1
|
Ge H, Yan S, Yin M, Gao Y, Wang J, Wang Q, Xu G, Yang M. Gua Sha Alleviates Radiculitis-Induced Pain Via HIF-1α-Mediated Metabolic Reprogramming Pathway in Rats. Pain Res Manag 2025; 2025:9923147. [PMID: 40130025 PMCID: PMC11932754 DOI: 10.1155/prm/9923147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/27/2025] [Indexed: 03/26/2025]
Abstract
Background: Radiculitis-induced pain (RIP) results from dorsal root ganglion (DRG) sensitization due to inflammation. Hypoxia-inducible factor 1-alpha (HIF-1α) is linked to inflammatory responses through metabolic changes, but its role in RIP is not well understood. Gua Sha therapy has been shown to reduce inflammation and neural damage from lumbar disc herniation (LDH). This study investigates whether HIF-1α-mediated metabolic reprogramming contributes to the pain-relieving effects of Gua Sha in RIP. Methods: Male SD rats were subjected to LDH surgery and divided into six groups: sham, model, sham Gua Sha, Gua Sha, Gua Sha + DMOG, and Gua Sha + YC-1. Gua Sha was applied 5 days postsurgery, every other day for three sessions per course, totaling three courses. Changes in paw withdrawal threshold (PWT) and latency (PWL) were monitored, along with blood flow in the rats' backs. Levels of IL-1β, TNF-α, and NF-κB were assessed in serum and DRG tissue. Pathological changes and hypoxia in DRG tissues were observed using hematoxylin-eosin staining and immunofluorescence. Western blotting and qPCR measured HIF-1α, GLUT1, PFKM, and PDK1 expression, while lactic acid and ATP levels in DRG tissue were also evaluated. Results: Gua Sha increased PWT and PWL, reduced serum and DRG inflammatory factors, improved back microcirculation, alleviated DRG hypoxia, and decreased HIF-1α and related signaling factors. It also lowered lactic acid and raised ATP levels. DMOG, a HIF-1α activator, reversed these effects. HIF-1α activation did not affect serum inflammatory factors but partially improved PWT. Inhibition of HIF-1α with YC-1 did not significantly differ from Gua Sha alone. Conclusion: HIF-1α-mediated metabolic reprogramming is a pathogenic mechanism in RIP. Gua Sha alleviates RIP by enhancing microcirculation, improving DRG hypoxia, inhibiting HIF-1α-mediated reprogramming, and reducing DRG sensitization and inflammation. This study provides insights into the mechanisms of Gua Sha's therapeutic effects in RIP.
Collapse
Affiliation(s)
- Haotian Ge
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shuxia Yan
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mingwan Yin
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yujie Gao
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiayi Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qin Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- TCM Nursing Intervention Laboratory of Chronic Diseases, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Guihua Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Min Yang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Teichner EM, Subtirelu RC, Crutchfield CR, Parikh C, Ashok A, Talasila S, Anderson V, Patel M, Mannam S, Lee A, Werner T, Raynor WY, Alavi A, Revheim ME. The advancement and utility of multimodal imaging in the diagnosis of degenerative disc disease. FRONTIERS IN RADIOLOGY 2025; 5:1298054. [PMID: 40115420 PMCID: PMC11922948 DOI: 10.3389/fradi.2025.1298054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/25/2025] [Indexed: 03/23/2025]
Abstract
Degenerative disc disease (DDD) is a common spinal condition characterized by the deterioration of intervertebral discs, leading to chronic back pain and reduced mobility. While magnetic resonance imaging (MRI) has long been the standard for late-stage DDD diagnosis, its limitations in early-stage detection prompt the exploration of advanced imaging methods. Positron emission tomography/computed tomography (PET/CT) using 18F- fluorodeoxyglucose (FDG) and 18F-sodium fluoride (NaF) has shown promise in identifying metabolic imbalances and age-related spinal degeneration, thereby complementing CT grading of the disease. The novel hybrid imaging modality PET/MRI provides new opportunities and are briefly discussed. The complex pathophysiology of DDD is dissected to highlight the role of genetic predisposition and lifestyle factors such as smoking and obesity. These etiological factors significantly impact the lumbosacral region, manifesting in chronic low back pain (LBP) and potential nerve compression. Traditional grading systems, like the Pfirrmann classification for MRI, are evaluated for their limitations in capturing the full spectrum of DDD. The potential to identify early disease processes and predict patient outcomes by the use of artificial intelligence (AI) is also briefly mentioned. Overall, the manuscript aims to spotlight advancements in imaging technologies for DDD, emphasizing their implications in refining both diagnosis and treatment strategies. The role of ongoing and future research is emphasized to validate these emerging techniques and overcome current limitations for more effective early detection and treatment.
Collapse
Affiliation(s)
- Eric M Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Robert C Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Connor R Crutchfield
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chitra Parikh
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arjun Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sahithi Talasila
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Victoria Anderson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Milan Patel
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Sricharvi Mannam
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Lee
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - William Y Raynor
- Department of Radiology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Mona-Elisabeth Revheim
- The Intervention Center, Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Li X, Zhao Z, Ke Y, Jiang Y, Liu Y, Liu Z. Links Between Cellular Energy Metabolism and Pain Sensation. Anesth Analg 2025; 140:616-627. [PMID: 39110636 PMCID: PMC11805490 DOI: 10.1213/ane.0000000000007096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 02/09/2025]
Abstract
One of the functions of organism cells is to maintain energy homeostasis to promote metabolism and adapt to the environment. The 3 major pathways of cellular energy metabolism are glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). Neurons, astrocytes, and microglia are crucial in allodynia, hyperalgesia, and sensitization in nociceptive pathways. This review focused on these 3 major cellular energy metabolism pathways, aiming to elucidate the relationship between neurocyte and pain sensation and present the reprogramming of energy metabolism on pain, as well as the cellular and molecular mechanism underlying various forms of pain. The clinical and preclinical drugs involved in pain treatment and molecular mechanisms via cellular energy metabolism were also discussed.
Collapse
Affiliation(s)
- Xiongjuan Li
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhao Zhao
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuwen Ke
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yonghan Jiang
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuqiang Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhiheng Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| |
Collapse
|
4
|
Rajasekaran S, Thippeswamy PB, Gurusamy G, Ramachandran K, Yirdaw TA, Basu S, Kamodia JS, Abdelwahed AM, K S SVA, Shetty AP, Kanna RM. ISSLS Prize in Clinical Science 2025: Cartilage End Plate Defects Precede and Initiate Bony End Plate Defects and Disc Degeneration- An 'Integrated Total End Plate Score' Identify Preclinical Discs at Risk for Degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025:10.1007/s00586-025-08712-4. [PMID: 39909891 DOI: 10.1007/s00586-025-08712-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
PURPOSE We utilized the Fast Low Angle Shot (FLASH) sequence to document the sequential changes in cartilaginous (CEP) and bony end plate (BEP) to study the influence on disc degeneration (DD). METHODS Routine MRI and FLASH sequences were used in 500 lumbar discs in 100 each of healthy volunteers (HV), low back pain patients treated conservatively (CG) and surgically (SG) to document CEP and BEP status, Pfirrmann Grade (PG) and various MRI parameters. RESULTS The three groups were identical demographically but had a significantly different number of healthy discs (p < 0.01) and changes in CEP and BEP (p < 0.01), with patients having a higher severity of end plate changes and DD, even in asymptomatic discs. CEP abnormalities always appeared first, followed by a sequence of BEP defects of different severity, allowing the development of an 'Integrated Total End Plate Score' (I-TEPS). There was a good correlation between I-TEPS and PG, with a steep escalation of DD after a score of 7. A score of ≥ 7 was also associated with higher surgical incidence in patients with both degenerated and herniated discs. The most significant influencing factors for surgery was a combination of I-TEPS ≥ 7 with herniation (OR7.7;p-0.00), smoking (OR4.63;p-0.02), and an I-TEPS ≥ 7 (OR3.37;p-0.04). CONCLUSION CEP changes identified by FLASH preceded BEP defects and DD. I-TEPS was superior to TEPS in identifying a subgroup of discs that had CEP abnormalities without BEP. An I-TEPS ≥ 7 had a significant correlation to the severity of DD, influenced variations in herniation and also surgical incidence.
Collapse
Affiliation(s)
| | | | | | - Karthik Ramachandran
- Ganga Hospital, Coimbatore, Tamil Nadu, India
- Ganga Research Centre, Coimbatore, Tamil Nadu, India
| | | | - Suprotik Basu
- Ganga Research Centre, Coimbatore, Tamil Nadu, India
| | | | | | - Sri Vijay Anand K S
- Ganga Hospital, Coimbatore, Tamil Nadu, India
- Ganga Research Centre, Coimbatore, Tamil Nadu, India
| | | | | |
Collapse
|
5
|
Trone MAR, Stover JD, Almarza A, Bowles RD. pH: A major player in degenerative intervertebral disks. JOR Spine 2024; 7:e70025. [PMID: 39703199 PMCID: PMC11655178 DOI: 10.1002/jsp2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Chronic lower back pain is the leading cause of disability worldwide, generating a socioeconomic cost of over $100 billion annually in the United States. Among the prominent causes of low back pain (LBP) is degeneration of the intervertebral disk (IVD), a condition known as degenerative disk disease (DDD). Despite the prevalence of DDD and multiple studies demonstrating its relationship with LBP, the mechanisms by which it contributes to pain remain unknown. Previous studies have identified potential causes for this pain, such as extracellular matrix (ECM) breakdown, changes in biomechanics, and pro-inflammatory signals. Possible pain treatments targeting these factors have been developed but with limited effects. However, low pH in DDD is a potential pain generator whose role has largely been unexplored and underappreciated. This review highlights hyperacidity's effects on the IVD, such as catabolism of disk cells and ECM, neoinnervation, altered mechanical signaling, and expression of pro-inflammatory cytokines and ion channels. This review aims to discuss what is known about the contributions of acidity to DDD pain, identify the knowledge gaps on this topic, and propose what research can be conducted to fill these gaps. We must better understand the underlying mechanisms of DDD and the interaction between hyperacidity and nociception to develop better therapeutics for this disease.
Collapse
Affiliation(s)
| | - Joshua D. Stover
- Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUtahUSA
- Department of Oral and Craniofacial SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Alejandro Almarza
- Department of Oral and Craniofacial SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Robert D. Bowles
- Department of Biomedical EngineeringUniversity of UtahSalt Lake CityUtahUSA
- Department of OrthopaedicsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
6
|
Billham JF, Shi D, Evans Roland E, Gornet MF, Brinkman KK, Schranck FW, Cox JM, Kettner NW. Intervertebral Disc Magnetic Resonance Spectroscopy Changes After Spinal Manipulative Therapy for Lumbar Discogenic Pain. Cureus 2024; 16:e72225. [PMID: 39583519 PMCID: PMC11584172 DOI: 10.7759/cureus.72225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
This study investigates the use of magnetic resonance spectroscopy (MRS) to identify the intervertebral disc (IVD) as a pain generator, explore the pathophysiology of the biochemical and structural components of discogenic low back pain (DLBP), and present potential evidence of physiological responses to spinal manipulation therapy (SMT). A 29-year-old male presented with uncomplicated low back pain (LBP). The non-specific presentation and clinical examination findings were consistent with an initial working diagnosis of non-specific LBP with the clinician suspecting IVD as a likely pain generator. Conventional magnetic resonance imaging showed findings of IVD degeneration including Modic type I changes consistent with a diagnosis of DLBP. MRS was utilized for structural and biochemical analysis of the IVDs. Altered spectral features confirmed a DLBP diagnosis. The patient underwent 16 Cox flexion-distraction SMT treatments at a chiropractic teaching clinic in Chesterfield, Missouri. A follow-up MRS was performed to compare and evaluate post-treatment results. We report the utilization of MRS to quantify the structural integrity and biochemical pain profile of the IVD in a conservatively managed chronic DLBP patient who was unresponsive to previous steroid injections. Comparison between MRS revealed improved IVD spectral features including decreased biochemical pain markers and increased glycoprotein biosynthesis. This implies that the SMT management of chronic DLBP may improve IVD structural integrity and alter pain biochemistry.
Collapse
Affiliation(s)
| | - Dingbo Shi
- Department of Radiology, Logan University, Chesterfield, USA
| | - Erika Evans Roland
- Department of Clinical Chiropractic, Montgomery Health Center, Logan University, Chesterfield, USA
| | - Matthew F Gornet
- Department of Orthopedics, The Orthopedic Center of St Louis, St Louis, USA
| | - Kelly K Brinkman
- Department of Chiropractic, College of Chiropractic, Logan University, Chesterfield, USA
| | | | - James M Cox
- Department of Radiology and Clinical Chiropractic, Cox Chiropractic Medicine, Fort Wayne, USA
| | | |
Collapse
|
7
|
Chen X, Chen K, Hu J, Dong Y, Zheng M, Jiang J, Hu Q, Zhang W. Palmitic acid induces lipid droplet accumulation and senescence in nucleus pulposus cells via ER-stress pathway. Commun Biol 2024; 7:539. [PMID: 38714886 PMCID: PMC11076507 DOI: 10.1038/s42003-024-06248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a highly prevalent musculoskeletal disorder affecting millions of adults worldwide, but a poor understanding of its pathogenesis has limited the effectiveness of therapy. In the current study, we integrated untargeted LC/MS metabolomics and magnetic resonance spectroscopy data to investigate metabolic profile alterations during IDD. Combined with validation via a large-cohort analysis, we found excessive lipid droplet accumulation in the nucleus pulposus cells of advanced-stage IDD samples. We also found abnormal palmitic acid (PA) accumulation in IDD nucleus pulposus cells, and PA exposure resulted in lipid droplet accumulation and cell senescence in an endoplasmic reticulum stress-dependent manner. Complementary transcriptome and proteome profiles enabled us to identify solute carrier transporter (SLC) 43A3 involvement in the regulation of the intracellular PA level. SLC43A3 was expressed at low levels and negatively correlated with intracellular lipid content in IDD nucleus pulposus cells. Overexpression of SLC43A3 significantly alleviated PA-induced endoplasmic reticulum stress, lipid droplet accumulation and cell senescence by inhibiting PA uptake. This work provides novel integration analysis-based insight into the metabolic profile alterations in IDD and further reveals new therapeutic targets for IDD treatment.
Collapse
Affiliation(s)
- Xi Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Kun Chen
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jun Hu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yijun Dong
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Menglong Zheng
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Jiang Jiang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Qingsong Hu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Wenzhi Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
8
|
Pushpa BT, Rajasekaran S, Easwaran M, Murugan C, Algeri R, Sri Vijay Anand KS, Mugesh Kanna R, Shetty AP. ISSLS PRIZE in basic science 2023: Lactate in lumbar discs-metabolic waste or energy biofuel? Insights from in vivo MRS and T2r analysis following exercise and nimodipine in healthy volunteers. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:1491-1503. [PMID: 36790504 DOI: 10.1007/s00586-023-07540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/19/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE To quantitatively assess the dynamic changes of Lactate in lumbar discs under different physiological conditions using MRS and T2r. METHODS In step1, MRS and T2r sequences were standardized in 10 volunteers. Step2, analysed effects of high cellular demand. 66 discs of 20 volunteers with no back pain were evaluated pre-exercise (EX-0), immediately after targeted short-time low back exercises (EX-1) and 60 min after (EX-2). In Step 3, to study effects of high glucose and oxygen concentration, 50 lumbar discs in 10 volunteers were analysed before (D0) and after 10 days intake of the calcium channel blocker, nimodipine (D1). RESULTS Lactate showed a distinctly different response to exercise in that Grade 1 discs with a significant decrease in EX-1 and a trend for normalization in Ex-2. In contrast, Pfirrmann grade 2 and 3 and discs above 40 years showed a higher lactate relative to proteoglycan in EX-0, an increase in lactate EX-1 and mild dip in Ex-2. Similarly, following nimodipine, grade 1 discs showed an increase in lactate which was absent in grade 2 and 3 discs. In contrast, exercise and Nimodipine had no significant change in T2r values and MRS spectrum of proteoglycan, N-acetyl aspartate, carbohydrate, choline, creatine, and glutathione across age groups and Pfirrmann grades. CONCLUSION MRS documented changes in lactate response to cellular demand which suggested a 'Lactate Symbiotic metabolic Pathway'. The differences in lactate response preceded changes in Proteoglycan/hydration and thus could be a dynamic radiological biomarker of early degeneration.
Collapse
Affiliation(s)
- B T Pushpa
- Department of Radiodiagnosis, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - S Rajasekaran
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India.
| | - Murugesh Easwaran
- Ganga Research Centre, 187, Mettupalayam Road, Koundampalayam, Coimbatore, India
| | - Chandhan Murugan
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Raksha Algeri
- Department of Radiodiagnosis, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - K S Sri Vijay Anand
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Rishi Mugesh Kanna
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| | - Ajoy Prasad Shetty
- Department of Spine Surgery, Ganga Hospital, 313, Mettupalayam Road, Coimbatore, India
| |
Collapse
|
9
|
Multiple nano-drug delivery systems for intervertebral disc degeneration: Current status and future perspectives. Bioact Mater 2023; 23:274-299. [DOI: 10.1016/j.bioactmat.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
|
10
|
Gornet MF, Eastlack RK, Peacock J, Schranck FW, Lotz JC. Magnetic resonance spectroscopy (MRS) identification of chemically painful lumbar discs leads to improved 6-, 12-, and 24-month outcomes for discogenic low back pain surgeries. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023:10.1007/s00586-023-07665-w. [PMID: 37014434 DOI: 10.1007/s00586-023-07665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023]
Abstract
PURPOSE MRS was shown to reliably quantify relative levels of degenerative pain biomarkers, differentiating painful versus non-painful discs in patients with chronic discogenic low back pain (DLBP), and this correlates with surgical success rates. We now report results based on more patients and longer follow-up. METHODS Disc MRS was performed in DLBP patients who subsequently received lumbar surgery. Custom post-processing (NOCISCAN-LS®; Aclarion Inc.) calculated disc-specific NOCISCORES® that reflect relative differences in degenerative pain biomarkers for diagnosing chemically painful discs. Outcomes in 78 patients were evaluated using Oswestry Disability Index (ODI) scores. Surgical success (≥ 15-point ODI improvement) was compared between surgeries that were "Concordant" (Group C) versus "Discordant" (Group D) with NOCISCORE-based diagnosis for painful discs. RESULTS Success rates were higher for Group C versus Group D: 6 months (88% vs. 62%; p = 0.01), 12 months (91% vs. 56%; p < 0.001), and 24 months (85% vs. 63%; p = 0.07). Success rates for Group C surgeries were also higher than Group D surgeries in a variety of sub-group comparisons. Group C had a greater reduction in ODI from pre-operative to follow-up than Group D [absolute change (% change), (p)]: 6 months: - 35 (- 61%) versus - 23 (- 39%), (p < 0.05); 12 months: - 39 (- 69%) versus - 22 (- 39%), (p < 0.01); and 24 months: - 38 (- 66%) versus - 26 (- 48%), (p < 0.05). CONCLUSION More successful, sustained outcomes were obtained when surgically treating chemically painful discs identified by NOCISCAN-LS post-processed disc MRS exams. Results suggest that NOCISCAN-LS provides a valuable new diagnostic tool to help clinicians better select treatment levels.
Collapse
Affiliation(s)
- Matthew F Gornet
- The Orthopedic Center of St. Louis, 14825 N. Outer Forty Road, Suite 200, St Louis, MO, 63017, USA.
| | - Robert K Eastlack
- Department of Orthopedic Surgery, Scripps Clinic, San Diego, CA, USA
| | | | | | - Jeffrey C Lotz
- University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Basatvat S, Bach FC, Barcellona MN, Binch AL, Buckley CT, Bueno B, Chahine NO, Chee A, Creemers LB, Dudli S, Fearing B, Ferguson SJ, Gansau J, Gantenbein B, Gawri R, Glaeser JD, Grad S, Guerrero J, Haglund L, Hernandez PA, Hoyland JA, Huang C, Iatridis JC, Illien‐Junger S, Jing L, Kraus P, Laagland LT, Lang G, Leung V, Li Z, Lufkin T, van Maanen JC, McDonnell EE, Panebianco CJ, Presciutti SM, Rao S, Richardson SM, Romereim S, Schmitz TC, Schol J, Setton L, Sheyn D, Snuggs JW, Sun Y, Tan X, Tryfonidou MA, Vo N, Wang D, Williams B, Williams R, Yoon ST, Le Maitre CL. Harmonization and standardization of nucleus pulposus cell extraction and culture methods. JOR Spine 2023; 6:e1238. [PMID: 36994456 PMCID: PMC10041384 DOI: 10.1002/jsp2.1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Background In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide.
Collapse
Affiliation(s)
| | - Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marcos N. Barcellona
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Abbie L. Binch
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Brian Bueno
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nadeen O. Chahine
- Departments of Orthopedic Surgery and Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Ana Chee
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Laura B. Creemers
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Stefan Dudli
- Center for Experimental RheumatologyUniversity of ZurichZurichSwitzerland
| | - Bailey Fearing
- Department of Orthopedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | | | - Jennifer Gansau
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Benjamin Gantenbein
- Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department for Orthopedics and Traumatology, Insel University HospitalUniversity of BernBernSwitzerland
| | - Rahul Gawri
- Division of Orthopaedic Surgery, Department of SurgeryMcGill UniversityMontrealCanada
- Regenerative Orthopaedics and Innovation LaboratoryMcGill UniversityMontrealCanada
| | | | | | - Julien Guerrero
- Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Center of Dental Medicine, Oral Biotechnology & BioengineeringUniversity of ZurichZurichSwitzerland
| | - Lisbet Haglund
- Division of Orthopaedic Surgery, Department of SurgeryMcGill UniversityMontrealCanada
| | - Paula A. Hernandez
- Department of Orthopaedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Judith A. Hoyland
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Charles Huang
- Department of Biomedical EngineeringUniversity of MiamiCoral GablesFloridaUSA
| | - James C. Iatridis
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Liufang Jing
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Petra Kraus
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
- Department of BiologyClarkson UniversityPotsdamNew YorkUSA
| | - Lisanne T. Laagland
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Gernot Lang
- Department of Orthopedics and Trauma Surgery, Medical Center, Faculty of MedicineAlbert‐Ludwigs‐University of FreiburgFreiburg im BreisgauGermany
| | - Victor Leung
- Department of Orthopaedics & TraumatologyThe University of Hong KongHong KongSARChina
| | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| | - Thomas Lufkin
- Department of BiologyClarkson UniversityPotsdamNew YorkUSA
| | - Josette C. van Maanen
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Chris J. Panebianco
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Sanjna Rao
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Stephen M. Richardson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Sarah Romereim
- Department of Orthopedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | - Tara C. Schmitz
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jordy Schol
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
| | - Lori Setton
- Departments of Biomedical Engineering and Orthopedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Joseph W. Snuggs
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Y. Sun
- Department of Orthopaedics & TraumatologyThe University of Hong KongHong KongSARChina
| | - Xiaohong Tan
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Nam Vo
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dong Wang
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Brandon Williams
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Rebecca Williams
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - S. Tim Yoon
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
| | - Christine L. Le Maitre
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldSouth YorkshireUK
| |
Collapse
|
12
|
Guo T, Zhang X, Hu Y, Lin M, Zhang R, Chen X, Yu D, Yao X, Wang P, Zhou H. New Hope for Treating Intervertebral Disc Degeneration: Microsphere-Based Delivery System. Front Bioeng Biotechnol 2022; 10:933901. [PMID: 35928951 PMCID: PMC9343804 DOI: 10.3389/fbioe.2022.933901] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IVDD) has been considered the dominant factor in low back pain (LBP), and its etiological mechanisms are complex and not yet fully elucidated. To date, the treatment of IVDD has mainly focused on relieving clinical symptoms and cannot fundamentally solve the problem. Recently, a novel microsphere-based therapeutic strategy has held promise for IVD regeneration and has yielded encouraging results with in vitro experiments and animal models. With excellent injectability, biocompatibility, and biodegradability, this microsphere carrier allows for targeted delivery and controlled release of drugs, gene regulatory sequences, and other bioactive substances and supports cell implantation and directed differentiation, aiming to improve the disease state of IVD at the source. This review discusses the possible mechanisms of IVDD and the limitations of current therapies, focusing on the application of microsphere delivery systems in IVDD, including targeted delivery of active substances and drugs, cellular therapy, and gene therapy, and attempts to provide a new understanding for the treatment of IVDD.
Collapse
Affiliation(s)
- Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, China
| | - Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Haiyu Zhou, ; Xiaobo Zhang,
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, China
| | - Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, China
| | - Ruihao Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, China
| | - Xiangyi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, China
| | - Dechen Yu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, China
| | - Xin Yao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, China
| | - Peng Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, China
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou, China
- Xigu District People’s Hospital, Lanzhou, China
- *Correspondence: Haiyu Zhou, ; Xiaobo Zhang,
| |
Collapse
|
13
|
Shen J, Chen A, Cai Z, Chen Z, Cao R, Liu Z, Li Y, Hao J. Exhausted local lactate accumulation via injectable nanozyme-functionalized hydrogel microsphere for inflammation relief and tissue regeneration. Bioact Mater 2022; 12:153-168. [PMID: 35310385 PMCID: PMC8897073 DOI: 10.1016/j.bioactmat.2021.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Accepted: 10/10/2021] [Indexed: 12/15/2022] Open
Abstract
Local lactate accumulation greatly hinders tissue repair and regeneration under ischemic condition. Herein, an injectable microsphere (MS@MCL) for local lactate exhaustion was constructed by grafting manganese dioxide (MnO2) -lactate oxidase (LOX) composite nanozyme on microfluidic hyaluronic acid methacrylate (HAMA) microspheres via chemical bonds, achieving a long-term oxygen-promoted lactate exhaustion effect and a long half-life in vivo. The uniform and porous microspheres synthesized by microfluidic technology is beneficial to in situ injection therapy and improving encapsulation efficiency. Furthermore, chemical grafting into HAMA microspheres through amide reactions promoted local enzymatic concentration and activity enhancement. It was showed that the MS@MCL eliminated oxidative and inflammatory stress and promoted extracellular matrix metabolism and cell survival when co-cultured with nucleus pulposus cells (NPCs) in vitro. In the rat degenerative intervertebral disc model caused by lactate injection, MS@MCL showed a long-term therapeutic effect in reducing intervertebral height narrowing and preventing extracellular matrix (ECM) degradation as well as inflammatory damage in vivo. Altogether, this study confirms that this nanozyme-functionalized injectable MS@MCL effectively improves the regenerative and reparative effect in ischemic tissues by disposing of enriched lactate in local microenvironment. Exhausted local lactate accumulation via injectable hydrogel microsphere. Long-acting microfluidic hyaluronic acid microspheres. Manganese dioxide-lactate oxidase composited nanozyme via covalent bond. Promoted sustained release of nanozyme and maintained enzymatic activity.
Collapse
Affiliation(s)
- Jieliang Shen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 40042, PR China
| | - Ao Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, PR China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Zhijie Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Ruichao Cao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 40042, PR China
| | - Zongchao Liu
- Department of Orthopaedics, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, No.182 Chunhui Road, Sichuan, 646699, PR China
- Corresponding author.
| | - Yuling Li
- Department of Orthopaedics, Affiliated Hospital of North Sichuan Medical College, No.63 Wenhua Road, Nanchong, Sichuan, 637000, PR China
- Corresponding author.
| | - Jie Hao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Chongqing, 40042, PR China
- Corresponding author.
| |
Collapse
|
14
|
Koetsier E, van Kuijk SMJ, Maino P, Dukanac J, Scascighini L, Cianfoni A, Scarone P, Kuhlen DE, Hollman MW, Kallewaard JW. Efficacy of the Gelstix nucleus augmentation device for the treatment of chronic discogenic low back pain: protocol for a randomised, sham-controlled, double-blind, multicentre trial. BMJ Open 2022; 12:e053772. [PMID: 35354635 PMCID: PMC8968527 DOI: 10.1136/bmjopen-2021-053772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Discogenic pain is the cause of pain in 26%-40% of patients with for low back pain. Consensus about treatment of chronic discogenic low back pain is lacking and most treatment alternatives are supported by limited evidence. The percutaneous implantation of hydrogels into the nucleus pulposus represents a promising regenerative intradiscal therapy. The hydrogel 'GelStix' is composed primarily of hydrolyzed polyacrylonitrile and acts as a reservoir of hydration, producing increased pressure and improved pH balance, potentially leading to disc preservation. We hypothesise that treatment with GelStix will lead to greater reduction in pain intensity at 6 months post-treatment compared with patients receiving sham treatment. METHODS AND ANALYSIS This is a parallel group, randomised sham-controlled double-blind, multicentre trial to assess whether the GelStix device is superior to sham in reducing pain intensity in patients with chronic discogenic low back pain. The study will be conducted in two regional hospitals in Europe. Seventy-two participants will be randomised in a 1:1 ratio. The primary outcome will be the change in pain intensity between preoperative baseline and at 6 months postintervention. Secondary outcomes were disability, quality of life, the patient's global impression of change scale, the use of pain medication and the disc degeneration process assessed by means of MRI. For change in pain intensity, disability, health-related quality of life and disc height, mean values will be compared between groups using linear regression analysis, adjusted for treatment centre. ETHICS AND DISSEMINATION Ethics approval was obtained from the Ethics Committee of the Canton Ticino, Switzerland (CE2982) and by the Medical Ethical Committee Arnhem-Nijmegen, the Netherlands (2016-2944). All patients that agree to participate will be asked to sign an informed consent form. Results will be disseminated through international publications in peer-reviewed journals, in addition to international conference presentations. TRIAL REGISTRATION NUMBER NCT02763956. PROTOCOL VERSION 7.1, 18 November 2020.
Collapse
Affiliation(s)
- Eva Koetsier
- Pain Management Center, Neurocenter of Southern Switzerland, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Sander M J van Kuijk
- Clinical Epidemiology and Medical Technology Assessment, Maastricht Universitair Medisch Centrum+, Maastricht, The Netherlands
| | - Paolo Maino
- Pain Management Center, Neurocenter of Southern Switzerland, EOC, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Jasmina Dukanac
- Pain Management Center, Neurocenter of Southern Switzerland, EOC, Lugano, Switzerland
| | - Luca Scascighini
- Department of Health Sciences, University of Applied Sciences and Arts of Southern Switzerland, Manno, Switzerland
| | - Alessandro Cianfoni
- Service of Diagnostic and Interventional Neuroradiology, Neurocenter of Southern Switzerland, EOC, Lugano, Switzerland
- Department of Neuroradiology, Inselspital University Hospital Bern, Bern, Switzerland
| | - Pietro Scarone
- Clinic of Neurosurgery, Neurocenter of Southern Switzerland, EOC, Lugano, Switzerland
| | - Dominique E Kuhlen
- Clinic of Neurosurgery, Neurocenter of Southern Switzerland, EOC, Lugano, Switzerland
| | - Markus W Hollman
- Department of Anesthesiology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | | |
Collapse
|
15
|
Tamagawa S, Sakai D, Nojiri H, Sato M, Ishijima M, Watanabe M. Imaging Evaluation of Intervertebral Disc Degeneration and Painful Discs-Advances and Challenges in Quantitative MRI. Diagnostics (Basel) 2022; 12:707. [PMID: 35328260 PMCID: PMC8946895 DOI: 10.3390/diagnostics12030707] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 01/07/2023] Open
Abstract
In recent years, various quantitative and functional magnetic resonance imaging (MRI) sequences have been developed and used in clinical practice for the diagnosis of patients with low back pain (LBP). Until now, T2-weighted imaging (T2WI), a visual qualitative evaluation method, has been used to diagnose intervertebral disc (IVD) degeneration. However, this method has limitations in terms of reproducibility and inter-observer agreement. Moreover, T2WI observations do not directly relate with LBP. Therefore, new sequences such as T2 mapping, T1ρ mapping, and MR spectroscopy have been developed as alternative quantitative evaluation methods. These new quantitative MRIs can evaluate the anatomical and physiological changes of IVD degeneration in more detail than conventional T2WI. However, the values obtained from these quantitative MRIs still do not directly correlate with LBP, and there is a need for more widespread use of techniques that are more specific to clinical symptoms such as pain. In this paper, we review the state-of-the-art methodologies and future challenges of quantitative MRI as an imaging diagnostic tool for IVD degeneration and painful discs.
Collapse
Affiliation(s)
- Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.T.); (H.N.); (M.I.)
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Hidetoshi Nojiri
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.T.); (H.N.); (M.I.)
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.T.); (H.N.); (M.I.)
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Kanagawa, Japan
| |
Collapse
|
16
|
Jacobsen T, Hernandez P, Chahine N. Inhibition of toll-like receptor 4 protects against inflammation-induced mechanobiological alterations to intervertebral disc cells. Eur Cell Mater 2021; 41:576-591. [PMID: 34013512 PMCID: PMC8329983 DOI: 10.22203/ecm.v041a37] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intervertebral disc (IVD) degeneration is associated with elevated levels of inflammatory cytokines implicated in disease aetiology and matrix degradation. Toll-like receptor-4 (TLR4) has been shown to participate in the inflammatory responses of the nucleus pulposus (NP) and its levels are upregulated in disc degeneration. Activation of TLR4 in NP cells leads to significant, persistent changes in cell biophysical properties, including hydraulic permeability and osmotically active water content, as well as alterations to the actin cytoskeleton. The study hypothesis was that inflammation-induced changes to cellular biomechanical properties and actin cytoskeleton of NP cells could be prevented by inhibiting TLR4 signalling. Isolated NP cells from bovine discs were treated with lipopolysaccharide (LPS), the best studied TLR4 agonist, with or without treatment with the TLR4 inhibitor TAK-242. Cellular volume regulation responses to step osmotic loading were measured and the transient volume-response was captured by time-lapse microscopy. Volume-responses were analysed using mixture theory framework to investigate hydraulic permeability and osmotically active intracellular water content. Hydraulic permeability and cell radius were significantly increased with LPS treatment and these changes were blocked in cells treated with TAK-242. LPS-induced remodelling of cortical actin and IL-6 upregulation were also mitigated by TAK-242 treatment. These findings indicated that TLR4 signalling participated in NP cell biophysical regulation and may be an important target for mitigating altered cell responses observed in IVD inflammation and degeneration.
Collapse
Affiliation(s)
- T.D. Jacobsen
- Department of Biomedical Engineering, Columbia University,
New York, NY
| | - P.A. Hernandez
- Department of Orthopaedic Surgery, University of Texas
Southwestern Medical Centre, Dallas, TX
| | - N.O. Chahine
- Department of Biomedical Engineering, Columbia University,
New York, NY,Department of Orthopaedic Surgery, Columbia University, New
York, NY,Address for correspondence: Nadeen
Chahine, 650 W 168th St, William Black Building, 14th
Floor Room 14-1408E, New York, NY 10032, USA. Telephone number: +1 2123051515,
| |
Collapse
|
17
|
Li L, Zhou Z, Xiong W, Fang J, Scotti A, Shaghaghi M, Zhu W, Cai K. Characterization of microenvironmental changes in the intervertebral discs of patients with chronic low back pain using multiparametric MRI contrasts extracted from Z-spectrum. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1063-1071. [PMID: 33475842 PMCID: PMC11421479 DOI: 10.1007/s00586-021-06733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Z-spectral MRI data were analyzed to produce multiparametric metabolic and microenvironmental contrasts for identifying intervertebral discs with/without pain symptom and sore pain. METHODS Z-spectra data were collected from the lumbar discs of 26 patients with non-specific chronic low bck pain (CLBP) and 21 asymptomatic controls (AC) with a chemical exchange saturation transfer (CEST). Data were fitted to quantify the CEST effects from glycosaminoglycan, amide proton transfer (APT), nuclear Overhauser enhancement (NOE), semi-solid magnetization transfer contrast effects, and the direct saturation of water. Multiparametric maps were computed from the fitted peak amplitudes, and the average values were calculated from all five lumber discs. Those parameters were compared between the CLBP and AC groups and between the subgroups with and without (Nsore) sore pain. RESULTS The discs in symptomatic patients have lower water content, collagen-bound water and collagen than the discs in AC (P < 0.05). Additionally, Z-sepctral MRI indicated that the discs in the sore subgroup had less water, collagen-bound water and collagen, and likely lower pH compared to the Nsore subgroup (P < 0.05). Lower pH as measured with reduced APT and NOE effects may be an important pathological factor causing sore pain of the back. CONCLUSION Z-spectral MRI with its multiparametric metabolic and microenvironmental contrasts has been demonstrated to identify discs with and without pain symptom or sore pain, providing more important information of CLBP.
Collapse
Affiliation(s)
- Li Li
- Radiological Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhiguo Zhou
- Department of Orthopedics, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
| | - Jicheng Fang
- Radiological Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China
| | - Alessandro Scotti
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Mehran Shaghaghi
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - WenZhen Zhu
- Radiological Department, Tongji Hospital, Tongji Medical College, HUST, Wuhan, 430030, Hubei, People's Republic of China.
| | - Kejia Cai
- Departments of Radiology, Department of Bioengineering, and the Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Translational Studies on Biologic Fusion of a Vertebral Segment as a Novel Treatment Modality for Low Back Pain. Spine (Phila Pa 1976) 2020; 45:E1636-E1644. [PMID: 32947496 DOI: 10.1097/brs.0000000000003699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Preclinical studies: Efficacy and toxicological studies on lactic acid (LA)-induced sclerozation in pig lumbar discs. Clinical study: Prospective, randomized, double-blinded, placebo-controlled, single ascending dose study investigating the safety and local tolerability of LA. OBJECTIVE To determine if LA produces sclerozation of the porcine nucleus pulposus (NP) followed by a phase Ib study to evaluate preliminary safety, tolerability, and efficacy of LA in patients with chronic discogenic low back pain. SUMMARY OF BACKGROUND DATA Surgical stabilization of a motion segment harboring a painful degenerated disc often affords symptomatic relief. In the present study, the hypothesis was tested that LA can produce sclerozation and stabilization of the NP. METHODS LA (0.2 mL; 60, 120, or 240 mg/mL) or vehicle was injected into the NP or close to the extra spinal region of spinal nerves of young female pigs. The size of the NP, MRI changes, flexural stiffness, and histology of the disc was studied after up to 84 days of survival. Fifteen patients injected intra discally with placebo (iohexol, 1.5 mL, n = 6) or iohexol plus LA (30, 60, or 120 mg/mL; three patients in each group) were followed for up to 12 months. RESULTS Injection of LA in the pig reproducibly induced sclerozation of the NP and increased flexural rigidity. Histological changes included generation of connective tissue and increased expression of collagen I. No safety concerns were raised. Adverse events in patients were limited to transiently increased low back pain with no obvious difference between treatment groups. There was indication of lower water content of NP injected with the two highest doses of LA. CONCLUSION LA has a sclerozing effect on the NP in pigs and patients and is therefore a candidate for further clinical studies powered to determine its potential as a treatment of chronic discogenic low back pain. LEVEL OF EVIDENCE 2.
Collapse
|
19
|
Ma J, Stefanoska D, Grad S, Alini M, Peroglio M. Direct and Intervertebral Disc-Mediated Sensitization of Dorsal Root Ganglion Neurons by Hypoxia and Low pH. Neurospine 2020; 17:42-59. [PMID: 32252154 PMCID: PMC7136118 DOI: 10.14245/ns.2040052.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/28/2020] [Indexed: 12/21/2022] Open
Abstract
Objective Ischemia-related risk factors are consistently correlated with discogenic pain, but it remains unclear how the ischemia-associated hypoxia and acidosis influence the peripheral sensory nervous system, namely the dorsal root ganglion (DRG), either directly or indirectly via intervertebral disc (IVD) mediation.
Methods Bovine tail IVD organ cultures were preconditioned in different hypoxic and/or acidic conditions for 3 days to collect the conditioned medium (CM). The DRG-derived ND7/23 cells were either treated by the IVD CM or directly stimulated by hypoxic and/or acidic conditions. Neuronal sensitization was evaluated using calcium imaging (Fluo-4) after 3 days.
Results We found that direct exposure of DRG cell line to hypoxia and acidosis increased both spontaneous and bradykinin-stimulated calcium response compared to normoxia-neutral pH cultures. Hypoxia and low pH in combination showed stronger effect than either parameter on its own. Indirect exposure of DRG to hypoxia-acidosis-stressed IVD CM also increased spontaneous and bradykinin-stimulated response, but to a lower extent than direct exposure. The impact of direct hypoxia and acidosis on DRG was validated in a primary sheep DRG cell culture, showing the same trend.
Conclusion Our data suggest that targeting hypoxia and acidosis stresses both in IVD and DRG could be a relevant objective in discogenic pain treatment.
Collapse
Affiliation(s)
- Junxuan Ma
- AO Research Institute Davos, Davos, Switzerland
| | | | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
20
|
Silagi ES, Novais EJ, Bisetto S, Telonis AG, Snuggs J, Le Maitre CL, Qiu Y, Kurland IJ, Shapiro IM, Philp NJ, Risbud MV. Lactate Efflux From Intervertebral Disc Cells Is Required for Maintenance of Spine Health. J Bone Miner Res 2020; 35:550-570. [PMID: 31692093 PMCID: PMC7064427 DOI: 10.1002/jbmr.3908] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022]
Abstract
Maintenance of glycolytic metabolism is postulated to be required for health of the spinal column. In the hypoxic tissues of the intervertebral disc and glycolytic cells of vertebral bone, glucose is metabolized into pyruvate for ATP generation and reduced to lactate to sustain redox balance. The rise in intracellular H+ /lactate concentrations are balanced by plasma-membrane monocarboxylate transporters (MCTs). Using MCT4 null mice and human tissue samples, complemented with genetic and metabolic approaches, we determine that H+ /lactate efflux is critical for maintenance of disc and vertebral bone health. Mechanistically, MCT4 maintains glycolytic and tricarboxylic acid (TCA) cycle flux and intracellular pH homeostasis in the nucleus pulposus compartment of the disc, where hypoxia-inducible factor 1α (HIF-1α) directly activates an intronic enhancer in SLC16A3. Ultimately, our results provide support for research into lactate as a diagnostic biomarker for chronic, painful, disc degeneration. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Elizabeth S Silagi
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Emanuel J Novais
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sara Bisetto
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Sidney Kimmel Medical College Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph Snuggs
- Biomolecular Sciences Research Centre Sheffield Hallam University, Sheffield, UK
| | | | - Yunping Qiu
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism Albert Einstein College of Medicine, Bronx, NY, USA
| | - Irwin J Kurland
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism Albert Einstein College of Medicine, Bronx, NY, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
21
|
Barakat AH, Elwell VA, Lam KS. Stem cell therapy in discogenic back pain. JOURNAL OF SPINE SURGERY (HONG KONG) 2019; 5:561-583. [PMID: 32043007 PMCID: PMC6989932 DOI: 10.21037/jss.2019.09.22] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Chronic low back pain has both substantial social and economic impacts on patients and healthcare budgets. Adding to the magnitude of the problem is the difficulty in identifying the exact causes of disc degeneration with modern day diagnostic and imaging techniques. With that said, current non-operative and surgical treatment modalities for discogenic low back pain fails to meet the expectations in many patients and hence the challenge. The objective for newly emerging stem cell regenerative therapy is to treat degenerative disc disease (DDD) by restoring the disc's cellularity and modulating the inflammatory response. Appropriate patient selection is crucial for the success of stem cell therapy. Regenerative modalities for discogenic pain currently focus on the use of either primary cells harvested from the intervertebral discs or stem cells from other sources whether autogenic or allogenic. The microenvironment in which stem cells are being cultured has been recognized to play a crucial role in directing or maintaining the production of the desired phenotypes and may enhance their regenerative potential. This has led to a more specific focus on innovating more effective culturing techniques, delivery vehicles and scaffolds for stem cell application. Although stem cell therapy might offer an attractive alternative treatment option, more clinical studies are still needed to establish on the safety and feasibility of such therapy. In this literature review, we aim to present the most recent in vivo and in vitro studies related to the use of stem cell therapy in the treatment of discogenic low back pain.
Collapse
Affiliation(s)
- Ahmed H. Barakat
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | - Vivian A. Elwell
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
| | | |
Collapse
|
22
|
Shi J, Zhou X, Wang Z, Kurra S, Niu J, Yang H. Increased lactic acid content associated with extracellular matrix depletion in a porcine disc degeneration induced by superficial annular lesion. BMC Musculoskelet Disord 2019; 20:551. [PMID: 31747924 PMCID: PMC6868808 DOI: 10.1186/s12891-019-2937-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/08/2019] [Indexed: 01/08/2023] Open
Abstract
Background Degenerative intervertebral disc (IVD) disease can cause lower back pain. However, the change of lactic acid content during disc degeneration process still unclear. The objective of this study was to investigate whether the change of the content of lactic acid is associated with depletion of degenerative intervertebral disc extracellular matrix. Methods A total of 18 miniature pigs were equally divided into annular lesion surgery (AL) and sham group. The lateral superficial annulus fibrosus (AF) of T12-L4 discs in AL group were penetrated by 3.5 mm trepan with the depth of 3 mm, the same IVD were only exposed without any injury in the sham group. At 4, 8 and 12 weeks after surgery, the degree of intervertebral disc degeneration was evaluated by magnetic resonance, histological and biochemical analysis. Results No obvious degeneration was found in sham group. However, disc degeneration was found and gradually worsened in AL group after surgery. Histological analysis showed that the AF was rupture and disorder, the number of cells in nucleus pulposus (NP) was decreased in AL group. Compared with the sham group, the extent of type II collagen (Col-II) and aggrecan in NP tissue was dramatically decreased in AL group, consistent with the results of Col -II immunohistochemistry staining and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Besides, the gene expression of matrix metallopeptidase 3 and 13 also continuous increased in AL group. The amount of lactic acid and nerve growth factor in NP tissue was gradually increased after operation in AL group. Conclusions The content of lactic acid gradually increased after annular lesion, associated with the damage of AF structural and the decrease of Col -II and aggrecan in NP tissue, which leading to the disc degeneration. Depletion of extracellular matrix is consistent with lactic acid accumulation inside of IVD.
Collapse
Affiliation(s)
- Jinhui Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Xichao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Zhen Wang
- Department of Orthopedics, Suzhou Hospital of Traditional Chinese Medicine, 889 Wuzhongxi Road, Suzhou, 215000, Jiangsu, China
| | - Swamy Kurra
- Department of Orthopedic Surgery, SUNY Upstate Medical University, 720 E. Adams St, Syracuse, NY, 13210, USA
| | - Junjie Niu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
23
|
Wang M, Tsang A, Tam V, Chan D, Cao P, Wu EX. Multiparametric MR Investigation of Proteoglycan Diffusivity, T
2
Relaxation, and Concentration in an Ex Vivo Model of Intervertebral Disc Degeneration. J Magn Reson Imaging 2019; 51:1390-1400. [DOI: 10.1002/jmri.26979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Min Wang
- College of Biomedical Engineering and Instrument ScienceZhejiang University Hangzhou China
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR China
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University Baltimore Maryland USA
| | - Adrian Tsang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR China
| | - Vivian Tam
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong Kong SAR China
| | - Danny Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of MedicineThe University of Hong Kong SAR China
| | - Peng Cao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR China
| | - Ed X. Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR China
| |
Collapse
|
24
|
Fujii K, Yamazaki M, Kang JD, Risbud MV, Cho SK, Qureshi SA, Hecht AC, Iatridis JC. Discogenic Back Pain: Literature Review of Definition, Diagnosis, and Treatment. JBMR Plus 2019; 3:e10180. [PMID: 31131347 PMCID: PMC6524679 DOI: 10.1002/jbm4.10180] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/21/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Discogenic back pain is multifactorial; hence, physicians often struggle to identify the underlying source of the pain. As a result, discogenic back pain is often hard to treat—even more so when clinical treatment strategies are of questionable efficacy. Based on a broad literature review, our aim was to define discogenic back pain into a series of more specific and interacting pathologies, and to highlight the need to develop novel approaches and treatment strategies for this challenging and unmet clinical need. Discogenic pain involves degenerative changes of the intervertebral disc, including structural defects that result in biomechanical instability and inflammation. These degenerative changes in intervertebral discs closely intersect with the peripheral and central nervous systems to cause nerve sensitization and ingrowth; eventually central sensitization results in a chronic pain condition. Existing imaging modalities are nonspecific to pain symptoms, whereas discography methods that are more specific have known comorbidities based on intervertebral disc puncture and injection. As a result, alternative noninvasive and specific diagnostic methods are needed to better diagnose and identify specific conditions and sources of pain that can be more directly treated. Currently, there are many treatments/interventions for discogenic back pain. Nevertheless, many surgical approaches for discogenic pain have limited efficacy, thus accentuating the need for the development of novel treatments. Regenerative therapies, such as biologics, cell‐based therapy, intervertebral disc repair, and gene‐based therapy, offer the most promise and have many advantages over current therapies. © 2019 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research
Collapse
Affiliation(s)
- Kengo Fujii
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA.,Department of Orthopaedic Surgery University of Tsukuba Tsukuba Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery University of Tsukuba Tsukuba Japan
| | - James D Kang
- Department of Orthopaedic Surgery Brigham and Women's Hospital Harvard Medical School Boston MA USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery Sidney Kimmel Medical College Thomas Jefferson University Philadelphia PA USA
| | - Samuel K Cho
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA
| | - Sheeraz A Qureshi
- Department of Orthopaedic Surgery Hospital for Special Surgery New York NY USA
| | - Andrew C Hecht
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA
| | - James C Iatridis
- Leni & Peter W. May Department of Orthopaedics Icahn School of Medicine at Mount Sinai New York NY USA
| |
Collapse
|
25
|
Gornet MG, Peacock J, Claude J, Schranck FW, Copay AG, Eastlack RK, Benz R, Olshen A, Lotz JC. Magnetic resonance spectroscopy (MRS) can identify painful lumbar discs and may facilitate improved clinical outcomes of lumbar surgeries for discogenic pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 28:674-687. [PMID: 30610465 DOI: 10.1007/s00586-018-05873-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/13/2018] [Accepted: 12/25/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The goal of this study was to refine clinical MRS to optimize performance and then determine whether MRS-derived biomarkers reliably identify painful discs, quantify degeneration severity, and forecast surgical outcomes for chronic low back pain (CLBP) patients. METHODS We performed an observational diagnostic development and accuracy study. Six hundred and twenty-three (623) discs in 139 patients were scanned using MRS, with 275 discs also receiving provocative discography (PD). MRS data were used to quantify spectral features related to disc structure (collagen and proteoglycan) and acidity (lactate, alanine, propionate). Ratios of acidity to structure were used to calculate pain potential. MRS-SCOREs were compared to PD and Pfirrmann grade. Clinical utility was judged by evaluating surgical success for 75 of the subjects who underwent lumbar surgery. RESULTS Two hundred and six (206) discs had both a successful MRS and independent pain diagnosis. When comparing to PD, MRS had a total accuracy of 85%, sensitivity of 82%, and specificity of 88%. These increased to 93%, 91%, and 93% respectively, in non-herniated discs. The MRS structure measures differed significantly between Pfirrmann grades, except grade I versus grade II. When all MRS positive discs were treated, surgical success was 97% versus 57% when the treated level was MRS negative, or 54% when the non-treated adjacent level was MRS positive. CONCLUSION MRS correlates with PD and may support improved surgical outcomes for CLBP patients. Noninvasive MRS is a potentially valuable approach to clarifying pain mechanisms and designing CLBP therapies that are customized to the patient. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ryan Benz
- SoCal Bioinformatics, Inc, Glendale, CA, USA
| | - Adam Olshen
- University of California at San Francisco, San Francisco, CA, USA
| | - Jeffrey C Lotz
- University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Abstract
UNLABELLED : Imaging is important in the evaluation of patients with degenerative disease and infectious processes. There are numerous conditions that can manifest as low back pain (LBP) or neck pain in a patient, and in many cases, the cause may be multifactorial. Clinical history and physical examination are key components in the evaluation of such patients; however, physical examination has variable sensitivity and specificity. Although studies have demonstrated that uncomplicated acute LBP and/or radiculopathy are self-limited conditions that do not warrant any imaging, neuroimaging can provide clear anatomic delineation of potential causes of the patient's clinical presentation. Various professional organizations have recommendations for imaging of LBP, which generally agree that an imaging study is not indicated for patients with uncomplicated LBP or radiculopathy without a red flag (eg, neurological deficit such as major weakness or numbness in lower extremities, bowel or bladder dysfunction, saddle anesthesia, fever, history of cancer, intravenous drug use, immunosuppression, trauma, or worsening symptoms). Different imaging modalities have a complementary role in the diagnosis of pathologies affecting the spine. In this review, we discuss the standard nomenclature for lumbar disk pathology and the utility of various clinical imaging techniques in the evaluation of LBP/neck pain for potential neurosurgical management. The imaging appearance of spinal infections and potential mimics also is reviewed. Finally, we discuss advanced neuroradiological techniques that offer greater microstructural and functional information. ABBREVIATIONS ADC, apparent diffusion coefficientDTI, diffusion tensor imagingDWI, diffusion-weighted imagingDOM, diskitis-osteomyelitisLBP, low back painMRM, magnetic resonance myelographySNA, spinal neuroarthropathySPECT, single-positron emission computed tomographySTIR, short tau inversion recovery.
Collapse
Affiliation(s)
- Lubdha M Shah
- Departments of *Radiology and Imaging Sciences and ‡Neurosurgery, University of Utah, Salt Lake City, Utah; §Department of Radiology, Mayo Clinic Arizona, Scottsdale, Arizona
| | | |
Collapse
|
27
|
Dietz C, Ehret F, Palmas F, Vandergrift LA, Jiang Y, Schmitt V, Dufner V, Habbel P, Nowak J, Cheng LL. Applications of high-resolution magic angle spinning MRS in biomedical studies II-Human diseases. NMR IN BIOMEDICINE 2017; 30:10.1002/nbm.3784. [PMID: 28915318 PMCID: PMC5690552 DOI: 10.1002/nbm.3784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 05/06/2023]
Abstract
High-resolution magic angle spinning (HRMAS) MRS is a powerful method for gaining insight into the physiological and pathological processes of cellular metabolism. Given its ability to obtain high-resolution spectra of non-liquid biological samples, while preserving tissue architecture for subsequent histopathological analysis, the technique has become invaluable for biochemical and biomedical studies. Using HRMAS MRS, alterations in measured metabolites, metabolic ratios, and metabolomic profiles present the possibility to improve identification and prognostication of various diseases and decipher the metabolomic impact of drug therapies. In this review, we evaluate HRMAS MRS results on human tissue specimens from malignancies and non-localized diseases reported in the literature since the inception of the technique in 1996. We present the diverse applications of the technique in understanding pathological processes of different anatomical origins, correlations with in vivo imaging, effectiveness of therapies, and progress in the HRMAS methodology.
Collapse
Affiliation(s)
- Christopher Dietz
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Felix Ehret
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Francesco Palmas
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Chemical and Geological Sciences, University of Cagliari, Cagliari, Sardinia, 09042 Italy
| | - Lindsey A. Vandergrift
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| | - Yanni Jiang
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029 China
| | - Vanessa Schmitt
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Faculty of Medicine, Julius Maximilian University of Würzburg, 97080 Würzburg, Germany
| | - Vera Dufner
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Piet Habbel
- Department of Hematology and Oncology, Charité Medical University of Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard-MIT Health Sciences & Technology, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
28
|
Ghannam M, Jumah F, Mansour S, Samara A, Alkhdour S, Alzuabi MA, Aker L, Adeeb N, Massengale J, Oskouian RJ, Tubbs RS. Surgical anatomy, radiological features, and molecular biology of the lumbar intervertebral discs. Clin Anat 2017; 30:251-266. [PMID: 27997062 DOI: 10.1002/ca.22822] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/04/2016] [Indexed: 01/07/2023]
Abstract
The intervertebral disc (IVD) is a joint unique in structure and functions. Lying between adjacent vertebrae, it provides both the primary support and the elasticity required for the spine to move stably. Various aspects of the IVD have long been studied by researchers seeking a better understanding of its dynamics, aging, and subsequent disorders. In this article, we review the surgical anatomy, imaging modalities, and molecular biology of the lumbar IVD. Clin. Anat. 30:251-266, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Malik Ghannam
- An-Najah National University Hospital, Nablus, Palestine
| | - Fareed Jumah
- An-Najah National University Hospital, Nablus, Palestine
| | - Shaden Mansour
- An-Najah National University Hospital, Nablus, Palestine
| | - Amjad Samara
- An-Najah National University Hospital, Nablus, Palestine
| | - Saja Alkhdour
- An-Najah National University Hospital, Nablus, Palestine
| | | | - Loai Aker
- An-Najah National University Hospital, Nablus, Palestine
| | - Nimer Adeeb
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | - Justin Massengale
- Department of Neurosurgery, Boston Medical Center, Boston University, Massachusetts
| | | | - R Shane Tubbs
- Department of Anatomical Sciences, St. George's University, Grenada.,Seattle Science Foundation, Seattle, Washington
| |
Collapse
|
29
|
Acidic pH promotes intervertebral disc degeneration: Acid-sensing ion channel -3 as a potential therapeutic target. Sci Rep 2016; 6:37360. [PMID: 27853274 PMCID: PMC5112591 DOI: 10.1038/srep37360] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
The aetiology of intervertebral disc (IVD) degeneration remains poorly understood. Painful IVD degeneration is associated with an acidic intradiscal pH but the response of NP cells to this aberrant microenvironmental factor remains to be fully characterised. The aim here was to address the hypothesis that acidic pH, similar to that found in degenerate IVDs, leads to the altered cell/functional phenotype observed during IVD degeneration, and to investigate the involvement of acid-sensing ion channel (ASIC) -3 in the response. Human NP cells were treated with a range of pH, from that of a non-degenerate (pH 7.4 and 7.1) through to mildly degenerate (pH 6.8) and severely degenerate IVD (pH 6.5 and 6.2). Increasing acidity of pH caused a decrease in cell proliferation and viability, a shift towards matrix catabolism and increased expression of proinflammatory cytokines and pain-related factors. Acidic pH resulted in an increase in ASIC-3 expression. Importantly, inhibition of ASIC-3 prevented the acidic pH induced proinflammatory and pain-related phenotype in NP cells. Acidic pH causes a catabolic and degenerate phenotype in NP cells which is inhibited by blocking ASIC-3 activity, suggesting that this may be a useful therapeutic target for treatment of IVD degeneration.
Collapse
|
30
|
Zhou Z, Bez M, Tawackoli W, Giaconi J, Sheyn D, de Mel S, Maya MM, Pressman BD, Gazit Z, Pelled G, Gazit D, Li D. Quantitative chemical exchange saturation transfer MRI of intervertebral disc in a porcine model. Magn Reson Med 2016; 76:1677-1683. [PMID: 27670140 DOI: 10.1002/mrm.26457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/05/2016] [Accepted: 08/16/2016] [Indexed: 01/25/2023]
Abstract
PURPOSE Previous studies have associated low pH in intervertebral discs (IVDs) with discogenic back pain. The purpose of this study was to determine whether quantitative CEST (qCEST) MRI can be used to detect pH changes in IVDs in vivo. METHODS The exchange rate ksw between glycosaminoglycan (GAG) protons and water protons was determined from qCEST analysis. Its dependence on pH value was investigated in GAG phantoms with varying pH and concentrations. The relationship between ksw and pH was studied further in vivo in a porcine model on a 3T MR scanner and validated using a pH meter. Sodium lactate was injected into the IVDs to induce various pH values within the discs ranging from 5 to 7. RESULTS Phantom and animal results revealed that ksw measured using qCEST MRI is highly correlated with pH level. In the animal studies, the relationship can be described as ksw =9.2 × 106 × 10-pH + 196.9, R2 = 0.7883. CONCLUSION The exchange rate between GAG and water protons determined from qCEST MRI is closely correlated with pH value. This technique has the potential to noninvasively measure pH in the IVDs of patients with discogenic pain. Magn Reson Med 76:1677-1683, 2016. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Zhengwei Zhou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Maxim Bez
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, Jerusalem, Israel
| | - Wafa Tawackoli
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joseph Giaconi
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dmitriy Sheyn
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sandra de Mel
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Marcel M Maya
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Barry D Pressman
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zulma Gazit
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, Jerusalem, Israel.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gadi Pelled
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, Jerusalem, Israel.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Dan Gazit
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, Jerusalem, Israel.,Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
31
|
Weber KT, Alipui DO, Sison CP, Bloom O, Quraishi S, Overby MC, Levine M, Chahine NO. Serum levels of the proinflammatory cytokine interleukin-6 vary based on diagnoses in individuals with lumbar intervertebral disc diseases. Arthritis Res Ther 2016; 18:3. [PMID: 26743937 PMCID: PMC4718017 DOI: 10.1186/s13075-015-0887-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/03/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Many intervertebral disc diseases cause low back pain (LBP). Proinflammatory cytokines and matrix metalloproteinases (MMPs) participate in disc pathology. In this study, we examined levels of serum cytokines and MMPs in human subjects with diagnoses of disc herniation (DH), spinal stenosis (SS), or degenerative disc disease (DDD) relative to levels in control subjects. Comparison between subjects with DH and those with other diagnoses (Other Dx, grouped from SS and DDD) was performed to elaborate a pathological mechanism based on circulating cytokine levels. METHODS Study participants were recruited from a spine neurosurgery practice (n = 80), a back pain management practice (n = 27), or a control cohort (n = 26). Serum samples were collected before treatment and were assayed by multiplex assays for levels of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, interferon-γ, tumor necrosis factor-α, MMP-1, MMP-3, and MMP-9. Inflammatory and degradative mediator levels were compared for subjects with LBP and control subjects, by diagnosis and by treatment groups, controlling for effects of sex, age, and reported history of osteoarthritis. Spearman's correlation coefficient was used to examine relationships with age, body mass index (BMI), symptom duration, and smoking history. RESULTS Serum levels of IL-6 were significantly higher in subjects with LBP compared with control subjects. Participants with LBP due to Other Dx had significantly higher levels of IL-6 than DH and controls. Serum levels of MMP-1 were significantly lower in LBP subjects, specifically those with DH, than in control subjects. Positive correlations were found between IL-6 levels and BMI, symptom duration, and age. MMP-1 levels were positively correlated with age. CONCLUSIONS The findings of the present clinical study are the results of the first examination of circulating cytokine levels in DDD and SS and provide evidence for a more extensive role of IL-6 in disc diseases, where patients with DDD or SS have higher serum cytokine levels than those with DH or control subjects. These findings suggest that LBP subjects have low-grade systemic inflammation, and biochemical profiling of circulating cytokines may assist in refining personalized diagnoses of disc diseases.
Collapse
Affiliation(s)
- Kathryn T Weber
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA.
| | - D Olivier Alipui
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA.
| | - Cristina P Sison
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA. .,Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Population Health, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| | - Ona Bloom
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA. .,Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Physical Medicine and Rehabilitation, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| | - Shaheda Quraishi
- Department of Physical Medicine and Rehabilitation, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Neurosurgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| | - M Chris Overby
- Department of Neurosurgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| | - Mitchell Levine
- Department of Neurosurgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| | - Nadeen O Chahine
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY, USA. .,Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Neurosurgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA. .,Department of Orthopedic Surgery, Hofstra North Shore-LIJ School of Medicine, Hempstead, NY, USA.
| |
Collapse
|
32
|
Radek M, Pacholczyk-Sienicka B, Jankowski S, Albrecht Ł, Grodzka M, Depta A, Radek A. Assessing the correlation between the degree of disc degeneration on the Pfirrmann scale and the metabolites identified in HR-MAS NMR spectroscopy. Magn Reson Imaging 2015; 34:376-80. [PMID: 26708032 DOI: 10.1016/j.mri.2015.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The objective of this study is to assess the correlation between the degree of degeneration of lumbar discs according to the Pfirrmann classification system and the concentrations of metabolites determined by means of 1H high-resolution magic angle spinning nuclear magnetic resonance (1H HR MAS NMR) spectroscopy. MATERIALS AND METHODS Twenty-six human intervertebral lumbar discs that were operated on due to degenerative disease were analyzed. Routine preoperative 1.5T, T2-weighed magnetic resonance (MR) images were used to classify the cases according to the Pfirrmann classification system. In all the cases, during microdiscectomy, the fragments of the annulus fibrosus and nucleus pulposus were harvested and their metabolic profile was examined by means of 1H HR MAS. The grades of disc degeneration on the Pfirrmann scale were correlated with the metabolite concentrations. RESULTS Spectral analyses of the intervertebral discs with Pfirrmann grades IV and V demonstrated significantly higher concentrations of creatine, glycine, hydroxyproline, alanine, leucine, valine, acetate, isoleucine, α,β-glucose, and myo-inositol, and a lower intensity of the N-acetyl peak of chondroitin sulfate, compared to the spectra with Pfirrmann grade III. CONCLUSION Our results demonstrate correlations between metabolite concentrations and the degree of lumbar disc degeneration assessed using the Pfirrmann grading system and provide another step toward the potential use of in vivo MR spectroscopy for investigation of biomarkers in lumbar disc degeneration.
Collapse
Affiliation(s)
- Maciej Radek
- Department of Neurosurgery and Peripheral Nerve Surgery, WAM University Hospital, Central Veterans' Hospital of the Medical University of Łódź, Poland.
| | | | - Stefan Jankowski
- Institute of Organic Chemistry, Faculty of Chemistry, University of Technology, Łódź, Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Faculty of Chemistry, University of Technology, Łódź, Poland
| | - Magdalena Grodzka
- Department of Radiological and Isotopic Diagnostics and Therapy, Medical University of Lodz, Poland
| | - Adam Depta
- Department of Management, Technical University of Lodz, Poland; Department of Health Care Financing, Medical University of Lodz, Poland
| | - Andrzej Radek
- Department of Neurosurgery and Peripheral Nerve Surgery, WAM University Hospital, Central Veterans' Hospital of the Medical University of Łódź, Poland
| |
Collapse
|
33
|
Shan L, Liao F, Jin H, Ye F, Tong P, Xiao L, Zhou J, Wu C. Plasma metabonomic profiling of lumbar disc herniation and its traditional Chinese medicine subtypes in patients by using gas chromatography coupled with mass spectrometry. MOLECULAR BIOSYSTEMS 2015; 10:2965-73. [PMID: 25144444 DOI: 10.1039/c4mb00301b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lumbar disc herniation (LDH) is a commonly occurring disease, threatening human health and life quality. Lack of a gold standard of diagnosis has hindered the efficiency and efficacy of clinical therapy against LDH. Traditional Chinese medicine (TCM) has provided an experience-based but subjective diagnosis system for LDH, demanding objective evidence and explanation. In this study, we adopted a metabonomics approach using gas chromatography-mass spectrometry (GC-MS) to profile metabolic characteristics of LDH and its TCM subtypes. Plasma samples of 41 LDH patients and 25 healthy controls were collected. LDH patients were classified into two main subtypes, the reality syndrome and deficiency syndrome, according to TCM theory. By using multivariate statistical analysis and metabolism network analysis, we found diverse perturbations of metabolites in amino acid metabolism and carbohydrate metabolism, in which the amino acids (glutamic acid, aspartic acid, glycine, etc.) were up-regulated and a key carbohydrate metabolite (glucose 1-phosphate) was down-regulated. Few differences were found between the two TCM subtypes. Our findings reveal the metabolic disorders of LDH for the first time and demonstrate the feasibility of the metabonomics approach for LDH research but not for its TCM subtypes.
Collapse
Affiliation(s)
- Letian Shan
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou 310053, China.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Pacholczyk-Sienicka B, Radek M, Radek A, Jankowski S. Characterization of metabolites determined by means of 1H HR MAS NMR in intervertebral disc degeneration. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2014; 28:173-83. [PMID: 25108703 PMCID: PMC4385564 DOI: 10.1007/s10334-014-0457-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 12/02/2022]
Abstract
Object The objective of this study is the identification of metabolites by means of 1H high resolution magic angle spinning nuclear magnetic resonance (1H HR MAS NMR) spectroscopy and the evaluation of their applicability in distinguishing between healthy and degenerated disc tissues.
Materials and methods Differences between the metabolic profiles of healthy and degenerated disc tissues were studied by means of 1H HR MAS NMR. Analysis was performed for 81 disc tissue samples (control samples n = 21, degenerated disc tissue samples n = 60). Twenty six metabolites (amino acids, carbohydrates, and alcohols) were identified and quantified. Results The results indicate that the metabolic profile of degenerated discs is characterized by the presence of 2-propanol and the absence of scyllo-inositol and taurine. The concentrations of 2-propanol and lactate increase with age. Conclusion PCA analysis of ex vivo 1H HR MAS NMR data revealed the occurrence of two groups: healthy and degenerative disc tissues. The effects of insufficient nutrient supply of discs, leading to their degeneration and back pain, are discussed. Electronic supplementary material The online version of this article (doi:10.1007/s10334-014-0457-0) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Wang AM, Cao P, Yee A, Chan D, Wu EX. Detection of extracellular matrix degradation in intervertebral disc degeneration by diffusion magnetic resonance spectroscopy. Magn Reson Med 2014; 73:1703-12. [PMID: 24817583 DOI: 10.1002/mrm.25289] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/16/2014] [Accepted: 04/22/2014] [Indexed: 01/07/2023]
Abstract
PURPOSE To investigate whether diffusion magnetic resonance spectroscopy (MRS) can detect the extracellular matrix (ECM) degradation during intervertebral disc degeneration (IVDD) by the increased mobility of ECM macromolecules such as proteoglycans and collagens. METHODS Fresh bovine intervertebral discs were injected with papain solution to induce ECM degradation. The apparent diffusion coefficients (ADCs), T2 values, and contents of ECM macromolecules and water resonances were measured longitudinally in the nucleus pulposus. RESULTS The macromolecule ADCs increased drastically at day 1 after papain injection, and continued increasing for 5 days. In contrast, the proteoglycan content exhibited a small and slow decrease after injection while the macromolecule T2 values, water T2, ADC, and content showed slight increase or no change. The protein gel electrophoresis analysis confirmed the gradually increased ECM fragmentation in accordance with the observed macromolecule ADC increases. CONCLUSION Diffusion MRS provides a new method to characterize the ECM degradation processes directly and sensitively. Macromolecule ADCs offer a potentially more sensitive and earlier marker for ECM degradation than the proteoglycan content and T2, and water MR properties during early IVDD. Such diffusion approach offers the possibility to directly monitor ECM integrity and degradation processes in vivo at molecular and microstructural levels in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Anna M Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
36
|
Melkus G, Grabau M, Karampinos DC, Majumdar S. Ex vivo porcine model to measure pH dependence of chemical exchange saturation transfer effect of glycosaminoglycan in the intervertebral disc. Magn Reson Med 2013; 71:1743-9. [PMID: 23818244 DOI: 10.1002/mrm.24838] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 11/07/2022]
Abstract
PURPOSE Studies have linked low pH and loss of glycosaminoglycan (GAG) in the intervertebral discs (IVDs) of patients with discogenic back pain. The purpose of this study is to determine whether the chemical exchange saturation transfer (CEST) effect of GAG (gagCEST) is pH dependent and whether it can be used to detect pH changes in IVD specimens. Iopromide, a Food and Drug Administration approved agent for CT/X-Ray, was also evaluated as a pH-sensitive CEST probe to explore the agents' potential to measure IVD pH. METHODS The pH dependency of the CEST effect of chondroitin sulfate (containing GAG) and Iopromide phantoms was investigated at 7 T. Z-spectra from porcine IVD specimens were acquired before and after manipulating the pH with sodium lactate. Iopromide was injected into the specimens and the calibration curve was used to determine the pH status. RESULTS Chondroitin sulfate showed a non-linear dependence of gagCEST effect with pH and gagCEST signal differences were detected in the specimens. The CEST effect of Iopromide resulted in a sigmoidal relation with pH and was used to measure pH. CONCLUSION gagCEST is sensitive to pH and enables investigation of the IVD pH status. Iopromide CEST is independent of the local GAG concentration and has the potential for measuring pH in the IVD.
Collapse
Affiliation(s)
- Gerd Melkus
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | | | | | | |
Collapse
|
37
|
Samartzis D, Karppinen J, Cheung JPY, Lotz J. Disk degeneration and low back pain: are they fat-related conditions? Global Spine J 2013; 3:133-44. [PMID: 24436864 PMCID: PMC3854598 DOI: 10.1055/s-0033-1350054] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/05/2013] [Indexed: 01/30/2023] Open
Abstract
Low back pain (LBP) is the world's most debilitating condition. Disk degeneration has been regarded as a strong determinant associated with LBP. Overweight and obesity are public health concerns that affect every population worldwide and whose prevalence continues to rise. Studies have indicated strong associations between overweight/obesity and disk degeneration as well as with LBP. This broad narrative review article addresses the various mechanisms that may be involved leading to disk degeneration and/or LBP in the setting of overweight/obesity. In particular, our goal is to raise awareness of the role of fat cells and their involvement via altered metabolism or the release of adipokines as well as other pathways that may lead to the development of disk degeneration and LBP. Understanding the role of fat in this process may aid in the development of novel biological therapies and technologies to halt the progression or regenerate the disk. Moreover, with genetic advancements and the appreciation of genetic epidemiology, a more personalized approach to spine care may have to consider the role of fat in any preventative, therapeutic, and/or prognosis modalities toward the disk and LBP.
Collapse
Affiliation(s)
- Dino Samartzis
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, SAR, China
| | - Jaro Karppinen
- Department of Physical and Rehabilitation Medicine, Institute of Clinical Medicine, University of Oulu, and Medical Research Center Oulu, Oulu, Finland
| | - Jason Pui Yin Cheung
- Department of Orthopaedics and Traumatology, University of Hong Kong, Hong Kong, SAR, China
| | - Jeffrey Lotz
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, United States
| |
Collapse
|
38
|
Lotz JC, Fields AJ, Liebenberg EC. The role of the vertebral end plate in low back pain. Global Spine J 2013; 3:153-64. [PMID: 24436866 PMCID: PMC3854605 DOI: 10.1055/s-0033-1347298] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/09/2013] [Indexed: 01/26/2023] Open
Abstract
End plates serve as the interface between rigid vertebral bodies and pliant intervertebral disks. Because the lumbar spine carries significant forces and disks don't have a dedicated blood supply, end plates must balance conflicting requirements of being strong to prevent vertebral fracture and porous to facilitate transport between disk cells and vertebral capillaries. Consequently, end plates are particularly susceptible to damage, which can increase communication between proinflammatory disk constituents and vascularized vertebral bone marrow. Damaged end plate regions can be sites of reactive bone marrow lesions that include proliferating nerves, which are susceptible to chemical sensitization and mechanical stimulation. Although several lines of evidence indicate that innervated end plate damage can be a source of chronic low back pain, its role in patients is likely underappreciated because innervated damage is poorly visualized with diagnostic imaging. This literature review summarizes end plate biophysical function and aspects of pathologic degeneration that can lead to vertebrogenic pain. Areas of future research are identified in the context of unmet clinical needs for patients with chronic low back pain.
Collapse
Affiliation(s)
- J. C. Lotz
- Orthopaedic Bioengineering Laboratory, Department of Orthopaedic Surgery, University of California at San Francisco, California, United States,Address for correspondence Jeffrey C. Lotz, PhD University of California at San Francisco513 Parnassus Avenue, S-1157, San Francisco, CA 94143-0514United States
| | - A. J. Fields
- Orthopaedic Bioengineering Laboratory, Department of Orthopaedic Surgery, University of California at San Francisco, California, United States
| | - E. C. Liebenberg
- Orthopaedic Bioengineering Laboratory, Department of Orthopaedic Surgery, University of California at San Francisco, California, United States
| |
Collapse
|
39
|
Ito K, Creemers L. Mechanisms of intervertebral disk degeneration/injury and pain: a review. Global Spine J 2013; 3:145-52. [PMID: 24436865 PMCID: PMC3854582 DOI: 10.1055/s-0033-1347300] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/19/2013] [Indexed: 12/31/2022] Open
Abstract
Degeneration of the intervertebral disk and its treatments are currently intensely investigated topics. Back pain is a condition whose chronic and debilitating nature combined with its prevalence make it a major health issue of substantial socioeconomic importance. Although researchers, and even sometimes clinicians, focus on the degenerated disk as the problem, to most patients, pain is the factor that limits their function and impacts their well-being. The purpose of this review is to delineate the changes associated with disk degeneration and to outline mechanisms by which they could be the source of back pain. Although the healthy disk is only innervated in the external layer of its annulus fibrosus, adjacent structures are plentiful with nociceptive receptors. Stimulation of such structures as a consequence of processes initiated by disk degeneration is explored. The concept of discogenic pain and possible mechanisms such as neoinnervation and solute transport are discussed. Finally, how such pain mechanisms may relate to current and proposed treatment strategies is discussed.
Collapse
Affiliation(s)
- Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands,Address for correspondence Prof. Keita Ito, MD, ScD Orthopaedic Biomechanics, GEM-Z 4.115, Department of Biomedical EngineeringP.O. Box 513, 5600 MB EindhovenThe Netherlands
| | - Laura Creemers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
40
|
LIANG C, LI H, TAO Y, SHEN C, LI F, SHI Z, HAN B, CHEN Q. New hypothesis of chronic back pain: low pH promotes nerve ingrowth into damaged intervertebral disks. Acta Anaesthesiol Scand 2013; 57:271-7. [PMID: 22404297 DOI: 10.1111/j.1399-6576.2012.02670.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pathogenesis of low back pain is still elusive. Here, we proposed a new hypothesis that low pH is a possible cause of the development and progression of low back pain. We propose that low pH promotes the production of the inflammatory mediators and the depletion of proteoglycan in the damaged intervertebral disk. The inflammation response, evoked by the dorsal root ganglia, changes the delicate nutrient balance in the nucleus, resulting in a vicious cycle and leading to choronic back pain. Our hypothesis may explain many of the available clinical and experimental data on low back pain, thus it may help elucidate the pathogenesis of low back pain and improve clinical management.
Collapse
Affiliation(s)
- C. LIANG
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - H. LI
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - Y. TAO
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - C. SHEN
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - F. LI
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - Z. SHI
- Institute of Orthopedic Research; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - B. HAN
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| | - Q. CHEN
- Department of Orthopedic Surgery; 2nd Affiliated Hospital; School of Medicine; Zhejiang University; Hangzhou; China
| |
Collapse
|
41
|
O'Neill CW. Commentary: Diagnostic tests for chronic low back pain--a dismal science. Spine J 2013; 13:113-5. [PMID: 23452567 DOI: 10.1016/j.spinee.2012.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 02/03/2023]
Affiliation(s)
- Conor W O'Neill
- California Spine Diagnostics, 2100 Webster St., San Francisco, CA 94115, USA.
| |
Collapse
|
42
|
Liang CZ, Li H, Tao YQ, Zhou XP, Yang ZR, Li FC, Chen QX. The relationship between low pH in intervertebral discs and low back pain: a systematic review. Arch Med Sci 2012; 8:952-6. [PMID: 23319966 PMCID: PMC3542485 DOI: 10.5114/aoms.2012.32401] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/26/2012] [Accepted: 11/06/2012] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION To systematically review the relationship between low pH in intervertebral discs and low back pain. MATERIAL AND METHODS Electronic database (PubMed, ISI Web of Science, Cochrane Library, CINAHL, AMED, and China National Knowledge Infrastructure) searches and hand searching of conference proceedings were conducted. Two authors independently evaluated the methodological quality and abstracted relevant data according to standard criteria. Then the experimental methods and samples employed in the finally retrieved articles were assessed. RESULTS We first retrieved 136 articles regarding pain and pH, and only 16 of them were mainly about low back pain and pH. Finally, 7 articles met our expectation to focus on the pathogenesis of low back pain caused by pH. In these 7 studies the authors held three opinions to explain the pathogenesis of low back pain in relation to low pH. First, low pH caused by lactate stimulates the muscle and increases the muscle tension, which causes low back pain. Second, low pH stimulates the nerve roots and produces the feeling of pain. Third, low pH changes the matrix metabolism, leading to neuronal death and low back pain. CONCLUSIONS In this systematic review we propose a new hypothesis that low back pain may be caused by low pH based on the previous literature. Further experimental studies are necessary to verify our hypothesis. This hypothesis will promote our understanding of the pathogenesis of low back pain and the development of novel diagnostic and therapeutic approaches for low back pain.
Collapse
Affiliation(s)
- Cheng-Zhen Liang
- Department of Orthopaedic Surgery, Second Hospital of Medical College, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Lotz JC, Haughton V, Boden SD, An HS, Kang JD, Masuda K, Freemont A, Berven S, Sengupta DK, Tanenbaum L, Maurer P, Ranganathan A, Alavi A, Marinelli NL. New treatments and imaging strategies in degenerative disease of the intervertebral disks. Radiology 2012; 264:6-19. [PMID: 22723559 DOI: 10.1148/radiol.12110339] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic resonance (MR) imaging in patients with persistent low back pain and sciatica effectively demonstrates spine anatomy and the relationship of nerve roots and intervertebral disks. Except in cases with nerve root compression, disk extrusion, or central stenosis, conventional anatomic MR images do not help distinguish effectively between painful and nonpainful degenerating disks. Hypoxia, inflammation, innervation, accelerated catabolism, and reduced water and glycosaminoglycan content characterize degenerated disks, the extent of which may distinguish nonpainful from painful ones. Applied to the spine, "functional" imaging techniques such as MR spectroscopy, T1ρ calculation, T2 relaxation time measurement, diffusion quantitative imaging, and radio nucleotide imaging provide measurements of some of these degenerative features. Novel minimally invasive therapies, with injected growth factors or genetic materials, target these processes in the disk and effectively reverse degeneration in controlled laboratory conditions. Functional imaging has applications in clinical trials to evaluate the efficacy of these therapies and eventually to select patients for treatment. This report summarizes the biochemical processes in disk degeneration, the application of advanced disk imaging techniques, and the novel biologic therapies that presently have the most clinical promise.
Collapse
Affiliation(s)
- Jeffrey C Lotz
- Orthopaedic Bioengineering Laboratory, University of California-San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Conventional and ultrashort time-to-echo magnetic resonance imaging of articular cartilage, meniscus, and intervertebral disk. Top Magn Reson Imaging 2012; 21:275-89. [PMID: 22129641 DOI: 10.1097/rmr.0b013e31823ccebc] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Magnetic resonance imaging (MRI) examination of musculoskeletal tissues is being performed routinely for diagnoses of injury and diseases. Although conventional MRI using spin echo sequences has been effective, a number of important musculoskeletal soft tissues remain "magnetic resonance-invisible" because of their intrinsically short T2 values resulting in a rapid signal decay. This makes visualization and quantitative characterization difficult. With the advent and refinement of ultrashort time-to-echo (UTE) MRI techniques, it is now possible to directly visualize and quantitatively characterize these tissues. This review explores the anatomy, conventional MRI, and UTE MRI of articular cartilage, meniscus of the knee, and intervertebral disks and provides a survey of magnetic resonance studies used to better understand tissue structure, composition, and function, as well as subtle changes in diseases.
Collapse
|
45
|
In vivo intervertebral disc characterization using magnetic resonance spectroscopy and T1ρ imaging: association with discography and Oswestry Disability Index and Short Form-36 Health Survey. Spine (Phila Pa 1976) 2012; 37:214-21. [PMID: 21697767 PMCID: PMC3633556 DOI: 10.1097/brs.0b013e3182294a63] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An in vivo study of intervertebral disc degeneration by using quantitative magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). OBJECTIVE To quantify water and proteoglycan (PG) content in the intervertebral disc by using in vivo MRS and to evaluate the relationship between MRS-quantified water/PG content, T1ρ, Pfirrmann score, clinical self-assessment, and discography. SUMMARY OF BACKGROUND DATA Previous in vitro studies have investigated the relationship between MRS-quantified water/PG content and degenerative grade by using cadaveric intervertebral discs. T1ρ has been shown to relate to Pfirrmann grade and clinical self-assessment. However, the associations between MRS-quantified water/PG content, MRI-based T1ρ, self-assessment of health status, and clinical response to discography have not been studied in vivo. METHODS MRS and MRI were performed in 26 patients (70 discs) with symptomatic intervertebral degenerative disc (IVDD) and 23 controls (41 discs). Patients underwent evaluation of intervertebral discs with provocative discography. All subjects completed the Short Form-36 Health Survey and Oswestry Disability Index questionnaires. RESULTS The water/PG peak area ratio was significantly elevated in (a) patients (compared with controls) and in (b) discs with positive discography (compared with negative discography). Magnetic resonance (MR) T1ρ exhibited similar trends. A significant association was found between T1ρ and normalized PG content (R = 0.61, P < 0.05) but not between T1ρ and normalized water content (R = 0.24, P > 0.05). The water/PG peak area ratio, normalized water, normalized PG, and Pfirrmann grade were significantly associated with patient self-assessment of disability and physical composite score, while disc height was not. CONCLUSION This study demonstrated a relationship between in vivo MRS spectroscopy (water content and PG content), imaging parameters (T1ρ and Pfirrmann grade), discography results, and clinical self-assessment, suggesting that MRS-quantified water, PG, and MR T1ρ relaxation time may potentially serve as biomarkers of symptomatic IVDD.
Collapse
|
46
|
Huang W, Sowa G. Biomarker development for musculoskeletal diseases. PM R 2011; 3:S39-44. [PMID: 21703579 DOI: 10.1016/j.pmrj.2011.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 04/28/2011] [Indexed: 12/31/2022]
Abstract
More than one in 4 Americans has a musculoskeletal (MSK) disorder that requires medical diagnosis and treatment. Imaging tools are able to demonstrate structural changes but cannot reflect the disease activity or symptom severity of MSK conditions. This is of paramount concern in the aging population, in which imaging findings have poor correlation with symptoms, and multiple pain generators frequently coexist. Because levels of inflammatory and matrix breakdown products address disease activity, evaluation of biomarkers has the potential to provide assessment of active pain generators above and beyond the changes observable on imaging studies. This fact has stimulated research interest in the search for novel biomarkers of disease activity and response to treatment in body fluids. The goal is to develop panels of multi-biomarkers, which could be used independently or in conjunction with the imaging tools, for the diagnosis, prognosis, and treatment validation in MSK diseases. The current review of MSK biomarkers is organized into 3 mechanistic categories: the metabolites of extracellular matrix of MSK tissues; inflammatory cytokines and chemokines; and pain-related neuropeptides and/or chemicals. Although some representative biomarkers could be used alone, the fact that MSK diseases are multi-tissue disorders that involve the muscles, bones, cartilage, and nerves suggests that panels of biomarkers may have greater potential than any single biomarker used in isolation. As advances in biotechnology make this a reality, multi-biomarker panels that include all 3 categories of biomarkers, used either alone or in combination with imaging tools, has the potential to revolutionize the clinical approach to MSK diseases.
Collapse
Affiliation(s)
- Wan Huang
- Department of Physical Medicine and Rehabilitation, Ferguson Laboratory for Orthopaedic Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
47
|
Fernando H, Czamanski J, Yuan TY, Gu W, Abdi S, Huang CY. Mechanical loading affects the energy metabolism of intervertebral disc cells. J Orthop Res 2011; 29:1634-41. [PMID: 21484859 PMCID: PMC3137745 DOI: 10.1002/jor.21430] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 03/15/2011] [Indexed: 02/04/2023]
Abstract
Research has shown that mechanical loading affects matrix biosynthesis of intervertebral disc (IVD) cells; however, the pathway(s) to this effect is currently unknown. Cellular matrix biosynthesis is an energy demanding process. The objective of this study was to investigate the effects of static and dynamic compressive loading on energy metabolism of IVD cells. Porcine annulus fibrosus (AF) and nucleus pulposus (NP) cells seeded in 2% agarose were used in this experiment. Experimental groups included 15% static compression and 0.1 and 1 Hz dynamic compression at 15% strain magnitude for 4 h. ATP, lactate, glucose, and nitric oxide (NO) contents in culture media, and ATP content in cell-agarose construct were measured using biochemical assays. While the total ATP content of AF cells was promoted by static and dynamic loading, only 1 Hz dynamic loading increased total ATP content of NP cells. Increases in lactate production and glucose consumption of AF cells suggest that ATP production via glycolysis is promoted by dynamic compression. ATP release and NO production of AF and NP cells were significantly increased by dynamic loading. Thus, this study clearly illustrates that static and dynamic compressive loading affect IVD cell energy production while cellular responses to mechanical loading were both cell type and compression type dependent.
Collapse
Affiliation(s)
- H.N. Fernando
- Stem Cell and Mechanobiology Lab, Dept of Biomedical Engineering, University of Miami, Coral Gables, Florida 33146, USA
| | - J. Czamanski
- Stem Cell and Mechanobiology Lab, Dept of Biomedical Engineering, University of Miami, Coral Gables, Florida 33146, USA
| | - T.-Y. Yuan
- Stem Cell and Mechanobiology Lab, Dept of Biomedical Engineering, University of Miami, Coral Gables, Florida 33146, USA, Tissue Biomechanics Lab, Dept of Biomedical Engineering, University of Miami, Coral Gables, Florida 33146, USA
| | - W.Y. Gu
- Tissue Biomechanics Lab, Dept of Biomedical Engineering, University of Miami, Coral Gables, Florida 33146, USA
| | - S. Abdi
- Department of Anesthesiology, Critical Care and Pain Medicine, BIDMC, Harvard Medical School, Boston, MA
| | - C.-Y.C. Huang
- Stem Cell and Mechanobiology Lab, Dept of Biomedical Engineering, University of Miami, Coral Gables, Florida 33146, USA
| |
Collapse
|
48
|
Majumdar S, Link TM, Steinbach LS, Hu S, Kurhanewicz J. Diagnostic tools and imaging methods in intervertebral disk degeneration. Orthop Clin North Am 2011; 42:501-11, viii. [PMID: 21944587 DOI: 10.1016/j.ocl.2011.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Low back pain has a negative impact on the economy and society. Intervertebral disk degeneration is linked to the occurrence of low back pain. MRI provides three-dimensional morphologic and biochemical information regarding the status of the disk. This article reviews new and evolving MRI disk-imaging techniques, including grading, relaxation-time measurements, diffusion, and contrast perfusion. In addition, high-resolution magic-angle spinning methods to correlate in vitro disk degeneration (with pain, etc) and in vivo spectroscopic results are discussed. With the potential for morphologic and biochemical characterization of the intervertebral disk, MRI shows promise as a tool to quantitatively assess disk health.
Collapse
Affiliation(s)
- Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA.
| | | | | | | | | |
Collapse
|
49
|
Haughton V. New imaging strategies in degenerative disease of the intervertebral disks: functional spine imaging. Neuroradiol J 2011; 24:560-3. [PMID: 24059713 DOI: 10.1177/197140091102400411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/03/2011] [Indexed: 11/17/2022] Open
Abstract
As it does for the brain, functional imaging provides additional clinically valuable information on the spine, especially in the problem of back and neck pain. While conventional anatomic spine imaging demonstrates many abnormalities, such as herniation of the intervertebral disk, with nearly perfect accuracy, it does not effectively distinguish incidental degenerative changes in the disk from those that results in pain production. Functional imaging of the spine, still under development and evaluation, will facilitate the identification of painful disks and the selection of patients for innovative treatments that are presently under development. Functional imaging of the spine includes: MR spectroscopy, fMRI of the spinal cord, diffusion imaging, T2 relaxation time, T1 rho measurement and dynamic imaging. The purpose of this presentation is to review the status of these functional MR techniques. MRS: MR spectroscopy demonstrates tissue constituents that have characteristic resonant frequencies. For the disk, the substances that can be recognized in MR spectra and quantified include lactic acid and glycosaminoglycans. Lactic acid has been documented by direct sampling of the disk in painful degenerating disks. With MRS, the concentration of lactic acid is measured non-invasively. In pilot studies, lactic acid concentration effectively distinguishes symptomatic from asymptomatic degenerating disks.
Collapse
Affiliation(s)
- V Haughton
- Radiology Department, Wisconsin University Hospitals; Madison, Wisconsin, USA -
| |
Collapse
|
50
|
Masuda K, Lotz JC. New challenges for intervertebral disc treatment using regenerative medicine. TISSUE ENGINEERING PART B-REVIEWS 2010; 16:147-58. [PMID: 19903086 DOI: 10.1089/ten.teb.2009.0451] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of tissue engineering therapies for the intervertebral disc is challenging due to ambiguities of disease and pain mechanisms in patients, and lack of consensus on preclinical models for safety and efficacy testing. Although the issues associated with model selection for studying orthopedic diseases or treatments have been discussed often, the multifaceted challenges associated with developing intervertebral disc tissue engineering therapies require special discussion. This review covers topics relevant to the clinical translation of tissue-engineered technologies: (1) the unmet clinical need, (2) appropriate models for safety and efficacy testing, (3) the need for standardized model systems, and (4) the translational pathways leading to a clinical trial. For preclinical evaluation of new therapies, we recommend establishing biologic plausibility of efficacy and safety using models of increasing complexity, starting with cell culture, small animals (rats and rabbits), and then large animals (goat and minipig) that more closely mimic nutritional, biomechanical, and surgical realities of human application. The use of standardized and reproducible experimental procedures and outcome measures is critical for judging relative efficacy. Finally, success will hinge on carefully designed clinical trials with well-defined patient selection criteria, gold-standard controls, and objective outcome metrics to assess performance in the early postoperative period.
Collapse
Affiliation(s)
- Koichi Masuda
- Department of Orthopaedic Surgery, University of California, San Diego, California 94143-0514, USA
| | | |
Collapse
|