1
|
Mazzio EL, Topjian AA, Reeder RW, Sutton RM, Morgan RW, Berg RA, Nadkarni VM, Wolfe HA, Graham K, Naim MY, Friess SH, Abend NS, Press CA. Association of EEG characteristics with outcomes following pediatric ICU cardiac arrest: A secondary analysis of the ICU-RESUScitation trial. Resuscitation 2024; 201:110271. [PMID: 38866233 PMCID: PMC11331055 DOI: 10.1016/j.resuscitation.2024.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND AND OBJECTIVES There are limited tools available following cardiac arrest to prognosticate neurologic outcomes. Prior retrospective and single center studies have demonstrated early EEG features are associated with neurologic outcome. This study aimed to evaluate the prognostic value of EEG for pediatric in-hospital cardiac arrest (IHCA) in a prospective, multicenter study. METHODS This cohort study is a secondary analysis of the ICU-Resuscitation trial, a multicenter randomized interventional trial conducted at 18 pediatric and pediatric cardiac ICUs in the United States. Patients who achieved return of circulation (ROC) and had post-ROC EEG monitoring were eligible for inclusion. Patients < 90 days old and those with pre-arrest Pediatric Cerebral Performance Category (PCPC) scores > 3 were excluded. EEG features of interest included EEG Background Category, and presence of focal abnormalities, sleep spindles, variability, reactivity, periodic and rhythmic patterns, and seizures. The primary outcome was survival to hospital discharge with favorable neurologic outcome. Associations between EEG features and outcomes were assessed with multivariable logistic regression. Prediction models with and without EEG Background Category were developed and receiver operator characteristic curves compared. RESULTS Of the 1129 patients with an index cardiac arrest who achieved ROC in the parent study, 261 had EEG within 24 h of ROC, of which 151 were evaluable. The cohort included 57% males with a median age of 1.1 years (IQR 0.4, 6.8). EEG features including EEG Background Category, sleep spindles, variability, and reactivity were associated with survival with favorable outcome and survival, (all p < 0.001). The addition of EEG Background Category to clinical models including age category, illness category, PRISM score, duration of CPR, first documented rhythm, highest early post-arrest arterial lactate improved the prediction accuracy achieving an AUROC of 0.84 (CI 0.77-0.92), compared to AUROC of 0.76 (CI 0.67-0.85) (p = 0.005) without EEG Background Category. CONCLUSION This multicenter study demonstrates the value of EEG, in the first 24 h following ROC, for predicting survival with favorable outcome after a pediatric IHCA.
Collapse
Affiliation(s)
- Emma L Mazzio
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Alexis A Topjian
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Ron W Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Heather A Wolfe
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kathryn Graham
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Stuart H Friess
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Nicholas S Abend
- Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Craig A Press
- Departments of Neurology and Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Vitt JR, Mainali S. Artificial Intelligence and Machine Learning Applications in Critically Ill Brain Injured Patients. Semin Neurol 2024; 44:342-356. [PMID: 38569520 DOI: 10.1055/s-0044-1785504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The utilization of Artificial Intelligence (AI) and Machine Learning (ML) is paving the way for significant strides in patient diagnosis, treatment, and prognostication in neurocritical care. These technologies offer the potential to unravel complex patterns within vast datasets ranging from vast clinical data and EEG (electroencephalogram) readings to advanced cerebral imaging facilitating a more nuanced understanding of patient conditions. Despite their promise, the implementation of AI and ML faces substantial hurdles. Historical biases within training data, the challenge of interpreting multifaceted data streams, and the "black box" nature of ML algorithms present barriers to widespread clinical adoption. Moreover, ethical considerations around data privacy and the need for transparent, explainable models remain paramount to ensure trust and efficacy in clinical decision-making.This article reflects on the emergence of AI and ML as integral tools in neurocritical care, discussing their roles from the perspective of both their scientific promise and the associated challenges. We underscore the importance of extensive validation in diverse clinical settings to ensure the generalizability of ML models, particularly considering their potential to inform critical medical decisions such as withdrawal of life-sustaining therapies. Advancement in computational capabilities is essential for implementing ML in clinical settings, allowing for real-time analysis and decision support at the point of care. As AI and ML are poised to become commonplace in clinical practice, it is incumbent upon health care professionals to understand and oversee these technologies, ensuring they adhere to the highest safety standards and contribute to the realization of personalized medicine. This engagement will be pivotal in integrating AI and ML into patient care, optimizing outcomes in neurocritical care through informed and data-driven decision-making.
Collapse
Affiliation(s)
- Jeffrey R Vitt
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, California
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
3
|
Chen CC, Massey SL, Kirschen MP, Yuan I, Padiyath A, Simpao AF, Tsui FR. Electroencephalogram-based machine learning models to predict neurologic outcome after cardiac arrest: A systematic review. Resuscitation 2024; 194:110049. [PMID: 37972682 PMCID: PMC11023717 DOI: 10.1016/j.resuscitation.2023.110049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
AIM OF THE REVIEW The primary aim of this systematic review was to investigate the most common electroencephalogram (EEG)-based machine learning (ML) model with the highest Area Under Receiver Operating Characteristic Curve (AUC) in two ML categories, conventional ML and Deep Neural Network (DNN), to predict the neurologic outcomes after cardiac arrest; the secondary aim was to investigate common EEG features applied to ML models. METHODS Systematic search of medical literature from PubMed and engineering literature from Compendex up to June 2, 2023. One reviewer screened studies that used EEG-based ML models to predict the neurologic outcomes after cardiac arrest. Four reviewers validated that the studies met selection criteria. Nine variables were manually extracted. The top-five common EEG features were calculated. We evaluated each study's risk of bias using the Quality in Prognosis Studies guideline. RESULTS Out of 351 identified studies, 17 studies met the inclusion criteria. Random Forest (RF) (n = 7) was the most common ML model in the conventional ML category (n = 11), followed by Convolutional Neural Network (CNN) (n = 4) in the DNN category (n = 6). The AUCs for RF ranged between 0.8 and 0.97, while CNN had AUCs between 0.7 and 0.92. The top-three commonly used EEG features were band power (n = 12), Shannon's Entropy (n = 11), burst-suppression ratio (n = 9). CONCLUSIONS RF and CNN were the two most common ML models with the highest AUCs for predicting the neurologic outcomes after cardiac arrest. Using a multimodal model that combines EEG features and electronic health record data may further improve prognostic performance.
Collapse
Affiliation(s)
- Chao-Chen Chen
- Tsui Laboratory, Children's Hospital of Philadelphia, 734 Schuylkill Ave, Philadelphia, PA 19146, United States; Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S 33rd St, Philadelphia, PA 19104, United States
| | - Shavonne L Massey
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Matthew P Kirschen
- Department of Neurology and Pediatrics, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Ian Yuan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Asif Padiyath
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Allan F Simpao
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Fuchiang Rich Tsui
- Tsui Laboratory, Children's Hospital of Philadelphia, 734 Schuylkill Ave, Philadelphia, PA 19146, United States; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, 423 Guardian Dr, Philadelphia, PA 19104, United States; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, United States.
| |
Collapse
|
4
|
Amorim E, Zheng WL, Ghassemi MM, Aghaeeaval M, Kandhare P, Karukonda V, Lee JW, Herman ST, Sivaraju A, Gaspard N, Hofmeijer J, van Putten MJAM, Sameni R, Reyna MA, Clifford GD, Westover MB. The International Cardiac Arrest Research Consortium Electroencephalography Database. Crit Care Med 2023; 51:1802-1811. [PMID: 37855659 PMCID: PMC10841086 DOI: 10.1097/ccm.0000000000006074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
OBJECTIVES To develop the International Cardiac Arrest Research (I-CARE), a harmonized multicenter clinical and electroencephalography database for acute hypoxic-ischemic brain injury research involving patients with cardiac arrest. DESIGN Multicenter cohort, partly prospective and partly retrospective. SETTING Seven academic or teaching hospitals from the United States and Europe. PATIENTS Individuals 16 years old or older who were comatose after return of spontaneous circulation following a cardiac arrest who had continuous electroencephalography monitoring were included. INTERVENTIONS Not applicable. MEASUREMENTS AND MAIN RESULTS Clinical and electroencephalography data were harmonized and stored in a common Waveform Database-compatible format. Automated spike frequency, background continuity, and artifact detection on electroencephalography were calculated with 10-second resolution and summarized hourly. Neurologic outcome was determined at 3-6 months using the best Cerebral Performance Category (CPC) scale. This database includes clinical data and 56,676 hours (3.9 terabytes) of continuous electroencephalography data for 1,020 patients. Most patients died ( n = 603, 59%), 48 (5%) had severe neurologic disability (CPC 3 or 4), and 369 (36%) had good functional recovery (CPC 1-2). There is significant variability in mean electroencephalography recording duration depending on the neurologic outcome (range, 53-102 hr for CPC 1 and CPC 4, respectively). Epileptiform activity averaging 1 Hz or more in frequency for at least 1 hour was seen in 258 patients (25%) (19% for CPC 1-2 and 29% for CPC 3-5). Burst suppression was observed for at least 1 hour in 207 (56%) and 635 (97%) patients with CPC 1-2 and CPC 3-5, respectively. CONCLUSIONS The I-CARE consortium electroencephalography database provides a comprehensive real-world clinical and electroencephalography dataset for neurophysiology research of comatose patients after cardiac arrest. This dataset covers the spectrum of abnormal electroencephalography patterns after cardiac arrest, including epileptiform patterns and those in the ictal-interictal continuum.
Collapse
Affiliation(s)
- Edilberto Amorim
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wei-Long Zheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, CN
| | - Mohammad M. Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Mahsa Aghaeeaval
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Pravinkumar Kandhare
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Vishnu Karukonda
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Susan T. Herman
- Department of Neurology, Barrow Neurological Institute, Comprehensive Epilepsy Center, Phoenix, Arizona, USA
| | - Adithya Sivaraju
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nicolas Gaspard
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Universite Libre de Bruxelles, Brussels, Belgium
| | - Jeannette Hofmeijer
- Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel J. A. M. van Putten
- Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, The Netherlands
| | - Reza Sameni
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Matthew A. Reyna
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Gari D. Clifford
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - M. Brandon Westover
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Kenda M, Leithner C. On the path to artificial intelligence analysis of brain CT after cardiac arrest. Resuscitation 2023; 191:109947. [PMID: 37634861 DOI: 10.1016/j.resuscitation.2023.109947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Affiliation(s)
- Martin Kenda
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität and Humboldt-Universität zu Berlin, Department of Neurology, Augustenburger Platz 1, 13353 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Digital Clinician Scientist Program, Charitéplatz 1, 10117 Berlin, Germany
| | - Christoph Leithner
- Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität and Humboldt-Universität zu Berlin, Department of Neurology, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
6
|
Amorim E, Zheng WL, Jing J, Ghassemi MM, Lee JW, Wu O, Herman ST, Pang T, Sivaraju A, Gaspard N, Hirsch L, Ruijter BJ, Tjepkema-Cloostermans MC, Hofmeijer J, van Putten MJAM, Westover MB. Neurophysiology State Dynamics Underlying Acute Neurologic Recovery After Cardiac Arrest. Neurology 2023; 101:e940-e952. [PMID: 37414565 PMCID: PMC10501085 DOI: 10.1212/wnl.0000000000207537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/04/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Epileptiform activity and burst suppression are neurophysiology signatures reflective of severe brain injury after cardiac arrest. We aimed to delineate the evolution of coma neurophysiology feature ensembles associated with recovery from coma after cardiac arrest. METHODS Adults in acute coma after cardiac arrest were included in a retrospective database involving 7 hospitals. The combination of 3 quantitative EEG features (burst suppression ratio [BSup], spike frequency [SpF], and Shannon entropy [En]) was used to define 5 distinct neurophysiology states: epileptiform high entropy (EHE: SpF ≥4 per minute and En ≥5); epileptiform low entropy (ELE: SpF ≥4 per minute and <5 En); nonepileptiform high entropy (NEHE: SpF <4 per minute and ≥5 En); nonepileptiform low entropy (NELE: SpF <4 per minute and <5 En), and burst suppression (BSup ≥50% and SpF <4 per minute). State transitions were measured at consecutive 6-hour blocks between 6 and 84 hours after return of spontaneous circulation. Good neurologic outcome was defined as best cerebral performance category 1-2 at 3-6 months. RESULTS One thousand thirty-eight individuals were included (50,224 hours of EEG), and 373 (36%) had good outcome. Individuals with EHE state had a 29% rate of good outcome, while those with ELE had 11%. Transitions out of an EHE or BSup state to an NEHE state were associated with good outcome (45% and 20%, respectively). No individuals with ELE state lasting >15 hours had good recovery. DISCUSSION Transition to high entropy states is associated with an increased likelihood of good outcome despite preceding epileptiform or burst suppression states. High entropy may reflect mechanisms of resilience to hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Edilberto Amorim
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands.
| | - Wei-Long Zheng
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Jin Jing
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Mohammad M Ghassemi
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Jong Woo Lee
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Ona Wu
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Susan T Herman
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Trudy Pang
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Adithya Sivaraju
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Nicolas Gaspard
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Lawrence Hirsch
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Barry J Ruijter
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Marleen C Tjepkema-Cloostermans
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Jeannette Hofmeijer
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - Michel J A M van Putten
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| | - M Brandon Westover
- From the Department of Neurology (E.A.), Weill Institute for Neurosciences, University of California, San Francisco; Department of Neurology (E.A., W.-L.Z., J.J., M.B.W.), Massachusetts General Hospital, Boston; Department of Computer Science and Engineering (W.-L.Z.), Shanghai Jiao Tong University, China; Department of Neurology (J.J., T.P., M.B.W.), Beth Israel Deaconess Medical Center, Boston, MA; Department of Computer Science and Engineering (M.M.G.), Michigan State University, East Lansing; Department of Neurology (J.W.L.), Brigham and Women's Hospital; Athinoula A. Martinos Center for Biomedical Imaging (O.W.), Department of Radiology, Massachusetts General Hospital, Boston; Department of Neurology (S.T.H.), Barrow Neurological Institute Comprehensive Epilepsy Center, Phoenix, AZ; Department of Neurology (A.S., N.G., L.H.), Yale School of Medicine, New Haven, CT; Department of Neurology (N.G.), Universite Libre de Bruxelles, Belgium; Clinical Neurophysiology Group (B.J.R., M.C.T.-C., J.H., M.J.A.M.v.P.), University of Twente, Enschede; Department of Neurology (J.H.), Rijnstate Hospital, Arnhem; and Department of Neurology and Clinical Neurophysiology (M.J.A.M.v.P.), Medisch Spectrum Twente, Enschede, the Netherlands
| |
Collapse
|
7
|
Amorim E, Zheng WL, Ghassemi MM, Aghaeeaval M, Kandhare P, Karukonda V, Lee JW, Herman ST, Sivaraju A, Gaspard N, Hofmeijer J, van Putten MJAM, Sameni R, Reyna MA, Clifford GD, Westover MB. The International Cardiac Arrest Research (I-CARE) Consortium Electroencephalography Database. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.28.23294672. [PMID: 37693458 PMCID: PMC10491275 DOI: 10.1101/2023.08.28.23294672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Objective To develop a harmonized multicenter clinical and electroencephalography (EEG) database for acute hypoxic-ischemic brain injury research involving patients with cardiac arrest. Design Multicenter cohort, partly prospective and partly retrospective. Setting Seven academic or teaching hospitals from the U.S. and Europe. Patients Individuals aged 16 or older who were comatose after return of spontaneous circulation following a cardiac arrest who had continuous EEG monitoring were included. Interventions not applicable. Measurements and Main Results Clinical and EEG data were harmonized and stored in a common Waveform Database (WFDB)-compatible format. Automated spike frequency, background continuity, and artifact detection on EEG were calculated with 10 second resolution and summarized hourly. Neurological outcome was determined at 3-6 months using the best Cerebral Performance Category (CPC) scale. This database includes clinical and 56,676 hours (3.9 TB) of continuous EEG data for 1,020 patients. Most patients died (N=603, 59%), 48 (5%) had severe neurological disability (CPC 3 or 4), and 369 (36%) had good functional recovery (CPC 1-2). There is significant variability in mean EEG recording duration depending on the neurological outcome (range 53-102h for CPC 1 and CPC 4, respectively). Epileptiform activity averaging 1 Hz or more in frequency for at least one hour was seen in 258 (25%) patients (19% for CPC 1-2 and 29% for CPC 3-5). Burst suppression was observed for at least one hour in 207 (56%) and 635 (97%) patients with CPC 1-2 and CPC 3-5, respectively. Conclusions The International Cardiac Arrest Research (I-CARE) consortium database provides a comprehensive real-world clinical and EEG dataset for neurophysiology research of comatose patients after cardiac arrest. This dataset covers the spectrum of abnormal EEG patterns after cardiac arrest, including epileptiform patterns and those in the ictal-interictal continuum.
Collapse
Affiliation(s)
- Edilberto Amorim
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wei-Long Zheng
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, CN
| | - Mohammad M. Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Mahsa Aghaeeaval
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Pravinkumar Kandhare
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Vishnu Karukonda
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Susan T. Herman
- Department of Neurology, Barrow Neurological Institute, Comprehensive Epilepsy Center, Phoenix, Arizona, USA
| | - Adithya Sivaraju
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nicolas Gaspard
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Neurology, Universite Libre de Bruxelles, Brussels, Belgium
| | - Jeannette Hofmeijer
- Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel J. A. M. van Putten
- Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands
- Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, The Netherlands
| | - Reza Sameni
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Matthew A. Reyna
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Gari D. Clifford
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, Georgia, USA
| | - M. Brandon Westover
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Sheikh Z, Selioutski O, Taraschenko O, Gilmore EJ, Westover MB, Cohen AB. Systematic Evaluation of Research Priorities in Critical Care Electroencephalography. J Clin Neurophysiol 2023; 40:426-433. [PMID: 35066530 PMCID: PMC9296700 DOI: 10.1097/wnp.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The Critical Care EEG Monitoring Research Consortium (CCEMRC) is an international research group focusing on critical care EEG and epilepsy. As CCEMRC grew to include 50+ institutions over the past decade, members met to establish research priorities. METHODS The authors used an analytical hierarchy process-based research prioritization method, adapted from an approach previously applied to a Department of Defense health-related research program. Forty-six CCEMRC members identified and scored a set of eight clinical problems (CPs) and 15 research topic areas (RTAs) at an annual CCEMRC meeting. Members scored CPs on three criteria using a five-point ordinal scale: Incidence, Impact, and Gap Size; and RTAs on four additional criteria: Niche, Feasibility, Scientific Importance, and Medical Importance, each of which was assigned a weight. The first three RTA criteria were scored using a five-point scale, and CPs were mapped to RTAs using a four-point scale. The Medical Importance score was a weighted average of its mapping scores and the CP score. Finally, a Priority score was calculated for each RTA as a product of the four RTA criteria scores. RESULTS The CPs with the highest scores were "Altered mental status" and "Long-term neurologic disability after hospital discharge." The RTAs with the highest priority scores were "Development of risk prediction tools," "Multicenter observational studies," and "Outcome prediction." CONCLUSIONS Research prioritization helped CCEMRC evaluate its current research trajectory, identify high-priority near-term research pursuits, and create a roadmap for future research plans aligned with its mission. This approach may be helpful to other academic consortia and research programs.
Collapse
Affiliation(s)
- Zubeda Sheikh
- Department of Neurology, West Virginia University School of Medicine, Morgantown, West Virginia, U.S.A
| | - Olga Selioutski
- Epilepsy Division, Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, New York, U.S.A
| | - Olga Taraschenko
- Comprehensive Epilepsy Center, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska, U.S.A
| | - Emily J Gilmore
- Division of Neurocritical Care, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, U.S.A
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
- Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Adam B Cohen
- The Johns Hopkins University Applied Physics Lab, National Health Mission Area, Laurel, Maryland, U.S.A.; and
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, Maryland, U.S.A
| |
Collapse
|
9
|
Kumar A, Ridha M, Claassen J. Prognosis of consciousness disorders in the intensive care unit. Presse Med 2023; 52:104180. [PMID: 37805070 PMCID: PMC10995112 DOI: 10.1016/j.lpm.2023.104180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Assessments of consciousness are a critical part of prognostic algorithms for critically ill patients suffering from severe brain injuries. There have been significant advances in the field of coma science over the past two decades, providing clinicians with more advanced and precise tools for diagnosing and prognosticating disorders of consciousness (DoC). Advanced neuroimaging and electrophysiological techniques have vastly expanded our understanding of the biological mechanisms underlying consciousness, and have helped identify new states of consciousness. One of these, termed cognitive motor dissociation, can predict functional recovery at 1 year post brain injury, and is present in up to 15-20% of patients with DoC. In this chapter, we review several tools that are used to predict DoC, describing their strengths and limitations, from the neurological examination to advanced imaging and electrophysiologic techniques. We also describe multimodal assessment paradigms that can be used to identify covert consciousness and thus help recognize patients with the potential for future recovery and improve our prognostication practices.
Collapse
Affiliation(s)
- Aditya Kumar
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Mohamed Ridha
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
10
|
Viderman D, Abdildin YG, Batkuldinova K, Badenes R, Bilotta F. Artificial Intelligence in Resuscitation: A Scoping Review. J Clin Med 2023; 12:jcm12062254. [PMID: 36983255 PMCID: PMC10054374 DOI: 10.3390/jcm12062254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction: Cardiac arrest is a significant cause of premature mortality and severe disability. Despite the death rate steadily decreasing over the previous decade, only 22% of survivors achieve good clinical status and only 25% of patients survive until their discharge from the hospital. The objective of this scoping review was to review relevant AI modalities and the main potential applications of AI in resuscitation. Methods: We conducted the literature search for related studies in PubMed, EMBASE, and Google Scholar. We included peer-reviewed publications and articles in the press, pooling and characterizing the data by their model types, goals, and benefits. Results: After identifying 268 original studies, we chose 59 original studies (reporting 1,817,419 patients) to include in the qualitative synthesis. AI-based methods appear to be superior to traditional methods in achieving high-level performance. Conclusion: AI might be useful in predicting cardiac arrest, heart rhythm disorders, and post-cardiac arrest outcomes, as well as in the delivery of drone-delivered defibrillators and notification of dispatchers. AI-powered technologies could be valuable assistants to continuously track patient conditions. Healthcare professionals should assist in the research and development of AI-powered technologies as well as their implementation into clinical practice.
Collapse
Affiliation(s)
- Dmitriy Viderman
- Department of Surgery, Nazarbayev University School of Medicine (NUSOM), Kerei, Zhanibek khandar Str. 5/1, Astana 010000, Kazakhstan;
| | - Yerkin G. Abdildin
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Kamila Batkuldinova
- Department of Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Rafael Badenes
- Department of Anaesthesiology and Intensive Care, Hospital Clìnico Universitario de Valencia, University of Valencia, 46001 Valencia, Spain
- Correspondence:
| | - Federico Bilotta
- Department of Anesthesia and Intensive Care, University La Sapienza, 00185 Rome, Italy
| |
Collapse
|
11
|
Mainali S, Park S. Artificial Intelligence and Big Data Science in Neurocritical Care. Crit Care Clin 2023; 39:235-242. [DOI: 10.1016/j.ccc.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Benghanem S, Pruvost-Robieux E, Bouchereau E, Gavaret M, Cariou A. Prognostication after cardiac arrest: how EEG and evoked potentials may improve the challenge. Ann Intensive Care 2022; 12:111. [PMID: 36480063 PMCID: PMC9732180 DOI: 10.1186/s13613-022-01083-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
About 80% of patients resuscitated from CA are comatose at ICU admission and nearly 50% of survivors are still unawake at 72 h. Predicting neurological outcome of these patients is important to provide correct information to patient's relatives, avoid disproportionate care in patients with irreversible hypoxic-ischemic brain injury (HIBI) and inappropriate withdrawal of care in patients with a possible favorable neurological recovery. ERC/ESICM 2021 algorithm allows a classification as "poor outcome likely" in 32%, the outcome remaining "indeterminate" in 68%. The crucial question is to know how we could improve the assessment of both unfavorable but also favorable outcome prediction. Neurophysiological tests, i.e., electroencephalography (EEG) and evoked-potentials (EPs) are a non-invasive bedside investigations. The EEG is the record of brain electrical fields, characterized by a high temporal resolution but a low spatial resolution. EEG is largely available, and represented the most widely tool use in recent survey examining current neuro-prognostication practices. The severity of HIBI is correlated with the predominant frequency and background continuity of EEG leading to "highly malignant" patterns as suppression or burst suppression in the most severe HIBI. EPs differ from EEG signals as they are stimulus induced and represent the summated activities of large populations of neurons firing in synchrony, requiring the average of numerous stimulations. Different EPs (i.e., somato sensory EPs (SSEPs), brainstem auditory EPs (BAEPs), middle latency auditory EPs (MLAEPs) and long latency event-related potentials (ERPs) with mismatch negativity (MMN) and P300 responses) can be assessed in ICU, with different brain generators and prognostic values. In the present review, we summarize EEG and EPs signal generators, recording modalities, interpretation and prognostic values of these different neurophysiological tools. Finally, we assess the perspective for futures neurophysiological investigations, aiming to reduce prognostic uncertainty in comatose and disorders of consciousness (DoC) patients after CA.
Collapse
Affiliation(s)
- Sarah Benghanem
- grid.411784.f0000 0001 0274 3893Medical ICU, Cochin Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ,grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,After ROSC Network, Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Estelle Pruvost-Robieux
- grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,Neurophysiology and Epileptology Department, GHU Psychiatry and Neurosciences, Sainte Anne, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Eléonore Bouchereau
- Department of Neurocritical Care, G.H.U Paris Psychiatry and Neurosciences, 1, Rue Cabanis, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Martine Gavaret
- grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,Neurophysiology and Epileptology Department, GHU Psychiatry and Neurosciences, Sainte Anne, 75014 Paris, France ,grid.7429.80000000121866389UMR 1266, Institut de Psychiatrie et, INSERM FHU NeuroVascNeurosciences de Paris-IPNP, 75014 Paris, France
| | - Alain Cariou
- grid.411784.f0000 0001 0274 3893Medical ICU, Cochin Hospital, Assistance Publique – Hôpitaux de Paris (AP-HP), 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France ,grid.508487.60000 0004 7885 7602Medical School, University Paris Cité, Paris, France ,After ROSC Network, Paris, France ,grid.462416.30000 0004 0495 1460Paris-Cardiovascular-Research-Center (Sudden-Death-Expertise-Center), INSERM U970, Paris, France
| |
Collapse
|
13
|
Hwang J, Cho SM, Ritzl EK. Recent applications of quantitative electroencephalography in adult intensive care units: a comprehensive review. J Neurol 2022; 269:6290-6309. [DOI: 10.1007/s00415-022-11337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
|
14
|
Zheng WL, Amorim E, Jing J, Wu O, Ghassemi M, Lee JW, Sivaraju A, Pang T, Herman ST, Gaspard N, Ruijter BJ, Tjepkema-Cloostermans MC, Hofmeijer J, van Putten MJAM, Westover MB. Predicting Neurological Outcome From Electroencephalogram Dynamics in Comatose Patients After Cardiac Arrest With Deep Learning. IEEE Trans Biomed Eng 2022; 69:1813-1825. [PMID: 34962860 PMCID: PMC9087641 DOI: 10.1109/tbme.2021.3139007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Most cardiac arrest patients who are successfully resuscitated are initially comatose due to hypoxic-ischemic brain injury. Quantitative electroencephalography (EEG) provides valuable prognostic information. However, prior approaches largely rely on snapshots of the EEG, without taking advantage of temporal information. METHODS We present a recurrent deep neural network with the goal of capturing temporal dynamics from longitudinal EEG data to predict long-term neurological outcomes. We utilized a large international dataset of continuous EEG recordings from 1,038 cardiac arrest patients from seven hospitals in Europe and the US. Poor outcome was defined as a Cerebral Performance Category (CPC) score of 3-5, and good outcome as CPC score 0-2 at 3 to 6-months after cardiac arrest. Model performance is evaluated using 5-fold cross validation. RESULTS The proposed approach provides predictions which improve over time, beginning from an area under the receiver operating characteristic curve (AUC-ROC) of 0.78 (95% CI: 0.72-0.81) at 12 hours, and reaching 0.88 (95% CI: 0.85-0.91) by 66 h after cardiac arrest. At 66 h, (sensitivity, specificity) points of interest on the ROC curve for predicting poor outcomes were (32,99)%, (55,95)%, and (62,90)%, (99,23)%, (95,47)%, and (90,62)%; whereas for predicting good outcome, the corresponding operating points were (17,99)%, (47,95)%, (62,90)%, (99,19)%, (95,48)%, (70,90)%. Moreover, the model provides predicted probabilities that closely match the observed frequencies of good and poor outcomes (calibration error 0.04). CONCLUSIONS AND SIGNIFICANCE These findings suggest that accounting for EEG trend information can substantially improve prediction of neurologic outcomes for patients with coma following cardiac arrest.
Collapse
|
15
|
Zheng WL, Amorim E, Jing J, Ge W, Hong S, Wu O, Ghassemi M, Lee JW, Sivaraju A, Pang T, Herman ST, Gaspard N, Ruijter BJ, Sun J, Tjepkema-Cloostermans MC, Hofmeijer J, van Putten MJAM, Westover MB. Predicting neurological outcome in comatose patients after cardiac arrest with multiscale deep neural networks. Resuscitation 2021; 169:86-94. [PMID: 34699925 PMCID: PMC8692444 DOI: 10.1016/j.resuscitation.2021.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Electroencephalography (EEG) is an important tool for neurological outcome prediction after cardiac arrest. However, the complexity of continuous EEG data limits timely and accurate interpretation by clinicians. We develop a deep neural network (DNN) model to leverage complex EEG trends for early and accurate assessment of cardiac arrest coma recovery likelihood. METHODS We developed a multiscale DNN combining convolutional neural networks (CNN) and recurrent neural networks (long short-term memory [LSTM]) using EEG and demographic information (age, gender, shockable rhythm) from a multicenter cohort of 1,038 cardiac arrest patients. The CNN learns EEG feature representations while the multiscale LSTM captures short-term and long-term EEG dynamics on multiple time scales. Poor outcome is defined as a Cerebral Performance Category (CPC) score of 3-5 and good outcome as CPC score 1-2 at 3-6 months after cardiac arrest. Performance is evaluated using area under the receiver operating characteristic curve (AUC) and calibration error. RESULTS Model performance increased with EEG duration, with AUC increasing from 0.83 (95% Confidence Interval [CI] 0.79-0.87 at 12h to 0.91 (95%CI 0.88-0.93) at 66h. Sensitivity of good and poor outcome prediction was 77% and 75% at a specificity of 90%, respectively. Sensitivity of poor outcome was 50% at a specificity of 99%. Predicted probability was well matched to the observation frequency of poor outcomes, with a calibration error of 0.11 [0.09-0.14]. CONCLUSIONS These results demonstrate that incorporating EEG evolution over time improves the accuracy of neurologic outcome prediction for patients with coma after cardiac arrest.
Collapse
Affiliation(s)
- Wei-Long Zheng
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Edilberto Amorim
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jin Jing
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wendong Ge
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shenda Hong
- Department of Computer Science, University of Illinois at Urbana Champaign, Champaign, IL, USA
| | - Ona Wu
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mohammad Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Adithya Sivaraju
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Trudy Pang
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Nicolas Gaspard
- Department of Neurology, Université Libre de Bruxelles, Brussels, Belgium
| | - Barry J Ruijter
- Department of Clinical Neurophysiology, University of Twente, Enschede, the Netherlands
| | - Jimeng Sun
- Department of Computer Science, University of Illinois at Urbana Champaign, Champaign, IL, USA
| | - Marleen C Tjepkema-Cloostermans
- Departments of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, the Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, Enschede, the Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, University of Twente, Enschede, the Netherlands; Departments of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, the Netherlands
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Aghaeeaval M, Bendahan N, Shivji Z, McInnis C, Jamzad A, Lomax LB, Shukla G, Mousavi P, Winston GP. Prediction of patient survival following postanoxic coma using EEG data and clinical features. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:997-1000. [PMID: 34891456 DOI: 10.1109/embc46164.2021.9629946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electroencephalography (EEG) is an effective and non-invasive technique commonly used to monitor brain activity and assist in outcome prediction for comatose patients post cardiac arrest. EEG data may demonstrate patterns associated with poor neurological outcome for patients with hypoxic injury. Thus, both quantitative EEG (qEEG) and clinical data contain prognostic information for patient outcome. In this study we use machine learning (ML) techniques, random forest (RF) and support vector machine (SVM) to classify patient outcome post cardiac arrest using qEEG and clinical feature sets, individually and combined. Our ML experiments show RF and SVM perform better using the joint feature set. In addition, we extend our work by implementing a convolutional neural network (CNN) based on time-frequency images derived from EEG to compare with our qEEG ML models. The results demonstrate significant performance improvement in outcome prediction using non-feature based CNN compared to our feature based ML models. Implementation of ML and DL methods in clinical practice have the potential to improve reliability of traditional qualitative assessments for postanoxic coma patients.
Collapse
|
17
|
Rosenthal ES. Seizures, Status Epilepticus, and Continuous EEG in the Intensive Care Unit. Continuum (Minneap Minn) 2021; 27:1321-1343. [PMID: 34618762 DOI: 10.1212/con.0000000000001012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE OF REVIEW This article discusses the evolving definitions of seizures and status epilepticus in the critical care environment and the role of critical care EEG in both diagnosing seizure activity and serving as a predictive biomarker of clinical trajectory. RECENT FINDINGS Initial screening EEG has been validated as a tool to predict which patients are at risk of future seizures. However, accepted definitions of seizures and nonconvulsive status epilepticus encourage a treatment trial when the diagnosis on EEG is indeterminate because of periodic or rhythmic patterns or uncertain clinical correlation. Similarly, recent data have demonstrated the diagnostic utility of intracranial EEG in increasing the yield of seizure detection. EEG has additionally been validated as a diagnostic biomarker of covert consciousness, a predictive biomarker of cerebral ischemia and impending neurologic deterioration, and a prognostic biomarker of coma recovery and status epilepticus resolution. A recent randomized trial concluded that patients allocated to continuous EEG had no difference in mortality than those undergoing intermittent EEG but could not demonstrate whether this lack of difference was because of studying heterogeneous conditions, examining a monitoring tool rather than a therapeutic approach, or examining an outcome measure (mortality) perhaps more strongly associated with early withdrawal of life-sustaining therapy than to a sustained response to pharmacotherapy. SUMMARY Seizures and status epilepticus are events of synchronous hypermetabolic activity that are either discrete and intermittent or, alternatively, continuous. Seizures and status epilepticus represent the far end of a continuum of ictal-interictal patterns that include lateralized rhythmic delta activity and periodic discharges, which not only predict future seizures but may be further classified as status epilepticus on the basis of intracranial EEG monitoring or a diagnostic trial of antiseizure medication therapy. In particularly challenging cases, neuroimaging or multimodality neuromonitoring may be a useful adjunct documenting metabolic crisis. Specialized uses of EEG as a prognostic biomarker have emerged in traumatic brain injury for predicting language function and covert consciousness, cardiac arrest for predicting coma recovery, and subarachnoid hemorrhage for predicting neurologic deterioration due to delayed cerebral ischemia.
Collapse
|
18
|
Zhang H, Xu J, Yang X, Zou X, Shu H, Liu Z, Shang Y. Narrative Review of Neurologic Complications in Adults on ECMO: Prevalence, Risks, Outcomes, and Prevention Strategies. Front Med (Lausanne) 2021; 8:713333. [PMID: 34660625 PMCID: PMC8513760 DOI: 10.3389/fmed.2021.713333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/02/2021] [Indexed: 01/18/2023] Open
Abstract
Extracorporeal membrane oxygenation (ECMO), a life-saving technique for patients with severe respiratory and cardiac diseases, is being increasingly utilized worldwide, particularly during the coronavirus disease 2019(COVID-19) pandemic, and there has been a sharp increase in the implementation of ECMO. However, due to the presence of various complications, the survival rate of patients undergoing ECMO remains low. Among the complications, the neurologic morbidity significantly associated with venoarterial and venovenous ECMO has received increasing attention. Generally, failure to recognize neurologic injury in time is reportedly associated with poor outcomes in patients on ECMO. Currently, multimodal monitoring is increasingly utilized in patients with devastating neurologic injuries and has been advocated as an important approach for early diagnosis. Here, we highlight the prevalence and outcomes, risk factors, current monitoring technologies, prevention, and treatment of neurologic complications in adult patients on ECMO. We believe that an improved understanding of neurologic complications presumably offers promising therapeutic solutions to prevent and treat neurologic morbidity.
Collapse
Affiliation(s)
- Hongling Zhang
- Department of Intensive Care Unit, Affiliated Liu'an Hospital, Anhui Medical University, Liu'an, China
| | - Jiqian Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobo Yang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Zou
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengdong Liu
- Department of Intensive Care Unit, Affiliated Liu'an Hospital, Anhui Medical University, Liu'an, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Artificial Intelligence Analysis of EEG Amplitude in Intensive Heart Care. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6284035. [PMID: 34306595 PMCID: PMC8272660 DOI: 10.1155/2021/6284035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
This article first studied the morphological characteristics of the EEG for intensive cardiac care; that is, based on the analysis of the mechanism of disease diagnosis and treatment, a signal processing and machine learning model was constructed. Then, the methods of signal preprocessing, signal feature extraction, new neural network model structure, training mechanism, optimization algorithm, and efficiency are studied, and experimental verification is carried out for public data sets and clinical big data. Then, the principle of intensive cardiac monitoring, the mechanism of disease diagnosis, the types of arrhythmia, and the characteristics of the typical signal are studied, and the rhythm performance, individual variability, and neurophysiological basis of electrical signals in intensive cardiac monitoring are researched. Finally, the automatic signal recognition technology is studied. In order to improve the training speed and generalization ability, a multiclassification model based on Least Squares Twin Support Vector Machine (LS-TWIN-SVM) is proposed. The computational complexity of the classification model algorithm is compared, and intelligence is adopted. The optimization algorithm selects the parameters of the classifier and uses the EEG signal to simulate the model. Support Vector Machines and their improved algorithms have achieved the ultimum in shallow neural networks and have achieved good results in the classification and recognition of bioelectric signals. The LS-TWIN-SVM algorithm proposed in this paper has achieved good results in the classification and recognition of bioelectric signals. It can perform bioinformatics processing on intensive cardiac care EEG signals, systematically biometric information, diagnose diseases, the real-time detection, auxiliary diagnosis, and rehabilitation of patients.
Collapse
|
20
|
Kortelainen J, Ala-Kokko T, Tiainen M, Strbian D, Rantanen K, Laurila J, Koskenkari J, Kallio M, Toppila J, Väyrynen E, Skrifvars MB, Hästbacka J. Early recovery of frontal EEG slow wave activity during propofol sedation predicts outcome after cardiac arrest. Resuscitation 2021; 165:170-176. [PMID: 34111496 DOI: 10.1016/j.resuscitation.2021.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/30/2021] [Accepted: 05/30/2021] [Indexed: 12/27/2022]
Abstract
AIM OF THE STUDY EEG slow wave activity (SWA) has shown prognostic potential in post-resuscitation care. In this prospective study, we investigated the accuracy of continuously measured early SWA for prediction of the outcome in comatose cardiac arrest (CA) survivors. METHODS We recorded EEG with a disposable self-adhesive frontal electrode and wireless device continuously starting from ICU admission until 48 h from return of spontaneous circulation (ROSC) in comatose CA survivors sedated with propofol. We determined SWA by offline calculation of C-Trend® Index describing SWA as a score ranging from 0 to 100. The functional outcome was defined based on Cerebral Performance Category (CPC) at 6 months after the CA to either good (CPC 1-2) or poor (CPC 3-5). RESULTS Outcome at six months was good in 67 of the 93 patients. During the first 12 h after ROSC, the median C-Trend Index value was 38.8 (interquartile range 28.0-56.1) in patients with good outcome and 6.49 (3.01-18.2) in those with poor outcome showing significant difference (p < 0.001) at every hour between the groups. The index values of the first 12 h predicted poor outcome with an area under curve of 0.86 (95% CI 0.61-0.99). With a cutoff value of 20, the sensitivity was 83.3% (69.6%-92.3%) and specificity 94.7% (83.4%-99.7%) for categorization of outcome. CONCLUSION EEG SWA measured with C-Trend Index during propofol sedation offers a promising practical approach for early bedside evaluation of recovery of brain function and prediction of outcome after CA.
Collapse
Affiliation(s)
- Jukka Kortelainen
- Physiological Signal Analysis Team, Center for Machine Vision and Signal Analysis, MRC Oulu, University of Oulu, Oulu, Finland; Cerenion Oy, Oulu, Finland.
| | - Tero Ala-Kokko
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, Oulu, Finland; Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Marjaana Tiainen
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Daniel Strbian
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kirsi Rantanen
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Laurila
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, Oulu, Finland; Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Juha Koskenkari
- Research Group of Surgery, Anaesthesiology and Intensive Care, Medical Faculty, University of Oulu, Oulu, Finland; Division of Intensive Care Medicine, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mika Kallio
- Department of Clinical Neurophysiology, MRC Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Finland
| | - Jussi Toppila
- Department of Clinical Neurophysiology, HUS Diagnostics Center, Helsinki University Hospital, Helsinki, Finland; Department of Clinical Neurosciences (Neurophysiology), University of Helsinki, Helsinki, Finland
| | | | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Hästbacka
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Peluso L, Gaspard N. Electroencephalography in post-cardiac arrest patients: a matter of timing? Minerva Anestesiol 2021; 87:637-639. [PMID: 33938681 DOI: 10.23736/s0375-9393.21.15715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lorenzo Peluso
- Department of Intensive Care, Cliniques Universitaires de Bruxelles - Erasme Hospital, Brussels, Belgium -
| | - Nicolas Gaspard
- Department of Neurology, Cliniques Universitaires de Bruxelles - Erasme Hospital, Brussels, Belgium.,Department of Neurology, Yale University Medical School, New Haven, CT, USA
| |
Collapse
|
22
|
Khazanova D, Douglas VC, Amorim E. A matter of timing: EEG monitoring for neurological prognostication after cardiac arrest in the era of targeted temperature management. Minerva Anestesiol 2021; 87:704-713. [PMID: 33591136 DOI: 10.23736/s0375-9393.21.14793-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuromonitoring with electroencephalography (EEG) is an essential tool in neurological prognostication post-cardiac arrest. EEG allows reliable and real-time assessment of early changes in background patterns, development of seizures and epileptiform activity, as well as testing for background reactivity to stimuli despite use of sedation or targeted temperature management. Delayed emergence of consciousness post-cardiac arrest is common, therefore longitudinal monitoring of EEG allows the detection of trends indicative of neurological improvement before coma recovery can be observed clinically. In this review, we summarize essential recent literature in EEG monitoring for neurological prognostication post-cardiac arrest in the context of targeted temperature management, with a particular focus on the importance of the evolution of EEG patterns in the first few days following resuscitation.
Collapse
Affiliation(s)
- Darya Khazanova
- Department of Neurology, University of California, San Francisco, CA, USA.,Division of Neurology, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Vanja C Douglas
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Edilberto Amorim
- Department of Neurology, University of California, San Francisco, CA, USA - .,Division of Neurology, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| |
Collapse
|
23
|
Machine Learning to Decode the Electroencephalography for Post Cardiac Arrest Neuroprognostication. Crit Care Med 2020; 47:1474-1476. [PMID: 31524704 DOI: 10.1097/ccm.0000000000003932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
|
25
|
Elmer J, Jones BL, Nagin DS. Comparison of parametric and nonparametric methods for outcome prediction using longitudinal data after cardiac arrest. Resuscitation 2020; 148:152-160. [PMID: 32004661 DOI: 10.1016/j.resuscitation.2020.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Predicting outcome after cardiac arrest is challenging. We previously tested group-based trajectory modeling (GBTM) for prognostication based on baseline characteristics and quantitative electroencephalographic (EEG) trajectories. Here, we describe implementation of this method in a freely available software package and test its performance against alternative options. METHODS We included comatose patients admitted to a single center after resuscitation from cardiac arrest from April 2010 to April 2019 who underwent ≥6 h of EEG monitoring. We abstracted clinical information from our prospective registry and summarized suppression ratio in 48 hourly epochs. We tested three classes of longitudinal models: frequentist, statistically based GBTMs; non-parametric (i.e. machine learning) k-means models; and Bayesian regression. Our primary outcome of interest was discharge CPC 1-3 (vs unconsciousness or death). We compared sensitivity for detecting poor outcome at a false positive rate (FPR) <1%. RESULTS Of 1,010 included subjects, 250 (25%) were awake and alive at hospital discharge. GBTM and k-means derived trajectories, group sizes and group-specific outcomes were comparable. Conditional on an FPR < 1%, GBTMs yielded optimal sensitivity (38%) over 48 h. More sensitive methods had 2-3 % FPRs. CONCLUSION We explored fundamentally different tools for patient-level predictions based on longitudinal and time-invariant patient data. Of the evaluated methods, GBTM resulted in optimal sensitivity while maintaining a false positive rate <1%. The provided code and software of this method provides an easy-to-use implementation for outcome prediction based on GBTMs.
Collapse
Affiliation(s)
- Jonathan Elmer
- Departments of Emergency Medicine, Critical Care Medicine and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Bobby L Jones
- Western Psychiatric Institute and Clinic of UPMC, Pittsburgh, PA, USA
| | - Daniel S Nagin
- Heinz College, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|