1
|
Lai B, Luo SF, Lai JH. Therapeutically targeting proinflammatory type I interferons in systemic lupus erythematosus: efficacy and insufficiency with a specific focus on lupus nephritis. Front Immunol 2024; 15:1489205. [PMID: 39478861 PMCID: PMC11521836 DOI: 10.3389/fimmu.2024.1489205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Type I interferons (IFN-Is) are important players in the immunopathogenesis of systemic lupus erythematosus (SLE). Pathogenic events in patients with SLE are potent triggers of IFN-I induction, yet IFN-I may induce or initiate the immunopathogenesis leading to these events. Because blocking IFN-I is effective in some clinical manifestations of SLE patients, concerns about the efficacy of anti-IFN-I therapy in patients with lupus nephritis remain. Tissues from kidney biopsies of patients with lupus nephritis revealed infiltration of various immune cells and activation of inflammatory signals; however, their correlation with renal damage is not clear, which raises serious concerns about how critical the role of IFN-I is among the potential contributors to the pathogenesis of lupus nephritis. This review addresses several issues related to the roles of IFN-I in SLE, especially in lupus nephritis, including (1) the contribution of IFN-I to the development and immunopathogenesis of SLE; (2) evidence supporting the association of IFN-I with lupus nephritis; (3) therapies targeting IFN-I and IFN-I downstream signaling molecules in SLE and lupus nephritis; (4) findings challenging the therapeutic benefits of anti-IFN-I in lupus nephritis; and (5) a perspective associated with anti-IFN-I biologics for lupus nephritis treatment. In addition to providing clear pictures of the roles of IFN-I in SLE, especially in lupus nephritis, this review addresses the lately published observations and clinical trials on this topic.
Collapse
Affiliation(s)
- Benjamin Lai
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
2
|
Shoctor NA, Brady MP, McLeish KR, Lightman RR, Davis-Johnson L, Lynn C, Dubbaka A, Tandon S, Daniels MW, Rane MJ, Barati MT, Caster DJ, Powell DW. Increased Urine Excretion of Neutrophil Granule Cargo in Active Proliferative Lupus Nephritis. KIDNEY360 2024; 5:1154-1166. [PMID: 39207891 PMCID: PMC11371349 DOI: 10.34067/kid.0000000000000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/10/2024] [Indexed: 09/04/2024]
Abstract
Key Points Neutrophil degranulation participates in glomerular injury in proliferative lupus nephritis. Urine excretion of neutrophil granule proteins is a potential diagnostic for proliferative lupus nephritis. Background Lupus nephritis (LN) occurs in more than half of patients with systemic lupus erythematosus, but the cellular and molecular events that contribute to LN are not clearly defined. We reported previously that neutrophil degranulation participates in glomerular injury in mouse models of acute LN. This study tests the hypothesis that glomerular recruitment and subsequent activation of neutrophils result in urine excretion of neutrophil granule constituents that are predictive of glomerular inflammation in proliferative LN. Methods Urine and serum levels of 11 neutrophil granule proteins were measured by antibody-based array in patients with proliferative LN and healthy donors (HDs), and the results were confirmed by ELISA. Glomerular neutrophil accumulation was assessed in biopsies of patients with LN who contributed urine for granule cargo quantitation and normal kidney tissue by microscopy. Degranulation was measured by flow cytometry in neutrophils isolated from patients with LN and HD controls by cell surface granule markers CD63 (azurophilic), CC66b (specific), and CD35 (secretory). Nonparametric statistical analyses were performed and corrected for multiple comparisons. Results Eight granule proteins (myeloperoxidase, neutrophil elastase, azurocidin, olfactomedin-4, lactoferrin, alpha-1-acid glycoprotein 1, matrix metalloproteinase 9, and cathelicidin) were significantly elevated in urine from patients with active proliferative LN by array and/or ELISA, whereas only neutrophil elastase was increased in LN serum. Urine excretion of alpha-1-acid glycoprotein 1 declined in patients who achieved remission. The majority of LN glomeruli contained ≥3 neutrophils. Basal levels of specific granule markers were increased in neutrophils from patients with LN compared with HD controls. Serum from patients with active LN stimulated specific and secretory, but not azurophilic granule, release by HD neutrophils. Conclusions Circulating neutrophils in patients with LN are primed for enhanced degranulation. Glomerular recruitment of those primed neutrophils leads to release and urine excretion of neutrophil granule cargo that serves as a urine marker of active glomerular inflammation in proliferative LN.
Collapse
Affiliation(s)
- Nicholas A. Shoctor
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
| | - Makayla P. Brady
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth R. McLeish
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
| | | | | | - Conner Lynn
- University of Louisville School of Medicine, Louisville, Kentucky
| | - Anjali Dubbaka
- Department of Internal Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Shweta Tandon
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
| | - Michael W. Daniels
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, Kentucky
| | - Madhavi J. Rane
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky
| | - Michelle T. Barati
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
| | - Dawn J. Caster
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
| | - David W. Powell
- Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
3
|
Yang H, Zhang H, Tian L, Guo P, Liu S, Chen H, Sun L. Curcumin attenuates lupus nephritis by inhibiting neutrophil migration via PI3K/AKT/NF-κB signalling pathway. Lupus Sci Med 2024; 11:e001220. [PMID: 39053932 DOI: 10.1136/lupus-2024-001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate the role of curcumin in the treatment of lupus nephritis (LN) by inhibiting the migration of neutrophils and the underlying mechanism involved. METHODS Two lupus mouse models, MRL/lpr mice and R848-treated mice, were treated with 50 mg/kg curcumin by intraperitoneal injection. H&E and Masson staining were used to estimate histopathological changes in the kidney. Immunofluorescence was used to assess the deposition of immune complexes. The expression of inflammatory factors was detected by enzyme-linked immunosorbent assay (ELISA) and real-time reverse transcription polymerase reaction (RT-PCR), and the protein expression was detected by western blotting. RESULTS We revealed the remarkable potential of curcumin in improving inflammatory conditions in both MRL/lpr mice and R848-induced lupus mice. Curcumin effectively decelerates the progression of inflammation and diminishes the infiltration of neutrophils and their release of pivotal inflammatory factors, thereby reducing inflammation in renal tissues. Mechanistically, curcumin significantly inhibits the expression of p-PI3K, p-AKT and p-NF-κB, which are upregulated by interleukin-8 to induce neutrophil migration and renal inflammation, thereby reducing neutrophil migration and the release of inflammatory factors. CONCLUSION Curcumin significantly inhibits the recruitment of neutrophils and the release of proinflammatory factors in the kidney by inhibiting the PI3K/AKT/NF-κB signalling pathway, providing new therapeutic targets and medication strategies for the treatment of LN.
Collapse
Affiliation(s)
- Hui Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haiwei Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Lili Tian
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Panpan Guo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Shanshan Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Hongwei Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Wu F, Chen C, Lin G, Wu C, Xie J, Lin K, Dai X, Chen Z, Ye K, Yuan Y, Chen Z, Ma H, Lin Z, Xu Y. Caspase-11/GSDMD contributes to the progression of hyperuricemic nephropathy by promoting NETs formation. Cell Mol Life Sci 2024; 81:114. [PMID: 38436813 PMCID: PMC10912150 DOI: 10.1007/s00018-024-05136-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 03/05/2024]
Abstract
Hyperuricemia is an independent risk factor for chronic kidney disease (CKD) and promotes renal fibrosis, but the underlying mechanism remains largely unknown. Unresolved inflammation is strongly associated with renal fibrosis and is a well-known significant contributor to the progression of CKD, including hyperuricemia nephropathy. In the current study, we elucidated the impact of Caspase-11/Gasdermin D (GSDMD)-dependent neutrophil extracellular traps (NETs) on progressive hyperuricemic nephropathy. We found that the Caspase-11/GSDMD signaling were markedly activated in the kidneys of hyperuricemic nephropathy. Deletion of Gsdmd or Caspase-11 protects against the progression of hyperuricemic nephropathy by reducing kidney inflammation, proinflammatory and profibrogenic factors expression, NETs generation, α-smooth muscle actin expression, and fibrosis. Furthermore, specific deletion of Gsdmd or Caspase-11 in hematopoietic cells showed a protective effect on renal fibrosis in hyperuricemic nephropathy. Additionally, in vitro studies unveiled the capability of uric acid in inducing Caspase-11/GSDMD-dependent NETs formation, consequently enhancing α-smooth muscle actin production in macrophages. In summary, this study demonstrated the contributory role of Caspase-11/GSDMD in the progression of hyperuricemic nephropathy by promoting NETs formation, which may shed new light on the therapeutic approach to treating and reversing hyperuricemic nephropathy.
Collapse
Affiliation(s)
- Fan Wu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Caiming Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Guo Lin
- Department of Intensive Care Unit, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jingzhi Xie
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Kongwen Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xingchen Dai
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zhengyue Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Ying Yuan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zishan Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
5
|
Sandersfeld M, Büttner-Herold M, Ferrazzi F, Amann K, Benz K, Daniel C. Macrophage subpopulations in pediatric patients with lupus nephritis and other inflammatory diseases affecting the kidney. Arthritis Res Ther 2024; 26:46. [PMID: 38331818 PMCID: PMC10851514 DOI: 10.1186/s13075-024-03281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Macrophages play an important role in the pathogenesis of lupus nephritis (LN), but less is known about macrophage subtypes in pediatric LN. Here we compared renal inflammation in LN with other inflammatory pediatric kidney diseases and assessed whether inflammation correlates with clinical parameters. METHODS Using immunofluorescence microscopy, we analyzed renal biopsies from 20 pediatric patients with lupus nephritis (ISN/RPS classes II-V) and pediatric controls with other inflammatory kidney diseases for infiltration with M1-like (CD68 + /CD206 - , CD68 + /CD163 -), M2a-like (CD206 + /CD68 +), and M2c-like macrophages (CD163 + /CD68 +) as well as CD3 + T-cells, CD20 + B-cells, and MPO + neutrophilic granulocytes. In addition, the correlation of macrophage infiltration with clinical parameters at the time of renal biopsy, e.g., eGFR and serum urea, was investigated. Macrophage subpopulations were compared with data from a former study of adult LN patients. RESULTS The frequency of different macrophage subtypes in biopsies of pediatric LN was dependent on ISN/RPS class and showed the most pronounced M1-like macrophage infiltration in patients with LN class IV, whereas M2c-like macrophages were most abundant in class III and IV. Interestingly, on average, only half as many macrophages were found in renal biopsies of pediatric LN compared to adult patients with LN. The distribution of frequencies of macrophage subpopulations, however, was different for CD68 + CD206 + (M2a-like) but comparable for CD68 + CD163 - (M1-like) CD68 + CD163 + (M2c-like) cells in pediatric and adult patients. Compared to other inflammatory kidney diseases in children, fewer macrophages and other inflammatory cells were found in kidney biopsies of LN. Depending on the disease, the frequency of individual immune cell types varied, but we were unable to confirm disease-specific inflammatory signatures in our study due to the small number of pediatric cases. Worsened renal function, measured as elevated serum urea and decreased eGFR, correlated particularly strongly with the number of CD68 + /CD163 - M1-like macrophages and CD20 + B cells in pediatric inflammatory kidney disease. CONCLUSION Although M1-like macrophages play a greater role in pediatric LN patients than in adult LN patients, M2-like macrophages appear to be key players and are more abundant in other pediatric inflammatory kidney diseases compared to LN.
Collapse
Affiliation(s)
- Mira Sandersfeld
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
- Institute of Pathology, FAU Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
| | - Kerstin Benz
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany
- Department of Pediatrics, FAU Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Krankenhausstr. 8-10, Erlangen, 91054, Germany.
| |
Collapse
|
6
|
Xipell M, Lledó GM, Egan AC, Tamirou F, Del Castillo CS, Rovira J, Gómez-Puerta JA, García-Herrera A, Cervera R, Kronbichler A, Jayne DRW, Anders HJ, Houssiau F, Espinosa G, Quintana LF. From systemic lupus erythematosus to lupus nephritis: The evolving road to targeted therapies. Autoimmun Rev 2023; 22:103404. [PMID: 37543287 DOI: 10.1016/j.autrev.2023.103404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Systemic lupus erythematosus is a chronic autoimmune disease characterized by loss of tolerance against nuclear and cytoplasmic self-antigens, induction of immunity and tissue inflammation. Lupus nephritis (LN), the most important predictor of morbidity in SLE, develops in almost 30% of SLE patients at disease onset and in up to 50-60% within the first 10 years. Firstly, in this review, we put the pathogenic mechanisms of the disease into a conceptual frame, giving emphasis to the role of the innate immune system in this loss of self-tolerance and the induction of the adaptive immune response. In this aspect, many mechanisms have been described such as dysregulation and acceleration of cell-death pathways, an aberrant clearance and overload of immunogenic acid-nucleic-containing debris and IC, and the involvement of antigen-presenting cells and other innate immune cells in the induction of this adaptive immune response. This result in a clonal expansion of autoreactive lymphocytes with generation of effector T-cells, memory B-cells and plasma cells that produce autoantibodies that will cause kidney damage. Secondly, we review the immunological pathways of damage in the kidney parenchyma, initiated by autoantibody binding and immune complex deposition, and followed by complement-mediated microvascular injury, activation of kidney stromal cells and the recruitment of leukocytes. Finally, we summarize the rationale for the treatment of LN, from conventional to new targeted therapies, focusing on their systemic immunologic effects and the minimization of podocytary damage.
Collapse
Affiliation(s)
- Marc Xipell
- Department of Nephrology and Renal Transplantation, Clinic Barcelona, Spain; Reference Center for Complex Glomerular Diseases of the Spanish Health System (CSUR), Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gema M Lledó
- Department of Autoimmune Diseases, Clínic Barcelona, Spain; Reference Center for Systemic Autoimmune Diseases of the Spanish Health System (CSUR), Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Allyson C Egan
- Vasculitis and Lupus Service, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, United Kingdom
| | - Farah Tamirou
- Rheumatology Department, Cliniques Universitaires Saint-Luc, Bruxelles, Belgium; Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium
| | | | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José A Gómez-Puerta
- Department of Rheumatology, Clínic Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Catalonia, Spain
| | - Adriana García-Herrera
- Department of Pathology, Clínic Barcelona, Spain; Reference Center for Complex Glomerular Diseases of the Spanish Health System (CSUR), Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ricard Cervera
- Department of Autoimmune Diseases, Clínic Barcelona, Spain
| | - Andreas Kronbichler
- Vasculitis and Lupus Service, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - David R W Jayne
- Vasculitis and Lupus Service, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Frédéric Houssiau
- Vasculitis and Lupus Service, Addenbrooke's Hospital, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, United Kingdom
| | - Gerard Espinosa
- Department of Autoimmune Diseases, Clínic Barcelona, Spain; Reference Center for Systemic Autoimmune Diseases of the Spanish Health System (CSUR), Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| | - Luis F Quintana
- Department of Nephrology and Renal Transplantation, Clinic Barcelona, Spain; Reference Center for Complex Glomerular Diseases of the Spanish Health System (CSUR), Department of Medicine, University of Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
7
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
8
|
Mohan C, Zhang T, Putterman C. Pathogenic cellular and molecular mediators in lupus nephritis. Nat Rev Nephrol 2023:10.1038/s41581-023-00722-z. [PMID: 37225921 DOI: 10.1038/s41581-023-00722-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Kidney involvement in patients with systemic lupus erythematosus - lupus nephritis (LN) - is one of the most important and common clinical manifestations of this disease and occurs in 40-60% of patients. Current treatment regimens achieve a complete kidney response in only a minority of affected individuals, and 10-15% of patients with LN develop kidney failure, with its attendant morbidity and considerable prognostic implications. Moreover, the medications most often used to treat LN - corticosteroids in combination with immunosuppressive or cytotoxic drugs - are associated with substantial side effects. Advances in proteomics, flow cytometry and RNA sequencing have led to important new insights into immune cells, molecules and mechanistic pathways that are instrumental in the pathogenesis of LN. These insights, together with a renewed focus on the study of human LN kidney tissue, suggest new therapeutic targets that are already being tested in lupus animal models and early-phase clinical trials and, as such, are hoped to eventually lead to meaningful improvements in the care of patients with systemic lupus erythematosus-associated kidney disease.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| | - Ting Zhang
- Division of Rheumatology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Division of Rheumatology and Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Zhang L, Chen W, Xia N, Wu D, Yu H, Zheng Y, Chen H, Fei F, Geng L, Wen X, Liu S, Wang D, Liang J, Shen W, Jin Z, Li X, Yao G, Sun L. Mesenchymal stem cells inhibit MRP-8/14 expression and neutrophil migration via TSG-6 in the treatment of lupus nephritis. Biochem Biophys Res Commun 2023; 650:87-95. [PMID: 36791546 DOI: 10.1016/j.bbrc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Abnormal infiltration and activation of neutrophils play a pathogenic role in the development of lupus nephritis (LN). Myeloid-related proteins (MRPs), MRP-8 and -14, also known as the damage-associated molecular patterns (DAMPs), are mainly secreted by activated neutrophils in systemic lupus erythematosus (SLE). Mesenchymal stem cells (MSCs) regulate a variety of immune cells to treat LN, but it is not clear whether MSCs can regulate neutrophils and the expression of MRP-8/14 in LN. Here, we demonstrated that neutrophil infiltration and MRP-8/14 expression were increased in the kidney of MRL/lpr mice and both decreased after MSCs transplantation. Further, the results showed that tumor necrosis factor- (TNF) stimulated gene-6 (TSG-6) in MSCs is necessary for MSCs to inhibit MRP-8/14 expression in neutrophils and neutrophil migration. In addition, small-molecule immunosuppressant had no significant effect on the expression of MRP-8/14 in neutrophils. Therefore, our results suggest that MSCs inhibited MRP-8/14 expression and neutrophil migration by secreting TSG-6 in the treatment of LN.
Collapse
Affiliation(s)
- Lingli Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, PR China
| | - Weiwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Nan Xia
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Dan Wu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Honghong Yu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, PR China
| | - Yuanyuan Zheng
- Department of Rheumatology and Immunology, Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, PR China
| | - Hongwei Chen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Fei Fei
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Linyu Geng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Xin Wen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Shanshan Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Jun Liang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Wei Shen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Ziyi Jin
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Xiaojing Li
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China
| | - Genhong Yao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, PR China; Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, PR China.
| |
Collapse
|
10
|
Bhargava R, Li H, Tsokos GC. Pathogenesis of lupus nephritis: the contribution of immune and kidney resident cells. Curr Opin Rheumatol 2023; 35:107-116. [PMID: 35797522 DOI: 10.1097/bor.0000000000000887] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Lupus nephritis is associated with significant mortality and morbidity. We lack effective therapeutics and biomarkers mostly because of our limited understanding of its complex pathogenesis. We aim to present an overview of the recent advances in the field to gain a deeper understanding of the underlying cellular and molecular mechanisms involved in lupus nephritis pathogenesis. RECENT FINDINGS Recent studies have identified distinct roles for each resident kidney cell in the pathogenesis of lupus nephritis. Podocytes share many elements of innate and adaptive immune cells and they can present antigens and participate in the formation of crescents in coordination with parietal epithelial cells. Mesangial cells produce pro-inflammatory cytokines and secrete extracellular matrix contributing to glomerular fibrosis. Tubular epithelial cells modulate the milieu of the interstitium to promote T cell infiltration and formation of tertiary lymphoid organs. Modulation of specific genes in kidney resident cells can ward off the effectors of the autoimmune response including autoantibodies, cytokines and immune cells. SUMMARY The development of lupus nephritis is multifactorial involving genetic susceptibility, environmental triggers and systemic inflammation. However, the role of resident kidney cells in the development of lupus nephritis is becoming more defined and distinct. More recent studies point to the restoration of kidney resident cell function using cell targeted approaches to prevent and treat lupus nephritis.
Collapse
Affiliation(s)
- Rhea Bhargava
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard, Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
11
|
Liu L, Zhang L, Li M. Application of herbal traditional Chinese medicine in the treatment of lupus nephritis. Front Pharmacol 2022; 13:981063. [PMID: 36506523 PMCID: PMC9729561 DOI: 10.3389/fphar.2022.981063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Lupus nephritis (LN) is a secondary renal disease caused by systemic lupus erythematosus affecting the kidneys. It is one of the main causes of end-stage renal disease and a serious risk factor for early mortality and disability of systemic lupus erythematosus patients. Existing LN treatment is mainly based on hormones, cytotoxic drugs, and biological agents. Nevertheless, the prognosis of LN patients remains poor because of frequent recurrence and exacerbation of adverse drug reactions. Hence, LN is still the most important cause of end-stage renal disease. In recent years, traditional Chinese medicine (TCM) has attracted increasing attention because of encouraging evidence that it alleviates LN and the well-described mechanisms underlying renal injury. TCM has therapeutic benefits for treating LN patients. This review article elucidates TCM preparations, TCM monomers, and herbal or natural extraction for LN treatment to provide effective supplementary evidence for promoting the development of TCM treatment for LN and reference for future research and clinical practice.
Collapse
|
12
|
Fakhfakh R, Bouallegui E, Houssaini H, Elloumi N, Dhafouli F, Abida O, Hachicha H, Marzouk S, Bahloul Z, Kammoun K, Boudawara T, Masmoudi H. Differential Expression of Anti-Inflammatory RNA Binding Proteins in Lupus Nephritis. Life (Basel) 2022; 12:1474. [PMID: 36294909 PMCID: PMC9605213 DOI: 10.3390/life12101474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022] Open
Abstract
Lupus nephritis (LN) is a type of immunological complex glomerulonephritis characterized by chronic renal inflammation which is exacerbated by infiltrating leukocytes and fueled by a variety of pro-inflammatory cytokines. A profound understanding of the pathogenesis of LN is necessary to identify the optimal molecular targets. The role of RNA-binding proteins (RBPs) in post-transcriptional gene regulation in the immune system is being explored in greater depth to better understand how this regulation is implicated in inflammatory and autoimmune diseases. Tristetraprolin (TTP), Roquin-1/2, and Regnase-1 are 3 RBPs that play a critical role in the regulation of pro-inflammatory mediators by gating the degradation and/or translational silencing of target mRNAs. In this study, we proposed to focus on the differential expression of these RBPs in immune cells and renal biopsies from LN patients, as well as their regulatory impact on a specific target. Herein, we highlight a novel target of anti-inflammatory treatment by revealing the mechanisms underlying RBP expression and the interaction between RBPs and their target RNAs.
Collapse
Affiliation(s)
- Raouia Fakhfakh
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, Sfax 3000, Tunisia
| | - Emna Bouallegui
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, Sfax 3000, Tunisia
| | - Hana Houssaini
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, Sfax 3000, Tunisia
| | - Nesrine Elloumi
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, Sfax 3000, Tunisia
| | - Fatma Dhafouli
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, Sfax 3000, Tunisia
| | - Olfa Abida
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, Sfax 3000, Tunisia
| | - Hend Hachicha
- Department of Immunology, Habib Bourguiba University Hospital, University of Sfax, Sfax 3000, Tunisia
| | - Sameh Marzouk
- Internal Medicine Department, Hedi Chaker University Hospital, University of Sfax, Sfax 3000, Tunisia
| | - Zouhir Bahloul
- Internal Medicine Department, Hedi Chaker University Hospital, University of Sfax, Sfax 3000, Tunisia
| | - Khawla Kammoun
- Renal Pathology Research Unit 12ES14, Nephrology Department, Faculty of Medicine of Sfax, Hedi Chaker University Hospital, Sfax 3000, Tunisia
| | - Tahia Boudawara
- Department of Pathology, LR18SP10, Habib Bourguiba University Hospital, Sfax 3000, Tunisia
| | - Hatem Masmoudi
- Autoimmunity, Cancer, and Immunogenetics Research Laboratory, LR18SP12, University Hospital Habib Bourguiba of Sfax, Sfax 3000, Tunisia
- Department of Immunology, Habib Bourguiba University Hospital, University of Sfax, Sfax 3000, Tunisia
| |
Collapse
|
13
|
Toro-Domínguez D, Martorell-Marugán J, Martinez-Bueno M, López-Domínguez R, Carnero-Montoro E, Barturen G, Goldman D, Petri M, Carmona-Sáez P, Alarcón-Riquelme ME. Scoring personalized molecular portraits identify Systemic Lupus Erythematosus subtypes and predict individualized drug responses, symptomatology and disease progression. Brief Bioinform 2022; 23:bbac332. [PMID: 35947992 PMCID: PMC9487588 DOI: 10.1093/bib/bbac332] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Systemic Lupus Erythematosus is a complex autoimmune disease that leads to significant worsening of quality of life and mortality. Flares appear unpredictably during the disease course and therapies used are often only partially effective. These challenges are mainly due to the molecular heterogeneity of the disease, and in this context, personalized medicine-based approaches offer major promise. With this work we intended to advance in that direction by developing MyPROSLE, an omic-based analytical workflow for measuring the molecular portrait of individual patients to support clinicians in their therapeutic decisions. METHODS Immunological gene-modules were used to represent the transcriptome of the patients. A dysregulation score for each gene-module was calculated at the patient level based on averaged z-scores. Almost 6100 Lupus and 750 healthy samples were used to analyze the association among dysregulation scores, clinical manifestations, prognosis, flare and remission events and response to Tabalumab. Machine learning-based classification models were built to predict around 100 different clinical parameters based on personalized dysregulation scores. RESULTS MyPROSLE allows to molecularly summarize patients in 206 gene-modules, clustered into nine main lupus signatures. The combination of these modules revealed highly differentiated pathological mechanisms. We found that the dysregulation of certain gene-modules is strongly associated with specific clinical manifestations, the occurrence of relapses or the presence of long-term remission and drug response. Therefore, MyPROSLE may be used to accurately predict these clinical outcomes. CONCLUSIONS MyPROSLE (https://myprosle.genyo.es) allows molecular characterization of individual Lupus patients and it extracts key molecular information to support more precise therapeutic decisions.
Collapse
Affiliation(s)
- Daniel Toro-Domínguez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain
| | - Jordi Martorell-Marugán
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain
- Department of Statistics. University of Granada, 18071, Granada, Spain
- Data Science for Health Research Unit. Fondazione Bruno Kessler, 38123, Trento, Italy
| | - Manuel Martinez-Bueno
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain
| | - Raúl López-Domínguez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain
- Department of Statistics. University of Granada, 18071, Granada, Spain
| | - Elena Carnero-Montoro
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain
| | - Guillermo Barturen
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain
| | - Daniel Goldman
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michelle Petri
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pedro Carmona-Sáez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain
- Department of Statistics. University of Granada, 18071, Granada, Spain
| | - Marta E Alarcón-Riquelme
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Avenida de la Ilustración 114, 18016, Granada, Spain
- Unit of Inflammatory Diseases, Department of Environmental Medicine, Karolinska Institute, 171 67, Solna, Sweden
| |
Collapse
|
14
|
Yoshida Y, Nishi H. The role of the complement system in kidney glomerular capillary thrombosis. Front Immunol 2022; 13:981375. [PMID: 36189215 PMCID: PMC9515535 DOI: 10.3389/fimmu.2022.981375] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system is part of the innate immune system. The crucial step in activating the complement system is the generation and regulation of C3 convertase complexes, which are needed to generate opsonins that promote phagocytosis, to generate C3a that regulates inflammation, and to initiate the lytic terminal pathway through the generation and activity of C5 convertases. A growing body of evidence has highlighted the interplay between the complement system, coagulation system, platelets, neutrophils, and endothelial cells. The kidneys are highly susceptible to complement-mediated injury in several genetic, infectious, and autoimmune diseases. Atypical hemolytic uremic syndrome (aHUS) and lupus nephritis (LN) are both characterized by thrombosis in the glomerular capillaries of the kidneys. In aHUS, congenital or acquired defects in complement regulators may trigger platelet aggregation and activation, resulting in the formation of platelet-rich thrombi in the kidneys. Because glomerular vasculopathy is usually noted with immunoglobulin and complement accumulation in LN, complement-mediated activation of tissue factors could partly explain the autoimmune mechanism of thrombosis. Thus, kidney glomerular capillary thrombosis is mediated by complement dysregulation and may also be associated with complement overactivation. Further investigation is required to clarify the interaction between these vascular components and develop specific therapeutic approaches.
Collapse
Affiliation(s)
- Yoko Yoshida
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | |
Collapse
|
15
|
Mei X, Jin H, Zhao M, Lu Q. Association of Immune-Related Genetic and Epigenetic Alterations with Lupus Nephritis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:286-296. [PMID: 36157263 PMCID: PMC9386430 DOI: 10.1159/000524937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The familial clustering phenomenon together with environmental influences indicates the presence of a genetic and epigenetic predisposition to systematic lupus erythematosus (SLE). Interestingly, regarding lupus nephritis (LN), the worst complication of SLE, mortality, and morbidity were not consistent with SLE in relation to sexuality and ethnicity. SUMMARY Genetic and epigenetic alterations in LN include genes and noncoding RNAs that are involved in antigen-presenting, complements, immune cell infiltration, interferon pathways, and so on. Once genetic or epigenetic change occurs alone or simultaneously, they will promote the formation of immune complexes with autoantibodies that target various autoantigens, which results in inflammatory cytokines and autoreactive immune cells colonizing renal tissues and contributing to LN. KEY MESSAGES Making additional checks for immunopathology-related heredity and epigenetic factors may lead to a more holistic perspective of LN.
Collapse
Affiliation(s)
- Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Hui Jin
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China
| |
Collapse
|
16
|
Liu ML, Lyu X, Werth VP. Recent progress in the mechanistic understanding of NET formation in neutrophils. FEBS J 2022; 289:3954-3966. [PMID: 34042290 PMCID: PMC9107956 DOI: 10.1111/febs.16036] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/11/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023]
Abstract
Neutrophils are the most abundant circulating white blood cells and one of the major cell types of the innate immune system. Neutrophil extracellular traps (NETs) are a result of the extracellular release of nuclear chromatin from the ruptured nuclear envelope and plasma membrane. The externalized chromatin is an ancient defense weapon for animals to entrap and kill microorganisms in the extracellular milieu, thus protecting animals ranging from lower invertebrates to higher vertebrates. Although the externalized chromatin has the advantage of acting as anti-infective to protect against infections, extracellular chromatin might be problematic in higher vertebrate animals as they have an adaptive immune system that can trigger further immune or autoimmune responses. NETs and their associated nuclear and/or cytoplasmic components may induce sterile inflammation, immune, and autoimmune responses, leading to various human diseases. Though important in human pathophysiology, the cellular and molecular mechanisms of NET formation (also called NETosis) are not well understood. Given that nuclear chromatin forms the backbone of NETs, the nucleus is the root of the nuclear DNA extracellular traps. Thus, nuclear chromatin decondensation, along with the rupture of nuclear envelope and plasma membrane, is required for nuclear chromatin extracellular release and NET formation. So far, most of the literature focuses on certain signaling pathways, which are involved in NET formation but without explanation of cellular events and morphological changes described above. Here, we have summarized emerging evidence and discuss new mechanistic understanding, with our perspectives, in NET formation in neutrophils.
Collapse
Affiliation(s)
- Ming-Lin Liu
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xing Lyu
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA,Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Victoria P. Werth
- Corporal Michael J. Crescenz VAMC, Philadelphia, PA, 19104, USA,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
17
|
Chen XQ, Tu L, Tang Q, Huang L, Qin YH. An Emerging Role for Neutrophil Extracellular Traps in IgA Vasculitis: A Mini-Review. Front Immunol 2022; 13:912929. [PMID: 35799774 PMCID: PMC9253285 DOI: 10.3389/fimmu.2022.912929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin A vasculitis (IgAV) is the most common systemic small vessel vasculitis in childhood. Its clinical manifestations are non-thrombocytopenic purpura, accompanied by gastrointestinal tract, joint, kidney and other organ system involvement. The pathogenesis of IgAV has not been fully elucidated. It may be related to many factors including genetics, infection, environmental factors, and drugs. The most commonly accepted view is that galactose-deficient IgA1 and the deposition of IgA and complement C3 in small blood vessel walls are key contributors to the IgAV pathogenesis. Extensive neutrophil extracellular traps (NETs) in the peripheral circulation and skin, kidney, and gastrointestinal tissue of patients with IgAV has been identified in the past two years and is associated with disease activity. This mini-review provides a possible mechanism for NETs involvement in the pathogenesis of IgAV.
Collapse
|
18
|
Liu P, Peng Z, Xiang Y, Duan Y, Huang H, Peng Z, Zhang Y, Yang B, Ou J, He Z. Causes and predictors of mortality from lupus nephritis in Southern Hunan, China. Mod Rheumatol 2022; 32:338-344. [PMID: 33909520 DOI: 10.1080/14397595.2021.1920097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The objective of the study was to explore the causes and predictors of mortality in a cohort of LN with LN in southern Hunan, China. METHODS We analyzed 236 patients with biopsy-proven LN during 2010-2018. Demographic data, laboratory data, SLEDAI scores, treatment strategies, and comorbidity were collected. Cox regression analysis was carried out to determine the independent predictors of mortality. RESULTS The patients had mean disease duration of 67.9 ± 28.2 months. Class IV LN was the predominant biopsy class within the cohort (38.1%). After 1 year therapy, the majority of patients achieved complete remission (72.9%) and 44 (18.6%) patients achieved partial remission. The 5- and 10-years survival rates for our cohort were 94.4 and 85.2%, respectively. There were 18 deaths (7.6%), of which the main causes were infection (50%) alone and cardiovascular diseases (27.8%). Independent predictors of mortality in our cohort were: platelet-to-neutrophil ratio (PNR) [hazard ratio (HR) 5.910; confidence interval (CI) 1.253-27.875], onset age (HR 1.090; CI 1.035-1.147), and SLEDAI scores (HR 1.258; CI 1.068-1.482). CONCLUSION We firstly revealed that PNR might be a promising predictor of mortality and reported the causes and prognostic predictors of mortality in LN from southern Hunan, China.
Collapse
Affiliation(s)
- Peng Liu
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Zhong Peng
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Yazhou Xiang
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Yingjie Duan
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Hong Huang
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Zhiyong Peng
- Department of Cardiology, The Second Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Yong Zhang
- Department of Nephrology, Hua Yuan County People's Hospital, Tujia-Miao Autonomous Prefecture of Xiangxi, Xiangxi, Hunan Province, China
| | - Bo Yang
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Jihong Ou
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| | - Zhangxiu He
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, Hunan Province, China
| |
Collapse
|
19
|
Saito Y, Miyajima M, Yamamoto S, Miura N, Sato T, Kita A, Ijima S, Fujimiya M, Chikenji TS. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:644-658. [PMID: 35466994 PMCID: PMC9216504 DOI: 10.1093/stcltm/szac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/06/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Arisa Kita
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Shogo Ijima
- Department of Oral Surgery, Sapporo Medical University, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Corresponding author: Takako S. Chikenji, PhD. , North 12 West 5, Kitaku, Sapporo 060-0812, Japan. Tel: +011 706 3382; Fax: +011 706 3382;
| |
Collapse
|
20
|
Santos JE, Vicente R, Malvar B, Santos I, Coimbra M, Amoedo M, Pires C. Lupus-like nephritis with positive anti-neutrophil cytoplasmic antibodies and negative antinuclear antibodies. J Bras Nefrol 2022; 44:121-125. [PMID: 33107901 PMCID: PMC8943873 DOI: 10.1590/2175-8239-jbn-2020-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
Antineutrophil cytoplasmic antibodies (ANCAs) are associated with small vessel vasculitis but their prevalence is not rare in other immune diseases. In lupus nephritis (LN), their pathological role and clinical relevance have been the target of controversial views. We present a case of acute kidney injury and nephrotic syndrome in a young woman with diffuse global proliferative and membranous nephritis on her kidney biopsy, showing a full-house immunofluorescence pattern, very allusive of class IV + V LN, but lacking associated clinical criteria and laboratory findings to support the diagnosis of systemic lupus erythematosus (SLE). Furthermore, the patient presented with high titers of ANCA, steadily decreasing alongside the renal function and proteinuria improvements, with mycophenolate mofetil (MMF) and steroid treatment. The authors believe this is a case of lupus-like nephritis, in which ANCAs are immunological markers, although they are not directly involved in the pathogenesis.
Collapse
Affiliation(s)
| | - Rita Vicente
- Hospital Espírito Santo de Évora, Department of Nephrology, Évora, Portugal
| | - Beatriz Malvar
- Hospital Espírito Santo de Évora, Department of Nephrology, Évora, Portugal
| | - Iolanda Santos
- Hospital Espírito Santo de Évora, Department of Nephrology, Évora, Portugal
| | - Miguel Coimbra
- Hospital Espírito Santo de Évora, Department of Nephrology, Évora, Portugal
| | - Manuel Amoedo
- Hospital Espírito Santo de Évora, Department of Nephrology, Évora, Portugal
| | - Carlos Pires
- Hospital Espírito Santo de Évora, Department of Nephrology, Évora, Portugal
| |
Collapse
|
21
|
Chalayer E, Gramont B, Zekre F, Goguyer-Deschaumes R, Waeckel L, Grange L, Paul S, Chung AW, Killian M. Fc receptors gone wrong: A comprehensive review of their roles in autoimmune and inflammatory diseases. Autoimmun Rev 2021; 21:103016. [PMID: 34915182 DOI: 10.1016/j.autrev.2021.103016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022]
Abstract
Systemic autoimmune and inflammatory diseases have a complex and only partially known pathophysiology with various abnormalities involving all the components of the immune system. Among these components, antibodies, and especially autoantibodies are key elements contributing to autoimmunity. The interaction of antibody fragment crystallisable (Fc) and several distinct receptors, namely Fc receptors (FcRs), have gained much attention during the recent years, with possible major therapeutic perspectives for the future. The aim of this review is to comprehensively describe the known roles for FcRs (activating and inhibitory FcγRs, neonatal FcR [FcRn], FcαRI, FcεRs, Ro52/tripartite motif containing 21 [Ro52/TRIM21], FcδR, and the novel Fc receptor-like [FcRL] family) in systemic autoimmune and inflammatory disorders, namely rheumatoid arthritis, Sjögren's syndrome, systemic lupus erythematosus, systemic sclerosis, idiopathic inflammatory myopathies, mixed connective tissue disease, Crohn's disease, ulcerative colitis, immunoglobulin (Ig) A vasculitis, Behçet's disease, Kawasaki disease, IgG4-related disease, immune thrombocytopenia, autoimmune hemolytic anemia, antiphospholipid syndrome and heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
- Emilie Chalayer
- Department of Hematology and Cell Therapy, Institut de Cancérologie Lucien Neuwirth, Saint-Etienne, France; INSERM U1059-Sainbiose, dysfonction vasculaire et hémostase, Université de Lyon, Saint-Etienne, France
| | - Baptiste Gramont
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Franck Zekre
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Pediatrics, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Roman Goguyer-Deschaumes
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France
| | - Louis Waeckel
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Immunology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Lucile Grange
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Stéphane Paul
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Immunology, Saint-Etienne University Hospital, Saint-Etienne, France
| | - Amy W Chung
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Martin Killian
- CIRI - Centre International de Recherche en Infectiologie, Team GIMAP, Université de Lyon, Université Jean Monnet, Université Claude Bernard Lyon 1, INSERM, U1111, CNRS, UMR530, F42023 Saint-Etienne, France; Department of Internal Medicine, Saint-Etienne University Hospital, Saint-Etienne, France.
| |
Collapse
|
22
|
Chen XQ, Tu L, Zou JS, Zhu SQ, Zhao YJ, Qin YH. The Involvement of Neutrophil Extracellular Traps in Disease Activity Associated With IgA Vasculitis. Front Immunol 2021; 12:668974. [PMID: 34539623 PMCID: PMC8446352 DOI: 10.3389/fimmu.2021.668974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives This aim of this study was to determine whether neutrophil extracellular traps (NETs) are involved in the pathogenesis of IgA vasculitis (IgAV) and investigate whether the circulating NETs levels are associated with disease activity in children. Methods We performed a case-control study and collected blood samples from 193 children with different stages of IgAV (61 were at the onset stage, 64 at the remission stage, 43 at the active stage, and 25 were undergoing drug withdrawal). A total of 192 healthy children were recruited as controls. Circulating cell free DNA (cf-DNA) was obtained from the plasma and quantified by using the Quant-iT PicoGreen DNA quantification kit. NETs-associated myeloperoxidase-DNA (MPO-DNA), citrullinated-histone H3 (cit-H3), neutrophil elastase (NE), and the deoxyribonuclease I (DNase I) concentrations were measured using enzyme-linked immunosorbent assays. The presence of NETs in the kidney and gastrointestinal tissues of onset and active IgAV patients was determined by multiple immunofluorescence staining in 15 IgAV nephritis patients and 9 IgAV patients without IgAV nephritis, respectively. NETs degradation potency of collected sera samples from IgAV patients were checked in vitro. Relationships between circulating levels of cf-DNA with MPO-DNA, NE, and DNase I and the patients were analyzed. Results Circulating levels of cf-DNA in onset and active IgAV patients were significantly higher than those in remission and drug withdrawal patients as well as healthy controls. The results were similar for MPO-DNA and NE. The levels of circulating cf-DNA correlated significantly with MPO-DNA, NE and DNase I. A significantly decreased degradation of NETs from the onset and active IgAV patients was observed, but was normal in healthy controls. Furthermore, presence of NETs was also confirmed in all renal and gastrointestinal tissues obtained from the onset and active IgAV patients but not control samples. Conclusions Our data showed that NETs were released into the circulation of IgAV patients and are involved in the disease activity. The circulating levels of NETs maybe used to assess disease severity in children with IgAV.
Collapse
Affiliation(s)
- Xiu-Qi Chen
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Li Tu
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Jia-Sen Zou
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Shi-Qun Zhu
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yan-Jun Zhao
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Yuan-Han Qin
- Department of Pediatrics, The First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Cai B, Cai J, Yin Z, Jiang X, Yao C, Ma J, Xue Z, Miao P, Xiao Q, Cheng Y, Qin J, Guo Q, Shen N, Ye Z, Qu B, Ding H. Long non-coding RNA expression profiles in neutrophils revealed potential biomarker for prediction of renal involvement in SLE patients. Rheumatology (Oxford) 2021; 60:1734-1746. [PMID: 33068407 DOI: 10.1093/rheumatology/keaa575] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The long non-coding RNA plays an important role in inflammation and autoimmune diseases. The aim of this study is to screen and identify abnormally expressed lncRNAs in peripheral blood neutrophils of SLE patients as novel biomarkers and to explore the relationship between lncRNAs levels and clinical features, disease activity and organ damage. METHODS RNA-seq technology was used to screen differentially expressed lncRNAs in neutrophils from SLE patients and healthy donors. Based on the results of screening, candidate lncRNA levels in neutrophils of 88 SLE patients, 35 other connective disease controls, and 78 healthy controls were qualified by real-time quantitative polymerase chain reaction. RESULTS LncRNA expression profiling revealed 360 up-regulated lncRNAs and 224 down-regulated lncRNAs in neutrophils of SLE patients when compared with healthy controls. qPCR assay validated that the expression of Lnc-FOSB-1:1 was significantly decreased in neutrophils of SLE patients when compared with other CTD patients or healthy controls. It correlated negatively with SLE Disease Activity Index 2000 (SLEDAI-2K) score (r = -0.541, P < 0.001) and IFN scores (r = -0.337, P = 0.001). More importantly, decreased Lnc-FOSB-1:1 expression was associated with lupus nephritis. Lower baseline Lnc-FOSB-1:1 level was associated with higher risk of future renal involvement (within an average of 2.6 years) in patients without renal disease at baseline (P = 0.019). CONCLUSION LncRNA expression profile in neutrophils of SLE patients revealed differentially expressed lncRNAs. Validation study on Lnc-FOSB-1:1 suggest that it is a potential biomarker for prediction of near future renal involvement.
Collapse
Affiliation(s)
- Bin Cai
- Department of Rheumatology, Renji Hospital, Shanghai Institute of Rheumatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Cai
- Department of Rheumatology, Renji Hospital, Shanghai Institute of Rheumatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihua Yin
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Xiaoyue Jiang
- Department of Rheumatology, Renji Hospital, Shanghai Institute of Rheumatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Yao
- Laboratory of Molecular Rheumatology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianyang Ma
- China-Australia Centre for Personalized Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixin Xue
- Department of Rheumatology, Renji Hospital, Shanghai Institute of Rheumatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Miao
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Xiao
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yijun Cheng
- Department of Rheumatology, Renji Hospital, Shanghai Institute of Rheumatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jialin Qin
- Department of Rheumatology, Renji Hospital, Shanghai Institute of Rheumatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Guo
- Department of Rheumatology, Renji Hospital, Shanghai Institute of Rheumatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Shen
- Department of Rheumatology, Renji Hospital, Shanghai Institute of Rheumatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China.,Laboratory of Molecular Rheumatology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,China-Australia Centre for Personalized Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Zhizhong Ye
- Department of Rheumatology, Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Bo Qu
- Department of Rheumatology, Renji Hospital, Shanghai Institute of Rheumatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huihua Ding
- Department of Rheumatology, Renji Hospital, Shanghai Institute of Rheumatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Toy CR, Song H, Nagaraja HN, Scott J, Greco J, Zhang X, Yu CY, Tumlin JA, Rovin BH, Hebert LA, Birmingham DJ. The Influence of an Elastase-Sensitive Complement C5 Variant on Lupus Nephritis and Its Flare. Kidney Int Rep 2021; 6:2105-2113. [PMID: 34386659 PMCID: PMC8344111 DOI: 10.1016/j.ekir.2021.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction A C5 polymorphism (rs17611, 2404G>A) exists where the G allele associates with enhanced C5a-like production by neutrophil elastase. This cohort study investigated the influence of this polymorphism as a risk factor for lupus nephritis (LN), and on C5a and membrane attack complex (MAC) levels in LN during flare. Methods A cohort of lupus patients (n = 155) was genotyped for the 2404G>A polymorphism. A longitudinal LN subset (n = 66) was tested for plasma and urine levels of C5a and MAC 4 and/or 2 months before and at nonrenal or LN flare. Results The 2404G allele and 2404-GG genotype were associated with LN in black, but not white, lupus patients. In the longitudinal cohort, neither urine nor plasma C5a levels changed at nonrenal flare regardless of 2404G>A genotype or race. Urine (but not plasma) C5a levels increased at LN flare independent of race, more so in 2404-GG patients where 8 of 30 LN flares exhibited very high C5a levels. Higher proteinuria and serum creatinine levels also occurred in these eight flares. Urine (but not plasma) MAC levels also increased at LN flare in 2404-GG patients and correlated with urine C5a levels. Conclusions The C5 2404-G allele/GG genotype is a potential risk factor for LN uniquely in black lupus patients. The GG genotype is associated with sharp increases in urine C5a and MAC levels in a subset of LN flares that correspond to higher LN disease indices. The lack of corresponding changes in plasma suggests these increases reflect intrarenal complement activation.
Collapse
Affiliation(s)
- Chris R Toy
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Huijuan Song
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Haikady N Nagaraja
- Division of Biostatistics, Ohio State University College of Public Health, Columbus, Ohio, USA
| | - Julia Scott
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Jessica Greco
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Xiaolan Zhang
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Chack-Yung Yu
- The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, and Department of Pediatrics, Ohio State University, Columbus, Ohio, USA
| | - James A Tumlin
- NephroNet Clinical Research Consortium, Atlanta, Georgia, USA
| | - Brad H Rovin
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Lee A Hebert
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| | - Daniel J Birmingham
- Department of Internal Medicine, Davis Heart and Lung Research Institute, Ohio State University Medical Center, Columbus, Ohio, USA
| |
Collapse
|
25
|
Liu Y, Kaplan MJ. Neutrophil Dysregulation in the Pathogenesis of Systemic Lupus Erythematosus. Rheum Dis Clin North Am 2021; 47:317-333. [PMID: 34215366 DOI: 10.1016/j.rdc.2021.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The recent identifications of a subset of proinflammatory neutrophils, low-density granulocytes, and their ability to readily form neutrophil extracellular traps led to a resurgence of interest in neutrophil dysregulation in the pathogenesis of systemic lupus erythematosus (SLE). This article presents an overview on how neutrophil dysregulation modulates the innate and adaptive immune responses in SLE and their putative roles in disease pathogenesis. The therapeutic potential of targeting this pathogenic process in the treatment of SLE is also discussed.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 10 Center Drive, 12N248C, Bethesda, MD 20892-1930, USA.
| |
Collapse
|
26
|
Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc Natl Acad Sci U S A 2021; 118:2019097118. [PMID: 33397815 DOI: 10.1073/pnas.2019097118] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Photosensitivity to ultraviolet (UV) light affects up to ∼80% of lupus patients. Sunlight exposure can exacerbate local as well as systemic manifestations of lupus, including nephritis, by mechanisms that are poorly understood. Here, we report that acute skin exposure to UV light triggers a neutrophil-dependent injury response in the kidney characterized by upregulated expression of endothelial adhesion molecules as well as inflammatory and injury markers associated with transient proteinuria. We showed that UV light stimulates neutrophil migration not only to the skin but also to the kidney in an IL-17A-dependent manner. Using a photoactivatable lineage tracing approach, we observed that a subset of neutrophils found in the kidney had transited through UV light-exposed skin, suggesting reverse transmigration. Besides being required for the renal induction of genes encoding mediators of inflammation (vcam-1, s100A9, and Il-1b) and injury (lipocalin-2 and kim-1), neutrophils significantly contributed to the kidney type I interferon signature triggered by UV light. Together, these findings demonstrate that neutrophils mediate subclinical renal inflammation and injury following skin exposure to UV light. Of interest, patients with lupus have subpopulations of blood neutrophils and low-density granulocytes with similar phenotypes to reverse transmigrating neutrophils observed in the mice post-UV exposure, suggesting that these cells could have transmigrated from inflamed tissue, such as the skin.
Collapse
|
27
|
Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the Pathogenesis of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Same Foe Different M.O. Front Immunol 2021; 12:649693. [PMID: 33746988 PMCID: PMC7969658 DOI: 10.3389/fimmu.2021.649693] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated neutrophil activation contributes to the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Neutrophil-derived reactive oxygen species (ROS) and granule proteases are implicated in damage to and destruction of host tissues in both conditions (cartilage in RA, vascular tissue in SLE) and also in the pathogenic post-translational modification of DNA and proteins. Neutrophil-derived cytokines and chemokines regulate both the innate and adaptive immune responses in RA and SLE, and neutrophil extracellular traps (NETs) expose nuclear neoepitopes (citrullinated proteins in RA, double-stranded DNA and nuclear proteins in SLE) to the immune system, initiating the production of auto-antibodies (ACPA in RA, anti-dsDNA and anti-acetylated/methylated histones in SLE). Neutrophil apoptosis is dysregulated in both conditions: in RA, delayed apoptosis within synovial joints contributes to chronic inflammation, immune cell recruitment and prolonged release of proteolytic enzymes, whereas in SLE enhanced apoptosis leads to increased apoptotic burden associated with development of anti-nuclear auto-antibodies. An unbalanced energy metabolism in SLE and RA neutrophils contributes to the pathology of both diseases; increased hypoxia and glycolysis in RA drives neutrophil activation and NET production, whereas decreased redox capacity increases ROS-mediated damage in SLE. Neutrophil low-density granulocytes (LDGs), present in high numbers in the blood of both RA and SLE patients, have opposing phenotypes contributing to clinical manifestations of each disease. In this review we will describe the complex and contrasting phenotype of neutrophils and LDGs in RA and SLE and discuss their discrete roles in the pathogenesis of each condition. We will also review our current understanding of transcriptomic and metabolomic regulation of neutrophil phenotype in RA and SLE and discuss opportunities for therapeutic targeting of neutrophil activation in inflammatory auto-immune disease.
Collapse
Affiliation(s)
- Michele Fresneda Alarcon
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Zoe McLaren
- Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom
| | - Helen Louise Wright
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
28
|
Martinez GP, Zabaleta ME, Di Giulio C, Charris JE, Mijares MR. The Role of Chloroquine and Hydroxychloroquine in Immune Regulation and Diseases. Curr Pharm Des 2020; 26:4467-4485. [DOI: 10.2174/1381612826666200707132920] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) are derivatives of the heterocyclic aromatic compound
quinoline. These economical compounds have been used as antimalarial agents for many years. Currently,
they are used as monotherapy or in conjunction with other therapies for the treatment of autoimmune diseases
such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren's syndrome (SS) and antiphospholipid
antibody syndrome (APS). Based on its effects on the modulation of the autophagy process, various
clinical studies suggest that CQ and HCQ could be used in combination with other chemotherapeutics for the
treatment of various types of cancer. Furthermore, the antiviral effects showed against Zika, Chikungunya, and
HIV are due to the annulation of endosomal/lysosomal acidification. Recently, CQ and HCQ were approved for
the U.S. Food and Drug Administration (FDA) for the treatment of infected patients with the coronavirus SARSCoV-
2, causing the disease originated in December 2019, namely COVID-2019. Several mechanisms have been
proposed to explain the pharmacological effects of these drugs: 1) disruption of lysosomal and endosomal pH, 2)
inhibition of protein secretion/expression, 3) inhibition of antigen presentation, 4) decrease of proinflammatory
cytokines, 5) inhibition of autophagy, 6) induction of apoptosis and 7) inhibition of ion channels activation. Thus,
evidence has shown that these structures are leading molecules that can be modified or combined with other
therapeutic agents. In this review, we will discuss the most recent findings in the mechanisms of action of CQ and
HCQ in the immune system, and the use of these antimalarial drugs on diseases.
Collapse
Affiliation(s)
- Gricelis P. Martinez
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Mercedes E. Zabaleta
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Camilo Di Giulio
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| | - Jaime E. Charris
- Organic Synthesis Laboratory, Faculty of Pharmacy, Central University of Venezuela, 47206, Los Chaguaramos 1041-A, Caracas, Venezuela
| | - Michael R. Mijares
- Institute of Immunology, Faculty of Medicine, Central University of Venezuela, 50109, Los Chaguaramos 1050-A, Caracas, Venezuela
| |
Collapse
|
29
|
Huot S, Laflamme C, Fortin PR, Boilard E, Pouliot M. IgG-aggregates rapidly upregulate FcgRI expression at the surface of human neutrophils in a FcgRII-dependent fashion: A crucial role for FcgRI in the generation of reactive oxygen species. FASEB J 2020; 34:15208-15221. [PMID: 32946139 DOI: 10.1096/fj.202001085r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 01/17/2023]
Abstract
Autoimmune complexes are an important feature of several autoimmune diseases such as lupus, as they contribute to tissue damage through the activation of immune cells. Neutrophils, key players in lupus, interact with immune complexes through Fc gamma receptors (FcgR). Incubation of neutrophils with aggregated-IgGs caused degranulation and increased the surface expression of FcgRI within minutes in a concentration-dependent fashion. After 30 minutes, IgG aggregates (1 mg/mL) upregulated FcgRI by 4.95 ± 0.45-fold. FcgRI-positive neutrophils reached 67.24% ± 6.88% on HA-IgGs stimulated neutrophils, from 3.12% ± 1.62% in non-stimulated cells, ranking IgG-aggregates among the most potent known agonists. FcgRIIa, and possibly FcgRIIIa, appeared to mediate this upregulation. Also, FcgRI-dependent signaling proved necessary for reactive oxygen species (ROS) production in response to IgG-aggregates. Finally, combinations of bacterial materials with aggregates dramatically boosted ROS production. This work suggests FcgRI as an essential component in the response of human neutrophils to immune complexes leading to the production of ROS, which may help explain how neutrophils contribute to tissue damage associated with immune complex-associated diseases, such as lupus.
Collapse
Affiliation(s)
- Sandrine Huot
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Cynthia Laflamme
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Paul R Fortin
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Division de Rhumatologie, Département de Médecine, CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Eric Boilard
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| | - Marc Pouliot
- Département de microbiologie et immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
| |
Collapse
|
30
|
Liu P, Li P, Peng Z, Xiang Y, Xia C, Wu J, Yang B, He Z. Predictive value of the neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-neutrophil ratio, and neutrophil-to-monocyte ratio in lupus nephritis. Lupus 2020; 29:1031-1039. [PMID: 32501169 DOI: 10.1177/0961203320929753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective To evaluate the role of neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), platelet-to-neutrophil ratio (PNR), platelet-to-monocyte ratio (PMR), and neutrophil-to-monocyte ratio (NMR) as predictors for lupus nephritis (LN) patients without infection or as biomarkers for distinguishing between infection or flare with LN patients. Methods LN patients were divided into three groups: LN without infection, LN with infection, and LN with flare. A total of 57 healthy subjects were enrolled as controls. The differentiation was analyzed between LN without infection and control group, and LN with infection and LN with flare. Correlations among variables were assessed in the LN group without infection. Receiver operating characteristic curves were constructed in two comparable groups. Results NLR, PLR, and MLR were increased significantly in the LN group without infection as compared with those in healthy controls. NLR (area under the curve (AUC): 0.75) and MLR (AUC: 0.79) were useful for distinguishing between LN patients without infection and healthy subjects. In differentiating LN patients without infection from the controls, optimal cutoffs of NLR and MLR were 3.43 (sensitivity: 45.6%, specificity: 96.5%, and overall accuracy: 68.8%) and 0.24 (sensitivity: 75.0%, specificity: 73.7%, and overall accuracy: 73.6%), respectively. In addition, NLR ( r = 0.322, p = 0.011) and PLR ( r = 0.283, p = 0.026) were positively correlated with CRP. Importantly, NLR and NMR were increased while PNR was decreased in the LN group with infection in comparison with those in the LN group with flare. NLR (AUC: 0.80), NMR (AUC: 0.78), and PNR (AUC: 0.74) were useful in differentiating LN patients with infection and flare, and their optimal cutoffs were 4.02 (sensitivity: 82.6%, specificity: 69.6%, and overall accuracy: 75.5%), 12.19 (sensitivity: 80.4%, specificity: 73.9%, and overall accuracy: 77.5%), and 28.26 (sensitivity: 65.2%, specificity: 76.8%, and overall accuracy: 71.6%), respectively. Conclusions We demonstrated, for the first time, that MLR or NMR had the best accuracy in differentiating LN patients without infection from healthy subjects, or differentiating infection from flare in LN patients, respectively. Our results implied that NLR, MLR, PNR, and NMR may be useful biomarkers in predicting LN.
Collapse
Affiliation(s)
- Peng Liu
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Peiyuan Li
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhong Peng
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Yazhou Xiang
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Chenqi Xia
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Juan Wu
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Bo Yang
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhangxiu He
- Department of Nephrology, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
31
|
Update on the cellular and molecular aspects of lupus nephritis. Clin Immunol 2020; 216:108445. [PMID: 32344016 DOI: 10.1016/j.clim.2020.108445] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Recent progress has highlighted the involvement of a variety of innate and adaptive immune cells in lupus nephritis. These include activated neutrophils producing extracellular chromatin traps that induce type I interferon production and endothelial injury, metabolically-rewired IL-17-producing T-cells causing tissue inflammation, follicular and extra-follicular helper T-cells promoting the maturation of autoantibody-producing B-cells that may also sustain the formation of germinal centers, and alternatively activated monocytes/macrophages participating in tissue repair and remodeling. The role of resident cells such as podocytes and tubular epithelial cells is increasingly recognized in regulating the local immune responses and determining the kidney function and integrity. These findings are corroborated by advanced, high-throughput genomic studies, which have revealed an unprecedented amount of data highlighting the molecular heterogeneity of immune and non-immune cells implicated in lupus kidney disease. Importantly, this research has led to the discovery of putative pathogenic pathways, enabling the rationale design of novel treatments.
Collapse
|
32
|
Gordon RA, Tilstra JS, Marinov A, Nickerson KM, Bastacky SI, Shlomchik MJ. Murine lupus is neutrophil elastase-independent in the MRL.Faslpr model. PLoS One 2020; 15:e0226396. [PMID: 32243431 PMCID: PMC7122749 DOI: 10.1371/journal.pone.0226396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022] Open
Abstract
Loss of tolerance to nuclear antigens and multisystem tissue destruction is a hallmark of systemic lupus erythematosus (SLE). Although the source of autoantigen in lupus remains elusive, a compelling hypothetical source is dead cell debris that drives autoimmune activation. Prior reports suggest that neutrophil extracellular traps (NETs) and their associated death pathway, NETosis, are sources of autoantigen in SLE. However, others and we have shown that inhibition of NETs by targeting the NADPH oxidase complex and peptidylarginine deiminase 4 (PADI4) did not ameliorate disease in spontaneous murine models of SLE. Furthermore, myeloperoxidase and PADI4 deletion did not inhibit induced lupus. Since NET formation may occur independently of any one mediator, to address this controversy, we genetically deleted an additional important mediator of NETs and neutrophil effector function, neutrophil elastase (ELANE), in the MRL.Faslpr model of SLE. ELANE deficiency, and by extension ELANE-dependent NETs, had no effect on SLE nephritis, dermatitis, anti-self response, or immune composition in MRL.Faslpr mice. Taken together with prior data from our group and others, these data further challenge the paradigm that NETs and neutrophils are pathogenic in SLE.
Collapse
Affiliation(s)
- Rachael A. Gordon
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeremy S. Tilstra
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Anthony Marinov
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kevin M. Nickerson
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Sheldon I. Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
33
|
Figgett WA, Monaghan K, Ng M, Alhamdoosh M, Maraskovsky E, Wilson NJ, Hoi AY, Morand EF, Mackay F. Machine learning applied to whole-blood RNA-sequencing data uncovers distinct subsets of patients with systemic lupus erythematosus. Clin Transl Immunology 2019; 8:e01093. [PMID: 31921420 PMCID: PMC6946916 DOI: 10.1002/cti2.1093] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
Objectives Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that is difficult to treat. There is currently no optimal stratification of patients with SLE, and thus, responses to available treatments are unpredictable. Here, we developed a new stratification scheme for patients with SLE, based on the computational analysis of patients’ whole‐blood transcriptomes. Methods We applied machine learning approaches to RNA‐sequencing (RNA‐seq) data sets to stratify patients with SLE into four distinct clusters based on their gene expression profiles. A meta‐analysis on three recently published whole‐blood RNA‐seq data sets was carried out, and an additional similar data set of 30 patients with SLE and 29 healthy donors was incorporated in this study; a total of 161 patients with SLE and 57 healthy donors were analysed. Results Examination of SLE clusters, as opposed to unstratified SLE patients, revealed underappreciated differences in the pattern of expression of disease‐related genes relative to clinical presentation. Moreover, gene signatures correlated with flare activity were successfully identified. Conclusion Given that SLE disease heterogeneity is a key challenge hindering the design of optimal clinical trials and the adequate management of patients, our approach opens a new possible avenue addressing this limitation via a greater understanding of SLE heterogeneity in humans. Stratification of patients based on gene expression signatures may be a valuable strategy allowing the identification of separate molecular mechanisms underpinning disease in SLE. Further, this approach may have a use in understanding the variability in responsiveness to therapeutics, thereby improving the design of clinical trials and advancing personalised therapy.
Collapse
Affiliation(s)
- William A Figgett
- Department of Microbiology and Immunology University of Melbourne at the Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia
| | | | | | | | | | | | - Alberta Y Hoi
- Centre for Inflammatory Diseases School of Clinical Sciences Monash University Clayton VIC Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases School of Clinical Sciences Monash University Clayton VIC Australia
| | - Fabienne Mackay
- Department of Microbiology and Immunology University of Melbourne at the Peter Doherty Institute for Infection and Immunity Melbourne VIC Australia.,Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| |
Collapse
|
34
|
Granger V, Peyneau M, Chollet-Martin S, de Chaisemartin L. Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work. Front Immunol 2019; 10:2824. [PMID: 31849989 PMCID: PMC6901596 DOI: 10.3389/fimmu.2019.02824] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) have been initially described as main actors in host defense owing to their ability to immobilize and sometimes kill microorganisms. Subsequent studies have demonstrated their implication in the pathophysiology of various diseases, due to the toxic effects of their main components on surrounding tissues. Several distinct NETosis pathways have been described in response to various triggers. Among these triggers, IgG immune complexes (IC) play an important role since they induce robust NET release upon binding to activating FcγRs on neutrophils. Few in vitro studies have documented the mechanisms of IC-induced NET release and evidence about the partners involved is controversial. In vivo, animal models and clinical studies have strongly suggested the importance of IgG IC-induced NET release for autoimmunity and anaphylaxis. In this review, we will focus on two autoimmune diseases in which NETs are undoubtedly major players, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We will also discuss anaphylaxis as another example of disease recently associated with IC-induced NET release. Understanding the role of IC-induced NETs in these settings will pave the way for new diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Vanessa Granger
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Marine Peyneau
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Luc de Chaisemartin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
35
|
Caster DJ, Powell DW. Utilization of Biomarkers in Lupus Nephritis. Adv Chronic Kidney Dis 2019; 26:351-359. [PMID: 31733719 DOI: 10.1053/j.ackd.2019.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/22/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Lupus nephritis (LN) occurs in up to 60% of SLE patients, and is a leading cause of disability and death. Current treatment of LN consists of a combination of high dose corticosteroids that non-specifically decrease inflammation and cytotoxic medications that reduce auto-antibody production. That combination of therapy is associated with significant side effects while remission rates remain inadequate. Since the introduction of biologics into the pharmacological armamentarium, there has been hope for less toxic and more effective therapies for LN. Unfortunately, after multiple clinical trials, no biologic has improved efficacy over standard of care therapies for LN. This is likely, in part, due to disease heterogeneity. The utilization of biomarkers in LN may provide a way to stratify patients and guide therapeutic options. In this review, we summarize traditional and novel LN biomarkers and discuss how they may be used to diagnose, stratify, and guide therapy in patients with LN, bringing precision medicine to the forefront of LN therapy.
Collapse
|