1
|
Vallance P, Kidgell DJ, Vicenzino B, Frazer AK, Garofolini A, Malliaras P. The Functional Organization of Corticomotor Neurons Within the Motor Cortex Differs Among Basketball and Volleyball Athletes With Patellar Tendinopathy Compared to Asymptomatic Controls. Scand J Med Sci Sports 2024; 34:e14726. [PMID: 39263841 DOI: 10.1111/sms.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/04/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
Patellar tendinopathy (PT) typically affects jumping-sport athletes with functional impairments frequently observed. Alterations to the functional organization of corticomotor neurons within the motor cortex that project to working muscles are evident in some musculoskeletal conditions and linked to functional impairments. We aimed to determine if functional organization of corticomotor neuron projections differs between athletes with PT and asymptomatic controls, and if organization is associated with neuromuscular control. We used a cross-sectional design, and the setting was Monash Biomedical Imaging. Basketball and volleyball athletes with (n = 8) and without PT (n = 8) completed knee extension and ankle dorsiflexion force matching tasks while undergoing fMRI. We determined functional organization via identification of the location of peak corticomotor neuron activation during respective tasks (expressed in X, Y, and Z coordinates) and calculated force matching accuracy for both tasks to quantify neuromuscular control. We observed significant interactions between group and coordinate plane for functional organization of corticomotor projections to knee extensors (p < 0.001) and ankle dorsiflexors (p = 0.016). Compared to controls, PT group peak corticomotor activation during the knee extension task was 9.6 mm medial (p < 0.001) and 5.2 mm posterior (p = 0.036), and during the ankle dorsiflexion task 8.2 mm inferior (p = 0.024). In the PT group, more posterior Y coordinate peak activation location during the knee extension task was associated with greater task accuracy (r = 0.749, p = 0.034). Functional organization of corticomotor neurons differed in jumping athletes with PT compared to controls. Links between functional organization and neuromuscular control in the PT group suggest organizational differences may be relevant to knee extension neuromuscular control preservation.
Collapse
Affiliation(s)
- Patrick Vallance
- Department of Physiotherapy, Podiatry, Prosthetics and Orthotics, School of Allied Health, Human Service and Sport, La Trobe University, Melbourne, Victoria, Australia
- Department of Physiotherapy, Monash Musculoskeletal Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
- Department of Physiotherapy, Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Dawson J Kidgell
- Department of Physiotherapy, Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Bill Vicenzino
- The University of Queensland, School of Health and Rehabilitation Sciences, Brisbane, Queensland, Australia
| | - Ashlyn K Frazer
- Department of Physiotherapy, Monash Exercise Neuroplasticity Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Alessandro Garofolini
- Institute for Health and Sport (IHES), Victoria University, Melbourne, Victoria, Australia
| | - Peter Malliaras
- Department of Physiotherapy, Monash Musculoskeletal Research Unit, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Ippersiel P, Preuss R, Kim B, Giannini C, Robbins SM. Pain catastrophizing and trunk co-contraction during lifting in people with and without chronic low back pain: A cross sectional study. Eur J Pain 2024. [PMID: 39180392 DOI: 10.1002/ejp.4717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Trunk co-contraction during lifting may reflect a guarded motor response to a threatening task. This work estimated the impact of pain catastrophizing on trunk co-contraction during lifting, in people with and without low back pain. METHODS Adults with high pain catastrophizing (back pain: n = 29, healthy: n = 7) and low pain catastrophizing (back pain: n = 20, healthy: n = 11), performed 10 repetitions of a lifting task. Electromyography data of rectus abdominis, erector spinae and external oblique muscles were collected, bilaterally. Co-contraction indices were determined for rectus abdominis/erector spinae and external oblique/erector spinae pairings, bilaterally. Pain catastrophizing was measured using the pain catastrophizing scale and task-specific fear using the Photograph series of daily activities scale. Three-way mixed ANOVAs tested the effects of group (back pain vs. healthy), pain catastrophizing (high vs. low), lifting phase (lifting vs. replacing) and their interactions. RESULTS There were no main effects of pain catastrophizing, lifting phase, nor any interactions (p > 0.05). Group effects revealed greater co-contraction for bilateral erector spinae/rectus abdominis pairings (but not erector spinae-external oblique pairings) in people with back pain, compared to healthy participants, independent of pain catastrophizing and lifting phase (p < 0.05). Spearman correlations associated greater task-specific fear and greater erector spinae-left external oblique co-contraction, only in people with back pain (p < 0.05). CONCLUSIONS Greater co-contraction in the back pain group occurred independent of pain catastrophizing, as measured with a general questionnaire. A task-specific measure of threat may be more sensitive to detecting relationships between threat and co-contraction. SIGNIFICANCE STATEMENT This work contributes evidence that people with back pain commonly exhibit trunk co-contraction when lifting. The lack of a relationship between pain catastrophizing and trunk co-contraction, however, challenges evidence linking psychological factors and guarded motor behaviour in this group. Together, this suggests that other factors may be stronger determinants of co-contraction in people with LBP or that a general construct like pain catastrophizing may not accurately represent this relationship.
Collapse
Affiliation(s)
- Patrick Ippersiel
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation, Lethbridge-Layton-Mackay Rehabilitation Centre, Montreal, Quebec, Canada
| | - Richard Preuss
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation, Lethbridge-Layton-Mackay Rehabilitation Centre, Montreal, Quebec, Canada
| | - Byungjin Kim
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Cristina Giannini
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Shawn M Robbins
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
- Centre for Interdisciplinary Research in Rehabilitation, Lethbridge-Layton-Mackay Rehabilitation Centre, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Shraim MA, Massé-Alarie H, Farrell MJ, Cavaleri R, Loggia ML, Hodges PW. Neuroinflammatory activation in sensory and motor regions of the cortex is related to sensorimotor function in individuals with low back pain maintained by nociplastic mechanisms: A preliminary proof-of-concept study. Eur J Pain 2024. [PMID: 39007713 DOI: 10.1002/ejp.2313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Chronic pain involves communication between neural and immune systems. Recent data suggest localization of glial (brain immune cells) activation to the sensorimotor regions of the brain cortex (S1/M1) in chronic low back pain (LBP). As glia perform diverse functions that impact neural function, activation might contribute to sensorimotor changes, particularly in LBP maintained by increased nervous system sensitivity (i.e., nociplastic pain). This preliminary proof-of-concept study aimed to: (i) compare evidence of neuroinflammatory activation in S1/M1 between individuals with and without LBP (and between nociceptive and nociplastic LBP phenotypes), and (ii) evaluate relationships between neuroinflammatory activation and sensorimotor function. METHODS Simultaneous PET-fMRI measured neuroinflammatory activation in functionally defined S1/M1 in pain-free individuals (n = 8) and individuals with chronic LBP (n = 9; nociceptive: n = 4, nociplastic: n = 5). Regions of S1/M1 related to the back were identified using fMRI during motor tasks and thermal stimuli. Sensorimotor measures included single and paired-pulse transcranial magnetic stimulation (TMS) and quantitative sensory testing (QST). Sleep, depression, disability and pain questionnaires were administered. RESULTS Neuroinflammatory activation was greater in the lower back cortical representation of S1/M1 of the nociplastic LBP group than both nociceptive LBP and pain-free groups. Neuroinflammatory activation in S1/M1 was positively correlated with sensitivity to hot (r = 0.52) and cold (r = 0.55) pain stimuli, poor sleep, depression, disability and BMI, and negatively correlated with intracortical facilitation (r = -0.41). CONCLUSION This preliminary proof-of-concept study suggests that neuroinflammation in back regions of S1/M1 in individuals with nociplastic LBP could plausibly explain some characteristic features of this LBP phenotype. SIGNIFICANCE STATEMENT Neuroinflammatory activation localized to sensorimotor areas of the brain in individuals with nociplastic pain might contribute to changes in sensory and motor function and aspects of central sensitization. If cause-effect relationships are established in longitudinal studies, this may direct development of therapies that target neuroinflammatory activation.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
- Centre Interdisciplinaire de Recherche en réadaptation et Integration Sociale (CIRRIS), Université Laval, Québec City, Québec, Canada
| | - Michael J Farrell
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Rocco Cavaleri
- Brain Stimulation and Rehabilitation Lab, Western Sydney University, School of Health Sciences, Sydney, New South Wales, Australia
| | - Marco L Loggia
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul W Hodges
- The University of Queensland, School of Health & Rehabilitation Sciences, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Sornkaew K, Thu KW, Silfies SP, Klomjai W, Wattananon P. Effects of combined anodal transcranial direct current stimulation and motor control exercise on cortical topography and muscle activation in individuals with chronic low back pain: A randomized controlled study. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2024; 29:e2111. [PMID: 39014876 DOI: 10.1002/pri.2111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Aberrant movement in chronic low back pain (CLBP) is associated with a deficit in the lumbar multifidus (LM) and changes in cortical topography. Anodal transcranial direct current stimulation (a-tDCS) can be used to enhance cortical excitability by priming the neuromuscular system for motor control exercise (MCE), thereby enhancing LM activation and movement control. This study aimed to determine the effects of a 6-week MCE program combined with a-tDCS on cortical topography, LM activation, movement patterns, and clinical outcomes in individuals with CLBP. METHODS Twenty-two individuals with CLBP were randomly allocated to the a-tDCS group (a-tDCS; n = 12) or sham-tDCS group (s-tDCS; n = 10). Both groups received 20 min of tDCS followed by 30 min of MCE. The LM and erector spinae (ES) cortical topography, LM activation, movement control battery tests, and clinical outcomes (disability and quality of life) were measured pre- and post-intervention. RESULTS Significant interaction (group × time; p < 0.01) was found in the distance between LM and ES cortical locations. The a-tDCS group demonstrated significantly fewer discrete peaks (p < 0.05) in both ES and LM and significant improvements (p < 0.05) in clinical outcomes post-intervention. The s-tDCS group demonstrated a significant increase (p < 0.05) in the number of discrete peaks in the LM cortical topography. No significant changes (p > 0.05) in LM activation were observed in either group; however, both groups demonstrated improved movement patterns. DISCUSSION Our findings suggest that combined a-tDCS with MCE can separate LM and ES locations over time while s-tDCS (MCE alone) reduces the distance. Our study did not find superior benefits of adding a-tDCS before MCE for LM activation, movement patterns, or clinical outcomes.
Collapse
Affiliation(s)
- Kanphajee Sornkaew
- Spine Biomechanics Lab, Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Khin Win Thu
- Spine Biomechanics Lab, Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Sheri P Silfies
- Applied Neuromechanics Lab, Arnold School of Public Health, University of South Carolina, Public Health Research Center, Columbia, South Carolina, USA
| | - Wanalee Klomjai
- Neuro Electrical Stimulation Lab (NeuE), Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Peemongkon Wattananon
- Spine Biomechanics Lab, Faculty of Physical Therapy, Mahidol University, Salaya, Nakhon Pathom, Thailand
| |
Collapse
|
5
|
Klerx SP, Bruijn SM, Coppieters MW, Kiers H, Twisk JWR, Pool-Goudzwaard AL. Differences in the organization of the primary motor cortex in people with and without low back pain and associations with motor control and sensory tests. Exp Brain Res 2024; 242:1609-1622. [PMID: 38767666 PMCID: PMC11208231 DOI: 10.1007/s00221-024-06844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Differences in organization of the primary motor cortex and altered trunk motor control (sensing, processing and motor output) have been reported in people with low back pain (LBP). Little is known to what extent these differences are related. We investigated differences in 1) organization of the primary motor cortex and 2) motor and sensory tests between people with and without LBP, and 3) investigated associations between the organization of the primary motor cortex and motor and sensory tests. We conducted a case-control study in people with (N=25) and without (N=25) LBP. The organization of the primary motor cortex (Center of Gravity (CoG) and Area of the cortical representation of trunk muscles) was assessed using neuronavigated transcranial magnetic stimulation, based on individual MRIs. Sensory tests (quantitative sensory testing, graphaesthesia, two-point discrimination threshold) and a motor test (spiral-tracking test) were assessed. Participants with LBP had a more lateral and lower location of the CoG and a higher temporal summation of pain. For all participants combined, better vibration test scores were associated with a more anterior, lateral, and lower CoG and a better two-point discrimination threshold was associated with a lower CoG. A small subset of variables showed significance. Although this aligns with the concept of altered organization of the primary motor cortex in LBP, there is no strong evidence of the association between altered organization of the primary motor cortex and motor and sensory test performance in LBP. Focusing on subgroup analyses regarding pain duration can be a topic for future research.
Collapse
Affiliation(s)
- Sabrine P Klerx
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
- Research Group Lifestyle and Health, HU University of Applied Sciences, Utrecht, The Netherlands.
| | - Sjoerd M Bruijn
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Institute of Brain and Behaviour , Amsterdam, The Netherlands
| | - Michel W Coppieters
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- School of Health Sciences and Social Work, Menzies Health Institute Queensland, Brisbane and Gold Coast, Griffith University, Brisbane and Gold Coast, Australia
| | - Henri Kiers
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Research Group Lifestyle and Health, HU University of Applied Sciences, Utrecht, The Netherlands
- Research Centre for Digital Business and Media, HU University of Applied Sciences, Utrecht, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Data Science, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Annelies L Pool-Goudzwaard
- Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- SOMT University of Physiotherapy, Amersfoort, The Netherlands
| |
Collapse
|
6
|
Gilliam JR, Mandal D, Wattananon P, Banerjee S, Herter TM, Silfies SP. Vibration-Induced Alteration in Trunk Extensor Muscle Proprioception as a Model for Impaired Trunk Control in Low Back Pain. Brain Sci 2024; 14:657. [PMID: 39061397 PMCID: PMC11274553 DOI: 10.3390/brainsci14070657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
This study examined the impact of personalizing muscle vibration parameters on trunk control. We assessed how altered trunk extensor muscle (TEM) proprioception affects seated trunk control in healthy controls (HCs). To explore the link between altered TEM proprioception and impaired trunk control in chronic low back pain (cLBP), we performed equivalence testing between HCs undergoing TEM vibration and cLBP without vibration. Twenty HCs performed active joint reposition error (AJRE) testing to determine personalized vibration parameters. Each participant maintained balance on an unstable chair with eyes open and closed, with and without TEM vibration. We compared trunk control between HCs and twenty age- and sex-matched cLBP participants, using mean velocity and 95% confidence ellipse area of center-of-pressure changes to quantify trunk postural control. Equivalence was examined by comparing mean difference scores to minimal detectable change values and calculating between-group effect sizes. Personalized vibration parameters led to larger lumbopelvic repositioning errors (d = 0.89) than any single vibration frequency (d = 0.31-0.36). In healthy adults with no back pain, vision had large effects on postural control (ηp2 = 0.604-0.842), but TEM vibration had no significant effects (p > 0.105) or interactions with vision (p > 0.423). Between-group effect sizes (d = 0.32-0.51) exceeded our threshold for performance equivalence (d < 0.2). Muscle vibration altered position sense during AJRE testing, and personalizing parameters amplified this effect. However, TEM vibration had minimal impact on seated trunk postural control in adults with no back pain and did not lead to performance degradation comparable to that in cLBP.
Collapse
Affiliation(s)
- John R. Gilliam
- Applied Neuromechanics Lab, Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA;
| | - Debdyuti Mandal
- Integrated Material Assessment and Predictive Simulation Laboratory (i-MAPS), Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA; (D.M.); (S.B.)
| | - Peemongkon Wattananon
- Motor Control and Neural Plasticity Laboratory, Faculty of Physical Therapy, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Sourav Banerjee
- Integrated Material Assessment and Predictive Simulation Laboratory (i-MAPS), Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA; (D.M.); (S.B.)
| | - Troy M. Herter
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA;
| | - Sheri P. Silfies
- Applied Neuromechanics Lab, Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
7
|
Chowdhury NS, Taseen K, Chiang A, Chang WJ, Millard SK, Seminowicz DA, Schabrun SM. A 5-day course of rTMS before pain onset ameliorates future pain and increases sensorimotor peak alpha frequency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598596. [PMID: 38915700 PMCID: PMC11195234 DOI: 10.1101/2024.06.11.598596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has shown promise as an intervention for pain. An unexplored research question is whether the delivery of rTMS prior to pain onset might protect against a future episode of prolonged pain. The present study aimed to determine i) whether 5 consecutive days of rTMS delivered prior to experimentally-induced prolonged jaw pain could reduce future pain intensity and ii) whether any effects of rTMS on pain were mediated by changes in corticomotor excitability (CME) and/or sensorimotor peak alpha frequency (PAF). On each day from Day 0-4, forty healthy individuals received a single session of active (n = 21) or sham (n = 19) rTMS over the left primary motor cortex. PAF and CME were assessed on Day 0 (before rTMS) and Day 4 (after rTMS). Prolonged pain was induced via intramuscular injection of nerve growth factor (NGF) in the right masseter muscle after the final rTMS session. From Days 5-25, participants completed twice-daily electronic dairies including pain on chewing and yawning (primary outcomes), as well as pain during other activities (e.g. talking), functional limitation in jaw function and muscle soreness (secondary outcomes). Compared to sham, individuals who received active rTMS subsequently experienced lower pain on chewing and yawning. Although active rTMS increased PAF, the effects of rTMS on pain were not mediated by changes in PAF or CME. This study is the first to show that rTMS delivered prior to pain onset can protect against future pain and associated functional impairment. Thus, rTMS may hold promise as a prophylactic intervention for persistent pain.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Khandoker Taseen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph's Healthcare, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| |
Collapse
|
8
|
Zou J, Hao S. Exercise-induced neuroplasticity: a new perspective on rehabilitation for chronic low back pain. Front Mol Neurosci 2024; 17:1407445. [PMID: 38912176 PMCID: PMC11191426 DOI: 10.3389/fnmol.2024.1407445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Chronic low back pain patients often experience recurrent episodes due to various peripheral and central factors, leading to physical and mental impairments, affecting their daily life and work, and increasing the healthcare burden. With the continuous advancement of neuropathological research, changes in brain structure and function in chronic low back pain patients have been revealed. Neuroplasticity is an important mechanism of self-regulation in the brain and plays a key role in neural injury repair. Targeting neuroplasticity and regulating the central nervous system to improve functional impairments has become a research focus in rehabilitation medicine. Recent studies have shown that exercise can have beneficial effects on the body, such as improving cognition, combating depression, and enhancing athletic performance. Exercise-induced neuroplasticity may be a potential mechanism through which exercise affects the brain. This article systematically introduces the theory of exercise-induced neuroplasticity, explores the central effects mechanism of exercise on patients with chronic low back pain, and further looks forward to new directions in targeted neuroplasticity-based rehabilitation treatment for chronic low back pain.
Collapse
Affiliation(s)
- Jianpeng Zou
- Department of Rehabilitation and Physiotherapy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shijie Hao
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Li X, Lu S, Ge L, Li Z, Chen R, Zu Y, Fu R, Li L, Wang C. Repetitive Transcranial Magnetic Stimulation Combined with Sling Exercise Modulates the Motor Cortex in Patients with Chronic Low Back Pain. Neuroscience 2024; 545:196-206. [PMID: 38518924 DOI: 10.1016/j.neuroscience.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/01/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The study aims to explore the effects of combining repetitive transcranial magnetic stimulation (rTMS) with sling exercise (SE) intervention in patients with chronic low back pain (CLBP). This approach aims to directly stimulate brain circuits and indirectly activate trunk muscles to influence motor cortex plasticity. However, the impact of this combined intervention on motor cortex organization and clinical symptom improvement is still unclear, as well as whether it is more effective than either intervention alone. To investigate this, patients with CLBP were randomly assigned to three groups: SE/rTMS, rTMS alone, and SE alone. Motor cortical organization, numerical pain rating scale (NPRS), Oswestry Disability Index (ODI), and postural balance stability were measured before and after a 2-week intervention. The results showed statistically significant differences in the representative location of multifidus on the left hemispheres, as well as in NPRS and ODI scores, in the combined SE/rTMS group after the intervention. When compared to the other two groups, the combined SE/rTMS group demonstrated significantly different motor cortical organization, sway area, and path range from the rTMS alone group, but not from the SE alone group. These findings highlight the potential benefits of a combined SE/rTMS intervention in terms of clinical outcomes and neuroadaptive changes compared to rTMS alone. However, there was no significant difference between the combined intervention and SE alone. Therefore, our research does not support the use of rTMS as a standalone treatment for CLBP. Our study contributed to optimizing treatment strategies for individuals suffering from CLBP.
Collapse
Affiliation(s)
- Xin Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Songwei Lu
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen 9713, the Netherlands
| | - Le Ge
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Zhicheng Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Rong Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Yao Zu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Ruochen Fu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, PR China.
| |
Collapse
|
10
|
Ho RL, Park J, Wang WE, Thomas JS, Cruz-Almeida Y, Coombes SA. Lower individual alpha frequency in individuals with chronic low back pain and fear of movement. Pain 2024; 165:1033-1043. [PMID: 38112575 PMCID: PMC11018483 DOI: 10.1097/j.pain.0000000000003098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 12/21/2023]
Abstract
ABSTRACT Significant progress has been made in linking measures of individual alpha frequency (IAF) and pain. A lower IAF has been associated with chronic neuropathic pain and with an increased sensitivity to pain in healthy young adults. However, the translation of these findings to chronic low back pain (cLBP) are sparse and inconsistent. To address this limitation, we assessed IAFs in a cohort of 70 individuals with cLBP, implemented 3 different IAF calculations, and separated cLBP subjects based on psychological variables. We hypothesized that a higher fear movement in cLBP is associated with a lower IAF at rest. A total of 10 minutes of resting data were collected from 128 electroencephalography channels. Our results offer 3 novel contributions to the literature. First, the high fear group had a significantly lower peak alpha frequency. The high fear group also reported higher pain and higher disability. Second, we calculated individual alpha frequency using 3 different but established methods; the effect of fear on individual alpha frequency was robust across all methods. Third, fear of movement, pain intensity, and disability highly correlated with each other and together significantly predicted IAF. Our findings are the first to show that individuals with cLBP and high fear have a lower peak alpha frequency.
Collapse
Affiliation(s)
- Rachel L.M. Ho
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - Jinhan Park
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - Wei-en Wang
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| | - James S. Thomas
- Motor Control Lab, Department of Physical Therapy, Virginia Commonwealth University
| | - Yenisel Cruz-Almeida
- Pain Research and Intervention Center of Excellence, Department of Community Dentistry, University of Florida
| | - Stephen A. Coombes
- Laboratory for Rehabilitative Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida
| |
Collapse
|
11
|
Murray GM, Sessle BJ. Pain-sensorimotor interactions: New perspectives and a new model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100150. [PMID: 38327725 PMCID: PMC10847382 DOI: 10.1016/j.ynpai.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/25/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
How pain and sensorimotor behavior interact has been the subject of research and debate for many decades. This article reviews theories bearing on pain-sensorimotor interactions and considers their strengths and limitations in the light of findings from experimental and clinical studies of pain-sensorimotor interactions in the spinal and craniofacial sensorimotor systems. A strength of recent theories is that they have incorporated concepts and features missing from earlier theories to account for the role of the sensory-discriminative, motivational-affective, and cognitive-evaluative dimensions of pain in pain-sensorimotor interactions. Findings acquired since the formulation of these recent theories indicate that additional features need to be considered to provide a more comprehensive conceptualization of pain-sensorimotor interactions. These features include biopsychosocial influences that range from biological factors such as genetics and epigenetics to psychological factors and social factors encompassing environmental and cultural influences. Also needing consideration is a mechanistic framework that includes other biological factors reflecting nociceptive processes and glioplastic and neuroplastic changes in sensorimotor and related brain and spinal cord circuits in acute or chronic pain conditions. The literature reviewed and the limitations of previous theories bearing on pain-sensorimotor interactions have led us to provide new perspectives on these interactions, and this has prompted our development of a new concept, the Theory of Pain-Sensorimotor Interactions (TOPSMI) that we suggest gives a more comprehensive framework to consider the interactions and their complexity. This theory states that pain is associated with plastic changes in the central nervous system (CNS) that lead to an activation pattern of motor units that contributes to the individual's adaptive sensorimotor behavior. This activation pattern takes account of the biological, psychological, and social influences on the musculoskeletal tissues involved in sensorimotor behavior and on the plastic changes and the experience of pain in that individual. The pattern is normally optimized in terms of biomechanical advantage and metabolic cost related to the features of the individual's musculoskeletal tissues and aims to minimize pain and any associated sensorimotor changes, and thereby maintain homeostasis. However, adverse biopsychosocial factors and their interactions may result in plastic CNS changes leading to less optimal, even maladaptive, sensorimotor changes producing motor unit activation patterns associated with the development of further pain. This more comprehensive theory points towards customized treatment strategies, in line with the management approaches to pain proposed in the biopsychosocial model of pain.
Collapse
Affiliation(s)
- Greg M. Murray
- Discipline of Restorative and Reconstructive Dentistry, Sydney School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Darcy Road, Westmead, NSW 2145, Australia
| | - Barry J. Sessle
- Faculty of Dentistry and Temerty Faculty of Medicine Department of Physiology, and Centre for the Study of Pain, University of Toronto, 124 Edward St, Toronto, ON M5G 1G6, Canada
| |
Collapse
|
12
|
Tieppo Francio V, Westerhaus BD, Carayannopoulos AG, Sayed D. Multifidus dysfunction and restorative neurostimulation: a scoping review. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:1341-1354. [PMID: 37439698 PMCID: PMC10690869 DOI: 10.1093/pm/pnad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
OBJECTIVE Chronic low back pain (CLBP) is multifactorial in nature, with recent research highlighting the role of multifidus dysfunction in a subset of nonspecific CLBP. This review aimed to provide a foundational reference that elucidates the pathophysiological cascade of multifidus dysfunction, how it contrasts with other CLBP etiologies and the role of restorative neurostimulation. METHODS A scoping review of the literature. RESULTS In total, 194 articles were included, and findings were presented to highlight emerging principles related to multifidus dysfunction and restorative neurostimulation. Multifidus dysfunction is diagnosed by a history of mechanical, axial, nociceptive CLBP and exam demonstrating functional lumbar instability, which differs from other structural etiologies. Diagnostic images may be used to grade multifidus atrophy and assess other structural pathologies. While various treatments exist for CLBP, restorative neurostimulation distinguishes itself from traditional neurostimulation in a way that treats a different etiology, targets a different anatomical site, and has a distinctive mechanism of action. CONCLUSIONS Multifidus dysfunction has been proposed to result from loss of neuromuscular control, which may manifest clinically as muscle inhibition resulting in altered movement patterns. Over time, this cycle may result in potential atrophy, degeneration and CLBP. Restorative neurostimulation, a novel implantable neurostimulator system, stimulates the efferent lumbar medial branch nerve to elicit repetitive multifidus contractions. This intervention aims to interrupt the cycle of dysfunction and normalize multifidus activity incrementally, potentially restoring neuromuscular control. Restorative neurostimulation has been shown to reduce pain and disability in CLBP, improve quality of life and reduce health care expenditures.
Collapse
Affiliation(s)
- Vinicius Tieppo Francio
- Department of Physical Medicine & Rehabilitation, The University of Kansas Medical Center, Kansas City, KS 66160, United States
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Benjamin D Westerhaus
- Cantor Spine Institute at the Paley Orthopedic & Spine Institute, West Palm Beach, FL 33407, United States
| | - Alexios G Carayannopoulos
- Department of Neurosurgery and Neurology, Warren Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Dawood Sayed
- Department of Anesthesiology and Pain Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| |
Collapse
|
13
|
Matheve T, Hodges P, Danneels L. The Role of Back Muscle Dysfunctions in Chronic Low Back Pain: State-of-the-Art and Clinical Implications. J Clin Med 2023; 12:5510. [PMID: 37685576 PMCID: PMC10487902 DOI: 10.3390/jcm12175510] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Changes in back muscle function and structure are highly prevalent in patients with chronic low back pain (CLBP). Since large heterogeneity in clinical presentation and back muscle dysfunctions exists within this population, the potential role of back muscle dysfunctions in the persistence of low back pain differs between individuals. Consequently, interventions should be tailored to the individual patient and be based on a thorough clinical examination taking into account the multidimensional nature of CLBP. Considering the complexity of this process, we will provide a state-of-the-art update on back muscle dysfunctions in patients with CLBP and their implications for treatment. To this end, we will first give an overview of (1) dysfunctions in back muscle structure and function, (2) the potential of exercise therapy to address these dysfunctions, and (3) the relationship between changes in back muscle dysfunctions and clinical parameters. In a second part, we will describe a framework for an individualised approach for back muscle training in patients with CLBP.
Collapse
Affiliation(s)
- Thomas Matheve
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Ghent University, 9000 Gent, Belgium;
- REVAL—Rehabilitation Research Center, Faculty of Rehabilitation Sciences, UHasselt, 3500 Diepenbeek, Belgium
| | - Paul Hodges
- NHMRC—Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, The University of Queensland, Brisbane 4072, Australia;
| | - Lieven Danneels
- Spine, Head and Pain Research Unit Ghent, Department of Rehabilitation Sciences, Ghent University, 9000 Gent, Belgium;
| |
Collapse
|
14
|
Desmons M, Theberge M, Mercier C, Massé-Alarie H. Contribution of neural circuits tested by transcranial magnetic stimulation in corticomotor control of low back muscle: a systematic review. Front Neurosci 2023; 17:1180816. [PMID: 37304019 PMCID: PMC10247989 DOI: 10.3389/fnins.2023.1180816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS) is widely used to investigate central nervous system mechanisms underlying motor control. Despite thousands of TMS studies on neurophysiological underpinnings of corticomotor control, a large majority of studies have focused on distal muscles, and little is known about axial muscles (e.g., low back muscles). Yet, differences between corticomotor control of low back and distal muscles (e.g., gross vs. fine motor control) suggest differences in the neural circuits involved. This systematic review of the literature aims at detailing the organisation and neural circuitry underlying corticomotor control of low back muscles tested with TMS in healthy humans. Methods The literature search was performed in four databases (CINAHL, Embase, Medline (Ovid) and Web of science) up to May 2022. Included studies had to use TMS in combination with EMG recording of paraspinal muscles (between T12 and L5) in healthy participants. Weighted average was used to synthesise quantitative study results. Results Forty-four articles met the selection criteria. TMS studies of low back muscles provided consistent evidence of contralateral and ipsilateral motor evoked potentials (with longer ipsilateral latencies) as well as of short intracortical inhibition/facilitation. However, few or no studies using other paired pulse protocols were found (e.g., long intracortical inhibition, interhemispheric inhibition). In addition, no study explored the interaction between different cortical areas using dual TMS coil protocol (e.g., between primary motor cortex and supplementary motor area). Discussion Corticomotor control of low back muscles are distinct from hand muscles. Our main findings suggest: (i) bilateral projections from each single primary motor cortex, for which contralateral and ipsilateral tracts are probably of different nature (contra: monosynaptic; ipsi: oligo/polysynaptic) and (ii) the presence of intracortical inhibitory and excitatory circuits in M1 influencing the excitability of the contralateral corticospinal cells projecting to low back muscles. Understanding of these mechanisms are important for improving the understanding of neuromuscular function of low back muscles and to improve the management of clinical populations (e.g., low back pain, stroke).
Collapse
Affiliation(s)
- Mikaël Desmons
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Michael Theberge
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
| | - Catherine Mercier
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| | - Hugo Massé-Alarie
- Center for Interdisciplinary Research in Rehabilitation and Social Integration (Cirris), CIUSSS de la Capitale-Nationale, Quebec, QC, Canada
- Rehabilitation Department, Université Laval, Quebec, QC, Canada
| |
Collapse
|
15
|
Shraim MA, Massé-Alarie H, Salomoni SE, Hodges PW. The effect of skilled motor training on corticomotor control of back muscles in different presentations of low back pain. J Electromyogr Kinesiol 2023; 71:102782. [PMID: 37290203 DOI: 10.1016/j.jelekin.2023.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has revealed differences in the motor cortex (M1) between people with and without low back pain (LBP). There is potential to reverse these changes using motor skill training, but it remains unclear whether changes can be induced in people with LBP or whether this differs between LBP presentations. This study (1) compared TMS measures of M1 (single and paired-pulse) and performance of a motor task (lumbopelvic tilting) between individuals with LBP of predominant nociceptive (n = 9) or nociplastic presentation (n = 9) and pain-free individuals (n = 16); (2) compared these measures pre- and post-training; and (3) explored correlations between TMS measures, motor performance, and clinical features. TMS measures did not differ between groups at baseline. The nociplastic group undershot the target in the motor task. Despite improved motor performance for all groups, only MEP amplitudes increased across the recruitment curve and only for the pain-free and nociplastic groups. TMS measures did not correlate with motor performance or clinical features. Some elements of motor task performance and changes in corticomotor excitability differed between LBP groups. Absence of changes in intra-cortical TMS measures suggests regions other than M1 are likely to be involved in skill learning of back muscles.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia; Centre interdisciplinaire de recherche en réadaptation et integration sociale (CIRRIS), Université Laval, Québec, QC G1V 0A6, Canada
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD 4072, Australia.
| |
Collapse
|
16
|
Chowdhury NS, Skippen P, Si E, Chiang AKI, Millard SK, Furman AJ, Chen S, Schabrun SM, Seminowicz DA. The reliability of two prospective cortical biomarkers for pain: EEG peak alpha frequency and TMS corticomotor excitability. J Neurosci Methods 2023; 385:109766. [PMID: 36495945 PMCID: PMC9848447 DOI: 10.1016/j.jneumeth.2022.109766] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/10/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many pain biomarkers fail to move from discovery to clinical application, attributed to poor reliability and an inability to accurately classify at-risk individuals. Preliminary evidence has shown that high pain sensitivity is associated with slow peak alpha frequency (PAF), and depression of corticomotor excitability (CME), potentially due to impairments in ascending sensory and descending motor pathway signalling respectively NEW METHOD: The present study evaluated the reliability of PAF and CME responses during sustained pain. Specifically, we determined whether, over several days of pain, a) PAF remains stable and b) individuals show two stable and distinct CME responses: facilitation and depression. Participants were given an injection of nerve growth factor (NGF) into the right masseter muscle on Day 0 and Day 2, inducing sustained pain. Electroencephalography (EEG) to assess PAF and transcranial magnetic stimulation (TMS) to assess CME were recorded on Day 0, Day 2 and Day 5. RESULTS Using a weighted peak estimate, PAF reliability (n = 75) was in the excellent range even without standard pre-processing and ∼2 min recording length. Using a single peak estimate, PAF reliability was in the moderate-good range. For CME (n = 74), 80% of participants showed facilitation or depression of CME beyond an optimal cut-off point, with the stability of these changes in the good range. COMPARISON WITH EXISTING METHODS No study has assessed the reliability of PAF or feasibility of classifying individuals as facilitators/depressors, in response to sustained pain. PAF was reliable even in the presence of pain. The use of a weighted peak estimate for PAF is recommended, as excellent test-retest reliability can be obtained even when using minimal pre-processing and ∼2 min recording. We also showed that 80% of individuals exhibit either facilitation or depression of CME, with these changes being stable across sessions. CONCLUSIONS Our study provides support for the reliability of PAF and CME as prospective cortical biomarkers. As such, our paper adds important methodological advances to the rapidly growing field of pain biomarkers.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia.
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Emily Si
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Alan K I Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Furman
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Shuo Chen
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Physical Therapy, University of Western Ontario, London, Canada
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia; Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, USA; Center to Advance Chronic Pain Research, University of Maryland Baltimore, USA; Department of Medical Biophysics, University of Western Ontario, London, Canada
| |
Collapse
|
17
|
Yazici A, Yerlikaya T, Oniz A. Evaluation of the degeneration of the multifidus and erector spinae muscles in patients with low back pain and healthy individuals. J Back Musculoskelet Rehabil 2023; 36:637-650. [PMID: 36776035 DOI: 10.3233/bmr-220055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
BACKGROUND Although several studies have been conducted to determine the cause of low back pain (LBP), a sufficient correlation has not been found between research findings and symptoms. Therefore there seems to be a need for studies to explain the relationship between pain and morphological changes in the paraspinal muscles of patients with LBP through comparisons with healthy control subjects. OBJECTIVE The aim of this study was to examine degeneration in the lumbar musculus multifidus (LMF) and lumbar musculus erector spinae (LES) muscles in patients with chronic LBP with non-radiculopathy lumbar disc herniation (LDH), patients with mechanical LBP, and healthy individuals. METHODS The study included 35 patients with mechanical LBP, 38 patients with non-radiculopathy LDH, and a control group of 36 healthy participants. In all patients and the control group, evaluations were made on axial magnetic resonance imaging slices at L3-S1 level of the LMF and LES cross-sectional areas (CSA), total CSA (TCSA = LMF+LES), fat infiltrations and asymmetries. RESULTS The mean CSA values of the right and left LMF and LES showed significant differences between the groups (p< 0.001, p= 0.002, p= 0.002, p= 0.010, respectively). Fat infiltrations showed a difference between the right-left LMF and left LES groups (p= 0.007, p< 0.001, p= 0.026, respectively). Asymmetry was not observed between the CSA and TCSA of the right and left sides. CONCLUSION A correlation was found between fat infiltration in the LMF and mechanical LBP and LDH. However, no significant correlation was determined between LBP and the CSA and TCSA of the LMF and LES. This was thought to be due to an incorrect result of CSA and TCSA in the evaluation of muscle mass. Therefore, for a more accurate evaluation of muscle mass, it can be considered necessary to measure muscle atrophy associated with fat infiltration or functional CSA.
Collapse
Affiliation(s)
- Alikemal Yazici
- Orthopedics and Traumatology Department, Faculty of Medicine, Near East University, Nicosia, Cyprus.,Orthopedics and Traumatology Department, Buyuk Anadolu Hospital, Samsun, Turke
| | - Tuba Yerlikaya
- Physiotherapy and Rehabilitation Department, Faculty of Health Sciences, Near East University, Nicosia, Cyprus
| | - Adile Oniz
- Faculty of Health Sciences, Near East University, Nicosia, Cyprus.,Institute of Graduate Studies, Department of Biophysics, Near East University, Nicosia, Cyprus
| |
Collapse
|
18
|
Murphy HM, Fetter CM, Snow NJ, Chaves AR, Downer MB, Ploughman M. Lower corticospinal excitability and greater fatigue among people with multiple sclerosis experiencing pain. Mult Scler J Exp Transl Clin 2023; 9:20552173221143398. [PMID: 36636581 PMCID: PMC9830099 DOI: 10.1177/20552173221143398] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/17/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Persons with multiple sclerosis (MS) frequently report pain that negatively affects their quality of life. Evidence linking pain and corticospinal excitability in MS is sparse. We aimed to (1) examine differences in corticospinal excitability in MS participants with and without pain and (2) explore predictors of pain. Methods Sixty-four participants rated their pain severity on a visual analog scale (VAS). Transcranial magnetic stimulation (TMS) and validated clinical instruments characterized corticospinal excitability and subjective disease features like mood and fatigue. We retrieved information on participants' prescriptions and disability status from their clinical records. Results Fifty-five percent of participants reported pain that affected their daily functioning. Persons with pain had significantly greater fatigue and lower area under the excitatory motor evoked potential (MEP) recruitment curve (eREC AUC), a measure of total corticospinal excitability. After controlling for age, disability status, and pain medications, increased fatigue and decreased eREC AUC together explained 40% of the variance in pain. Discussion Pain in MS is multifactorial and relates to both greater fatigue and lesser corticospinal excitability. Future work should better characterize relationships between these outcomes to develop targeted pain interventions such as neuromodulation. Summary We examined pain in MS. Individuals with pain had higher fatigue and lower corticospinal excitability than those without pain. These outcomes significantly predicted self-reported pain.
Collapse
Affiliation(s)
- Hannah M. Murphy
- Recovery & Performance Laboratory, Faculty of
Medicine, Memorial University of Newfoundland, St John's, Newfoundland and
Labrador, Canada
| | - Christopher M. Fetter
- Recovery & Performance Laboratory, Faculty of
Medicine, Memorial University of Newfoundland, St John's, Newfoundland and
Labrador, Canada
| | - Nicholas J. Snow
- Recovery & Performance Laboratory, Faculty of
Medicine, Memorial University of Newfoundland, St John's, Newfoundland and
Labrador, Canada
| | - Arthur R. Chaves
- Recovery & Performance Laboratory, Faculty of
Medicine, Memorial University of Newfoundland, St John's, Newfoundland and
Labrador, Canada
| | - Matthew B. Downer
- Recovery & Performance Laboratory, Faculty of
Medicine, Memorial University of Newfoundland, St John's, Newfoundland and
Labrador, Canada
| | - Michelle Ploughman
- Recovery & Performance Laboratory, Faculty of
Medicine, Memorial University of Newfoundland, St John's, Newfoundland and
Labrador, Canada,Michelle Ploughman, Recovery
& Performance Laboratory, Faculty of Medicine, Memorial University of
Newfoundland, LA Miller Centre, 100 Forest Road, St. John's, NL, A1A1E5, Canada.
| |
Collapse
|
19
|
Cortical function and sensorimotor plasticity are prognostic factors associated with future low back pain after an acute episode: the Understanding persistent Pain Where it ResiDes prospective cohort study. Pain 2023; 164:14-26. [PMID: 35559930 DOI: 10.1097/j.pain.0000000000002684] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 04/25/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Predicting the development of chronic low back pain (LBP) at the time of an acute episode remains challenging. The Understanding persistent Pain Where it ResiDes study aimed to identify neurobiological and psychological risk factors for chronic LBP. Individuals with acute LBP (N = 120) participated in a prospective cohort study with 6-month follow-up. Candidate predictors were selected from the neurobiological (eg, sensorimotor cortical excitability assessed by sensory and motor-evoked potentials and brain-derived neurotrophic factor genotype), psychological (eg, depression and anxiety), symptom-related (eg, LBP history), and demographic domains. Analyses involved multivariable linear regression models with pain intensity or disability degree as continuous variables. Secondary analyses involved a multivariable logistic model with the presence of LBP at 6 months (thresholding pain intensity and disability degree) as a dichotomous variable. Lower sensory cortex and corticomotor excitability, higher baseline pain intensity, higher depression, stress, and pain catastrophizing were the strongest predictors ( R2 = 0.47) of pain intensity at 6 months. Older age and higher pain catastrophizing were the strongest predictors ( R2 = 0.30) of disability at 6 months. When the LBP outcome was dichotomised, sensory cortex and corticomotor excitability, brain-derived neurotrophic factor genotype, depression and anxiety, LBP history and baseline pain intensity, discriminated between those who did and did not report LBP at 6 months (C-statistic 0.91). This study identifies novel risk factors for the development of future LBP. Neurobiological risk factors, when added to a multivariable linear regression model, explained a further 15% of the variance in the 6-month pain intensity.
Collapse
|
20
|
Anodal-TDCS over Left-DLPFC Modulates Motor Cortex Excitability in Chronic Lower Back Pain. Brain Sci 2022; 12:brainsci12121654. [PMID: 36552115 PMCID: PMC9776085 DOI: 10.3390/brainsci12121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Chronic pain is associated with abnormal cortical excitability and increased pain intensity. Research investigating the potential for transcranial direct current stimulation (tDCS) to modulate motor cortex excitability and reduce pain in individuals with chronic lower back pain (CLBP) yield mixed results. The present randomised, placebo-controlled study examined the impact of anodal-tDCS over left-dorsolateral prefrontal cortex (left-DLPFC) on motor cortex excitability and pain in those with CLBP. Nineteen participants with CLBP (Mage = 53.16 years, SDage = 14.80 years) received 20-min of sham or anodal tDCS, twice weekly, for 4 weeks. Short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were assessed using paired-pulse Transcranial Magnetic Stimulation prior to and immediately following the tDCS intervention. Linear Mixed Models revealed no significant effect of tDCS group or time, on SICI or ICF. The interactions between tDCS group and time on SICI and ICF only approached significance. Bayesian analyses revealed the anodal-tDCS group demonstrated higher ICF and SICI following the intervention compared to the sham-tDCS group. The anodal-tDCS group also demonstrated a reduction in pain intensity and self-reported disability compared to the sham-tDCS group. These findings provide preliminary support for anodal-tDCS over left-DLPFC to modulate cortical excitability and reduce pain in CLBP.
Collapse
|
21
|
Cetin H, Kose N, Oge HK. Virtual reality and motor control exercises to treat chronic neck pain: A randomized controlled trial. Musculoskelet Sci Pract 2022; 62:102636. [PMID: 35952621 DOI: 10.1016/j.msksp.2022.102636] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/14/2022]
Abstract
AIM To compare the effects of virtual reality (VR) and motor control (MC) exercises. METHODS Forty-one participants with chronic neck pain (CNP) were randomized into the VR or MC group. Both groups performed 18 sessions over 6 weeks. The primary outcomes were pain intensity (visual analogue scale), pain pressure thresholds (PPTs), joint position sense error (JPSE), and muscle performance. The secondary outcomes were the Profile Fitness Mapping Questionnaire (ProFitMap-Neck), Hospital Anxiety-Depression Scale (HADS), and quality of life (SF-36). Data were analysed using T-Tests, and Fisher's Exact Test. Mean (standard deviation), median (interquartile range), effect size and %95 confidence interval (CI) were reported. RESULTS The results of Independent T-Tests showed that VR was advantageous in terms of PPTs of the C1/C2 and C5/C6 articular pillar bilaterally and large effect size (Cohen's d > 0.8, p < 0.05). Moreover, VR was more effective in decreasing JPSE (Cohen's d > 0.08; mean difference changes between -2.91 and -1.24, %95 CI -4.47 to 0.80) and functional limitation (ProFitMap-Neck) (Cohen's d = 0.7, mean difference 8.27, %95 CI 0.20 to 16.35). The results of T-Tests demonstrated that neither intervention was superior in terms of pain intensity, muscle performance, symptoms (ProFitMap-Neck), HADS, or SF-36 (Cohen's d < 0.5). CONCLUSIONS VR can be applied for improving proprioception and for decreasing cervical articular pain in CNP patients. In addition, VR may be more effective for decreasing functional limitations in patients. Clinicians can choose MC exercises with or without VR for improving pain, muscle performance, symptoms, anxiety/depression, and quality of life.
Collapse
Affiliation(s)
- Hatice Cetin
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey.
| | - Nezire Kose
- Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
| | - Halil Kamil Oge
- Department of Neurosurgery, Medical Faculty, Hacettepe University, Ankara, Turkey
| |
Collapse
|
22
|
Moukhaiber N, Summers SJ, Opar D, Imam J, Thomson D, Chang WJ, Andary T, Cavaleri R. The effect of theta burst stimulation over the primary motor cortex on experimental hamstring pain: A randomised, controlled study. THE JOURNAL OF PAIN 2022; 24:593-604. [PMID: 36464137 DOI: 10.1016/j.jpain.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/02/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022]
Abstract
Theta burst stimulation (TBS) over the primary motor cortex (M1) is an emerging technique that may have utility in the treatment of musculoskeletal pain. However, previous work exploring the analgesic effects of noninvasive brain stimulation has been limited largely to the arm or hand, despite 80% of acute musculoskeletal injuries occurring in the lower limb. This is a pertinent point, given the functional and neurophysiological differences between upper and lower limb musculature, as well as evidence suggesting that reorganization of corticomotor pathways is region-specific. This study investigated the effect of excitatory TBS on pain, function, and corticomotor organization during experimentally induced lower limb pain. Twenty-eight healthy participants attended 2 experimental sessions. On Day 0, participants completed 10 sets of 10 maximal eccentric contractions of the right hamstring muscles to induce delayed onset muscle soreness. Four consecutive blocks of either active or sham TBS were delivered on Day 2. Measures of mechanical sensitivity, pain (muscle soreness, pain intensity, pain area) function (single-leg hop distance, maximum voluntary isometric contraction, lower extremity functional scale), and corticomotor organization were recorded before and after TBS on Day 2. Pain and function were also assessed daily from Days 2 to 10. Active TBS reduced mechanical sensitivity compared to sham stimulation (P = .01). Corticomotor organization did not differ between groups, suggesting that improvements in mechanical sensitivity were not mediated by changes in M1. Subjective reports of pain intensity and function did not change following active TBS, contrasting previous reports in studies of the upper limb. PERSPECTIVE: M1 TBS reduces mechanical sensitivity associated with experimentally induced hamstring pain. Though further work is needed, these findings may hold important implications for those seeking to expedite recovery or reduce muscle sensitivity following hamstring injury.
Collapse
Affiliation(s)
- Nadia Moukhaiber
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Simon J Summers
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia; Queensland University of Technology, School of Biomedical Sciences, Queensland, Australia
| | - David Opar
- Australian Catholic University, Sports Performance, Recovery, Injury and New Technologies (SPRINT) Research Centre, School of Behavioural and Health Sciences, Victoria, Australia
| | - Jawwad Imam
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Daniel Thomson
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia
| | - Wei-Ju Chang
- University of Newcastle, College of Health Medicine and Wellbeing, School of Health Sciences, New South Wales, Australia; Neuroscience Research Australia (NeuRA), Centre for Pain IMPACT, New South Wales, Australia
| | - Toni Andary
- South Western Sydney Local Health District, New South Wales, Australia
| | - Rocco Cavaleri
- Western Sydney University, Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, New South Wales, Australia.
| |
Collapse
|
23
|
Associations between primary motor cortex organization, motor control and sensory tests during the clinical course of low back pain. A protocol for a cross-sectional and longitudinal case-control study. Contemp Clin Trials Commun 2022; 30:101022. [PMID: 36387987 PMCID: PMC9647172 DOI: 10.1016/j.conctc.2022.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/09/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Background In people with low back pain (LBP), altered motor control has been related to reorganization of the primary motor cortex (M1). Sensory impairments in LBP have also been suggested to be associated with reorganization of M1. Little is known about reorganization of M1 over time in people with LBP, and whether it relates to changes in motor control and sensory impairments and recovery. This study aims to investigate 1) differences in organization of M1 of trunk muscles between people with and without LBP, and whether the organization of M1 relates to motor control and sensory impairments (cross-sectional component) and 2) reorganization of M1 over time and its relation with changes in motor control and sensory impairments and experienced recovery (longitudinal component). Methods A case-control study with a cross-sectional and five-week longitudinal component is conducted in participants with LBP (N = 25) and participants without LBP (N = 25). Participants with LBP received usual care physiotherapy. Various tests were administered at baseline and follow-up. Following an anatomical MRI, organization of M1 (Center of Gravity and Area of the cortical representation of trunk muscles) was determined using transcranial magnetic stimulation. Quantitative sensory testing, a spiral-tracking motor control test, graphesthesia, two-point discrimination threshold and various self-reported questionnaires were also assessed. Multivariate multilevel analysis will be used for statistical analysis. Conclusion We will address the gaps in knowledge about the association between reorganization of M1 and motor control and sensory tests during the clinical course of LBP. This study is registered at DOI 10.17605/OSF.IO/5C8ZG. We assess relations between the organization of M1 and motor and sensory tests. This study provides insight in the organization of M1 in LBP in relation to recovery. The organization of M1 is assessed via TMS. We used whole-brain MRI's for high accuracy of representation of muscles on M1. We will use multivariate mixed model analysis to relate M1, motor and sensory tests.
Collapse
|
24
|
People with chronic low back pain display spatial alterations in high-density surface EMG-torque oscillations. Sci Rep 2022; 12:15178. [PMID: 36071134 PMCID: PMC9452584 DOI: 10.1038/s41598-022-19516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
We quantified the relationship between spatial oscillations in surface electromyographic (sEMG) activity and trunk-extension torque in individuals with and without chronic low back pain (CLBP), during two submaximal isometric lumbar extension tasks at 20% and 50% of their maximal voluntary torque. High-density sEMG (HDsEMG) signals were recorded from the lumbar erector spinae (ES) with a 64-electrode grid, and torque signals were recorded with an isokinetic dynamometer. Coherence and cross-correlation analyses were applied between the filtered interference HDsEMG and torque signals for each submaximal contraction. Principal component analysis was used to reduce dimensionality of HDsEMG data and improve the HDsEMG-based torque estimation. sEMG-torque coherence was quantified in the δ(0–5 Hz) frequency bandwidth. Regional differences in sEMG-torque coherence were also evaluated by creating topographical coherence maps. sEMG-torque coherence in the δ band and sEMG-torque cross-correlation increased with the increase in torque in the controls but not in the CLBP group (p = 0.018, p = 0.030 respectively). As torque increased, the CLBP group increased sEMG-torque coherence in more cranial ES regions, while the opposite was observed for the controls (p = 0.043). Individuals with CLBP show reductions in sEMG-torque relationships possibly due to the use of compensatory strategies and regional adjustments of ES-sEMG oscillatory activity.
Collapse
|
25
|
Qu N, Tian H, De Martino E, Zhang B. Neck Pain: Do We Know Enough About the Sensorimotor Control System? Front Comput Neurosci 2022; 16:946514. [PMID: 35910451 PMCID: PMC9337601 DOI: 10.3389/fncom.2022.946514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Neck pain is a worldwide health problem. Clarifying the etiology and providing effective interventions are challenging for the multifactorial nature of neck pain. As an essential component of cervical spine function, the sensorimotor control system has been extensively studied in both healthy and pathological conditions. Proprioceptive signals generated from cervical structures are crucial to normal cervical functions, and abnormal proprioception caused by neck pain leads to alterations in neural plasticity, cervical muscle recruitment and cervical kinematics. The long-term sensorimotor disturbance and maladaptive neural plasticity are supposed to contribute to the recurrence and chronicity of neck pain. Therefore, multiple clinical evaluations and treatments aiming at restoring the sensorimotor control system and neural plasticity have been proposed. This paper provides a short review on neck pain from perspectives of proprioception, sensorimotor control system, neural plasticity and potential interventions. Future research may need to clarify the molecular mechanism underlying proprioception and pain. The existing assessment methods of cervical proprioceptive impairment and corresponding treatments may need to be systematically reevaluated and standardized. Additionally, new precise motor parameters reflecting sensorimotor deficit and more effective interventions targeting the sensorimotor control system or neural plasticity are encouraged to be proposed.
Collapse
Affiliation(s)
- Ning Qu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - HaoChun Tian
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Aerospace Medicine and Rehabilitation Laboratory, Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Bin Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Bin Zhang,
| |
Collapse
|
26
|
Mechanisms and manifestations in musculoskeletal pain: from experimental to clinical pain settings. Pain 2022; 163:S29-S45. [PMID: 35984370 DOI: 10.1097/j.pain.0000000000002690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/18/2023]
|
27
|
Shraim MA, Massé-Alarie H, Salomoni SE, Hodges PW. Can training of a skilled pelvic movement change corticomotor control of back muscles? Comparison of single and paired-pulse transcranial magnetic stimulation. Eur J Neurosci 2022; 56:3705-3719. [PMID: 35501123 PMCID: PMC9540878 DOI: 10.1111/ejn.15683] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Evidence suggests excitability of the motor cortex (M1) changes in response to motor skill learning of the upper limb. Few studies have examined immediate changes in corticospinal excitability and intra‐cortical mechanisms following motor learning in the lower back. Further, it is unknown which transcranial magnetic stimulation (TMS) paradigms are likely to reveal changes in cortical function in this region. This study aimed to (1) compare corticospinal excitability and intra‐cortical mechanisms in the lower back region of M1 before and after a single session of lumbopelvic tilt motor learning task in healthy people and (2) compare these measures between two TMS coils and two methods of recruitment curve (RC) acquisition. Twenty‐eight young participants (23.6 ± 4.6 years) completed a lumbopelvic tilting task involving three 5‐min blocks. Single‐pulse (RC from 70% to 150% of active motor threshold) and paired‐pulse TMS measures (ICF, SICF and SICI) were undertaken before (using 2 coils: figure‐of‐8 and double cone) and after (using double cone coil only) training. RCs were also acquired using a traditional and rapid method. A significant increase in corticospinal excitability was found after training as measured by RC intensities, but this was not related to the RC slope. No significant differences were found for paired‐pulse measures after training. Finally, there was good agreement between RC parameters when measured with the two different TMS coils or different acquisition methods (traditional vs. rapid). Changes in corticospinal excitability after a single session of lumbopelvic motor learning task are seen, but these changes are not explained by changes in intra‐cortical mechanisms.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia.,Centre interdisciplinaire de recherche en réadaptation et integration sociale (CIRRIS), Université Laval, Québec, QC, Canada
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| |
Collapse
|
28
|
Jordon MK, Stewart JC, Silfies SP, Beattie PF. Task-Based Functional Connectivity and Blood-Oxygen-Level-Dependent Activation During Within-Scanner Performance of Lumbopelvic Motor Tasks: A Functional Magnetic Resonance Imaging Study. Front Hum Neurosci 2022; 16:816595. [PMID: 35308606 PMCID: PMC8924587 DOI: 10.3389/fnhum.2022.816595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
There are a limited number of neuroimaging investigations into motor control of the lumbopelvic musculature. Most investigation examining motor control of the lumbopelvic musculature utilize transcranial magnetic stimulation (TMS) and focus primarily on the motor cortex. This has resulted in a dearth of knowledge as it relates to how other regions of the brain activate during lumbopelvic movement. Additionally, task-based functional connectivity during lumbopelvic movements has not been well elucidated. Therefore, we used functional magnetic resonance imaging (fMRI) to examine brain activation and ROI-to-ROI task-based functional connectivity in 19 healthy individuals (12 female, age 29.8 ± 4.5 years) during the performance of three lumbopelvic movements: modified bilateral bridge, left unilateral bridge, and right unilateral bridge. The whole brain analysis found robust, bilateral activation within the motor regions of the brain during the bilateral bridge task, and contralateral activation of the motor regions during unilateral bridging tasks. Furthermore, the ROI-to-ROI analysis demonstrated significant connectivity of a motor network that included the supplemental motor area, bilateral precentral gyrus, and bilateral cerebellum regardless of the motor task performed. These data suggest that while whole brain activation reveals unique patterns of activation across the three tasks, functional connectivity is very similar. As motor control of the lumbopelvic area is of high interest to those studying low back pain (LBP), this study can provide a comparison for future research into potential connectivity changes that occur in individuals with LBP.
Collapse
Affiliation(s)
- Max K. Jordon
- Department of Physical Therapy, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | | | - Sheri P. Silfies
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States
- McCausland Center for Brain Imaging, University of South Carolina, Columbia, SC, United States
| | - Paul F. Beattie
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
29
|
Corti EJ, Marinovic W, Nguyen AT, Gasson N, Loftus AM. Motor cortex excitability in chronic low back pain. Exp Brain Res 2022; 240:3249-3257. [PMID: 36289076 PMCID: PMC9678990 DOI: 10.1007/s00221-022-06492-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/17/2022] [Indexed: 01/15/2023]
Abstract
Chronic pain is associated with dysfunctional cortical excitability. Research has identified altered intracortical motor cortex excitability in Chronic Lower Back Pain (CLBP). However, research identifying the specific intracortical changes underlying CLBP has been met with inconsistent findings. In the present case-control study, we examined intracortical excitability of the primary motor cortex using transcranial magnetic stimulation (TMS) in individuals with CLBP. Twenty participants with CLBP (Mage = 54.45 years, SDage = 15.89 years) and 18 age- and gender-matched, pain-free controls (M = 53.83, SD = 16.72) were included in this study. TMS was applied to the hand motor area of the right hemisphere and motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of the contralateral hand. Resting motor threshold (rMT) and MEP amplitude were measured using single-pulse stimulation. Short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were assessed using paired-pulse stimulation. Individuals with CLBP had significantly higher rMT (decreased corticospinal excitability) and lower ICF compared to controls. No significant differences were found in MEP amplitude and SICI. These findings add to the growing body of evidence that CLBP is associated with deficits in intracortical modulation involving glutamatergic mechanisms.
Collapse
Affiliation(s)
- E. J. Corti
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - W. Marinovic
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - A. T. Nguyen
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - N. Gasson
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - A. M. Loftus
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| |
Collapse
|
30
|
Elgueta-Cancino E, Sheeran L, Salomoni S, Hall L, Hodges PW. Characterisation of motor cortex organisation in patients with different presentations of persistent low back pain. Eur J Neurosci 2021; 54:7989-8005. [PMID: 34719827 PMCID: PMC10138737 DOI: 10.1111/ejn.15511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 02/06/2023]
Abstract
Persistence of low back pain is thought to be associated with different underlying pain mechanisms, including ongoing nociceptive input and central sensitisation. We hypothesised that primary motor cortex (M1) representations of back muscles (a measure of motor system adaptation) would differ between pain mechanisms, with more consistent observations in individuals presumed to have an ongoing contribution of nociceptive input consistently related to movement/posture. We tested 28 participants with low back pain sub-grouped by the presumed underlying pain mechanisms: nociceptive pain, nociplastic pain and a mixed group with features consistent with both. Transcranial magnetic stimulation was used to study M1 organisation of back muscles. M1 maps of multifidus (deep and superficial) and longissimus erector spinae were recorded with fine-wire electromyography and thoracic erector spinae with surface electromyography. The nociplastic pain group had greater variability in M1 map location (centre of gravity) than other groups (p < .01), which may suggest less consistency, and perhaps relevance, of motor cortex adaptation for that group. The mixed group had greater overlap of M1 representations between deep/superficial muscles than nociceptive pain (deep multifidus/longissimus: p = .001, deep multifidus/thoracic erector spinae: p = .008) and nociplastic pain (deep multifidus/longissimus: p = .02, deep multifidus/thoracic erector spinae: p = .02) groups. This study provides preliminary evidence of differences in M1 organisation in subgroups of low back pain classified by likely underlying pain mechanisms. Despite the sample size, differences in cortical re-organisation between subgroups were detected. Differences in M1 organisation in subgroups of low back pain supports tailoring of treatment based on pain mechanism and motor adaptation.
Collapse
Affiliation(s)
- Edith Elgueta-Cancino
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Liba Sheeran
- Biomechanics and Bioengineering Research Centre Versus Arthritis, Cardiff University, Cardiff, UK.,School of Healthcare Sciences, Cardiff University, Cardiff, UK
| | - Sauro Salomoni
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Leanne Hall
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul W Hodges
- Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
31
|
Falla D, Devecchi V, Jiménez-Grande D, Rügamer D, Liew BXW. Machine learning approaches applied in spinal pain research. J Electromyogr Kinesiol 2021; 61:102599. [PMID: 34624604 DOI: 10.1016/j.jelekin.2021.102599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 01/13/2023] Open
Abstract
The purpose of this narrative review is to provide a critical reflection of how analytical machine learning approaches could provide the platform to harness variability of patient presentation to enhance clinical prediction. The review includes a summary of current knowledge on the physiological adaptations present in people with spinal pain. We discuss how contemporary evidence highlights the importance of not relying on single features when characterizing patients given the variability of physiological adaptations present in people with spinal pain. The advantages and disadvantages of current analytical strategies in contemporary basic science and epidemiological research are reviewed and we consider how analytical machine learning approaches could provide the platform to harness the variability of patient presentations to enhance clinical prediction of pain persistence or recurrence. We propose that machine learning techniques can be leveraged to translate a potentially heterogeneous set of variables into clinically useful information with the potential to enhance patient management.
Collapse
Affiliation(s)
- Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.
| | - Valter Devecchi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - David Jiménez-Grande
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - David Rügamer
- Department of Statistics, Ludwig-Maximilians-Universität München, Germany
| | - Bernard X W Liew
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, UK
| |
Collapse
|
32
|
Desmons M, Rohel A, Desgagnés A, Mercier C, Massé-Alarie H. Influence of different transcranial magnetic stimulation current directions on the corticomotor control of lumbar erector spinae muscles during a static task. J Neurophysiol 2021; 126:1276-1288. [PMID: 34550037 DOI: 10.1152/jn.00137.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Different directions of transcranial magnetic stimulation (TMS) can activate different neuronal circuits. Whereas posteroanterior current (PA-TMS) depolarizes mainly interneurons in primary motor cortex (M1), an anteroposterior current (AP-TMS) has been suggested to activate different M1 circuits and perhaps axons from the premotor regions. Although M1 is also involved in the control of axial muscles, no study has explored whether different current directions activate different M1 circuits that may have distinct functional roles. The aim of the study was to compare the effect of different current directions (PA- and AP-TMS) on the corticomotor control and spatial cortical organization of the lumbar erector spinae muscle (LES). Thirty-four healthy participants were recruited for two independent experiments, and LES motor-evoked potentials (MEPs) were recorded. In experiment 1 (n = 17), active motor threshold (AMT), MEP latencies, recruitment curve (90% to 160% AMT), and excitatory and inhibitory intracortical mechanisms by paired-pulse TMS (80% followed by 120% AMT stimuli at 2-, 3-, 10-, and 15-ms interstimulus intervals) were tested with a double-cone (n = 12) and a figure-of-eight (n = 5) coil. In experiment 2 (n = 17), LES cortical representations were tested with PA- and AP-TMS. AMT was higher for AP- compared with PA-TMS (P = 0.002). Longer latencies with AP-TMS were present compared with PA-TMS (P = 0.017). AP-TMS produced more inhibition compared with PA-TMS at 2 ms and 3 ms (P = 0.010), but no difference was observed for longer intervals. No difference was found for recruitment curve and mapping. These findings suggest that PA- and AP-TMS may activate different cortical circuits controlling low back muscles, as proposed for hand muscles.NEW & NOTEWORTHY For the first time, anteroposterior and posteroanterior induced electric currents in the brain were compared when targeting back muscle representation with transcranial magnetic stimulation. The use of the anteroposterior current resulted in later response latency, larger inhibition probed by paired-pulse stimulation, and higher motor threshold. These important differences between current directions suggest that each of the current directions may recruit specific cortical circuits involved in the control of back muscles, similar to that for hand muscles.
Collapse
Affiliation(s)
- Mikaël Desmons
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Antoine Rohel
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Amélie Desgagnés
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada
| | - Catherine Mercier
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Quebec, Canada
| | - Hugo Massé-Alarie
- CIRRIS Research Centre, Université Laval, Quebec City, Quebec, Canada.,Rehabilitation Unit, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
33
|
Jenkins LC, Chang WJ, Buscemi V, Liston M, Skippen P, Cashin AG, McAuley JH, Schabrun SM. Low Somatosensory Cortex Excitability in the Acute Stage of Low Back Pain Causes Chronic Pain. THE JOURNAL OF PAIN 2021; 23:289-304. [PMID: 34492395 DOI: 10.1016/j.jpain.2021.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/26/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
Determining the mechanistic causes of complex biopsychosocial health conditions such as low back pain (LBP) is challenging, and research is scarce. Cross-sectional studies demonstrate altered excitability and organization of the somatosensory and motor cortex in people with acute and chronic LBP, however, no study has explored these mechanisms longitudinally or attempted to draw causal inferences. Using sensory evoked potential area measurements and transcranial magnetic stimulation derived map volume we analyzed somatosensory and motor cortex excitability in 120 adults experiencing acute LBP. Following multivariable regression modelling with adjustment for confounding, we identified lower primary (OR = 2.08, 95% CI = 1.22-3.57) and secondary (OR = 2.56, 95% CI = 1.37-4.76) somatosensory cortex excitability significantly increased the odds of developing chronic pain at 6-month follow-up. Corticomotor excitability in the acute stage of LBP was associated with higher pain intensity at 6-month follow-up (B = -0.15, 95% CI: -0.28 to -0.02) but this association did not remain after confounder adjustment. These data provide evidence that low somatosensory cortex excitability in the acute stage of LBP is a cause of chronic pain. PERSPECTIVE: This prospective longitudinal cohort study design identified low sensorimotor cortex excitability during the acute stage of LBP in people who developed chronic pain. Interventions that target this proposed mechanism may be relevant to the prevention of chronic pain.
Collapse
Affiliation(s)
- Luke C Jenkins
- School of Health Sciences, Western Sydney University, Penrith, New South Wales, Australia; Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Wei-Ju Chang
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Valentina Buscemi
- INPUT Pain Management Unit, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Matthew Liston
- School of Health Sciences, Western Sydney University, Penrith, New South Wales, Australia; Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Centre for Human and Applied Physiological Sciences, Faculty of Life Science and Medicine, Kings College, London
| | - Patrick Skippen
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Aidan G Cashin
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - James H McAuley
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia; School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Siobhan M Schabrun
- Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia.
| |
Collapse
|
34
|
Overactivity in Chronic Pain, the Role of Pain-related Endurance and Neuromuscular Activity: An Interdisciplinary, Narrative Review. Clin J Pain 2021; 36:162-171. [PMID: 31833914 DOI: 10.1097/ajp.0000000000000785] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Decades of research have convincingly shown that fear of pain and pain-related avoidance behavior are important precursors of disability in daily life. Reduced activity as a consequence of avoidance, however, cannot be blamed for chronic disability in all patients. A contrasting behavior, pain-related dysfunctional endurance in a task and overactivity has to be considered. Currently, there is a need to better understand the psychological determinants of overactivity, dysfunctional endurance, and neurobiomechanical consequences. METHODS This is a narrative review. RESULTS The first part of this review elucidates research on self-reported overactivity, showing associations with higher levels of pain and disability, especially in spinal load positions, for example, lifting, bending, or spending too long a time in specific positions. In addition, measures of habitual endurance-related pain responses, based on the avoidance-endurance model, are related to objective assessments of physical activity and, again, especially in positions known to cause high spinal load (part 2). The final part reveals findings from neuromuscular research on motor control indicating the possibility that, in particular, overactivity and dysfunctional endurance may result in a number of dysfunctional adaptations with repetitive strain injuries of muscles, ligaments, and vertebral segments as precursors of pain. DISCUSSION This narrative review brings together different research lines on overactivity, pain-related endurance, and supposed neuromuscular consequences. Clinicians should distinguish between patients who rest and escape from pain at low levels of pain, but who have high levels of fear of pain and those who predominantly persist in activities despite severely increasing pain until a break will be enforced by intolerable pain levels.
Collapse
|
35
|
Ketogenic diets and the nervous system: a scoping review of neurological outcomes from nutritional ketosis in animal studies. Nutr Res Rev 2021; 35:268-281. [PMID: 34180385 DOI: 10.1017/s0954422421000214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Ketogenic diets have reported efficacy for neurological dysfunctions; however, there are limited published human clinical trials elucidating the mechanisms by which nutritional ketosis produces therapeutic effects. The purpose of this present study was to investigate animal models that report variations in nervous system function by changing from a standard animal diet to a ketogenic diet, synthesise these into broad themes, and compare these with mechanisms reported as targets in pain neuroscience to inform human chronic pain trials. METHODS An electronic search of seven databases was conducted in July 2020. Two independent reviewers screened studies for eligibility, and descriptive outcomes relating to nervous system function were extracted for a thematic analysis, then synthesised into broad themes. RESULTS In total, 170 studies from eighteen different disease models were identified and grouped into fourteen broad themes: alterations in cellular energetics and metabolism, biochemical, cortical excitability, epigenetic regulation, mitochondrial function, neuroinflammation, neuroplasticity, neuroprotection, neurotransmitter function, nociception, redox balance, signalling pathways, synaptic transmission and vascular supply. DISCUSSION The mechanisms presented centred around the reduction of inflammation and oxidative stress as well as a reduction in nervous system excitability. Given the multiple potential mechanisms presented, it is likely that many of these are involved synergistically and undergo adaptive processes within the human body, and controlled animal models that limit the investigation to a particular pathway in isolation may reach differing conclusions. Attention is required when translating this information to human chronic pain populations owing to the limitations outlined from the animal research.
Collapse
|
36
|
Sanderson A, Wang SF, Elgueta-Cancino E, Martinez-Valdes E, Sanchis-Sanchez E, Liew B, Falla D. The effect of experimental and clinical musculoskeletal pain on spinal and supraspinal projections to motoneurons and motor unit properties in humans: A systematic review. Eur J Pain 2021; 25:1668-1701. [PMID: 33964047 DOI: 10.1002/ejp.1789] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/30/2020] [Accepted: 04/24/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Numerous studies have examined the influence of pain on spinal reflex excitability, motor unit behaviour and corticospinal excitability. Nevertheless, there are inconsistencies in the conclusions made. This systematic review sought to understand the effect of pain on spinal and supraspinal projections to motoneurons and motor unit properties by examining the influence of clinical or experimental pain on the following three domains: H-reflex, corticospinal excitability and motor unit properties. DATABASES AND DATA TREATMENT MeSH terms and preselected keywords relating to the H-reflex, motor evoked potentials and motor unit decomposition in chronic and experimental pain were used to perform a systematic literature search using Cumulative Index of Nursing and Allied Health Literature (CINAHL), Excerpta Medica dataBASE (EMBASE), Web of Science, Medline, Google Scholar and Scopus databases. Two independent reviewers screened papers for inclusion and assessed the methodological quality using a modified Downs and Black risk of bias tool; a narrative synthesis and three meta-analyses were performed. RESULTS Sixty-one studies were included, and 17 different outcome variables were assessed across the three domains. Both experimental and clinical pain have no major influence on measures of the H-reflex, whereas experimental and clinical pain appeared to have differing effects on corticospinal excitability. Experimental pain consistently reduced motor unit discharge rate, a finding which was not consistent with data obtained from patients. The results indicate that when in tonic pain, induced via experimental pain models, inhibitory effects on motoneuron behaviour were evident. However, in chronic clinical pain populations, more varied responses were evident likely reflecting individual adaptations to chronic symptoms. SIGNIFICANCE This is a comprehensive systematic review and meta-analysis which synthesizes evidence on the influence of pain on spinal and supraspinal projections to motoneurons and motor unit properties considering measures of the H-reflex, corticospinal excitability and motor unit behaviour. The H-reflex is largely not influenced by the presence of either clinical or experimental pain. Whilst inhibitory effects on corticospinal excitability and motor unit behaviour were evident under experimental pain conditions, more variable responses were observed for people with painful musculoskeletal disorders.
Collapse
Affiliation(s)
- Andy Sanderson
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Shuwfen F Wang
- Graduate Institute and School of Physical Therapy, National Taiwan University, Taipei, Taiwan
| | - Edith Elgueta-Cancino
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Enrique Sanchis-Sanchez
- Department of Physiotherapy, Faculty of Physiotherapy, University of Valencia, Valencia, Spain
| | - Bernard Liew
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK.,School of Sport, Rehabilitation and Exercise Sciences, Faculty of Physiotherapy, University of Essex, Colchester, UK
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
37
|
Cavaleri R, Chipchase LS, Summers SJ, Chalmers J, Schabrun SM. The Relationship Between Corticomotor Reorganization and Acute Pain Severity: A Randomized, Controlled Study Using Rapid Transcranial Magnetic Stimulation Mapping. PAIN MEDICINE 2021; 22:1312-1323. [PMID: 33367763 DOI: 10.1093/pm/pnaa425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Although acute pain has been shown to reduce corticomotor excitability, it remains unknown whether this response resolves over time or is related to symptom severity. Furthermore, acute pain research has relied upon data acquired from the cranial "hotspot," which do not provide valuable information regarding reorganization, such as changes to the distribution of a painful muscle's representation within M1. Using a novel, rapid transcranial magnetic stimulation (TMS) mapping method, this study aimed to 1) explore the temporal profile and variability of corticomotor reorganization in response to acute pain and 2) determine whether individual patterns of corticomotor reorganization are associated with differences in pain, sensitivity, and somatosensory organization. METHODS Corticomotor (TMS maps), pain processing (pain intensity, pressure pain thresholds), and somatosensory (two-point discrimination, two-point estimation) outcomes were taken at baseline, immediately after injection (hypertonic [n = 20] or isotonic saline [n = 20]), and at pain resolution. Follow-up measures were recorded every 15 minutes until 90 minutes after injection. RESULTS Corticomotor reorganization persisted at least 90 minutes after pain resolution. Corticomotor depression was associated with lower pain intensity than was corticomotor facilitation (r = 0.47 [P = 0.04]). These effects were not related to somatosensory reorganization or peripheral sensitization mechanisms. CONCLUSIONS Individual patterns of corticomotor reorganization during acute pain appear to be related to symptom severity, with early corticomotor depression possibly reflecting a protective response. These findings hold important implications for the management and potential prevention of pain chronicity. However, further research is required to determine whether these adaptations relate to long-term outcomes in clinical populations.
Collapse
Affiliation(s)
- Rocco Cavaleri
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| | - Lucy S Chipchase
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia
| | - Simon J Summers
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,Discipline of Sport and Exercise Science, Faculty of Health, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Jane Chalmers
- Brain Stimulation and Rehabilitation (BrainStAR) Lab, School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia.,IIMPACT in Health, University of South Australia, Adelaide, South Australia, Australia
| | | |
Collapse
|
38
|
Fouasson-Chailloux A, Daley P, Menu P, Louguet B, Gadbled G, Bouju Y, Abraham P, Dauty M. Hand Strength Deficit in Patients with Neurogenic Thoracic Outlet Syndrome. Diagnostics (Basel) 2021; 11:diagnostics11050874. [PMID: 34068245 PMCID: PMC8153137 DOI: 10.3390/diagnostics11050874] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
Neurogenic thoracic outlet syndrome (NTOS) is a chronic painful and disabling condition. Patients complain about upper-limb paresthesia or weakness. Weakness has been considered one of the diagnostic criteria of NTOS, but objective comparisons to healthy controls are lacking. We compared the grip and the key pinch strengths between NTOS patients and healthy controls. Grip strength was evaluated with a hydraulic hand dynamometer and the key pinch with a pinch gauge. All the patients with NTOS completed a QuickDASH. We included prospectively 85 patients with NTOS, 73% female and 27% male. The mean age was 40.4 ± 9.6. They were compared to 85 healthy subjects, 77.6% female and 22.4% male. Concerning the grip, symptomatic hands of NTOS patients had significantly 30% less strength compared to control hands (p ≤ 0.001), and 19% less strength compared to asymptomatic hands (p = 0.03). Concerning the key pinch, symptomatic hands of patients with NTOS had significantly 19.5% less strength compared to control hands (p ≤ 0.001). Grip and key pinch strengths had a significant correlation with the QuickDASH (r = −0.515 and r = −0.403, respectively; p ≤ 0.001). Patients with NTOS presented an objective hand strength deficit compared to healthy controls. This deficit was significantly correlated to the upper-limb disability. These findings confirm the interest of hand strength evaluation in the diagnostic process of patients with NTOS.
Collapse
Affiliation(s)
- Alban Fouasson-Chailloux
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (P.D.); (P.M.); (M.D.)
- CHU Nantes, Service de Médecine du Sport, 44093 Nantes, France;
- IRMS, Institut Régional de Médecine du Sport, 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France
- Correspondence: ; Tel.: +33-240-846-211
| | - Pauline Daley
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (P.D.); (P.M.); (M.D.)
- CHU Nantes, Service de Médecine du Sport, 44093 Nantes, France;
| | - Pierre Menu
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (P.D.); (P.M.); (M.D.)
- CHU Nantes, Service de Médecine du Sport, 44093 Nantes, France;
- IRMS, Institut Régional de Médecine du Sport, 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France
| | - Bastien Louguet
- CHU Nantes, Service de Médecine du Sport, 44093 Nantes, France;
- IRMS, Institut Régional de Médecine du Sport, 44093 Nantes, France
| | - Guillaume Gadbled
- CHU Nantes, Clinique Chirurgicale Orthopédique et Traumatologique, 44093 Nantes, France;
| | - Yves Bouju
- Institut Main Atlantique, 44800 Saint Herblain, France;
| | - Pierre Abraham
- Sports Medicine Department, University Hospital of Angers, 49100 Angers, France;
- Vascular Medicine Department, University Hospital of Angers, 49100 Angers, France
- Mitovasc, UMR CNRS 6015 INSERM 1083, LUNAM University, 49100 Angers, France
| | - Marc Dauty
- CHU Nantes, Service de Médecine Physique et Réadapatation Locomotrice et Respiratoire, 44093 Nantes, France; (P.D.); (P.M.); (M.D.)
- CHU Nantes, Service de Médecine du Sport, 44093 Nantes, France;
- IRMS, Institut Régional de Médecine du Sport, 44093 Nantes, France
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, F-44042 Nantes, France
| |
Collapse
|
39
|
Serafino F, Trucco M, Occhionero A, Cerone GL, Chiarotto A, Vieira T, Gallina A. Understanding regional activation of thoraco-lumbar muscles in chronic low back pain and its relationship to clinically relevant domains. BMC Musculoskelet Disord 2021; 22:432. [PMID: 33975570 PMCID: PMC8114502 DOI: 10.1186/s12891-021-04287-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Altered regional activation of the lumbar extensors has been previously observed in individuals with low back pain (LBP) performing high-effort and fatiguing tasks. It is currently unknown whether similar alterations can be observed during low-effort functional tasks. Similarly, previous studies did not investigate whether side differences in regional activation are present in individuals with LBP. Finally, there is limited evidence of whether the extent of the alteration of regional activation is associated with clinical factors. Therefore, the aim of this study was to investigate whether individuals with LBP exhibit asymmetric regional activation of the thoraco-lumbar extensor muscles during functional tasks, and if the extent of neuromuscular control alteration is associated with clinical and psychosocial outcome domains. METHODS 21 participants with and 21 without LBP performed five functional tasks (gait, sit-to-stand, forward trunk flexion, shoulder flexion and anterior pelvic tilt). The spatial distribution of activation of the thoraco-lumbar extensor muscles was assessed bilaterally using high-density electromyography. For each side, the distribution of electromyographic (EMG) amplitude was characterized in terms of intensity, location and size. Indices of asymmetry were calculated from these features and comparisons between groups and tasks were performed using ANOVA. The features that significantly differed between groups were correlated with self-reported measures of pain intensity and other outcome domains. RESULTS Indices of asymmetry did not differ between participants with and without LBP (p > 0.11). The cranio-caudal location of the activation differed between tasks (p < 0.05), but not between groups (p = 0.64). Participants with LBP showed reduced EMG amplitude during anterior pelvic tilt and loading response phase during gait (both p < 0.05). Pearson correlation revealed that greater pain intensity was associated with lower EMG amplitude for both tasks (R<-0.5, p < 0.05). CONCLUSIONS Despite clear differences between tasks, individuals with and without LBP exhibited similar distributions of EMG amplitude during low-effort functional activities, both within and between sides. However, individuals with LBP demonstrated lower activation of the thoraco-lumbar muscles during gait and anterior pelvic tilt, especially those reporting higher pain intensity. These results have implications in the development or refinement of assessment and intervention strategies focusing on motor control in patients with chronic LBP.
Collapse
Affiliation(s)
- Francesca Serafino
- Presidio Sanitario San Camillo, Torino, Italy.,Montecatone Rehabilitation Institute, Imola, BO, Italy
| | - Marco Trucco
- Presidio Sanitario San Camillo, Torino, Italy.,Degree course of Physiotherapy, Universitá degli Studi di Torino, Torino, Italy
| | | | - Giacinto Luigi Cerone
- Laboratory for the Engineering of the Neuromuscular System, Politecnico of Torino, Torino, Italy.,PoliTo BIO Med Lab, Politecnico di Torino, Torino, Italy
| | - Alessandro Chiarotto
- Department of General Practice, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.,Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Taian Vieira
- Laboratory for the Engineering of the Neuromuscular System, Politecnico of Torino, Torino, Italy.,PoliTo BIO Med Lab, Politecnico di Torino, Torino, Italy
| | - Alessio Gallina
- Centre of Precision Rehabilitation for Spinal Pain, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
40
|
Jiang N, Wang L, Huang Z, Li G. Mapping Responses of Lumbar Paravertebral Muscles to Single-Pulse Cortical TMS Using High-Density Surface Electromyography. IEEE Trans Neural Syst Rehabil Eng 2021; 29:831-840. [PMID: 33905333 DOI: 10.1109/tnsre.2021.3076095] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Motor evoked potential (MEP), which was elicited by transcranial magnetic stimulation (TMS), has been widely used to detect corticospinal projection from TMS cortical site to trunk muscles. It can help to find the stimulation hotspot in the scalp. However, it fails to precisely describe coordinated activities of trunk muscle groups with only single-channel myoelectric signal. In this study, we aimed to use high-density surface electromyography (sEMG) to explore the effect of cortical TMS on lumbar paravertebral muscles in healthy subjects. The cortical site at 1 cm anterior and 4 cm lateral to vertex was chosen to simulate using a single-pulse TMS with different intensities and forward-bending angles. A high-density electrode array (45 channels) was placed on the surface of lumbar paravertebral muscles to record sEMG signals during a TMS experiment. MEP signals elicited by TMS were extracted from 45-channel recordings and one topographic map of the MEP amplitudes with six spatial features was constructed at each sampling point. The results showed TMS could successfully evoke an oval area with high intensity in the MEP topographic map, while this area mainly located in ipsilateral side of the TMS site. Intensity features related to the high intensity area rose significantly with TMS intensity and forward-bending angle increasing, but location features showed no change. The optimal stimulation parameters were 80% of maximum stimulator output (MSO) for TMS intensity and 30/60 degree for forward-bending angle. This study provided a potentially effective mapping tool to explore the hotspot for transcranial stimulation on trunk muscles.
Collapse
|
41
|
Are neuromuscular adaptations present in people with recurrent spinal pain during a period of remission? a systematic review. PLoS One 2021; 16:e0249220. [PMID: 33793608 PMCID: PMC8016280 DOI: 10.1371/journal.pone.0249220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/14/2021] [Indexed: 12/11/2022] Open
Abstract
A plethora of evidence supports the existence of neuromuscular changes in people with chronic spinal pain (neck and low back pain), yet it is unclear whether neuromuscular adaptations persist for people with recurrent spinal pain when in a period of remission. This systematic review aimed to synthesise the evidence on neuromuscular adaptations in people with recurrent spinal pain during a period of remission. Electronic databases, grey literature, and key journals were searched from inception up to the 4th of September 2020. Eligibility criteria included observational studies investigating muscle activity, spine kinematics, muscle properties, sensorimotor control, and neuromuscular performance in adults (≥ 18 years) with recurrent spinal pain during a period of remission. Screening, data extraction, and quality assessment (Newcastle-Ottawa Scale) were conducted independently by two reviewers. Data synthesis was conducted per outcome domain. A meta-analysis with a random-effects model was performed where possible. The overall strength of evidence was rated using the Grading of Recommendations, Assessment, Development and Evaluation guidelines (GRADE). From 8292 records, 27 and five studies were included in a qualitative and quantitative synthesis, respectively. Very low level of evidence supports muscle activity changes in people with recurrent low back pain, especially greater co-contraction, redistribution of muscle activity, and delayed postural control of deeper trunk muscles. Reduced range of motion of the lumbar spine was also found. Meaningful conclusions regarding other outcome domains or people with recurrent neck pain could not be drawn. In conclusion, people with recurrent low back pain during a period of remission show muscle activity and spine kinematics adaptations. Future research should investigate the long-term impact of these changes, as well as adaptations in people with recurrent neck pain.
Collapse
|
42
|
Field R, Pourkazemi F, Turton J, Rooney K. Dietary Interventions Are Beneficial for Patients with Chronic Pain: A Systematic Review with Meta-Analysis. PAIN MEDICINE 2020; 22:694-714. [DOI: 10.1093/pm/pnaa378] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Background
The standard Western diet is high in processed hyperpalatable foods that displace nutrient-dense whole foods, leading to inflammation and oxidative stress. There is limited research on how these adverse metabolic drivers may be associated with maladaptive neuroplasticity seen in chronic pain and whether this could be attenuated by a targeted nutritional approach. The aim of this study was to review the evidence for whole-food dietary interventions in chronic pain management.
Method
A structured search of eight databases was performed up to December 2019. Two independent reviewers screened studies and evaluated risk of bias by using the National Institutes of Health assessment tool for controlled or pre–post studies and the Joanna Briggs checklist for case reports. A meta-analysis was performed in Review Manager.
Results
Forty-three studies reporting on 48 chronic pain groups receiving a whole-food dietary intervention were identified. These included elimination protocols (n = 11), vegetarian/vegan diets (n = 11), single-food changes (n = 11), calorie/macronutrient restriction (n = 8), an omega-3 focus (n = 5), and Mediterranean diets (n = 2). A visual analog scale was the most commonly reported pain outcome measure, with 17 groups reporting a clinically objective improvement (a two-point or 33% reduction on the visual analog scale). Twenty-seven studies reported significant improvement on secondary metabolic measures. Twenty-five groups were included in a meta-analysis that showed a significant finding for the effect of diet on pain reduction when grouped by diet type or chronic pain type.
Conclusion
There is an overall positive effect of whole-food diets on pain, with no single diet standing out in effectiveness. This suggests that commonalities among approaches (e.g., diet quality, nutrient density, weight loss) may all be involved in modulating pain physiology. Further research linking how diet can modulate physiology related to pain (such as inflammation, oxidative stress, and nervous system excitability) is required.
Collapse
Affiliation(s)
- Rowena Field
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Fereshteh Pourkazemi
- Discipline of Physiotherapy, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | | | - Kieron Rooney
- Discipline of Exercise and Sport Science, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
43
|
Baroni A, Severini G, Straudi S, Buja S, Borsato S, Basaglia N. Hyperalgesia and Central Sensitization in Subjects With Chronic Orofacial Pain: Analysis of Pain Thresholds and EEG Biomarkers. Front Neurosci 2020; 14:552650. [PMID: 33281540 PMCID: PMC7689025 DOI: 10.3389/fnins.2020.552650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: The presence of a temporomandibular disorder is one of the most frequent causes of orofacial pain (OFP). When pain continues beyond tissue healing time, it becomes chronic and may be caused, among other factors, by the sensitization of higher-order neurons. The aim of this study is to describe psychological characteristics of patients with chronic OFP, their peripheral pain threshold, and electroencephalography (EEG) recording, looking for possible signs of central sensitization (CS). Materials and methods: Twenty-four subjects with chronic OFP caused by temporomandibular disorder were evaluated using the Research Diagnostic Criteria for Temporomandibular Disorders Axis I and Axis II. Pain intensity, catastrophizing, and presence of CS were assessed through self-reported questionnaires. Pressure pain threshold (PPT) was recorded in facial and peripheral sites; EEG activity was recorded during open and closed eyes resting state and also during the pain threshold assessment. Pain thresholds and EEG recordings were compared with a cohort of pain-free age- and sex-matched healthy subjects. Results: Patients with chronic OFP showed a significant reduction in their pain threshold compared to healthy subjects in all sites assessed. Greater reduction in pain threshold was recorded in patients with more severe psychological symptoms. Decreased alpha and increased gamma activity was recorded in central and frontal regions of all subjects, although no significant differences were observed between groups. Discussion: A general reduction in PPT was recorded in people who suffer from chronic OFP. This result may be explained by sensitization of the central nervous system due to chronic pain conditions. Abnormal EEG activity was recorded during painful stimulation compared to the relaxed condition in both chronic OFP subjects and healthy controls.
Collapse
Affiliation(s)
- Andrea Baroni
- Translational Neurosciences and Neurotechnologies, Ferrara University, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Giacomo Severini
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland.,Centre for Biomedical Engineering, University College Dublin, Dublin, Ireland
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Sergio Buja
- Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Silvia Borsato
- Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| | - Nino Basaglia
- Translational Neurosciences and Neurotechnologies, Ferrara University, Ferrara, Italy.,Department of Neuroscience and Rehabilitation, University Hospital of Ferrara, Ferrara, Italy
| |
Collapse
|
44
|
Changes in the Organization of the Secondary Somatosensory Cortex While Processing Lumbar Proprioception and the Relationship With Sensorimotor Control in Low Back Pain. Clin J Pain 2020; 35:394-406. [PMID: 30730445 DOI: 10.1097/ajp.0000000000000692] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Patients with nonspecific low back pain (NSLBP) rely more on the ankle compared with the lower back proprioception while standing, perform sit-to-stand-to-sit (STSTS) movements slower, and exhibit perceptual impairments at the lower back. However, no studies investigated whether these sensorimotor impairments relate to a reorganization of the primary and secondary somatosensory cortices (S1 and S2) and primary motor cortex (M1) during proprioceptive processing. MATERIALS AND METHODS Proprioceptive stimuli were applied at the lower back and ankle muscles during functional magnetic resonance imaging in 15 patients with NSLBP and 13 controls. The location of the activation peaks during the processing of proprioception within S1, S2, and M1 were determined and compared between groups. Proprioceptive use during postural control was evaluated, the duration to perform 5 STSTS movements was recorded, and participants completed the Fremantle Back Awareness Questionnaire (FreBAQ) to assess back-specific body perception. RESULTS The activation peak during the processing of lower back proprioception in the right S2 was shifted laterally in the NSLBP group compared with the healthy group (P=0.007). Moreover, patients with NSLSP performed STSTS movements slower (P=0.018), and reported more perceptual impairments at the lower back (P<0.001). Finally, a significant correlation between a more lateral location of the activation peak during back proprioceptive processing and a more disturbed body perception was found across the total group (ρ=0.42, P=0.025). CONCLUSIONS The results suggest that patients with NSLBP show a reorganization of the higher-order processing of lower back proprioception, which could negatively affect spinal control and body perception.
Collapse
|
45
|
Silfies SP, Beattie P, Jordon M, Vendemia JMC. Assessing sensorimotor control of the lumbopelvic-hip region using task-based functional MRI. J Neurophysiol 2020; 124:192-206. [PMID: 32519579 DOI: 10.1152/jn.00288.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent brain imaging studies have suggested that cortical remodeling within sensorimotor regions are associated with persistent low back pain and may be a driving mechanism for the impaired neuromuscular control associated with this condition. This paper outlines a new approach for investigating cortical sensorimotor integration during the performance of small-amplitude lumbopelvic movements with functional MRI. Fourteen healthy right-handed participants were instructed in the lumbopelvic movement tasks performed during fMRI acquisition. Surface electromyography (EMG) collected on 8 lumbopelvic and thigh muscles captured organized patterns of muscle activation during the movement tasks. fMRI data were collected on 10 of 14 participants. Sensorimotor cortical activation across the tasks was identified using a whole brain analysis and further explored with regional analyses of key components of the cortical sensorimotor network. Head motion had low correlation to the tasks (r = -0.101 to 0.004) and head translation averaged 0.98 (0.59 mm) before motion correction. Patterns of activation of the key lumbopelvic and thigh musculature (average amplitude normalized 2-17%) were significantly different across tasks (P > 0.001). Neuroimaging demonstrated activation in key sensorimotor cortical regions that were consistent with motor planning and sensory feedback needed for performing the different tasks. This approach captures the specificity of lumbopelvic sensorimotor control using goal-based tasks (e.g., "lift your hip" vs. "contract your lumbar multifidus to 20% of maximum") performed within the confines of the scanner. Specific patterns of sensorimotor cortex activation appear to capture differences between bilateral and unilateral tasks during voluntary control of multisegmental movement in the lumbopelvic region.NEW & NOTEWORTHY We demonstrated the feasibility of using task-based functional magnetic resonance imaging (fMRI) protocols for acquiring the blood oxygen level-dependent (BOLD) response of key sensorimotor cortex regions during voluntary lumbopelvic movements. Our approach activated lumbopelvic muscles during small-amplitude movements while participants were lying supine in the scanner. Our data supports these tasks can be done with limited head motion and low correlation of head motion to the task. The approach provides opportunities for assessing the role of brain changes in persistent low back pain.
Collapse
Affiliation(s)
- Sheri P Silfies
- Doctoral Program in Physical Therapy, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina.,McCausland Brain Imaging Center, University of South Carolina, Columbia, South Carolina
| | - Paul Beattie
- Doctoral Program in Physical Therapy, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Max Jordon
- Doctoral Program in Physical Therapy, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Jennifer M C Vendemia
- McCausland Brain Imaging Center, University of South Carolina, Columbia, South Carolina.,Institute for Mind and Brain, Department of Psychology, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
46
|
The Effectiveness of Spinal Manipulation in Increasing Muscle Strength in Healthy Individuals: A Systematic Review and Meta-Analysis. J Manipulative Physiol Ther 2020; 42:148-158. [PMID: 31126523 DOI: 10.1016/j.jmpt.2018.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/24/2018] [Accepted: 10/21/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The purpose of this study was to systematically review the effects of spinal manipulation on muscular strength in healthy individuals and conduct a meta-analysis to appraise the quality of evidence. METHODS Articles were searched and retrieved from MEDLINE, EMBASE, CINAHL, Cochrane Library, PubMed, Academic Search Premier, SPORTDiscus, and AMED. Searches were conducted in September 2017 without a limit on the starting period. The Physiotherapy Evidence Database scale was used to appraise the quality of the included studies. Data from eligible articles were pooled, and meta-analyses were conducted. The quality of evidence was appraised by the Grading of Recommendations, Assessment, Development and Evaluations approach. The registration number for the review on PROSPERO is CRD42017075215. RESULTS A total of 911 records were screened, and 3 randomized controlled trials were eligible to be included in this review. There was a significant pooled standardized mean difference in isometric strength (0.93, 95% confidence interval [CI], 0.17-1.68; P = .02) between the experimental and control groups, with a moderate level of heterogeneity. CONCLUSION This review suggests that spinal manipulative therapy augments the percentage of change in isometric strength gain among healthy participants when compared to no intervention or sham manipulation. However, the heterogeneity of pooled studies in this review suggests that the results should be interpreted with caution.
Collapse
|
47
|
Jenkins L, Chang WJ, Buscemi V, Cunningham C, Cashin A, McAuley JH, Liston M, Schabrun SM. Is there a causal relationship between acute stage sensorimotor cortex activity and the development of chronic low back pain? a protocol and statistical analysis plan. BMJ Open 2019; 9:e035792. [PMID: 31888948 PMCID: PMC6937113 DOI: 10.1136/bmjopen-2019-035792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Why some people develop chronic pain following an acute episode of low back pain is unknown. Recent cross-sectional studies have suggested a relationship between aberrant sensorimotor cortex activity and pain persistence. The UPWaRD (Understanding persistent Pain Where it ResiDes) cohort study is the first prospective, longitudinal investigation of sensorimotor cortex activity in low back pain. This paper describes the development of a causal model and statistical analysis plan for investigating the causal effect of sensorimotor cortex activity on the development of chronic low back pain. METHODS AND ANALYSIS Sensorimotor cortex activity was assessed within 6 weeks of low back pain onset using somatosensory evoked potentials and transcranial magnetic stimulation mapping techniques. Chronic low back pain is defined as ongoing pain (Numerical Rating score ≥1) or disability (Roland Morris Disability Questionnaire score ≥3) at 6 months follow-up. Variables that could confound the relationship between sensorimotor cortex activity and chronic low back pain were identified using a directed acyclic graph and content expertise was used to specify known causal paths. The statistical model was developed 'a priori' to control for confounding variables identified in the directed acyclic graph, allowing an unbiased estimate of the causal effect of sensorimotor activity in acute low back pain on the development of chronic pain. The statistical analysis plan was finalised prior to follow-up of all participants and initiation of analysis. ETHICS AND DISSEMINATION Ethical approval has been obtained from Western Sydney University Human Research Ethics Committee (H10465) and from Neuroscience Research Australia (SSA: 16/002). Dissemination will occur through presentations at national and international conferences and publications in international peer-reviewed journals. TRIAL REGISTRATION NUMBER ACTRN12619000002189 (retrospectively registered).
Collapse
Affiliation(s)
- Luke Jenkins
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Wei-Ju Chang
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Valentina Buscemi
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Chelsea Cunningham
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Aidan Cashin
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - James H McAuley
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew Liston
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Siobhan M Schabrun
- Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| |
Collapse
|
48
|
Seminowicz DA, Thapa T, Schabrun SM. Corticomotor Depression is Associated With Higher Pain Severity in the Transition to Sustained Pain: A Longitudinal Exploratory Study of Individual Differences. THE JOURNAL OF PAIN 2019; 20:1498-1506. [DOI: 10.1016/j.jpain.2019.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/03/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022]
|
49
|
Meier ML, Vrana A, Schweinhardt P. Low Back Pain: The Potential Contribution of Supraspinal Motor Control and Proprioception. Neuroscientist 2019; 25:583-596. [PMID: 30387689 PMCID: PMC6900582 DOI: 10.1177/1073858418809074] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Motor control, which relies on constant communication between motor and sensory systems, is crucial for spine posture, stability and movement. Adaptions of motor control occur in low back pain (LBP) while different motor adaption strategies exist across individuals, probably to reduce LBP and risk of injury. However, in some individuals with LBP, adapted motor control strategies might have long-term consequences, such as increased spinal loading that has been linked with degeneration of intervertebral discs and other tissues, potentially maintaining recurrent or chronic LBP. Factors contributing to motor control adaptations in LBP have been extensively studied on the motor output side, but less attention has been paid to changes in sensory input, specifically proprioception. Furthermore, motor cortex reorganization has been linked with chronic and recurrent LBP, but underlying factors are poorly understood. Here, we review current research on behavioral and neural effects of motor control adaptions in LBP. We conclude that back pain-induced disrupted or reduced proprioceptive signaling likely plays a pivotal role in driving long-term changes in the top-down control of the motor system via motor and sensory cortical reorganization. In the outlook of this review, we explore whether motor control adaptations are also important for other (musculoskeletal) pain conditions.
Collapse
Affiliation(s)
- Michael Lukas Meier
- Integrative Spinal Research, Department of
Chiropractic Medicine, University Hospital Balgrist, Zurich, Switzerland
| | - Andrea Vrana
- Integrative Spinal Research, Department of
Chiropractic Medicine, University Hospital Balgrist, Zurich, Switzerland
| | - Petra Schweinhardt
- Integrative Spinal Research, Department of
Chiropractic Medicine, University Hospital Balgrist, Zurich, Switzerland
- Alan Edwards Center for Research on Pain,
McGill University, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|