1
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
2
|
Ikari A, Ito Y, Taniguchi K, Shibata MA, Kimura K, Iwamoto M, Lee SW. Role of CD44-Positive Extracellular Vesicles Derived from Highly Metastatic Mouse Mammary Carcinoma Cells in Pre-Metastatic Niche Formation. Int J Mol Sci 2024; 25:9742. [PMID: 39273689 PMCID: PMC11395953 DOI: 10.3390/ijms25179742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Malignant breast cancers pose a notable challenge when it comes to treatment options. Recently, research has implicated extracellular vesicles (EVs) secreted by cancer cells in the formation of a pre-metastatic niche. Small clumps of CD44-positive breast cancer cells are efficiently transferred through CD44-CD44 protein homophilic interaction. This study aims to examine the function of CD44-positive EVs in pre-metastatic niche formation in vitro and to suggest a more efficacious EV formulation. We used mouse mammary carcinoma cells, BJMC3879 Luc2 (Luc2 cells) as the source of CD44-positive EVs and mouse endothelial cells (UV2 cells) as the recipient cells in the niche. Luc2 cells exhibited an enhanced secretion of EVs expressing CD44 and endothelial growth factors (VEGF-A, -C) under 20% O2 (representative of the early stage of tumorigenesis) compared to its expression under 1% O2 (in solid tumor), indicating that pre-metastatic niche formation occurs in the early stage. Furthermore, UV2 endothelial cells expressing CD44 demonstrated a high level of engulfment of EVs that had been supplemented with hyaluronan, and the proliferation of UV2 cells occurred following the engulfment of EVs. These results suggest that anti-VEGF-A and -C encapsulated, CD44-expressing, and hyaluronan-coated EVs are more effective for tumor metastasis.
Collapse
Affiliation(s)
- Ayana Ikari
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Kohei Taniguchi
- Translational Research Program, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan
| | - Masa-Aki Shibata
- Department of Anatomy & Cell Biology, Division of Life Sciences, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Kosei Kimura
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Mitsuhiko Iwamoto
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| | - Sang-Woong Lee
- Department of General and Gastroenterological Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan; (A.I.); (K.K.); (M.I.); (S.-W.L.)
| |
Collapse
|
3
|
Mungra N, Nsole Biteghe FA, Huysamen AM, Hardcastle NS, Bunjun R, Naran K, Lang D, Richter W, Hunter R, Barth S. An Investigation into the In Vitro Targeted Killing of CD44-Expressing Triple-Negative Breast Cancer Cells Using Recombinant Photoimmunotherapeutics Compared to Auristatin-F-Based Antibody-Drug Conjugates. Mol Pharm 2024; 21:4098-4115. [PMID: 39047292 DOI: 10.1021/acs.molpharmaceut.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Triple-negative breast cancer (TNBC) is the deadliest form of breast cancer with limited treatment options. The persistence of highly tumorigenic CD44-expressing subpopulation referred to as cancer stem cells (CSCs), endowed with the self-renewal capacity, has been associated with therapeutic resistance, hence clinical relapses. To mitigate these undesired events, targeted immunotherapies using antibody-photoconjugate (APC) or antibody-drug conjugate (ADC), were developed to specifically release cytotoxic payloads within targeted cells overexpressing cognate antigen receptors. Therefore, an αCD44(scFv)-SNAP-tag antibody fusion protein was engineered through genetic fusion of a single-chain antibody fragment (scFv) to a SNAPf-tag fusion protein, capable of self-conjugating with benzylguanine-modified light-sensitive near-infrared (NIR) phthalocyanine dye IRDye700DX (BG-IR700) or the small molecule toxin auristatin-F (BG-AURIF). Binding of the αCD44(scFv)-SNAPf-IR700 photoimmunoconjugate to antigen-positive cells was demonstrated by confocal microscopy and flow cytometry. By switching to NIR irradiation, CD44-expressing TNBC was selectively killed through induced phototoxic activities. Likewise, the αCD44(scFv)-SNAPf-AURIF immunoconjugate was able to selectively accumulate within targeted cells and significantly reduced cell viability through antimitotic activities at nano- to micromolar drug concentrations. This study provides an in vitro proof-of-concept for a future strategy to selectively destroy light-accessible superficial CD44-expressing TNBC tumors and their metastatic lesions which are inaccessible to therapeutic light.
Collapse
Affiliation(s)
- Neelakshi Mungra
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
- Centre for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, Washington 98101, United States
| | - Fleury A Nsole Biteghe
- College of Science, Department of Biotechnology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Allan M Huysamen
- Department of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Natasha S Hardcastle
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town 7700, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town 7700, South Africa
| | - Krupa Naran
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
| | - Dirk Lang
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa
| | | | - Roger Hunter
- Department of Chemistry, University of Cape Town, PD Hahn Building, Cape Town 7700, South Africa
| | - Stefan Barth
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town 7700, South Africa
- Faculty of Health Sciences, Department of Integrative Biomedical Sciences, South African Research Chair in Cancer Biotechnology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
4
|
Zeng H, Ning W, Liu X, Luo W, Xia N. Unlocking the potential of bispecific ADCs for targeted cancer therapy. Front Med 2024; 18:597-621. [PMID: 39039315 DOI: 10.1007/s11684-024-1072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/08/2024] [Indexed: 07/24/2024]
Abstract
Antibody-drug conjugates (ADCs) are biologically targeted drugs composed of antibodies and cytotoxic drugs connected by linkers. These innovative compounds enable precise drug delivery to tumor cells, minimizing harm to normal tissues and offering excellent prospects for cancer treatment. However, monoclonal antibody-based ADCs still present challenges, especially in terms of balancing efficacy and safety. Bispecific antibodies are alternatives to monoclonal antibodies and exhibit superior internalization and selectivity, producing ADCs with increased safety and therapeutic efficacy. In this review, we present available evidence and future prospects regarding the use of bispecific ADCs for cancer treatment, including a comprehensive overview of bispecific ADCs that are currently in clinical trials. We offer insights into the future development of bispecific ADCs to provide novel strategies for cancer treatment.
Collapse
Affiliation(s)
- Hongye Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Wenjing Ning
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| | - Xue Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
5
|
de Sousa C, Eksteen C, Riedemann J, Engelbrecht AM. Highlighting the role of CD44 in cervical cancer progression: immunotherapy's potential in inhibiting metastasis and chemoresistance. Immunol Res 2024; 72:592-604. [PMID: 38816670 PMCID: PMC11347469 DOI: 10.1007/s12026-024-09493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Cervical cancer affects thousands of women globally with recurring high-risk HPV infections being at the centre of cervical pathology. Oncological treatment strategies are continually challenged by both chemoresistance and metastasis within patients. Although both work hand-in-hand, targeting their individual mechanisms could prove highly beneficial for treatment outcomes. Such targets include the metastatic-promoting stem cell marker, CD44, which is abundant in cervical cancer cells and is common to both chemoresistance and metastatic mechanisms. Seeing that many existing advanced-stage cervical cancer treatment regimes, such as platinum-based chemotherapy regimens, remain limited and are rarely curative, alternative treatment options within the field of immunology are being considered. The use of immune checkpoint inhibition therapy, which targets immune checkpoints, CTLA-4 and PD-1/PD-L1, has shown promise as an alternate standard of care for patients suffering from advanced-stage cervical cancer. Therefore, this review aims to assess whether immune checkpoint inhibition can mitigate the pathological effects of CD44-induced EMT, metastasis, and chemoresistance in cervical cancer patients.
Collapse
Affiliation(s)
- Cayleigh de Sousa
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Mike de Vries Building, C/o Merriman and Bosman Street, Stellenbosch, 7600, South Africa
| | - Carla Eksteen
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Mike de Vries Building, C/o Merriman and Bosman Street, Stellenbosch, 7600, South Africa
| | | | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Mike de Vries Building, C/o Merriman and Bosman Street, Stellenbosch, 7600, South Africa.
| |
Collapse
|
6
|
Tolg C, Hill KA, Turley EA. CD44 and RHAMM Are Microenvironmental Sensors with Dual Metastasis Promoter and Suppressor Functions. Adv Biol (Weinh) 2024; 8:e2300693. [PMID: 38638002 DOI: 10.1002/adbi.202300693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Indexed: 04/20/2024]
Abstract
The progression of primary tumors to metastases remains a significant roadblock to the treatment of most cancers. Emerging evidence has identified genes that specifically affect metastasis and are potential therapeutic targets for managing tumor progression. However, these genes can have dual tumor promoter and suppressor functions that are contextual in manifestation, and that complicate their development as targeted therapies. CD44 and RHAMM/HMMR are examples of multifunctional proteins that can either promote or suppress metastases, as demonstrated in experimental models. These two proteins can be viewed as microenvironmental sensors and this minireview addresses the known mechanistic underpinnings that may determine their metastasis suppressor versus promoter functions. Leveraging this mechanistic knowledge for CD44, RHAMM, and other multifunctional proteins is predicted to improve the precision of therapeutic targeting to achieve more effective management of metastasis.
Collapse
Affiliation(s)
- Cornelia Tolg
- Cancer Research Laboratory Program, Lawson Health Research Institute, Victoria Hospital, London, ON, N6A 5W9, Canada
| | | | - Eva Ann Turley
- Cancer Research Laboratory Program, Lawson Health Research Institute, Victoria Hospital, London, ON, N6A 5W9, Canada
- Departments of Oncology, Biochemistry, and Surgery, Western University, London, ON, N6A 5W9, Canada
| |
Collapse
|
7
|
Zarezadeh Mehrabadi A, Tat M, Ghorbani Alvanegh A, Roozbahani F, Esmaeili Gouvarchin Ghaleh H. Revolutionizing cancer treatment: the power of bi- and tri-specific T-cell engagers in oncolytic virotherapy. Front Immunol 2024; 15:1343378. [PMID: 38464532 PMCID: PMC10921556 DOI: 10.3389/fimmu.2024.1343378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Bi- or tri-specific T cell engagers (BiTE or TriTE) are recombinant bispecific proteins designed to stimulate T-cell immunity directly, bypassing antigen presentation by antigen-presenting cells (APCs). However, these molecules suffer from limitations such as short biological half-life and poor residence time in the tumor microenvironment (TME). Fortunately, these challenges can be overcome when combined with OVs. Various strategies have been developed, such as encoding secretory BiTEs within OV vectors, resulting in improved targeting and activation of T cells, secretion of key cytokines, and bystander killing of tumor cells. Additionally, oncolytic viruses armed with BiTEs have shown promising outcomes in enhancing major histocompatibility complex I antigen (MHC-I) presentation, T-cell proliferation, activation, and cytotoxicity against tumor cells. These combined approaches address tumor heterogeneity, drug delivery, and T-cell infiltration, offering a comprehensive and effective solution. This review article aims to provide a comprehensive overview of Bi- or TriTEs and OVs as promising therapeutic approaches in the field of cancer treatment. We summarize the cutting-edge advancements in oncolytic virotherapy immune-related genetic engineering, focusing on the innovative combination of BiTE or TriTE with OVs.
Collapse
Affiliation(s)
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
8
|
Lodewijk I, Dueñas M, Paramio JM, Rubio C. CD44v6, STn & O-GD2: promising tumor associated antigens paving the way for new targeted cancer therapies. Front Immunol 2023; 14:1272681. [PMID: 37854601 PMCID: PMC10579806 DOI: 10.3389/fimmu.2023.1272681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Targeted therapies are the state of the art in oncology today, and every year new Tumor-associated antigens (TAAs) are developed for preclinical research and clinical trials, but few of them really change the therapeutic scenario. Difficulties, either to find antigens that are solely expressed in tumors or the generation of good binders to these antigens, represent a major bottleneck. Specialized cellular mechanisms, such as differential splicing and glycosylation processes, are a good source of neo-antigen expression. Changes in these processes generate surface proteins that, instead of showing decreased or increased antigen expression driven by enhanced mRNA processing, are aberrant in nature and therefore more specific targets to elicit a precise anti-tumor therapy. Here, we present promising TAAs demonstrated to be potential targets for cancer monitoring, targeted therapy and the generation of new immunotherapy tools, such as recombinant antibodies and chimeric antigen receptor (CAR) T cell (CAR-T) or Chimeric Antigen Receptor-Engineered Natural Killer (CAR-NK) for specific tumor killing, in a wide variety of tumor types. Specifically, this review is a detailed update on TAAs CD44v6, STn and O-GD2, describing their origin as well as their current and potential use as disease biomarker and therapeutic target in a diversity of tumor types.
Collapse
Affiliation(s)
- Iris Lodewijk
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Marta Dueñas
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Jesus M. Paramio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| | - Carolina Rubio
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Madrid, Spain
- Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Madrid, Spain
- Biomedical Research Networking Center on Oncology-CIBERONC, ISCIII, Madrid, Spain
| |
Collapse
|
9
|
Montazeri Aliabadi H, Manda A, Sidgal R, Chung C. Targeting Breast Cancer: The Familiar, the Emerging, and the Uncharted Territories. Biomolecules 2023; 13:1306. [PMID: 37759706 PMCID: PMC10526846 DOI: 10.3390/biom13091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer became the most diagnosed cancer in the world in 2020. Chemotherapy is still the leading clinical strategy in breast cancer treatment, followed by hormone therapy (mostly used in hormone receptor-positive types). However, with our ever-expanding knowledge of signaling pathways in cancer biology, new molecular targets are identified for potential novel molecularly targeted drugs in breast cancer treatment. While this has resulted in the approval of a few molecularly targeted drugs by the FDA (including drugs targeting immune checkpoints), a wide array of signaling pathways seem to be still underexplored. Also, while combinatorial treatments have become common practice in clinics, the majority of these approaches seem to combine molecularly targeted drugs with chemotherapeutic agents. In this manuscript, we start by analyzing the list of FDA-approved molecularly targeted drugs for breast cancer to evaluate where molecular targeting stands in breast cancer treatment today. We will then provide an overview of other options currently under clinical trial or being investigated in pre-clinical studies.
Collapse
Affiliation(s)
- Hamidreza Montazeri Aliabadi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618, USA
| | | | | | | |
Collapse
|
10
|
Bei Y, He J, Dong X, Wang Y, Wang S, Guo W, Cai C, Xu Z, Wei J, Liu B, Zhang N, Shen P. Targeting CD44 Variant 5 with an Antibody-Drug Conjugate Is an Effective Therapeutic Strategy for Intrahepatic Cholangiocarcinoma. Cancer Res 2023; 83:2405-2420. [PMID: 37205633 PMCID: PMC10345965 DOI: 10.1158/0008-5472.can-23-0510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/06/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most frequent type of primary liver cancer. ICC is among the deadliest malignancies, highlighting that novel treatments are urgently needed. Studies have shown that CD44 variant isoforms, rather than the CD44 standard isoform, are selectively expressed in ICC cells, providing an opportunity for the development of an antibody-drug conjugate (ADC)-based targeted therapeutic strategy. In this study, we observed the specific expression of CD44 variant 5 (CD44v5) in ICC tumors. CD44v5 protein was expressed on the surface of most ICC tumors (103 of 155). A CD44v5-targeted ADC, H1D8-DC (H1D8-drug conjugate), was developed that comprises a humanized anti-CD44v5 mAb conjugated to the microtubule inhibitor monomethyl auristatin E (MMAE) via a cleavable valine-citrulline-based linker. H1D8-DC exhibited efficient antigen binding and internalization in cells expressing CD44v5 on the cell surface. Because of the high expression of cathepsin B in ICC cells, the drug was preferentially released in cancer cells but not in normal cells, thus inducing potent cytotoxicity at picomolar concentrations. In vivo studies showed that H1D8-DC was effective against CD44v5-positive ICC cells and induced tumor regression in patient-derived xenograft models, whereas no significant adverse toxicities were observed. These data demonstrate that CD44v5 is a bona fide target in ICC and provide a rationale for the clinical investigation of a CD44v5-targeted ADC-based approach. SIGNIFICANCE Elevated expression of CD44 variant 5 in intrahepatic cholangiocarcinoma confers a targetable vulnerability using the newly developed antibody-drug conjugate H1D8-DC, which induces potent growth suppressive effects without significant toxicity.
Collapse
Affiliation(s)
- Yuncheng Bei
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xuhui Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Yuxin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Sijie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Wan Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Chengjie Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhiye Xu
- Department of Clinical Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, PR China
| | - Nan Zhang
- Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Pingping Shen
- Department of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School and State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, PR China
- Shenzhen Research Institute of Nanjing University, Shenzhen, PR China
| |
Collapse
|
11
|
Köseer AS, Di Gaetano S, Arndt C, Bachmann M, Dubrovska A. Immunotargeting of Cancer Stem Cells. Cancers (Basel) 2023; 15:1608. [PMID: 36900399 PMCID: PMC10001158 DOI: 10.3390/cancers15051608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The generally accepted view is that CSCs hijack the signaling pathways attributed to normal stem cells that regulate the self-renewal and differentiation processes. Therefore, the development of selective targeting strategies for CSC, although clinically meaningful, is associated with significant challenges because CSC and normal stem cells share many important signaling mechanisms for their maintenance and survival. Furthermore, the efficacy of this therapy is opposed by tumor heterogeneity and CSC plasticity. While there have been considerable efforts to target CSC populations by the chemical inhibition of the developmental pathways such as Notch, Hedgehog (Hh), and Wnt/β-catenin, noticeably fewer attempts were focused on the stimulation of the immune response by CSC-specific antigens, including cell-surface targets. Cancer immunotherapies are based on triggering the anti-tumor immune response by specific activation and targeted redirecting of immune cells toward tumor cells. This review is focused on CSC-directed immunotherapeutic approaches such as bispecific antibodies and antibody-drug candidates, CSC-targeted cellular immunotherapies, and immune-based vaccines. We discuss the strategies to improve the safety and efficacy of the different immunotherapeutic approaches and describe the current state of their clinical development.
Collapse
Affiliation(s)
- Ayse Sedef Köseer
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Simona Di Gaetano
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Anna Dubrovska
- National Center for Tumor Diseases (NCT), Partner Site Dresden: German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- OncoRay–National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01309 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
| |
Collapse
|
12
|
Preclinical and Clinical Trials of New Treatment Strategies Targeting Cancer Stem Cells in Subtypes of Breast Cancer. Cells 2023; 12:cells12050720. [PMID: 36899854 PMCID: PMC10001180 DOI: 10.3390/cells12050720] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Breast cancer (BC) can be classified into various histological subtypes, each associated with different prognoses and treatment options, including surgery, radiation, chemotherapy, and endocrine therapy. Despite advances in this area, many patients still face treatment failure, the risk of metastasis, and disease recurrence, which can ultimately lead to death. Mammary tumors, like other solid tumors, contain a population of small cells known as cancer stem-like cells (CSCs) that have high tumorigenic potential and are involved in cancer initiation, progression, metastasis, tumor recurrence, and resistance to therapy. Therefore, designing therapies specifically targeting at CSCs could help to control the growth of this cell population, leading to increased survival rates for BC patients. In this review, we discuss the characteristics of CSCs, their surface biomarkers, and the active signaling pathways associated with the acquisition of stemness in BC. We also cover preclinical and clinical studies that focus on evaluating new therapy systems targeted at CSCs in BC through various combinations of treatments, targeted delivery systems, and potential new drugs that inhibit the properties that allow these cells to survive and proliferate.
Collapse
|
13
|
Zhu Y, Liu K, Wang K, Zhu H. Treatment-related adverse events of antibody-drug conjugates in clinical trials: A systematic review and meta-analysis. Cancer 2023; 129:283-295. [PMID: 36408673 PMCID: PMC10099922 DOI: 10.1002/cncr.34507] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) have complex molecular structures and have been tested in numerous clinical trials. Therefore, understanding the mechanisms of their toxicity when applied in medical practice is of high importance. METHODS In a systematic review and meta-analysis of data gathered from different scientific databases (PubMed, Embase, Cochrane, and Web of Science) between January 1, 2000, and June 7, 2022, the authors applied a random-effects model with logit transformation and evaluated the heterogeneity between studies using I2 statistics. The primary outcome was the incidence and 95% confidence interval (CI) for all-grade and grade ≥3 treatment-related adverse events and differences between different drugs, molecular structures, and cancer types. RESULTS In total, 2511 records were identified that included 169 clinical trials involving 22,492 patients. The overall incidence of treatment-related adverse events was 91.2% (95% CI, 90.7%-91.7%; I2 = 95.9%) for all-grade adverse events and 46.1% (95% CI, 45.2%-47.0%; I2 = 96.3%) for grade ≥3 adverse events. The most common all-grade adverse events were lymphopenia (53.0%; 95% CI, 48.7%-57.3%), nausea (44.1%; 95% CI, 43.2%-44.9%), neutropenia (43.7%; 95% CI, 42.6%-44.9%), blurred vision (40.5%; 95% CI, 37.4%-43.6%), and peripheral neuropathy (39.6%; 95% CI, 38.2%-41.1%); and the most common grade ≥3 adverse events were neutropenia (31.2%; 95% CI, 30.2%-32.3%), hypoesthesia (23.3%; 95% CI, 10.6%-35.9%), thrombocytopenia (22.6%; 95% CI, 21.3%-23.9%), febrile neutropenia (21.2%; 95% CI, 19.3%-23.1%), and lymphopenia (21.0%; 95% CI, 18.2%-23.7%). CONCLUSIONS Different ADCs appear to affect various treatment-related adverse events and provide comprehensive data on treatment-related adverse events for ADCs. The current results provide an important reference for clinicians and patients on how to care for toxicities from ADCs in clinical practice. LAY SUMMARY Unique anticancer drugs called antibody-drug conjugates (ADCs) have made significant progress in oncology in recent years because of their great success, and they are rapidly being used in the clinic as well as in hundreds of ongoing trials exploring their further use. The occurrence of serious side effects (adverse events) related to the receipt of ADCs was studied using data from 169 clinical trials involving 22,492 patients to determine the treatment-related causes of higher toxicity and adverse events in patients who receive ADCs, because these data are crucial for informing physicians how to safely treat patients using ADCs. The results indicate that different ADCs appear to affect various adverse events related to their use, providing comprehensive data on these ADCs that provide an important reference for clinicians and patients on how to care for toxicities from ADCs in clinical practice.
Collapse
Affiliation(s)
- Youwen Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kun Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kailing Wang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Liu C, Mohan SC, Wei J, Seki E, Liu M, Basho R, Giuliano AE, Zhao Y, Cui X. Breast cancer liver metastasis: Pathogenesis and clinical implications. Front Oncol 2022; 12:1043771. [PMID: 36387238 PMCID: PMC9641291 DOI: 10.3389/fonc.2022.1043771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 09/30/2023] Open
Abstract
Breast cancer is the most common malignant disease in female patients worldwide and can spread to almost every place in the human body, most frequently metastasizing to lymph nodes, bones, lungs, liver and brain. The liver is a common metastatic location for solid cancers as a whole, and it is also the third most common metastatic site for breast cancer. Breast cancer liver metastasis (BCLM) is a complex process. Although the hepatic microenvironment and liver sinusoidal structure are crucial factors for the initial arrest of breast cancer and progression within the liver, the biological basis of BCLM remains to be elucidated. Importantly, further understanding of the interaction between breast cancer cells and hepatic microenvironment in the liver metastasis of breast cancer will suggest ways for the development of effective therapy and prevention strategies for BCLM. In this review, we provide an overview of the recent advances in the understanding of the molecular mechanisms of the hepatic microenvironment in BCLM formation and discuss current systemic therapies for treating patients with BCLM as well as potential therapeutic development based on the liver microenvironment-associated signaling proteins governing BCLM.
Collapse
Affiliation(s)
- Cuiwei Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Srivarshini C. Mohan
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jielin Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ekihiro Seki
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Reva Basho
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- The Lawrence J. Ellison Institute for Transformative Medicine, Los Angeles, CA, United States
| | - Armando E. Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
15
|
Role of CD44 isoforms in epithelial-mesenchymal plasticity and metastasis. Clin Exp Metastasis 2022; 39:391-406. [PMID: 35023031 PMCID: PMC10042269 DOI: 10.1007/s10585-022-10146-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/03/2022] [Indexed: 01/21/2023]
Abstract
Cellular plasticity lies at the core of cancer progression, metastasis, and resistance to treatment. Stemness and epithelial-mesenchymal plasticity in cancer are concepts that represent a cancer cell's ability to coopt and adapt normal developmental programs to promote survival and expansion. The cancer stem cell model states that a small subset of cancer cells with stem cell-like properties are responsible for driving tumorigenesis and metastasis while remaining especially resistant to common chemotherapeutic drugs. Epithelial-mesenchymal plasticity describes a cancer cell's ability to transition between epithelial and mesenchymal phenotypes which drives invasion and metastasis. Recent research supports the existence of stable epithelial/mesenchymal hybrid phenotypes which represent highly plastic states with cancer stem cell characteristics. The cell adhesion molecule CD44 is a widely accepted marker for cancer stem cells, and it lies at a functional intersection between signaling networks regulating both stemness and epithelial-mesenchymal plasticity. CD44 expression is complex, with alternative splicing producing many isoforms. Interestingly, not only does the pattern of isoform expression change during transitions between epithelial and mesenchymal phenotypes in cancer, but these isoforms have distinct effects on cell behavior including the promotion of metastasis and stemness. The role of CD44 both downstream and upstream of signaling pathways regulating epithelial-mesenchymal plasticity and stemness make this protein a valuable target for further research and therapeutic intervention.
Collapse
|
16
|
Weng X, Maxwell-Warburton S, Hasib A, Ma L, Kang L. The membrane receptor CD44: novel insights into metabolism. Trends Endocrinol Metab 2022; 33:318-332. [PMID: 35249813 DOI: 10.1016/j.tem.2022.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
CD44, a cell-surface glycoprotein, has long been studied as a cancer molecule due to its essential role in physiological activities in normal cells and pathological activities in cancer cells, such as cell proliferation, adhesion, and migration; angiogenesis; inflammation; and cytoskeleton rearrangement. Yet, recent evidence suggests a role of CD44 in metabolism, especially insulin resistance in obesity and diabetes. In line with the current concept of fibroinflammation in obesity and insulin resistance, CD44 as the main receptor of the extracellular matrix component, hyaluronan (HA), has been shown to regulate diet-induced insulin resistance in muscle and other insulin-sensitive tissues. In this review, we integrate current evidence for a role of CD44 in regulating glucose and lipid homeostasis and speculate about its involvement in the pathogenesis of chronic metabolic diseases, including obesity and diabetes. We summarize the current development of CD44-targeted therapies and discuss its potential for the use in treating metabolic diseases.
Collapse
Affiliation(s)
- Xiong Weng
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK
| | | | - Annie Hasib
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Lifeng Ma
- School of Medicine, Xizang Minzhu University, Xianyang, Shaanxi, China
| | - Li Kang
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
17
|
Conde I, Ribeiro AS, Paredes J. Breast Cancer Stem Cell Membrane Biomarkers: Therapy Targeting and Clinical Implications. Cells 2022; 11:934. [PMID: 35326385 PMCID: PMC8946706 DOI: 10.3390/cells11060934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy affecting women worldwide. Importantly, there have been significant improvements in prevention, early diagnosis, and treatment options, which resulted in a significant decrease in breast cancer mortality rates. Nevertheless, the high rates of incidence combined with therapy resistance result in cancer relapse and metastasis, which still contributes to unacceptably high mortality of breast cancer patients. In this context, a small subpopulation of highly tumourigenic cancer cells within the tumour bulk, commonly designated as breast cancer stem cells (BCSCs), have been suggested as key elements in therapy resistance, which are responsible for breast cancer relapses and distant metastasis. Thus, improvements in BCSC-targeting therapies are crucial to tackling the metastatic progression and might allow therapy resistance to be overcome. However, the design of effective and specific BCSC-targeting therapies has been challenging since there is a lack of specific biomarkers for BCSCs, and the most common clinical approaches are designed for commonly altered BCSCs signalling pathways. Therefore, the search for a new class of BCSC biomarkers, such as the expression of membrane proteins with cancer stem cell potential, is an area of clinical relevance, once membrane proteins are accessible on the cell surface and easily recognized by specific antibodies. Here, we discuss the significance of BCSC membrane biomarkers as potential prognostic and therapeutic targets, reviewing the CSC-targeting therapies under clinical trials for breast cancer.
Collapse
Affiliation(s)
- Inês Conde
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Ana Sofia Ribeiro
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Joana Paredes
- i3S, Institute of Investigation and Innovation in Health, 4200-135 Porto, Portugal; (I.C.); (A.S.R.)
- Ipatimup, Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
18
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
19
|
Paraboschi I, Turnock S, Kramer-Marek G, Musleh L, Barisa M, Anderson J, Giuliani S. Near-InfraRed PhotoImmunoTherapy (NIR-PIT) for the local control of solid cancers: Challenges and potentials for human applications. Crit Rev Oncol Hematol 2021; 161:103325. [PMID: 33836238 PMCID: PMC8177002 DOI: 10.1016/j.critrevonc.2021.103325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 01/10/2023] Open
Abstract
Near-InfraRed PhotoImmunoTherapy (NIR-PIT) is a novel cancer-targeted treatment effected by a chemical conjugation between a photosensitiser (e.g. the NIR phthalocyanine dye IRDye700DX) and a cancer-targeting moiety (e.g. a monoclonal antibody, moAb). Delivery of a conjugate in vivo leads to accumulation at the tumour cell surface by binding to cell surface receptors or antigens. Upon deployment of focal NIR-light, irradiation of the conjugate results in a rapid, targeted cell death. However, the mechanisms of action to produce the cytotoxic effects have yet to be fully understood. Herein, we bring together the current knowledge of NIR-PIT from preclinical and clinical studies in a variety of cancers highlighting the key unanswered research questions. Furthermore, we discuss how to enhance the local control of solid cancers using this novel treatment regimen.
Collapse
Affiliation(s)
- Irene Paraboschi
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK
| | - Stephen Turnock
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Layla Musleh
- Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK; Department of Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, England, UK
| | - Stefano Giuliani
- Wellcome/EPSRC Centre for Interventional & Surgical Sciences, University College London, London, UK; Department of Specialist Neonatal and Pediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
20
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
21
|
Heidbuechel JPW, Engeland CE. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J Hematol Oncol 2021; 14:63. [PMID: 33863363 PMCID: PMC8052795 DOI: 10.1186/s13045-021-01075-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
Bispecific T cell engagers (BiTEs) are an innovative class of immunotherapeutics that redirect T cells to tumor surface antigens. While efficacious against certain hematological malignancies, limited bioavailability and severe toxicities have so far hampered broader clinical application, especially against solid tumors. Another emerging cancer immunotherapy are oncolytic viruses (OVs) which selectively infect and replicate in malignant cells, thereby mediating tumor vaccination effects. These oncotropic viruses can serve as vectors for tumor-targeted immunomodulation and synergize with other immunotherapies. In this article, we discuss the use of OVs to overcome challenges in BiTE therapy. We review the current state of the field, covering published preclinical studies as well as ongoing clinical investigations. We systematically introduce OV-BiTE vector design and characteristics as well as evidence for immune-stimulating and anti-tumor effects. Moreover, we address additional combination regimens, including CAR T cells and immune checkpoint inhibitors, and further strategies to modulate the tumor microenvironment using OV-BiTEs. The inherent complexity of these novel therapeutics highlights the importance of translational research including correlative studies in early-phase clinical trials. More broadly, OV-BiTEs can serve as a blueprint for diverse OV-based cancer immunotherapies.
Collapse
Affiliation(s)
- Johannes P W Heidbuechel
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Christine E Engeland
- Research Group Mechanisms of Oncolytic Immunotherapy, Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
- Department of Medical Oncology, University Hospital Heidelberg, Heidelberg, Germany.
- Center for Biomedical Research and Education (ZBAF), School of Medicine, Institute of Virology and Microbiology, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
22
|
Facts and Challenges in Immunotherapy for T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21207685. [PMID: 33081391 PMCID: PMC7589289 DOI: 10.3390/ijms21207685] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a T-cell malignant disease that mainly affects children, is still a medical challenge, especially for refractory patients for whom therapeutic options are scarce. Recent advances in immunotherapy for B-cell malignancies based on increasingly efficacious monoclonal antibodies (mAbs) and chimeric antigen receptors (CARs) have been encouraging for non-responding or relapsing patients suffering from other aggressive cancers like T-ALL. However, secondary life-threatening T-cell immunodeficiency due to shared expression of targeted antigens by healthy and malignant T cells is a main drawback of mAb—or CAR-based immunotherapies for T-ALL and other T-cell malignancies. This review provides a comprehensive update on the different immunotherapeutic strategies that are being currently applied to T-ALL. We highlight recent progress on the identification of new potential targets showing promising preclinical results and discuss current challenges and opportunities for developing novel safe and efficacious immunotherapies for T-ALL.
Collapse
|
23
|
Chen L, Fu C, Zhang Q, He C, Zhang F, Wei Q. The role of CD44 in pathological angiogenesis. FASEB J 2020; 34:13125-13139. [PMID: 32830349 DOI: 10.1096/fj.202000380rr] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Angiogenesis is required for normal development and occurs as a pathological step in a variety of disease settings, such as cancer, ocular diseases, and ischemia. Recent studies have revealed the role of CD44, a widely expressed cell surface adhesion molecule, in promoting pathological angiogenesis and the development of its associated diseases through its regulation of diverse function of endothelial cells, such as proliferation, migration, adhesion, invasion, and communication with the microenvironment. Conversely, the absence of CD44 expression or inhibition of its function impairs pathological angiogenesis and disease progression. Here, we summarize the current understanding of the roles of CD44 in pathological angiogenesis and the underlying cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Li Chen
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Chenying Fu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Qing Zhang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Chengqi He
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Quan Wei
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
24
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U. Cancer Stem Cells-Origins and Biomarkers: Perspectives for Targeted Personalized Therapies. Front Immunol 2020; 11:1280. [PMID: 32849491 PMCID: PMC7426526 DOI: 10.3389/fimmu.2020.01280] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
The use of biomarkers in diagnosis, therapy and prognosis has gained increasing interest over the last decades. In particular, the analysis of biomarkers in cancer patients within the pre- and post-therapeutic period is required to identify several types of cells, which carry a risk for a disease progression and subsequent post-therapeutic relapse. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and can cause relapses. At the time point of tumor initiation, CSCs originate from either differentiated cells or adult tissue resident stem cells. Due to their importance, several biomarkers that characterize CSCs have been identified and correlated to diagnosis, therapy and prognosis. However, CSCs have been shown to display a high plasticity, which changes their phenotypic and functional appearance. Such changes are induced by chemo- and radiotherapeutics as well as senescent tumor cells, which cause alterations in the tumor microenvironment. Induction of senescence causes tumor shrinkage by modulating an anti-tumorigenic environment in which tumor cells undergo growth arrest and immune cells are attracted. Besides these positive effects after therapy, senescence can also have negative effects displayed post-therapeutically. These unfavorable effects can directly promote cancer stemness by increasing CSC plasticity phenotypes, by activating stemness pathways in non-CSCs, as well as by promoting senescence escape and subsequent activation of stemness pathways. At the end, all these effects can lead to tumor relapse and metastasis. This review provides an overview of the most frequently used CSC markers and their implementation as biomarkers by focussing on deadliest solid (lung, stomach, liver, breast and colorectal cancers) and hematological (acute myeloid leukemia, chronic myeloid leukemia) cancers. Furthermore, it gives examples on how the CSC markers might be influenced by therapeutics, such as chemo- and radiotherapy, and the tumor microenvironment. It points out, that it is crucial to identify and monitor residual CSCs, senescent tumor cells, and the pro-tumorigenic senescence-associated secretory phenotype in a therapy follow-up using specific biomarkers. As a future perspective, a targeted immune-mediated strategy using chimeric antigen receptor based approaches for the removal of remaining chemotherapy-resistant cells as well as CSCs in a personalized therapeutic approach are discussed.
Collapse
Affiliation(s)
- Lia Walcher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Ann-Kathrin Kistenmacher
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Huizhen Suo
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Reni Kitte
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Sarah Dluczek
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Alexander Strauß
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - André-René Blaudszun
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Tetyana Yevsa
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Stephan Fricke
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Uta Kossatz-Boehlert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
25
|
|
26
|
Coexpression Network Analysis of Genes Related to the Characteristics of Tumor Stemness in Triple-Negative Breast Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7575862. [PMID: 32766313 PMCID: PMC7374213 DOI: 10.1155/2020/7575862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are subsets of cells with the ability of self-renewal and differentiation in neoplasm, which are considered to be related to tumor heterogeneity. It has been reported that CSCs act on tumorigenesis and tumor biology of triple-negative breast cancer (TNBC). However, the key genes that cause TNBC showing stem cell characteristics are still unclear. We combined the RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) database and mRNA expression-based stemness index (mRNAsi) to further analyze mRNAsi with regard to molecular subtypes, tumor depth, and pathological staging characteristics of breast cancer (BC). Secondly, we extract the differential gene expression of tumor vs. normal group and TNBC vs. other subtypes of BC group, respectively, and intersect them to achieve precise results. We used a weighted gene coexpression network analysis (WGCNA) to screen significant gene modules and the functions of selected genes including BIRC5, CDC25A, KIF18B, KIF2C, ORC1, RAD54L, and TPX2 were carried out through gene ontology (GO) functional annotation. The Oncomine, bc-GenExMiner v4.4, GeneMANIA, Kaplan-Meier Plotter (KM-plotter), and GEPIA were used to verify the expression level and functions of key genes. In this study, we found that TNBC had the highest stem cell characteristics in BC compared with other subtypes. The lower the mRNAsi score, the better the overall survival and treatment outcome. Seven key genes of TNBC were screened and functional annotation indicated that there were strong correlations between them, relating to nuclear division, organelle fission, mitotic nuclear division, and other events that determine cell fate. Among these genes, we found four genes that were highly associated with adverse survival events. Seven key genes identified in this study were found to be closely related to the maintenance of TNBC stemness, and the overexpression of four showed earlier recurrence. The overall survival (OS) curves of all key genes between differential expression level crossed at around nine-year follow-up, which was consistent with the trend of the OS curve related to mRNAsi. These findings may provide new ideas for screening therapeutic targets in order to depress TNBC stemness.
Collapse
|
27
|
Wolf KJ, Shukla P, Springer K, Lee S, Coombes JD, Choy CJ, Kenny SJ, Xu K, Kumar S. A mode of cell adhesion and migration facilitated by CD44-dependent microtentacles. Proc Natl Acad Sci U S A 2020; 117:11432-11443. [PMID: 32381732 PMCID: PMC7261014 DOI: 10.1073/pnas.1914294117] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The structure and mechanics of many connective tissues are dictated by a collagen-rich extracellular matrix (ECM), where collagen fibers provide topological cues that direct cell migration. However, comparatively little is known about how cells navigate the hyaluronic acid (HA)-rich, nanoporous ECM of the brain, a problem with fundamental implications for development, inflammation, and tumor invasion. Here, we demonstrate that glioblastoma cells adhere to and invade HA-rich matrix using microtentacles (McTNs), which extend tens of micrometers from the cell body and are distinct from filopodia. We observe these structures in continuous culture models and primary patient-derived tumor cells, as well as in synthetic HA matrix and organotypic brain slices. High-magnification and superresolution imaging reveals McTNs are dynamic, CD44-coated tubular protrusions containing microtubules and actin filaments, which respectively drive McTN extension and retraction. Molecular mechanistic studies reveal that McTNs are stabilized by an interplay between microtubule-driven protrusion, actomyosin-driven retraction, and CD44-mediated adhesion, where adhesive and cytoskeletal components are mechanistically coupled by an IQGAP1-CLIP170 complex. McTNs represent a previously unappreciated mechanism through which cells engage nanoporous HA matrix and may represent an important molecular target in physiology and disease.
Collapse
Affiliation(s)
- Kayla J Wolf
- University of California, Berkeley-University of California San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Poojan Shukla
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Kelsey Springer
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Stacey Lee
- University of California, Berkeley-University of California San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Bioengineering, University of California, Berkeley, CA, 94720
| | - Jason D Coombes
- Department of Bioengineering, University of California, Berkeley, CA, 94720
- Inflammation Biology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom, SE5 9NU
| | - Caleb J Choy
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Samuel J Kenny
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Sanjay Kumar
- University of California, Berkeley-University of California San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720;
- Department of Bioengineering, University of California, Berkeley, CA, 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| |
Collapse
|
28
|
Pęcak A, Skalniak Ł, Pels K, Książek M, Madej M, Krzemień D, Malicki S, Władyka B, Dubin A, Holak TA, Dubin G. Anti-CD44 DNA Aptamers Selectively Target Cancer Cells. Nucleic Acid Ther 2020; 30:289-298. [PMID: 32379519 DOI: 10.1089/nat.2019.0833] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CD44 is a type I transmembrane glycoprotein interacting with a number of extracellular components, including hyaluronic acid (HA). CD44-HA axis is involved in a variety of processes, including adhesion, migration, differentiation, trafficking, and others. CD44 is overexpressed in several cancers where binding of HA induces signal transduction leading to activation of antiapoptotic proteins and factors linked to drug resistance. As such, CD44 has been implicated in cancer growth, progression, and metastasis. It has been convincingly demonstrated that blocking CD44-HA interaction decreases cancer cell survival and metastasis. In this study, using in vitro selection, we have developed DNA aptamers recognizing a HA-binding domain of CD44 with high affinity and specificity. The aptamers bind to CD44 with nanomolar affinities and efficiently inhibit the growth of leukemic cancer cells characterized by high expression of CD44. The selectivity is demonstrated by an irrelevant effect on cells characterized by low CD44 levels. The obtained aptamers broaden the existing landscape of potential approaches to the development of antitumor strategies based on inhibition of the CD44 axis.
Collapse
Affiliation(s)
- Aleksandra Pęcak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Łukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Katarzyna Pels
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mirosław Książek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mariusz Madej
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dobrosława Krzemień
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Stanisław Malicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Benedykt Władyka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Adam Dubin
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tad A Holak
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
29
|
Porter CE, Rosewell Shaw A, Jung Y, Yip T, Castro PD, Sandulache VC, Sikora A, Gottschalk S, Ittman MM, Brenner MK, Suzuki M. Oncolytic Adenovirus Armed with BiTE, Cytokine, and Checkpoint Inhibitor Enables CAR T Cells to Control the Growth of Heterogeneous Tumors. Mol Ther 2020; 28:1251-1262. [PMID: 32145203 DOI: 10.1016/j.ymthe.2020.02.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
No single cancer immunotherapy will likely defeat all evasion mechanisms of solid tumors, including plasticity of tumor antigen expression and active immune suppression by the tumor environment. In this study, we increase the breadth, potency, and duration of anti-tumor activity of chimeric antigen receptor (CAR) T cells using an oncolytic virus (OV) that produces cytokine, checkpoint blockade, and a bispecific tumor-targeted T cell engager (BiTE) molecule. First, we constructed a BiTE molecule specific for CD44 variant 6 (CD44v6), since CD44v6 is widely expressed on tumor but not normal tissue, and a CD44v6 antibody has been safely administered to cancer patients. We then incorporated this BiTE sequence into an oncolytic-helper binary adenovirus (CAdDuo) encoding an immunostimulatory cytokine (interleukin [IL]-12) and an immune checkpoint blocker (PD-L1Ab) to form CAdTrio. CD44v6 BiTE from CAdTrio enabled HER2-specific CAR T cells to kill multiple CD44v6+ cancer cell lines and to produce more rapid and sustained disease control of orthotopic HER2+ and HER2-/- CD44v6+ tumors than any component alone. Thus, the combination of CAdTrio with HER2.CAR T cells ensures dual targeting of two tumor antigens by engagement of distinct classes of receptor (CAR and native T cell receptor [TCR]), and significantly improves tumor control and survival.
Collapse
Affiliation(s)
- Caroline E Porter
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Youngrock Jung
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Tiffany Yip
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Patricia D Castro
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Vlad C Sandulache
- Department of Otolaryngology, Baylor College of Medicine, Houston, TX, USA
| | - Andrew Sikora
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA; Department of Otolaryngology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael M Ittman
- Department of Pathology, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
30
|
Chan YW, So C, Yau KL, Chiu KC, Wang X, Chan FL, Tsang SY. Adipose-derived stem cells and cancer cells fuse to generate cancer stem cell-like cells with increased tumorigenicity. J Cell Physiol 2020; 235:6794-6807. [PMID: 31994190 DOI: 10.1002/jcp.29574] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cells isolated from adipose tissue and have the ability to differentiate into adipogenic, osteogenic, and chondrogenic lineages. Despite their great therapeutic potentials, previous studies showed that ADSCs could enhance the proliferation and metastatic potential of breast cancer cells (BCCs). In this study, we found that ADSCs fused with BCCs spontaneously, while breast cancer stem cell (CSC) markers CD44+ CD24-/low EpCAM+ were enriched in this fusion population. We further assessed the fusion hybrid by multicolor DNA FISH and mouse xenograft assays. Only single nucleus was observed in the fusion hybrid, confirming that it was a synkaryon. In vivo mouse xenograft assay indicated that the tumorigenic potential of the fusion hybrid was significantly higher than that of the parent tumorigenic triple-negative BCC line MDA-MB-231. We had compared the fusion efficiency between two BCC lines, the CD44-rich MDA-MB-231 and the CD44-poor MCF-7, with ADSCs. Interestingly, we found that the fusion efficiency was much higher between MDA-MB-231 and ADSCs, suggesting that a potential mechanism of cell fusion may lie in the dissimilarity between these two cell lines. The cell fusion efficiency was hampered by knocking down the CD44. Altogether, our findings suggest that CD44-mediated cell fusion could be a potential mechanism for generating CSCs.
Collapse
Affiliation(s)
- Yuk Wah Chan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chun So
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Long Yau
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kung Chun Chiu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiya Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Franky Leung Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.,Key Laboratory for Regenerative Medicine, Ministry of Education, The Chinese University of Hong Kong, Hong Kong, China.,The Institute for Tissue Engineering and Regenerative Medicine (iTERM), The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Gastric Cancer Stem Cells: Current Insights into the Immune Microenvironment and Therapeutic Targets. Biomedicines 2020; 8:biomedicines8010007. [PMID: 31935894 PMCID: PMC7168269 DOI: 10.3390/biomedicines8010007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/27/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is a leading cause of cancer-related death worldwide. Cancer stem cells (CSCs) are known to be involved in chemotherapy resistance and the development of metastases. Although CSCs harbor self-renewal and tumorigenic abilities, the immune microenvironment surrounding CSCs provides various factors and supports the maintenance of CSC properties. The current review summarizes the accumulating findings regarding the relationship between the immune microenvironment and gastric CSCs (GCSCs), which will support the possibility of developing novel therapeutic strategies for targeting GCSCs.
Collapse
|
32
|
Fänder J, Kielstein H, Büttner M, Koelblinger P, Dummer R, Bauer M, Handke D, Wickenhauser C, Seliger B, Jasinski-Bergner S. Characterizing CD44 regulatory microRNAs as putative therapeutic agents in human melanoma. Oncotarget 2019; 10:6509-6525. [PMID: 31741714 PMCID: PMC6849650 DOI: 10.18632/oncotarget.27305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/21/2019] [Indexed: 01/22/2023] Open
Abstract
The multistructural and multifunctional transmembrane glycoprotein CD44 is overexpressed in many tumors of distinct origin including malignant melanoma and contributes to a poor prognosis by affecting cell proliferation, cell migration, and also the sensitivity for apoptosis induction. Previous studies reported so far 15 CD44 regulatory microRNAs (miRs) in different cell systems. Using a novel method for miR affinity purification miR-143-3p was identified as most potent binder to the 3' untranslated region (UTR) of CD44. Overexpression of miR-143-3p in melanoma cells inhibits CD44 translation, which is accompanied by a reduced proliferation, migration and enhanced daunorubicin induced apoptosis of melanoma cells in vitro. Analyses of discordant CD44 and miR-143-3p expression levels in human melanocytic nevi and dermal melanoma samples demonstrated medium to high CD44 levels with no association to tumor grading or staging. The CD44 expression correlated to PD-L1, but not to MART-1 expression in malignant melanoma. Interestingly, the CD44 expression was inversely correlated to the infiltration of pro-inflammatory immune effector cells. In conclusion, the tumor suppressive miR-143-3p was identified as the most potent CD44 inhibitory miR, which affects growth characteristics of melanoma cells suggesting the implementation of miR-143-3p as as a potential anti-CD44 therapy of malignant melanoma.
Collapse
Affiliation(s)
- Johannes Fänder
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Heike Kielstein
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Maximilian Büttner
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Peter Koelblinger
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Marcus Bauer
- Institute for Pathology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Diana Handke
- Institute for Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia Wickenhauser
- Institute for Pathology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Barbara Seliger
- Institute for Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Simon Jasinski-Bergner
- Institute of Anatomy and Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany.,Institute for Medical Immunology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
33
|
Egloff H, Kidwell KM, Schott A. Ado-Trastuzumab Emtansine-Induced Pulmonary Toxicity: A Single-Institution Retrospective Review. Case Rep Oncol 2018; 11:527-533. [PMID: 30186135 PMCID: PMC6120401 DOI: 10.1159/000491574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023] Open
Abstract
Purpose T-DM1 is an antibody drug conjugate with proven efficacy in metastatic breast cancer for progressive disease refractory to trastuzumab. Drug-induced pneumonitis is a rare serious potential adverse effect. The purpose of this review was to estimate the incidence of pulmonary toxicity at our institution. Methods A retrospective analysis of electronic medical record data inclusive of all women and men aged 18 years and older treated with T-DM1 at out institution was undertaken. The records were reviewed for clinical symptoms and/or radiographic evidence concerning for pneumonitis. We identified variables of interest with regard to potential risk factors for toxicity. Results A total of 50 patients were included, 6 (12$) of whom had radiographic and/or clinical symptoms concerning for T-DM1-induced pneumonitis. All 6 patients had metastatic or unresectable breast cancer. Of the 6 patients, 5 (83$) had suspected pulmonary metastases, 1 (17$) had a history of underlying lung disease, and 5 (83$) had a history of prior taxane therapy. Pulmonary metastases (p = 0.38), the median number of treatment cycles (p = 0.29), prior taxane therapy (p = 0.99), underlying lung disease (p = 0.99), and hormone receptor positivity (p = 0.66) did not have any statistical significance for an association with pneumonitis. Conclusion Pneumonitis is a recognized toxic effect of T-DM1. While our sample size was small, the number of events was higher than described in the literature, which may be an artifact of referral bias. Future studies with a larger sample population may detect potential risk factors for toxicity.
Collapse
Affiliation(s)
- Heidi Egloff
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| | - Kelley M Kidwell
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Anne Schott
- University of Michigan Rogel Cancer Center, Ann Arbor, Michigan, USA
| |
Collapse
|
34
|
Bitaraf SM, Mahmoudian RA, Abbaszadegan M, Mohseni Meybodi A, Taghehchian N, Mansouri A, Forghanifard MM, Memar B, Gholamin M. Association of Two CD44 Polymorphisms with Clinical Outcomes of Gastric Cancer Patients. Asian Pac J Cancer Prev 2018; 19:1313-1318. [PMID: 29802692 PMCID: PMC6031830 DOI: 10.22034/apjcp.2018.19.5.1313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Objective: CD44 is an important cell adhesion molecule that plays a key role in growth, invasion, proliferation and metastasis of cancer cells. CD44 protein over-expression is associated with a poor prognosis of gastric cancer (GC) and previous studies have shown that CD44 gene polymorphisms could affect survival and recurrence. In this study, we tested the hypothesis that polymorphisms impacting on the CD44 signaling pathway may predict clinical outcomes in patients with GC. Materials and Methods: DNA was extracted from blood of 150 healthy individuals and formalin-fixed paraffin-embedded (FFPE) tumor tissue of 150 patients. The two polymorphisms rs187116 and rs7116432 were studied by RFLP-PCR and sequencing techniques. Results: There was a strong significant correlation between single nucleotide polymorphisms (SNPs) in the CD44 gene, tumor recurrence, and overall survival (p <0.0001). The existence of a significant relationship between tumor recurrence and overall survival was proved in this study, with at least one allele G for the polymorphism rs187116 and at least one allele A for polymorphism rs7116432. Conclusion: These results provide evidence of a relationship between CD44 gene polymorphisms and clinical outcomes in our GC patients. This result could help identify individuals with GC who have a high risk of tumor recurrence.
Collapse
Affiliation(s)
- Seyed Mohammadreza Bitaraf
- Department of Cellular and Molecular Biology, University of Science and Culture, Tehran, Iran.,Immunology Research Center, Mashhad University of medical Sciences, Mashhad, Iran. GholaminM@mums. ac.ir ,
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Menke-van der Houven van Oordt CW, Gomez-Roca C, van Herpen C, Coveler AL, Mahalingam D, Verheul HMW, van der Graaf WTA, Christen R, Rüttinger D, Weigand S, Cannarile MA, Heil F, Brewster M, Walz AC, Nayak TK, Guarin E, Meresse V, Le Tourneau C. First-in-human phase I clinical trial of RG7356, an anti-CD44 humanized antibody, in patients with advanced, CD44-expressing solid tumors. Oncotarget 2018; 7:80046-80058. [PMID: 27507056 PMCID: PMC5346770 DOI: 10.18632/oncotarget.11098] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/10/2016] [Indexed: 01/09/2023] Open
Abstract
Transmembrane glycoprotein CD44 is overexpressed in various malignancies. Interactions between CD44 and hyaluronic acid are associated with poor prognosis, making CD44 an attractive therapeutic target. We report results from a first-in-human phase I trial of RG7356, a recombinant anti-CD44 immunoglobulin G1 humanized monoclonal antibody, in patients with advanced CD44-expressing solid malignancies. Sixty-five heavily pretreated patients not amenable to standard therapy were enrolled and received RG7356 intravenously biweekly (q2w) or weekly (qw) in escalating doses from 100 mg to 2,250 mg. RG7356 was well tolerated. Most frequent adverse events were fever, headache and fatigue. Dose-limiting toxicities included headache (1,500 mg q2w and 1,350 mg qw) and febrile neutropenia (2,250 mg q2w). The maximum tolerated dose with q2w dosing was 1,500 mg, but was not defined for qw dosing due to early study termination. Clinical efficacy was modest; 13/61 patients (21%) experienced disease stabilization lasting a median of 12 (range, 6–35) weeks. No apparent dose- or dose schedule-dependent changes in biological activity were reported from blood or tissue analyses. Tumor-targeting by positron emission tomography (PET) using 89Zr-labeled RG7356 was observed for doses ≥200 mg (q2w) warranting further investigation of this agent in combination regimens.
Collapse
Affiliation(s)
| | - Carlos Gomez-Roca
- Clinical Research Unit, Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse - Oncopole, Toulouse, France
| | | | - Andrew L Coveler
- Department of Medicine, Division of Oncology, University of Washington, Seattle, WA, USA
| | - Devalingam Mahalingam
- Cancer Therapy and Research Center, University of Texas Health Science Center, San Antonio, TX, USA
| | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Randolph Christen
- Product Development, Safety Risk Management, Roche, Basel, Switzerland
| | - Dominik Rüttinger
- Pharma Research & Early Development, Roche Innovation Center, Penzberg, Germany
| | - Stefan Weigand
- Pharma Research & Early Development, Roche Innovation Center, Penzberg, Germany
| | - Michael A Cannarile
- Pharma Research & Early Development, Roche Innovation Center, Penzberg, Germany
| | - Florian Heil
- Pharma Research & Early Development, Roche Innovation Center, Penzberg, Germany
| | - Michael Brewster
- Pharma Research & Early Development, Roche Innovation Centre, Welwyn, UK
| | - Antje-Christine Walz
- Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Tapan K Nayak
- Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Ernesto Guarin
- Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Valerie Meresse
- Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Christophe Le Tourneau
- Department of Medical Oncology, Institut Curie, Saint-Cloud & Paris, France.,Versailles-Saint-Quentin-en-Yvelines University, Versailles, France
| |
Collapse
|
36
|
Abstract
Resistance to chemotherapy and cancer relapse are major clinical challenges attributed to a sub population of cancer stem cells (CSCs). The concept of CSCs has been the subject of intense research by the oncology community since evidence for their existence was first published over twenty years ago. Emerging data indicates that they are also able to evade novel therapies such as targeted agents, immunotherapies and anti-angiogenics. The inability to appropriately identify and isolate CSCs is a major hindrance to the field and novel technologies are now being utilized. Agents that target CSC-associated cell surface receptors and signaling pathways have generated promising pre-clinical results and are now entering clinical trial. Here we discuss and evaluate current therapeutic strategies to target CSCs.
Collapse
Affiliation(s)
- Stephanie Annett
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland
| | - Tracy Robson
- Molecular and Cellular Therapeutics, Royal College of Surgeons Ireland, Ireland.
| |
Collapse
|
37
|
Taplin S, Vashisht K, Walles M, Calise D, Kluwe W, Bouchard P, Johnson R. Hepatotoxicity with antibody maytansinoid conjugates: A review of preclinical and clinical findings. J Appl Toxicol 2018; 38:600-615. [DOI: 10.1002/jat.3582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Sarah Taplin
- Novartis Pharmaceuticals Inc.; East Hanover NJ USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Chen X, Nagai Y, Zhu Z, Ruan H, Peehl DM, Greene MI, Zhang H. A spliced form of CD44 expresses the unique glycan that is recognized by the prostate cancer specific antibody F77. Oncotarget 2018; 9:3631-3640. [PMID: 29423071 PMCID: PMC5790488 DOI: 10.18632/oncotarget.23341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/26/2017] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer is the most common cancer occurring in men in the United States. The monoclonal antibody F77 that was originally developed in our laboratory recognizes mainly glycolipids as well as O-linked glycosylation on proteins in prostate cancer cells. We have identified a spliced form of glycoprotein CD44 as one critical protein expressing the F77 antigen. The F77-specific glycosylation occurs on multiple potential glycosylation sites on the CD44 protein encoded by the fourteenth exon. CD44 is a tumor stem cell marker and is known to induce tumor stemness and metastasis. Knockdown of CD44 or FUT1 genes dramatically reduced F77-induced apoptosis in prostate cancer cell lines. We developed an ELISA using both a CD44 antibody and F77 to identify the special form of glycosylated CD44 from prostate cancer cells as well as from serum samples of prostate cancer patients. These results reveal a CD44-dependent mechanism for F77 to induce tumor cell apoptosis, and a new strategy for the detection of glycosylated CD44 proteins secreted by prostate cancer cells.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yasuhiro Nagai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiqiang Zhu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hang Ruan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donna M. Peehl
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark I. Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongtao Zhang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Hoffmann RM, Coumbe BGT, Josephs DH, Mele S, Ilieva KM, Cheung A, Tutt AN, Spicer JF, Thurston DE, Crescioli S, Karagiannis SN. Antibody structure and engineering considerations for the design and function of Antibody Drug Conjugates (ADCs). Oncoimmunology 2017; 7:e1395127. [PMID: 29375935 PMCID: PMC5769674 DOI: 10.1080/2162402x.2017.1395127] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 01/29/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are emerging as effective tools in cancer therapy, combining the antibody's exquisite specificity for the target antigen-expressing cancer cell together with the cytotoxic potency of the payload. Much success stems from the rational design of "toxic warheads", chemically linked to antibodies, and from fine-tuning the intricate properties of chemical linkers. Here, we focus on the antibody moiety of ADCs, dissecting the impact of Fab, linkers, isotype and Fc structure on the anti-tumoral and immune-activating functions of ADCs. Novel design approaches informed by antibody structural attributes present opportunities that may contribute to the success of next generation ADCs.
Collapse
Affiliation(s)
- Ricarda M Hoffmann
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom
| | - Ben G T Coumbe
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,School of Clinical Medicine, University College London Medical School, London, United Kingdom
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Silvia Mele
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - Andrew N Tutt
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| | - James F Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - David E Thurston
- Institute of Pharmaceutical Science, King's College London, Britannia House, London, United Kingdom.,Femtogenix Ltd, BioPark, Welwyn Garden City, Hertfordshire, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Tower Wing, Guy's Hospital, London, United Kingdom.,NIHR Biomedical Research Centre at Guy's and St. Thomas's Hospitals and King's College London, King's College London, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
40
|
Nagaya T, Nakamura Y, Okuyama S, Ogata F, Maruoka Y, Choyke PL, Allen C, Kobayashi H. Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti-CD44-Based NIR-PIT. Mol Cancer Res 2017; 15:1667-1677. [PMID: 28923838 DOI: 10.1158/1541-7786.mcr-17-0333] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 01/05/2023]
Abstract
Oral cavity squamous cell carcinoma (OSCC) is considered one of the most aggressive subtypes of cancer. Anti-CD44 monoclonal antibodies (mAb) are a potential therapy against CD44 expressing OSCC; however, to date the therapeutic effects have been disappointing. Here, a new cancer treatment is described, near-infrared photoimmunotherapy (NIR-PIT), that uses anti-CD44 mAbs conjugated to the photoabsorber IR700DX. This conjugate is injected into mice harboring one of three CD44 expressing syngeneic murine oral cancer cell (MOC) lines, MOC1 (immunogenic), MOC2 mKate2 (moderately immunogenic), and MOC2-luc (poorly immunogenic). Binding of the anti-CD44-IR700 conjugate was shown to be specific and cell-specific cytotoxicity was observed after exposure of the cells to NIR light in vitro The anti-CD44-IR700 conjugate, when assessed in vivo, demonstrated deposition within the tumor with a high tumor-to-background ratio. Tumor-bearing mice were separated into four cohorts: no treatment; 100 μg of anti-CD44-IR700 i.v. only; NIR light exposure only; and 100 μg of anti-CD44-IR700 i.v. with NIR light exposure. NIR-PIT therapy, compared with the other groups, significantly inhibited tumor growth and prolonged survival in all three cell model systems. In conclusion, these data reveal that anti-CD44 antibodies are suitable as mAb-photoabsorber conjugates for NIR-PIT in MOC cells.Implications: This study using syngeneic mouse models, which better model the disease in humans than conventional xenografts, suggests that NIR-PIT with anti-CD44-IR700 is a potential candidate for the treatment of OSCC. Mol Cancer Res; 15(12); 1667-77. ©2017 AACR.
Collapse
Affiliation(s)
- Tadanobu Nagaya
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yuko Nakamura
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Shuhei Okuyama
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Fusa Ogata
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Yasuhiro Maruoka
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Clint Allen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institutes of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland.
| |
Collapse
|
41
|
Chang SH, Yeh YH, Lee JL, Hsu YJ, Kuo CT, Chen WJ. Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation. Basic Res Cardiol 2017; 112:58. [PMID: 28871329 DOI: 10.1007/s00395-017-0647-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is associated with atrial fibrosis. Inhibition of atrial fibrosis might be a plausible approach for AF prevention and therapy. This study is designed to evaluate the potential role of CD44, a membrane receptor known to regulate fibrosis, and its related signaling in the pathogenesis of atrial fibrosis and AF. Treatment of cultured rat atrial fibroblasts with transforming growth factor-β (TGF-β, a key mediator of atrial fibrosis) led to a higher expression of hyaluronan (HA), CD44, STAT3, and collagen (a principal marker of fibrosis) than that of ventricular fibroblasts. In vivo, TGF-β transgenic mice and AF patients exhibited a greater expression of HA, CD44, STAT3, and collagen in their atria than wild-type mice and sinus rhythm subjects, respectively. Treating TGF-β transgenic mice with an anti-CD44 blocking antibody resulted in a lower expression of STAT3 and collagen in their atria than those with control IgG antibody. Programmed stimulation triggered less AF episodes in TGF-β transgenic mice treated with anti-CD44 blocking antibody than in those with control IgG. Blocking CD44 signaling with anti-CD44 antibody and mutated CD44 plasmids attenuated TGF-β-induced STAT3 activation and collagen expression in cultured atrial fibroblasts. Deletion and mutational analysis of the collagen promoter along with chromatin immunoprecipitation demonstrated that STAT3 served as a vital transcription factor in collagen expression. TGF-β-mediated HA/CD44/STAT3 pathway plays a crucial role in the development of atrial fibrosis and AF. Blocking CD44-dependent signaling may be a feasible way for AF management.
Collapse
Affiliation(s)
- Shang-Hung Chang
- Cardiovascular Division, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Fu-Shin Road No. 5, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Division, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Fu-Shin Road No. 5, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Jia-Lin Lee
- Department of Medical Science, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Tai Kuo
- Cardiovascular Division, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Fu-Shin Road No. 5, Kwei-Shan, Taoyuan, 333, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Division, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Fu-Shin Road No. 5, Kwei-Shan, Taoyuan, 333, Taiwan.
| |
Collapse
|
42
|
Song Y, Wang Y, Tong C, Xi H, Zhao X, Wang Y, Chen L. A unified model of the hierarchical and stochastic theories of gastric cancer. Br J Cancer 2017; 116:973-989. [PMID: 28301871 PMCID: PMC5396111 DOI: 10.1038/bjc.2017.54] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/16/2017] [Accepted: 01/26/2017] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is a life-threatening disease worldwide. Despite remarkable advances in treatments for GC, it is still fatal to many patients due to cancer progression, recurrence and metastasis. Regarding the development of novel therapeutic techniques, many studies have focused on the biological mechanisms that initiate tumours and cause treatment resistance. Tumours have traditionally been considered to result from somatic mutations, either via clonal evolution or through a stochastic model. However, emerging evidence has characterised tumours using a hierarchical organisational structure, with cancer stem cells (CSCs) at the apex. Both stochastic and hierarchical models are reasonable systems that have been hypothesised to describe tumour heterogeneity. Although each model alone inadequately explains tumour diversity, the two models can be integrated to provide a more comprehensive explanation. In this review, we discuss existing evidence supporting a unified model of gastric CSCs, including the regulatory mechanisms of this unified model in addition to the current status of stemness-related targeted therapy in GC patients.
Collapse
Affiliation(s)
- Yanjing Song
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Wang
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Chuan Tong
- Department of Immunology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongqing Xi
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xudong Zhao
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yi Wang
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Chen
- Department of General Surgery, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
43
|
Yang F, Xu J, Tang L, Guan X. Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci 2017; 74:951-966. [PMID: 27530548 PMCID: PMC11107600 DOI: 10.1007/s00018-016-2334-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/20/2022]
Abstract
Breast cancers have been increasingly recognized as malignancies displaying frequent inter- and intra-tumor heterogeneity. This heterogeneity is represented by diverse subtypes and complexity within tumors, and impinges on response to therapy, metastasis, and prognosis. Cancer stem cells (CSCs), a subpopulation of cancer cells endowed with self-renewal and differentiation capacity, have been suggested to contribute to tumor heterogeneity. The CSC concept posits a hierarchical organization of tumors, at the apex of which are stem cells that drive tumor initiation, progression, and recurrence. In breast cancer, CSCs have been proposed to contribute to malignant progression, suggesting that targeting breast cancer stem cells (BCSCs) may improve treatment efficacy. Currently, several markers have been reported to identify BCSCs. However, there is objective variability with respect to the frequency and phenotype of BCSCs among different breast cancer cell lines and patients, and the regulatory mechanisms of BCSCs remain unclear. In this review, we summarize current literature about the diversity of BCSC markers, the roles of BCSCs in tumor development, and the regulatory mechanisms of BCSCs. We also highlight the most recent advances in BCSC targeting therapies and the challenges in translating the knowledge into clinical practice.
Collapse
Affiliation(s)
- Fang Yang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jing Xu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Lin Tang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
44
|
The role of CD44 in glioblastoma multiforme. J Clin Neurosci 2016; 34:1-5. [PMID: 27578526 DOI: 10.1016/j.jocn.2016.05.012] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/08/2016] [Indexed: 02/07/2023]
Abstract
A transmembrane molecule with several isoforms, CD44 is overexpressed in many tumors and promotes tumor formation through interactions with the tumor microenvironment. CD44 has been implicated in malignant processes including cell motility, tumor growth, and angiogenesis. The role of CD44 has been examined in many cancer types. This paper provides, to our knowledge, the first focused review of the role of CD44 in glioblastoma multiforme (GBM), the most common and fatal of primary brain cancers. We summarize research that describes how CD44 promotes GBM aggressiveness by increasing tumor cell invasion, proliferation and resistance to standard chemoradiation therapy. Effects of CD44 inhibition in GBM are also explored. Clinical trials investigating CD44 targeting in CD44-positive solid tumors are underway, and the evidence presented here suggests that CD44 inhibition in GBM may be a promising therapy.
Collapse
|
45
|
Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs 2016; 8:659-71. [PMID: 27045800 PMCID: PMC4966843 DOI: 10.1080/19420862.2016.1156829] [Citation(s) in RCA: 326] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 11/15/2022] Open
Abstract
Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics. Their design involves a tumor-specific antibody, a linker and a cytotoxic payload. They were designed to allow specific targeting of highly potent cytotoxic agents to tumor cells whilst sparing normal cells. Frequent toxicities that may be driven by any of the components of an ADC have been reported. There are currently more than 50 ADCs in active clinical development, and a further ∼20 that have been discontinued. For this review, the reported toxicities of ADCs were analysed, and the mechanisms for their effects are explored in detail. Methods to reduce toxicities, including dosing strategies and drug design, are discussed. The toxicities reported for active and discontinued drugs are important to drive the rational design and improve the therapeutic index of ADCs of the future.
Collapse
|
46
|
Yang C, He Y, Zhang H, Liu Y, Wang W, Du Y, Gao F. Selective killing of breast cancer cells expressing activated CD44 using CD44 ligand-coated nanoparticles in vitro and in vivo. Oncotarget 2016; 6:15283-96. [PMID: 25909172 PMCID: PMC4558151 DOI: 10.18632/oncotarget.3681] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/06/2014] [Indexed: 12/25/2022] Open
Abstract
The cell surface glycoprotein CD44 is expressed in cancer cells and has been used as a therapeutic target in preclinical studies. However, the ubiquitous expression of CD44 in numerous cell types, including hematopoietic cells, has hindered its application in targeted therapy. Here, we demonstrated that CD44 was activated on breast cancer cells but was inactive on normal cells in vitro and in vivo. We analyzed 34 clinical primary tumor and normal breast tissues and demonstrated that CD44 was in an active state on breast cancer cells but in an inactive state on normal cells. Furthermore, based on the binding property of CD44 with its ligand hyaluronan (HA), we self-assembled HA-coated nanoparticles and studied their selective targeting efficacy. Our results indicate that HA-coated nanoparticles bearing the CD44 ligand selectively targeted cancer cells both in vitro and in vivo, killing breast cancer cells while sparing normal cells. Our study suggested that the active state of CD44 plays a crucial role in the selective targeting of breast cancer cells by avoiding nonspecific toxicity to CD44-quiescent normal cells. These findings may provide a new idea for the selective targeting of cancer cells in other human cancers.
Collapse
Affiliation(s)
- Cuixia Yang
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China.,Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yiqing He
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yiwen Liu
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wenjuan Wang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yan Du
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Feng Gao
- Department of Molecular Biology Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China.,Department of Clinical Laboratory, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
47
|
Challita-Eid PM, Satpayev D, Yang P, An Z, Morrison K, Shostak Y, Raitano A, Nadell R, Liu W, Lortie DR, Capo L, Verlinsky A, Leavitt M, Malik F, Aviña H, Guevara CI, Dinh N, Karki S, Anand BS, Pereira DS, Joseph IBJ, Doñate F, Morrison K, Stover DR. Enfortumab Vedotin Antibody-Drug Conjugate Targeting Nectin-4 Is a Highly Potent Therapeutic Agent in Multiple Preclinical Cancer Models. Cancer Res 2016; 76:3003-13. [PMID: 27013195 DOI: 10.1158/0008-5472.can-15-1313] [Citation(s) in RCA: 392] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 02/26/2016] [Indexed: 11/16/2022]
Abstract
The identification of optimal target antigens on tumor cells is central to the advancement of new antibody-based cancer therapies. We performed suppression subtractive hybridization and identified nectin-4 (PVRL4), a type I transmembrane protein and member of a family of related immunoglobulin-like adhesion molecules, as a potential target in epithelial cancers. We conducted immunohistochemical analysis of 2,394 patient specimens from bladder, breast, lung, pancreatic, ovarian, head/neck, and esophageal tumors and found that 69% of all specimens stained positive for nectin-4. Moderate to strong staining was especially observed in 60% of bladder and 53% of breast tumor specimens, whereas the expression of nectin-4 in normal tissue was more limited. We generated a novel antibody-drug conjugate (ADC) enfortumab vedotin comprising the human anti-nectin-4 antibody conjugated to the highly potent microtubule-disrupting agent MMAE. Hybridoma (AGS-22M6E) and CHO (ASG-22CE) versions of enfortumab vedotin (also known as ASG-22ME) ADC were able to bind to cell surface-expressed nectin-4 with high affinity and induced cell death in vitro in a dose-dependent manner. Treatment of mouse xenograft models of human breast, bladder, pancreatic, and lung cancers with enfortumab vedotin significantly inhibited the growth of all four tumor types and resulted in tumor regression of breast and bladder xenografts. Overall, these findings validate nectin-4 as an attractive therapeutic target in multiple solid tumors and support further clinical development, investigation, and application of nectin-4-targeting ADCs. Cancer Res; 76(10); 3003-13. ©2016 AACR.
Collapse
Affiliation(s)
| | | | - Peng Yang
- Agensys Inc., Santa Monica, California
| | - Zili An
- Agensys Inc., Santa Monica, California
| | | | | | | | | | - Wendy Liu
- Agensys Inc., Santa Monica, California
| | | | | | | | | | | | | | | | - Nick Dinh
- Agensys Inc., Santa Monica, California
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Lin CY, Barry-Holson KQ, Allison KH. Breast cancer stem cells: are we ready to go from bench to bedside? Histopathology 2015; 68:119-37. [DOI: 10.1111/his.12868] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chieh-Yu Lin
- Department of Pathology; Stanford University; Stanford CA USA
| | | | | |
Collapse
|
49
|
Mattheolabakis G, Milane L, Singh A, Amiji MM. Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. J Drug Target 2015; 23:605-18. [DOI: 10.3109/1061186x.2015.1052072] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
50
|
Zhang D, Jia H, Li W, Hou Y, Lu S, He S. Screening and Identification of a Phage Display Derived Peptide That Specifically Binds to the CD44 Protein Region Encoded by Variable Exons. ACTA ACUST UNITED AC 2015; 21:44-53. [PMID: 26423339 DOI: 10.1177/1087057115608604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/23/2015] [Indexed: 12/12/2022]
Abstract
CD44, especially the isoforms with variable exons (CD44v), is a promising biomarker for the detection of cancer. To develop a CD44v-specific probe, we screened a 7-mer phage peptide library against the CD44v3-v10 protein using an improved subtractive method. The consensus sequences with the highest frequency (designated CV-1) emerged after four rounds of panning. The binding affinity and specificity of the CV-1 phage and the synthesized peptide for the region of CD44 encoded by the variable exons were confirmed using enzyme-linked immunosorbent assay and competitive inhibition assays. Furthermore, the binding of the CV-1 probe to gastric cancer cells and tissues was validated using immunofluorescence and immunohistochemistry assays. CV-1 sensitively and specifically bound to CD44v on cancer cells and tissues. Thus, CV-1 has the potential to serve as a promising probe for cancer molecular imaging and target therapy.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Medical School, Xian Jiaotong University, Xi'an, China
| | - Huan Jia
- Department of General Surgery, the First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Weiming Li
- Department of General Surgery, the First Affiliated Hospital of Medical School, Xian Jiaotong University, Xi'an, China
| | - Yingchun Hou
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Shaoying Lu
- Department of General Surgery, the First Affiliated Hospital of Medical School, Xian Jiaotong University, Xi'an, China
| | - Shuixiang He
- Department of Gastroenterology, the First Affiliated Hospital of Medical School, Xian Jiaotong University, Xi'an, China
| |
Collapse
|