapse
Affiliation(s)
- Xuan Qi
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xi-Qin Wang
- Internal Medicine, Yuhua Yunfang Integrated Traditional Chinese and Western Medicine Clinic, Shijiazhuang, Hebei, China
| | - Lu Jin
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Xia Gao
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui-Fang Guo
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
21
|
Luo SD, Chiu TJ, Chen WC, Wang CS. Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses. Int J Mol Sci 2021; 22:ijms22168768. [PMID: 34445474 PMCID: PMC8395901 DOI: 10.3390/ijms22168768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Otolaryngology (also known as ear, nose, and throat (ENT)) diseases can be significantly affected by the level of sex hormones, which indicates that sex differences affect the manifestation, pathophysiology, and outcomes of these diseases. Recently, increasing evidence has suggested that proinflammatory responses in ENT diseases are linked to the level of sex hormones. The sex hormone receptors are present on a wide variety of immune cells; therefore, it is evident that they play crucial roles in regulating the immune system and hence affect the disease progression of ENT diseases. In this review, we focus on how sex hormones, particularly estrogens, regulate ENT diseases, such as chronic rhinosinusitis, vocal fold polyps, thyroid cancer, Sjögren’s syndrome, and head and neck cancers, from the perspectives of inflammatory responses and specialized proresolving mediator-driven resolution. This paper aims to clarify why considering sex differences in the field of basic and medical research on otolaryngology is a key component to successful therapy for both males and females in the future.
Collapse
Affiliation(s)
- Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Tai-Jan Chiu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Wei-Chih Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-227-361-661 (ext. 5166)
| |
Collapse
|
22
|
Kim J, Kim YS, Park SH. Metformin as a Treatment Strategy for Sjögren's Syndrome. Int J Mol Sci 2021; 22:7231. [PMID: 34281285 PMCID: PMC8269365 DOI: 10.3390/ijms22137231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
Sjögren's syndrome (SS), a chronic inflammatory disease involving the salivary and lacrimal glands, presents symptoms of sicca as well as systemic manifestations such as fatigue and musculoskeletal pain. Only a few treatments have been successful in management of SS; thus treatment of the disease is challenging. Metformin is the first-line agent for type 2 diabetes and has anti-inflammatory potential. Its immunomodulatory capacity is exerted via activation of 5' adenosine monophosphate-activated protein kinase (AMPK). Metformin inhibits mitochondrial respiratory chain complex I which leads to change in adenosine mono-phosphate (AMP) to adenosine tri-phosphate (ATP) ratio. This results in AMPK activation and causes inhibition of mammalian target of rapamycin (mTOR). mTOR plays an important role in T cell differentiation and mTOR deficient T cells differentiate into regulatory T cells. In this manner, metformin enhances immunoregulatory response in an individual. mTOR is responsible for B cell proliferation and germinal center (GC) differentiation. Thus, reduction of B cell differentiation into antibody-producing plasma cells occurs via downregulation of mTOR. Due to the lack of suggested treatment for SS, metformin has been considered as a treatment strategy and is expected to ameliorate salivary gland function.
Collapse
Affiliation(s)
- Joa Kim
- Division of Rheumatology, Department of Internal Medicine, Chosun University Hospital, Gwangju 61453, Korea; (J.K.); (Y.-S.K.)
| | - Yun-Sung Kim
- Division of Rheumatology, Department of Internal Medicine, Chosun University Hospital, Gwangju 61453, Korea; (J.K.); (Y.-S.K.)
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
23
|
Chen HH, Chen HM, Lin CH, Tang KT, Chen DY, Wei JCC, Chao WC. Association of the Risk of Primary Sjögren's Syndrome With Fibrocystic Breast Disease: A Nationwide, Population-Based Study. Front Med (Lausanne) 2021; 8:704593. [PMID: 34277672 PMCID: PMC8280500 DOI: 10.3389/fmed.2021.704593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
Objective: Primary Sjögren's syndrome (pSS) is characterized by exocrine glandular inflammation; however, the association between preceding mammary-gland-inflammation-related diseases and newly diagnosed pSS remains unexplored. Methods: We used the 2003–2013 data retrieved from Taiwan's National Health Insurance Research Database (NHIRD) to conduct the present population-based study. We identified newly diagnosed pSS female patients during the 2001–2013 period, as well as age-matched (1:20) and propensity-score-matched (1:2) non-SS individuals (as controls). We explored the associations between pSS and a history of mastitis and fibrocystic breast disease by determining adjusted odds ratios (aORs) with 95% confidence intervals (CIs) using a conditional logistical regression analysis after controlling for potential confounders. Results: We identified 9,665 patients with pSS and 193,300 age-matched non-SS controls, as well as 9,155 SS cases and 18,310 propensity-score-matched non-SS controls. We found that fibrocystic breast disease (aOR, 1.75; 95% CI, 1.63–1.88) were independently associated with incident SS, whereas mastitis and childbirth-associated breast infections were not associated with incident SS. We also found positive associations between SS and previously reported SS-associated diseases, including cardiovascular diseases, thyroid diseases, pancreatitis, bronchiectasis, infectious diseases, osteoporosis, and ankylosing spondylitis. In the propensity-score-matched populations, the associations between pSS and fibrocystic breast disease (aOR, 1.74; 95% CI, 1.58–1.91) remained consistent. Conclusion: The present population-based study revealed a previously unexplored association between pSS and history of fibrocystic breast disease, and the finding highlights the need to survey pSS in patients with mammary-gland-inflammation-associated diseases.
Collapse
Affiliation(s)
- Hsin-Hua Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Science and Rong Hsing Research Centre for Translational Medicine, Chung Hsing University, Taichung, Taiwan.,Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan.,Big Data Center, Chung Hsing University, Taichung, Taiwan
| | - Hsian-Min Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Institute of Biomedical Science and Rong Hsing Research Centre for Translational Medicine, Chung Hsing University, Taichung, Taiwan.,Department of Medical Research, Center for Quantitative Imaging in Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Computer Science and Information Engineering, National United University, Miaoli, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan.,Department of Healthcare Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan.,Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Der-Yuan Chen
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan.,Translational Medicine Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, Taichung, Taiwan
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Institute of Integrative Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Cheng Chao
- Big Data Center, Chung Hsing University, Taichung, Taiwan.,Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Computer Science, Tunghai University, Taichung, Taiwan.,Department of Automatic Control Engineering, College of Information and Electrical Engineering, Feng Chia University, Taichung, Taiwan
| |
Collapse
|
24
|
Vitali C, Minniti A, Pignataro F, Maglione W, Del Papa N. Management of Sjögren's Syndrome: Present Issues and Future Perspectives. Front Med (Lausanne) 2021; 8:676885. [PMID: 34164418 PMCID: PMC8215198 DOI: 10.3389/fmed.2021.676885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
In view of the new possibilities for the treatment of primary Sjögren's syndrome (pSS) given by the availability of new biotechnological agents targeting the various molecular and cellular actors of the pathological process of the disease, classification criteria aimed at selecting patients to be enrolled in therapeutic trials, and validated outcome measures to be used as response criteria to these new therapies, have been developed and validated in the last decades. Unfortunately, the therapeutic trials so far completed with these new treatments have yielded unsatisfactory or only partially positive results. The main issues that have been evoked to justify the poor results of the new therapeutic attempts are: (i) the extreme variability of the disease phenotypes of the patients enrolled in the trials, which are dependent on different underlying patterns of biological mechanisms, (ii) the fact that the disease has a long indolent course, and that most of the enrolled patients might already have irreversible clinical features. The advances in the research of new disease biomarkers that can better distinguish the different clinical phenotypes of patients and diagnose the disease in an earlier phase are also discussed.
Collapse
Affiliation(s)
- Claudio Vitali
- Rheumatology Outpatient Clinics, "Mater Domini" Humanitas Hospital, Castellanza, Italy
| | | | | | - Wanda Maglione
- Department of Rheumatology, ASST G. Pini-CTO, Milan, Italy
| | | |
Collapse
|
25
|
Roszkowska AM, Oliverio GW, Aragona E, Inferrera L, Severo AA, Alessandrello F, Spinella R, Postorino EI, Aragona P. Ophthalmologic Manifestations of Primary Sjögren's Syndrome. Genes (Basel) 2021; 12:genes12030365. [PMID: 33806489 PMCID: PMC7998625 DOI: 10.3390/genes12030365] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Sjögren’s syndrome (SS) is a chronic, progressive, inflammatory, autoimmune disease, characterized by the lymphocyte infiltration of exocrine glands, especially the lacrimal and salivary, with their consequent destruction. The onset of primary SS (pSS) may remain misunderstood for several years. It usually presents with different types of severity, e.g., dry eye and dry mouth symptoms, due to early involvement of the lacrimal and salivary glands, which may be associated with parotid enlargement and dry eye; keratoconjunctivitis sicca (KCS) is its most common ocular manifestation. It is still doubtful if the extent ocular surface manifestations are secondary to lacrimal or meibomian gland involvement or to the targeting of corneal and conjunctival autoantigens. SS is the most representative cause of aqueous deficient dry eye, and the primary role of the inflammatory process was evidenced. Recent scientific progress in understanding the numerous factors involved in the pathogenesis of pSS was registered, but the exact mechanisms involved still need to be clarified. The unquestionable role of both the innate and adaptive immune system, participating actively in the induction and evolution of the disease, was recognized. The ocular surface inflammation is a central mechanism in pSS leading to the decrease of lacrimal secretion and keratoconjunctival alterations. However, there are controversies about whether the ocular surface involvement is a direct autoimmune target or secondary to the inflammatory process in the lacrimal gland. In this review, we aimed to present actual knowledge relative to the pathogenesis of the pSS, considering the role of innate immunity, adaptive immunity, and genetics.
Collapse
Affiliation(s)
- Anna Maria Roszkowska
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
- Correspondence:
| | - Giovanni William Oliverio
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Emanuela Aragona
- IRCCS San Raffaele Scientific Institute, Ophthalmology Clinic, Vita Salute San Raffaele University, 20132 Milan, Italy;
| | - Leandro Inferrera
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Alice Antonella Severo
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Federica Alessandrello
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Rosaria Spinella
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Elisa Imelde Postorino
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| | - Pasquale Aragona
- Ophthalmology Clinic, Department of Biomedical Sciences, University Hospital of Messina, 98124 Messina, Italy; (G.W.O.); (L.I.); (A.A.S.); (F.A.); (R.S.); (E.I.P.); (P.A.)
| |
Collapse
|
26
|
Association between EBV serological patterns and lymphocytic profile of SjS patients support a virally triggered autoimmune epithelitis. Sci Rep 2021; 11:4082. [PMID: 33603079 PMCID: PMC7893064 DOI: 10.1038/s41598-021-83550-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/01/2021] [Indexed: 01/31/2023] Open
Abstract
Sjögren's syndrome (SjS) is characterized by lymphocytic infiltration of exocrine glands, i.e. autoimmune epithelitis. Lymphocytes are central in SjS pathogenesis, with B-cell hyperactivity mediated by T-cells. B-cells are main targets of Epstein-Barr virus (EBV) infection, a frequently-suggested trigger for SjS. We aimed to evaluate how the EBV infection modulates B and T-cell subsets in SjS, including as controls Rheumatoid arthritis patients (RA) and healthy participants (HC). SjS patients presented decreased CXCR5+T-cells, although IL21-secreting Tfh and Tfc cells were increased. Tfc were positively correlated with ESSDAI scores, suggesting their relevant role in SjS pathogenesis. As previously described, SjS patients showed expanded circulating naïve B-cell compartments. SjS patients had a higher incidence of EBV-EA-D-IgG+ antibodies, characteristic of recent EBV-infection/reactivation. SjS patients with past infection or recent infection/reactivation showed increased CXCR3+Th1 and CXCR3+Tfh1 cells compared to those without active infection. SjS patients with a recent infection/reactivation profile presented increased transitional B-cells compared to patients with past infection and increased plasmablasts, compared to those without infection. Our results suggest EBV-infection contributes to B and T-cell differentiation towards the effector phenotypes typical of SjS. Local lymphocyte activation at ectopic germinal centres, mediated by Tfh and Tfc, can be EBV-driven, perpetuating autoimmune epithelitis, which leads to gland destruction in SjS.
Collapse
|
27
|
Hong X, Meng S, Tang D, Wang T, Ding L, Yu H, Li H, Liu D, Dai Y, Yang M. Single-Cell RNA Sequencing Reveals the Expansion of Cytotoxic CD4 + T Lymphocytes and a Landscape of Immune Cells in Primary Sjögren's Syndrome. Front Immunol 2021; 11:594658. [PMID: 33603736 PMCID: PMC7884617 DOI: 10.3389/fimmu.2020.594658] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Objective Primary Sjögren’s syndrome (pSS) is a systemic autoimmune disease, and its pathogenetic mechanism is far from being understood. In this study, we aimed to explore the cellular and molecular mechanisms that lead to pathogenesis of this disease. Methods We applied single-cell RNA sequencing (scRNA-seq) to 57,288 peripheral blood mononuclear cells (PBMCs) from five patients with pSS and five healthy controls. The immune cell subsets and susceptibility genes involved in the pathogenesis of pSS were analyzed. Flow cytometry was preformed to verify the result of scRNA-seq. Results We identified two subpopulations significantly expand in pSS patients. The one highly expressing cytotoxicity genes is named as CD4+ CTLs cytotoxic T lymphocyte, and another highly expressing T cell receptor (TCR) variable gene is named as CD4+ TRAV13-2+ T cell. Flow cytometry results showed the percentages of CD4+ CTLs, which were profiled with CD4+ and GZMB+ staining; the total T cells of 10 patients with pSS were significantly higher than those of 10 healthy controls (P= 0.008). The expression level of IL-1β in macrophages, TCL1A in B cells, as well as interferon (IFN) response genes in most cell subsets was upregulated in the patients with pSS. Susceptibility genes including HLA-DRB5, CTLA4, and AQP3 were highly expressed in patients with pSS. Conclusions Our data revealed disease-specific immune cell subsets and provided some potential new targets of pSS. Specific expansion of CD4+ CTLs may be involved in the pathogenesis of pSS, which might give valuable insights for therapeutic interventions of pSS.
Collapse
Affiliation(s)
- Xiaoping Hong
- Department of Rheumatology and Immunology, Southern Medical University, Nanfang Hospital, Guangzhou, China.,Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Shuhui Meng
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Donge Tang
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Tingting Wang
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Liping Ding
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Haiyan Yu
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Heng Li
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Yong Dai
- Department of Rheumatology and Immunology, Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology), Shenzhen, China
| | - Min Yang
- Department of Rheumatology and Immunology, Southern Medical University, Nanfang Hospital, Guangzhou, China
| |
Collapse
|
28
|
Traditional Chinese medicine is a useful and promising alternative strategy for treatment of Sjogren's syndrome: A review. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2021; 19:191-202. [PMID: 33509710 DOI: 10.1016/j.joim.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/11/2020] [Indexed: 01/03/2023]
Abstract
Primary Sjogren's syndrome (pSS) is a chronic autoimmune disease involving exocrine glands. Current studies have found that the occurrence of the disease is closely related to genetic, environmental and neuroendocrine factors, as well as abnormal activation of T and B lymphocytes. The etiology and pathogenesis of pSS is complex, and there is a lack of specific targeted drugs. Traditional Chinese medicines (TCMs) have been comprehensively investigated for their treatment effects on pSS. Through a systematic review of the literature, we summarized the TCMs used to treat pSS, and find that there are four major ways that TCMs are used, including upregulation of aquaporin proteins, suppression of cell apoptosis, suppression of the abnormal activation of B lymphocytes and suppression of the abnormal activation of T lymphocytes (balancing T helper type [Th]1/Th2 & Th17/Treg and suppressing follicular helper T [Tfh] cells). However, there are not enough data about the active constituents, quality control, pharmacokinetics, toxicity and modern preparations of these TCMs; therefore, more investigations are needed. This paper highlights the importance of TCMs for treating pSS and provides guidance for future investigations.
Collapse
|
29
|
Wang B, Chen S, Zheng Q, Li Y, Zhang X, Xuan J, Liu Y, Shi G. Early diagnosis and treatment for Sjögren's syndrome: current challenges, redefined disease stages and future prospects. J Autoimmun 2020; 117:102590. [PMID: 33310686 DOI: 10.1016/j.jaut.2020.102590] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
There are some challenges and unmet needs in the early diagnosis and management of Sjögren's syndrome (SjS) such as prominent glandular dysfunction at diagnosis and long diagnostic delay. Those challenges are partly attributed to the lack of a good knowledge of the early stages of SjS, which is a major obstacle to delivering appropriate care to SjS patients. Findings from both clinical and experimental studies suggest the plausibility of a redefined SjS course consisting of 4 stages, which includes initiation stage, preclinical stage, asymptomatic SjS stage and overt SjS stage. More studies focusing on the pathological processes and changes during the early stages of SjS are needed. To enable early diagnosis and treatment for SjS, more useful biomarkers of the early stages of SjS need to be identified, and individuals at high risk of SjS development need to be identified. Appropriate screening can be performed to facilitate the early diagnosis of SjS among those high-risk individuals.
Collapse
Affiliation(s)
- Bin Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Shiju Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Qing Zheng
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Xinwei Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Jingxiu Xuan
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yuan Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China.
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China; Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen, 361003, China.
| |
Collapse
|
30
|
Ríos-Ríos WDJ, Sosa-Luis SA, Torres-Aguilar H. T Cells Subsets in the Immunopathology and Treatment of Sjogren's Syndrome. Biomolecules 2020; 10:E1539. [PMID: 33187265 PMCID: PMC7698113 DOI: 10.3390/biom10111539] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
Sjogren´s syndrome (SS) is an autoimmune disease whose pathogenesis is characterized by an exacerbated T cell infiltration in exocrine glands, markedly associated to the inflammatory and detrimental features as well as the disease progression. Several helper T cell subsets sequentially converge at different stages of the ailment, becoming involved in specific pathologic roles. Initially, their activated phenotype endows them with high migratory properties and increased pro-inflammatory cytokine secretion in target tissues. Later, the accumulation of immunomodulatory T cells-derived factors, such as IL-17, IFN-γ, or IL-21, preserve the inflammatory environment. These effects favor strong B cell activation, instigating an extrafollicular antibody response in ectopic lymphoid structures mediated by T follicular helper cells (Tfh) and leading to disease progression. Additionally, the memory effector phenotype of CD8+ T cells present in SS patients suggests that the presence of auto-antigen restricted CD8+ T cells might trigger time-dependent and specific immune responses. Regarding the protective roles of traditional regulatory T cells (Treg), uncertain evidence shows decrease or invariable numbers of circulating and infiltrating cells. Nevertheless, an emerging Treg subset named follicular regulatory T cells (Tfr) seems to play a critical protective role owing to their deficiency that enhances SS development. In this review, the authors summarize the current knowledge of T cells subsets contribution to the SS immunopathology, focusing on the cellular and biomolecular properties allowing them to infiltrate and to harm target tissues, and that simultaneously make them key therapeutic targets for SS treatment.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Department of Clinical Immunology Research of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico;
| | - Sorely Adelina Sosa-Luis
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Honorio Torres-Aguilar
- Department of Clinical Immunology Research of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico;
| |
Collapse
|
31
|
Bautista-Vargas M, Vivas AJ, Tobón GJ. Minor salivary gland biopsy: Its role in the classification and prognosis of Sjögren's syndrome. Autoimmun Rev 2020; 19:102690. [PMID: 33099041 DOI: 10.1016/j.autrev.2020.102690] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder characterized by mononuclear cell infiltration in the exocrine glands, which leads to sicca syndrome (xerostomia and xerophthalmia). The etiology of SS is unknown, but multiple environmental factors (infectious, hormonal and stress-related), as well as genetic factors, may play a role in its pathogenesis. The diagnosis of SS is complex considering its clinical and paraclinical parameters may not be very specific. The minor salivary gland biopsy (MSGB) has undoubtedly become crucial for classifying and determining the prognosis of SS. The three main different classification systems for its interpretation have been described by Chisholm and Mason, Greenspan and Daniels, and Tarpley. However, this invasive procedure has variable sensitivity and specificity as well as low reproducibility. The use of additional methods, such as skin biopsy, imaging techniques, and serum/salivary biomarkers, may be combined with current methods to develop a bioscore that could increase diagnostic performance. In this review, we summarized the main pathological findings in SS and the prognosis of patients with SS according to the biopsy results.
Collapse
Affiliation(s)
- Mario Bautista-Vargas
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - Alvaro J Vivas
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - Gabriel J Tobón
- GIRAT: Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia.
| |
Collapse
|
32
|
LncRNA Neat1 positively regulates MAPK signaling and is involved in the pathogenesis of Sjögren's syndrome. Int Immunopharmacol 2020; 88:106992. [PMID: 33182021 DOI: 10.1016/j.intimp.2020.106992] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by lymphocytic infiltration of the exocrine glands. Recent, studies have shown that the long noncoding RNA (lncRNA) NEAT1 plays a crucial role in regulating the immune response. However, studies on the lncRNA NEAT1 in pSS are limited. Exploring the role of the lncRNA NEAT1 in the pathogenesis of pSS was the purpose of this study. METHODS The expression of NEAT1 in peripheral blood mononuclear cells (PBMCs) of patients with pSS and healthy controls (HCs) was analyzed by real-time polymerase chain reaction (RT-PCR). Antisense oligonucleotides (ASOs) and siRNA or immune stimulation with PMA/ionomycin were used to perform loss-and-gain-of-function experiments. RT-PCR, enzyme-linked immunosorbent assay (ELISA), and Western blot were performed to detect the RNA and protein levels of specific genes induced by PMA/ionomycin stimulation. Microarray analysis was used to generate an overview of the genes that might be regulated by NEAT1. RESULTS Compared with that in HC patient cells, the expression of NEAT1 in pSS patients was mainly increased in peripheral T cells, including CD4+ and CD8+ T cells. Additionally, the expression of NEAT1 in CD4+ T cells of patients with pSS was positively correlated with the course of disease. NEAT1 expression in Jurkat cells was induced by PMA/ionomycin stimulation upon activation of the TCR-p38 pathway. Upregulation of NEAT1 expression also increased the expression of CXCL8 and TNF-α. Knocking down NEAT1 expression with an ASO suppressed the expression of CXCL8 and TNF-α in PMA/ionomycin-stimulated Jurkat cells. Then, we found that NEAT1 regulated the activation of MAPK pathway to regulate NEAT1-induced factors, selectively activating the expression of p-p38 and p-ERK1/2. Furthermore, we also detected the expression profile of Jurkat cells stimulated by PMA/ionomycin when NEAT1 was silenced or not, in order to produce an overview of NEAT1-regulated genes. CONCLUSION These results provide a new understanding of the mechanisms of pSS and reveal that NEAT1 is a positive regulator of pSS, which is of substantial significance to its pathogenesis. Thus, NEAT1 provides a potential therapeutic target for pSS.
Collapse
|
33
|
Salvatore T, Pafundi PC, Galiero R, Gjeloshi K, Masini F, Acierno C, Di Martino A, Albanese G, Alfano M, Rinaldi L, Sasso FC. Metformin: A Potential Therapeutic Tool for Rheumatologists. Pharmaceuticals (Basel) 2020; 13:ph13090234. [PMID: 32899806 PMCID: PMC7560003 DOI: 10.3390/ph13090234] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin is an oral antihyperglycemic drug widely used to treat type 2 diabetes, acting via indirect activation of 5′ Adenosine Monophosphate-activated Protein Kinase (AMPK). Actually, evidence has accumulated of an intriguing anti-inflammatory activity, mainly mediated by AMPK through a variety of mechanisms such as the inhibition of cytokine-stimulated Nuclear Factor-κB (NF-κB) and the downregulation of the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) signaling pathways. Moreover, AMPK plays an important role in the modulation of T lymphocytes and other pivotal cells of the innate immune system. The current understanding of these AMPK effects provides a strong rationale for metformin repurposing in the management of autoimmune and inflammatory conditions. Several studies demonstrated metformin’s beneficial effects on both animal and human rheumatologic diseases, especially on rheumatoid arthritis. Unfortunately, even though data are large and remarkable, they almost exclusively come from experimental investigations with only a few from clinical trials. The lack of support from prospective placebo-controlled trials does not allow metformin to enter the therapeutic repertoire of rheumatologists. However, a large proportion of rheumatologic patients can currently benefit from metformin, such as those with concomitant obesity and type 2 diabetes, two conditions strongly associated with rheumatoid arthritis, osteoarthritis, and gout, as well as those with diabetes secondary to steroid therapy.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via de Crecchio, 7, I-80138 Naples, Italy;
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Klodian Gjeloshi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Francesco Masini
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Carlo Acierno
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Piazza L. Miraglia, 2, I-80138 Naples, Italy; (P.C.P.); (R.G.); (K.G.); (F.M.); (C.A.); (A.D.M.); (G.A.); (M.A.); (L.R.)
- Correspondence: ; Tel.: +39-081-566-5010
| |
Collapse
|
34
|
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease with exocrine gland dysfunction and multi-organ involvement. Currently, there is an increasing trend toward non-steroid therapy for the treatment of autoimmune diseases. Some biological agents or immunosuppressive drugs may be the ideal choices. In real-world practice, as patients have severe systemic complications or organ damage, they will have a bad prognosis even if they are treated with high-dose steroids and strong immunosuppressive drugs. However, if we can start early intervention and prevent progressive development in advance, the patient may have a good prognosis. Mycophenolate is an immunosuppressive drug with minor side effects. Here, we conduct a systemic review and find supporting evidence that patients with pSS benefit from early mycophenolate therapy. Mycophenolate may be the first-line treatment for pSS patients in the future.
Collapse
Affiliation(s)
- Weiqian Chen
- Division of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jin Lin
- Division of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
35
|
Harding SD, Faccenda E, Southan C, Pawson AJ, Maffia P, Alexander SPH, Davenport AP, Fabbro D, Levi‐Schaffer F, Spedding M, Davies JA. The IUPHAR Guide to Immunopharmacology: connecting immunology and pharmacology. Immunology 2020; 160:10-23. [PMID: 32020584 PMCID: PMC7160657 DOI: 10.1111/imm.13175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Given the critical role that the immune system plays in a multitude of diseases, having a clear understanding of the pharmacology of the immune system is crucial to new drug discovery and development. Here we describe the International Union of Basic and Clinical Pharmacology (IUPHAR) Guide to Immunopharmacology (GtoImmuPdb), which connects expert-curated pharmacology with key immunological concepts and aims to put pharmacological data into the hands of immunologists. In the pursuit of new therapeutics, pharmacological databases are a vital resource to researchers through providing accurate information on the fundamental science underlying drug action. This extension to the existing IUPHAR/British Pharmacological Society Guide to Pharmacology supports research into the development of drugs targeted at modulating immune, inflammatory or infectious components of disease. To provide a deeper context for how the resource can support research we show data in GtoImmuPdb relating to a case study on the targeting of vascular inflammation.
Collapse
Affiliation(s)
- Simon D. Harding
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Elena Faccenda
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Christopher Southan
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
- Present address:
TW2Informatics LtdGöteborg42166Sweden
| | - Adam J. Pawson
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| | - Pasquale Maffia
- Centre for ImmunobiologyInstitute of Infection, Immunity and InflammationCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Institute of Cardiovascular and Medical SciencesCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | | | | | - Doriano Fabbro
- Cellestia Biotech SABaselSwitzerland
- TargImmune Therapeutics AGBaselSwitzerland
| | | | | | - Jamie A. Davies
- Deanery of Biomedical SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
36
|
Chen X, Zhang P, Liu Q, Zhang Q, Gu F, Xu S, Körner H, Wu H, Wei W. Alleviating effect of paeoniflorin-6′-O-benzene sulfonate in antigen-induced experimental Sjögren’s syndrome by modulating B lymphocyte migration via CXCR5-GRK2-ERK/p38 signaling pathway. Int Immunopharmacol 2020; 80:106199. [DOI: 10.1016/j.intimp.2020.106199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/05/2020] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
|
37
|
Risk of major autoimmune diseases in female breast cancer patients: A nationwide, population-based cohort study. PLoS One 2019; 14:e0222860. [PMID: 31536611 PMCID: PMC6752851 DOI: 10.1371/journal.pone.0222860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/09/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Breast cancer is one of the most common malignancies among women. However, there remains no consensus in current literature on the incidence of autoimmune diseases among breast cancer patients. The purpose of this study was to evaluate the risks of major autoimmune diseases (MAD) including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS) and dermatomyositis (DMtis)/polymyositis (PM) in female breast cancer patients. METHODS Using the Taiwanese National Health Insurance Research Database (NHIRD) records from 2003 to 2013, we identified newly-diagnosed female breast cancer patients and randomly selected females without breast cancer in the period 2007 to 2013 into a control group. We matched the two cohorts using a 1:4 ratio based on age, and the year of index date for comparison of the risk of major autoimmune diseases. We estimated and compared the relative risks of autoimmune diseases in female breast cancer patients and females without breast cancer. RESULTS A total of 54,311 females with breast cancer and 217,244 matched females without breast cancer were included in this study. For SLE, the incidence rates were 2.3 (breast cancer group) vs. 10.0 (control group) per 100,000 women years; for RA rates were 19.3 (breast cancer group) vs. 42.7 (control group) per 100,000 women years; and for SS rates were 20.5 (breast cancer group) vs. 38.2 (control group) per 100,000 women years. After adjusting for potential confounders, the hazard ratios (95% confidence intervals) for female breast cancer patients vs. control group were 0.04 (0.01-0.24) for SLE; 0.03 (0.02-0.04) for RA; and 0.21 (0.09-0.48) for SS. CONCLUSION Female breast cancer patients had lower risks of SLE, RA and SS when compared to female individuals without breast cancer. However, there was no significant difference in the risk of developing DMtis/PM between both groups.
Collapse
|
38
|
Kim JW, Kim SM, Park JS, Hwang SH, Choi J, Jung KA, Ryu JG, Lee SY, Kwok SK, Cho ML, Park SH. Metformin improves salivary gland inflammation and hypofunction in murine Sjögren's syndrome. Arthritis Res Ther 2019; 21:136. [PMID: 31164166 PMCID: PMC6549273 DOI: 10.1186/s13075-019-1904-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/28/2019] [Indexed: 12/22/2022] Open
Abstract
Background Activated T and B cells participate in the development and progression of Sjögren’s syndrome (SS). Metformin, a first-line anti-diabetic drug, exerts anti-inflammatory and immunomodulatory effects by activating AMPK. We investigated the therapeutic effect of metformin in non-obese diabetic (NOD)/ShiLtJ mice, an animal model of SS. Methods Metformin or vehicle was administered orally to the mice for 9 weeks. The salivary flow rate was measured at 11, 13, 15, 17, and 20 weeks. Histological analysis of the salivary glands from vehicle- and metformin-treated mice was conducted. CD4+ T and B cell differentiation in the peripheral blood and/or spleen was determined by flow cytometry. Serum total IgG, IgG1, and IgG2a levels were determined by enzyme-linked immunosorbent assay. Results Metformin reduced salivary gland inflammation and restored the salivary flow rate. Moreover, metformin reduced the interleukin (IL)-6, tumor necrosis factor-α, IL-17 mRNA, and protein levels in the salivary glands. Metformin reduced the Th17 and Th1 cell populations and increased the regulatory T cell population in the peripheral blood and spleen and modulated the balance between Tfh and follicular regulatory T cells. In addition, metformin reduced B cell differentiation into germinal center B cells, decreased the serum immunoglobulin G level, and maintained the balance between IL-10- and IL-17-producing B cells. Conclusion Metformin suppresses effector T cells, induces regulatory T cells, and regulates B cell differentiation in an animal model of SS. In addition, metformin ameliorates salivary gland inflammation and hypofunction, suggesting that it has potential for the treatment of SS. Electronic supplementary material The online version of this article (10.1186/s13075-019-1904-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji-Won Kim
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Rheumatology, Department of Internal Medicine, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea
| | - Sung-Min Kim
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Sil Park
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun-Hee Hwang
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - JeongWon Choi
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Ah Jung
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun-Geol Ryu
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Yeong Lee
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-La Cho
- Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|