1
|
Darkwah S, Kotey FCN, Ahenkorah J, Adutwum-Ofosu KK, Donkor ES. Sepsis-Related Lung Injury and the Complication of Extrapulmonary Pneumococcal Pneumonia. Diseases 2024; 12:72. [PMID: 38667530 PMCID: PMC11049144 DOI: 10.3390/diseases12040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 04/28/2024] Open
Abstract
Globally, sepsis and pneumonia account for significant mortality and morbidity. A complex interplay of immune-molecular pathways underlies both sepsis and pneumonia, resulting in similar and overlapping disease characteristics. Sepsis could result from unmanaged pneumonia. Similarly, sepsis patients have pneumonia as a common complication in the intensive care unit. A significant percentage of pneumonia is misdiagnosed as septic shock. Therefore, our knowledge of the clinical relationship between pneumonia and sepsis is imperative to the proper management of these syndromes. Regarding pathogenesis and etiology, pneumococcus is one of the leading pathogens implicated in both pneumonia and sepsis syndromes. Growing evidence suggests that pneumococcal pneumonia can potentially disseminate and consequently induce systemic inflammation and severe sepsis. Streptococcus pneumoniae could potentially exploit the function of dendritic cells (DCs) to facilitate bacterial dissemination. This highlights the importance of pathogen-immune cell crosstalk in the pathophysiology of sepsis and pneumonia. The role of DCs in pneumococcal infections and sepsis is not well understood. Therefore, studying the immunologic crosstalk between pneumococcus and host immune mediators is crucial to elucidating the pathophysiology of pneumonia-induced lung injury and sepsis. This knowledge would help mitigate clinical diagnosis and management challenges.
Collapse
Affiliation(s)
- Samuel Darkwah
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| | - John Ahenkorah
- Department of Anatomy, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (J.A.); (K.K.A.-O.)
| | - Kevin Kofi Adutwum-Ofosu
- Department of Anatomy, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (J.A.); (K.K.A.-O.)
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| |
Collapse
|
2
|
Yang J, Zhu X, Feng J. The Changes in the Quantity of Lymphocyte Subpopulations during the Process of Sepsis. Int J Mol Sci 2024; 25:1902. [PMID: 38339179 PMCID: PMC10855580 DOI: 10.3390/ijms25031902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Sepsis remains a global challenge, especially in low- and middle-income countries, where there is an urgent need for easily accessible and cost-effective biomarkers to predict the occurrence and prognosis of sepsis. Lymphocyte counts are easy to measure clinically, and a large body of animal and clinical research has shown that lymphocyte counts are closely related to the incidence and prognosis of sepsis. This review extensively collected experimental articles related to lymphocyte counts since the unification of the definition of sepsis. The article categorizes and discusses the relationship between absolute lymphocyte counts, intrinsic lymphocyte subsets, effector T-lymphocytes, B-lymphocytes, dendritic cells, and the incidence and prognosis of sepsis. The results indicate that comparisons of absolute lymphocyte counts alone are meaningless. However, in addition to absolute lymphocyte counts, innate lymphocyte subsets, effector T-cells, B-lymphocytes, and dendritic cells have shown certain research value in related studies.
Collapse
Affiliation(s)
- Jiale Yang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Byrnes D, Masterson C, Brady J, Horie S, McCarthy SD, Gonzalez H, O’Toole D, Laffey J. Delayed MSC therapy enhances resolution of organized pneumonia induced by antibiotic resistant Klebsiella pneumoniae infection. Front Med (Lausanne) 2023; 10:1132749. [PMID: 37469663 PMCID: PMC10352103 DOI: 10.3389/fmed.2023.1132749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/23/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Mesenchymal stromal cells (MSC) are a promising therapeutic for pneumonia-induced sepsis. Here we sought to determine the efficacy of delayed administration of naïve and activated bone marrow (BM), adipose (AD), and umbilical cord (UC) derived MSCs in organized antibiotic resistant Klebsiella pneumosepsis. Methods Human BM-, AD-, and UC-MSCs were isolated and expanded and used either in the naïve state or following cytokine pre-activation. The effect of MSC tissue source and activation status was assessed first in vitro. Subsequent experiments assessed therapeutic potential as a delayed therapy at 48 h post infection of rodents with Klebsiella pneumoniae, with efficacy assessed at 120 h. Results BM-, AD-, and UC-MSCs accelerated epithelial healing, increased phagocytosis, and reduced ROS-induced epithelial injury in vitro, with AD-MSCs less effective, and naïve MSCs more effective than pre-activated MSCs. Delayed MSC administration in pre-clinical organized Klebsiella pneumosepsis had no effect on physiologic indices, but enhanced resolution of structural lung injury. Delayed therapy with pre-activated MSCs reduced mRNA concentrations of fibrotic factors. Naïve MSC treatment reduced key circulating cell proportions and increased bacterial killing capacity in the lungs whereas pre-activated MSCs enhanced the phagocytic index of pulmonary white cells. Discussion Delayed MSC therapy enhanced resolution of lung injury induced by antibiotic resistant Klebsiella infection and favorably modulated immune cell profile. Overall, AD-MSCs were less effective than either UC- or BM-MSCs, while naïve MSCs had a more favorable effect profile compared to pre-activated MSCs.
Collapse
Affiliation(s)
- Declan Byrnes
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Claire Masterson
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Jack Brady
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Shahd Horie
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Sean D. McCarthy
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Hector Gonzalez
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - Daniel O’Toole
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
| | - John Laffey
- Anaesthesia, School of Medicine, Clinical Sciences Institute, University of Galway, Galway, Ireland
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, University of Galway, Galway, Ireland
- Department of Anaesthesia, Galway University Hospitals, SAOLTA University Hospital Group, Galway, Ireland
| |
Collapse
|
4
|
Kim C, Jeong YH, Kim N, Ryu SH, Bae JS. Hepatoprotective functions of jujuboside B. J Nat Med 2023; 77:87-95. [PMID: 36064835 DOI: 10.1007/s11418-022-01648-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/14/2022] [Indexed: 01/06/2023]
Abstract
Jujuboside B (JB) found in the seeds of Zizyphi Spinosi Semen possesses pharmacological functions, such as anti-inflammatory, antiplatelet aggregation, and antianxiety potentials. This study evaluated the effect of JB on liver failure in cecal ligation and puncture (CLP)-induced sepsis. First, we observed histopathological changes in the liver by optical microscopy and the activity of enzymes in serum such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). We further measured the levels of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, nitric oxide (NO), and antioxidative parameters in liver homogenate. The expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), and glucocorticoid receptor (GR) in the liver was observed by Western blotting. CLP enhanced the migration of inflammatory cells, ALT and AST concentrations, and necrosis, which were reduced by JB. In addition, JB reduced 11β-HSD2 expression and levels of inflammatory mediators (TNF-α, IL-1β, and NO) in the liver, increased GR expression, enhanced endogenous antioxidative capacity. These results further suggest that JB may protect the liver against CLP-induced damage by regulating anti-inflammatory responses, downregulating 11β-HSD2 expression and antioxidation, and up-regulating GR expression.
Collapse
Affiliation(s)
- Chaeyeong Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Yun Hee Jeong
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, Daegu, 41062, Republic of Korea
| | - Nayeon Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Soo Ho Ryu
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Xu H, Li T, Zhang X, Li H, Lv D, Wang Y, Huo F, Bai J, Wang C. Impaired Circulating Antibody-Secreting Cells Generation Predicts the Dismal Outcome in the Elderly Septic Shock Patients. J Inflamm Res 2022; 15:5293-5308. [PMID: 36124208 PMCID: PMC9482413 DOI: 10.2147/jir.s376962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/13/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Sepsis is a condition that derives from a dysregulated host response to infection. Although B lymphocytes play a pivotal role in immune response, little is known about status of their terminally differentiated cells, antibody-secreting cells (ASCs) during immunosuppressive phase of sepsis, especially in elderly patients. Our aim was to extensively characterize the immune functions of ASCs in elderly septic patients. Patients and Methods Clinical and laboratory data were collected on days 1, 3, and 7 of hospitalization. Circulating ASCs were evaluated by flow cytometry from fresh whole blood in elderly septic patients at the onset of disease. RNA sequencing analyzed ASCs gene expression profile. Receiver operating characteristic (ROC) curve analysis and logistic regression predicted the survival rate of 28-day mortality. Results A total of 103 septic patients were enrolled. The number and proportion of ASCs among total lymphocytes dramatically increased in septic patients, and RNA sequencing analysis showed that ASCs from septic patients exhibited a different gene expression profile. Furthermore, we found these ASCs could promote the function of T cells. Logistic regression analysis showed ASCs population was an independent outcome predictor in septic shock patients. Conclusion Our study revealed the complex nature of immune disorders in sepsis and identified circulating ASCs population as a useful biomarker for predicting mortality in elderly septic patients, which provided a novel clue to combat this severe disease.
Collapse
Affiliation(s)
- Huihui Xu
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Teng Li
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100000, People's Republic of China
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.,Shanghai Huashen Institute of Microbes and Infections, Shanghai, 200052, People's Republic of China
| | - Hongqiang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Diyu Lv
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Yiyuan Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Fangjie Huo
- Department of Respiratory Medicine, Xi'an No. 4 hospital, Xi'an, 710004, People's Republic of China
| | - Jianwen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.,Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, People's Republic of China
| | - Chunmei Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.,Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 211166, People's Republic of China
| |
Collapse
|
6
|
Kim GO, Kim N, Song GY, Bae JS. Inhibitory Activities of Rare Ginsenoside Rg4 on Cecal Ligation and Puncture-Induced Sepsis. Int J Mol Sci 2022; 23:ijms231810836. [PMID: 36142743 PMCID: PMC9505814 DOI: 10.3390/ijms231810836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis is an uncontrolled response to inflammatory infection and is associated with high levels of mortality and morbidity. Rg4 is a rare ginsenoside mainly found in the leaves of Panax ginseng C. A. Meyer and the major protopanaxatriol-type ginsenoside of black ginseng. In this study, we determined whether Rg4 affects cecal ligation and puncture (CLP)-induced sepsis. Animals were separated into the following six groups: control group, CLP-operated group, CLP plus maslinic acid (MA), and CLP plus Rg4 (5, 10, or 15 mg/kg). Survival rate, body weight changes, inflammatory cytokines, and histological analyses were assessed. Human endothelial cells were activated with the high-mobility group box 1 (HMGB1) protein and Rg4. Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Enzyme-linked immunosorbent assay (ELISA) and Western blot analysis were used to assess inflammation and gene expression, respectively. After CLP surgery, the Rg4-administered group exhibited a higher survival rate and body weight compared with the untreated control group. Rg4 treatment reduced cytokine levels, including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, as well as nitric oxide (NO) levels and renal inflammation. After Rg4 treatment of HMGB1-activated cells, the expressions of toll-like receptor (TLR) 4 and TNF-α were decreased, and the activation of phosphoinositide 3-kinase (PI3K)/AKT signaling increased cell viability. In summary, Rg4 inhibited inflammation and exhibited a protective effect against CLP-induced sepsis, thereby reinforcing cell survival against septic responses.
Collapse
Affiliation(s)
- Go Oun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - Nayeon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejon 34134, Korea
- Correspondence: (G.Y.S.); (J.-S.B.); Tel.: +82-42-821-5926 (G.Y.S.); +82-53-950-8570 (J.-S.B.); Fax: +82-42-823-6566 (G.Y.S.); +82-53-950-8557 (J.-S.B.)
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Correspondence: (G.Y.S.); (J.-S.B.); Tel.: +82-42-821-5926 (G.Y.S.); +82-53-950-8570 (J.-S.B.); Fax: +82-42-823-6566 (G.Y.S.); +82-53-950-8557 (J.-S.B.)
| |
Collapse
|
7
|
Miranda M, Nadel S. Impact of Inherited Genetic Variants on Critically Ill Septic Children. Pathogens 2022; 11:pathogens11010096. [PMID: 35056044 PMCID: PMC8781648 DOI: 10.3390/pathogens11010096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis remains an important source of morbidity and mortality in children, despite the development of standardized care. In the last decades, there has been an increased interest in genetic and genomic approaches to early recognition and development of treatments to manipulate the host inflammatory response. This review will present a summary of the normal host response to infection and progression to sepsis, followed by highlighting studies with a focus on gene association studies, epigenetics, and genome-wide expression profiling. The susceptibility (or outcome) of sepsis in children has been associated with several polymorphisms of genes broadly involved in inflammation, immunity, and coagulation. More recently, gene expression profiling has been focused on identifying novel biomarkers, pathways and therapeutic targets, and gene expression-based subclassification. Knowledge of a patient’s individual genotype may, in the not-too-remote future, be used to guide tailored treatment for sepsis. However, at present, the impact of genomics remains far from the bedside of critically ill children.
Collapse
Affiliation(s)
- Mariana Miranda
- Paediatric Unit, Imperial College Healthcare NHS Trust, London W2 1NY, UK
- Correspondence:
| | - Simon Nadel
- St. Mary’s Hospital, Imperial College Healthcare NHS Trust, and Imperial College, London W2 1NY, UK;
| |
Collapse
|
8
|
MicroRNA-150 inhibits myeloid-derived suppressor cells proliferation and function through negative regulation of ARG-1 in sepsis. Life Sci 2021; 278:119626. [PMID: 34004247 DOI: 10.1016/j.lfs.2021.119626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023]
Abstract
AIMS Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. The majority of sepsis-related deaths occur during late sepsis, which presents as a state of immunosuppression. Myeloid-derived suppressor cells (MDSCs) have been reported to promote immunosuppression during sepsis. Here we aim to understand the role of microRNAs in regulating MDSCs proliferation and immunosuppression function during sepsis. MAIN METHODS Murine sepsis model was established using cecal ligation and puncture (CLP). A microarray was used to identify microRNAs with differential expression in murine sepsis. The effect of microRNA-150 on MDSCs proliferation and function was then evaluated. 140 multiple trauma patients from Tongji Hospital and 10 healthy controls were recruited. Peripheral blood samples were taken and the serum level of miR-150 was measured. KEY FINDINGS In the murine model of sepsis, MDSCs expansion was noted in the spleen and bone marrow, while expression of miR-150 in MDSCs decreased. Replenishing miR-150 inhibited the expansion of MDSCs in both monocytic and polymorphonuclear subpopulations, as well as decreasing the immunosuppressive function of MDSCs, through down-regulation of ARG1. Both pro-inflammatory cytokine IL-6 and anti-inflammatory cytokines TGF-β and IL-10 were reduced by miR-150. In human, the serum level of miR-150 was down-regulated in septic patients and elevated in non-septic trauma patients compared to healthy controls. SIGNIFICANCE Our study showed that MiR-150 is down-regulated during sepsis. Replenishing miR-150 reduces the immunosuppression function of MDSCs by down-regulating ARG1 in late sepsis. MiR-150 might serve as a potential therapeutic option for sepsis.
Collapse
|
9
|
Cui J, Oehrl S, Ahmad F, Brenner T, Uhle F, Nusshag C, Rupp C, Funck F, Meisel S, Weigand MA, Morath C, Schäkel K. Detection of In Vivo Inflammasome Activation for Predicting Sepsis Mortality. Front Immunol 2021; 11:613745. [PMID: 33613537 PMCID: PMC7889521 DOI: 10.3389/fimmu.2020.613745] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Sepsis is a severe life-threatening syndrome caused by dysregulated host responses to infection. Biomarkers that allow for monitoring the patient's immune status are needed. Recently, a flow cytometry-based detection of in vivo inflammasome activation by formation of cytoplasmic aggregates of ASC (apoptosis-associated speck-like protein containing a caspase recruitment domain) has been proposed. Here we report on the frequency of ASC-speck+ leukocytes correlating with the survival of sepsis. 25 patients with sepsis were sampled consecutively for 7 days. Blood, serum samples and patient data were collected according to the guidelines of the PredARRT-Sep-Trial. Flow cytometric analysis was performed on fresh whole blood samples to investigate the formation of ASC-specks in leukocyte subsets. Serum samples were analyzed for production of IL-1ß, IL-18 and additional inflammatory markers. ASC-speck formation was found to be increased in leukocytes from sepsis patients compared to healthy donor controls. The absolute number of ASC-speck+ neutrophils peaked on day 1. For monocytes, the highest percentage and maximum absolute number of ASC-speck+ cells were detected on day 6 and day 7. Inflammatory cytokines were elevated on day 1 and declined thereafter, with exception of IL-18. Survival analysis showed that patients with lower absolute numbers of ASC-speck+ monocytes (<1,650 cells/ml) on day 6 had a lower probability to survive, with a hazard ratio (HR) of 10.178. Thus, the frequency of ASC-speck+ monocytes on day 6 after onset of sepsis may serve to identify patients at risk of death from sepsis.
Collapse
Affiliation(s)
- Jing Cui
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Dermatology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Stephanie Oehrl
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Fareed Ahmad
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care, University Hospital Essen, Essen, Germany.,Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Uhle
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Rupp
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Funck
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Meisel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus A Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
10
|
Pfortmueller CA, Spinetti T, Urman RD, Luedi MM, Schefold JC. COVID-19-associated acute respiratory distress syndrome (CARDS): Current knowledge on pathophysiology and ICU treatment - A narrative review. Best Pract Res Clin Anaesthesiol 2020; 35:351-368. [PMID: 34511224 PMCID: PMC7831801 DOI: 10.1016/j.bpa.2020.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces coronavirus-19 disease (COVID-19) and is a major health concern. Following two SARS-CoV-2 pandemic “waves,” intensive care unit (ICU) specialists are treating a large number of COVID19-associated acute respiratory distress syndrome (ARDS) patients. From a pathophysiological perspective, prominent mechanisms of COVID19-associated ARDS (CARDS) include severe pulmonary infiltration/edema and inflammation leading to impaired alveolar homeostasis, alteration of pulmonary physiology resulting in pulmonary fibrosis, endothelial inflammation (endotheliitis), vascular thrombosis, and immune cell activation. Although the syndrome ARDS serves as an umbrella term, distinct, i.e., CARDS-specific pathomechanisms and comorbidities can be noted (e.g., virus-induced endotheliitis associated with thromboembolism) and some aspects of CARDS can be considered ARDS “atypical.” Importantly, specific evidence-based medical interventions for CARDS (with the potential exception of corticosteroid use) are currently unavailable, limiting treatment efforts to mostly supportive ICU care. In this article, we will discuss the underlying pulmonary pathophysiology and the clinical management of CARDS. In addition, we will outline current and potential future treatment approaches.
Collapse
Affiliation(s)
- Carmen A Pfortmueller
- Department of Intensive Care Medicine, Inselspital, Bern, University Hospital, University of Bern, Freiburgstrasse, CH-3010 Bern, Switzerland.
| | - Thibaud Spinetti
- Department of Intensive Care Medicine, Inselspital, Bern, University Hospital, University of Bern, Freiburgstrasse, CH-3010 Bern, Switzerland.
| | - Richard D Urman
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Markus M Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern, University Hospital, University of Bern, Freiburgstrasse, CH-3010 Bern, Switzerland.
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern, University Hospital, University of Bern, Freiburgstrasse, CH-3010 Bern, Switzerland.
| |
Collapse
|
11
|
Spinetti T, Hirzel C, Fux M, Walti LN, Schober P, Stueber F, Luedi MM, Schefold JC. Reduced Monocytic Human Leukocyte Antigen-DR Expression Indicates Immunosuppression in Critically Ill COVID-19 Patients. Anesth Analg 2020; 131:993-999. [PMID: 32925314 PMCID: PMC7288784 DOI: 10.1213/ane.0000000000005044] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND: The cellular immune system is of pivotal importance with regard to the response to severe infections. Monocytes/macrophages are considered key immune cells in infections and downregulation of the surface expression of monocytic human leukocyte antigen-DR (mHLA-DR) within the major histocompatibility complex class II reflects a state of immunosuppression, also referred to as injury-associated immunosuppression. As the role of immunosuppression in coronavirus disease 2019 (COVID-19) is currently unclear, we seek to explore the level of mHLA-DR expression in COVID-19 patients. METHODS: In a preliminary prospective monocentric observational study, 16 COVID-19–positive patients (75% male, median age: 68 [interquartile range 59–75]) requiring hospitalization were included. The median Acute Physiology and Chronic Health Evaluation-II (APACHE-II) score in 9 intensive care unit (ICU) patients with acute respiratory failure was 30 (interquartile range 25–32). Standardized quantitative assessment of HLA-DR on monocytes (cluster of differentiation 14+ cells) was performed using calibrated flow cytometry at baseline (ICU/hospital admission) and at days 3 and 5 after ICU admission. Baseline data were compared to hospitalized noncritically ill COVID-19 patients. RESULTS: While normal mHLA-DR expression was observed in all hospitalized noncritically ill patients (n = 7), 89% (8 of 9) critically ill patients with COVID-19–induced acute respiratory failure showed signs of downregulation of mHLA-DR at ICU admission. mHLA-DR expression at admission was significantly lower in critically ill patients (median, [quartiles]: 9280 antibodies/cell [6114, 16,567]) as compared to the noncritically ill patients (30,900 antibodies/cell [26,777, 52,251]), with a median difference of 21,508 antibodies/cell (95% confidence interval [CI], 14,118–42,971), P = .002. Reduced mHLA-DR expression was observed to persist until day 5 after ICU admission. CONCLUSIONS: When compared to noncritically ill hospitalized COVID-19 patients, ICU patients with severe COVID-19 disease showed reduced mHLA-DR expression on circulating CD14+ monocytes at ICU admission, indicating a dysfunctional immune response. This immunosuppressive (monocytic) phenotype remained unchanged over the ensuing days after ICU admission. Strategies aiming for immunomodulation in this population of critically ill patients should be guided by an immune-monitoring program in an effort to determine who might benefit best from a given immunological intervention.
Collapse
Affiliation(s)
- Thibaud Spinetti
- From the Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern
| | - Cedric Hirzel
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern
| | - Michaela Fux
- University Institute of Clinical Chemistry, Inselspital, University of Bern, Bern, Switzerland
| | - Laura N Walti
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern
| | - Patrick Schober
- Department of Anaesthesiology, Amsterdam University Medical Centres, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Frank Stueber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus M Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joerg C Schefold
- From the Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern
| |
Collapse
|
12
|
PDK1/mTOR Signaling in Myeloid Cells Differentially Regulates the Early and Late Stages of Sepsis. Mediators Inflamm 2020; 2020:5437175. [PMID: 32774145 PMCID: PMC7397376 DOI: 10.1155/2020/5437175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 11/20/2022] Open
Abstract
The cecal ligation and perforation (CLP) model is the gold standard for the polymicrobial sepsis. In the CLP mice, the myeloid cells play an important role in septic shock. The phenotypes and the activation state of the macrophage and neutrophil correlate with their metabolism. In the present study, we generated the specific myeloid deletion of PDK1 and mTOR mice, which was the important regulator of metabolic signaling. We found that the deletion of PDK1 in the myeloid cells could aggravate the early septic shock in the CLP mice, as well as the deletion of mTORC1 and mTORC2. Moreover, PDK1 deletion attenuated the inflammation induced by LPS in the late stage on CLP mice, which was exacerbated in mTORC1 and mTORC2 knockout mice. Both PDK1 and mTORC1/2 could not only regulate the cellular metabolism but also play important roles on the myeloid cells in the secondary stimulation of sepsis. The present study will provide a theoretical prospect for the therapy of the septic shock in different stages.
Collapse
|
13
|
Gisler F, Spinetti T, Erdoes G, Luedi MM, Pfortmueller CA, Messmer AS, Jenni H, Englberger L, Schefold JC. Cytokine Removal in Critically Ill Patients Requiring Surgical Therapy for Infective Endocarditis (RECReATE): An Investigator-initiated Prospective Randomized Controlled Clinical Trial Comparing Two Established Clinical Protocols. Medicine (Baltimore) 2020; 99:e19580. [PMID: 32282706 PMCID: PMC7440054 DOI: 10.1097/md.0000000000019580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Infective endocarditis (IE) and other severe infections induce significant changes in the immune response in a considerable number of affected patients. Numerous IE patients develop a persistent functional immunological phenotype that can best be characterized by a profound anti-inflammation and/ or functional "anergy." This is pronounced in patients with unresolved infectious foci and was previously referred to as "injury-associated immunosuppression" (IAI). IAI can be assessed by measurement of the monocytic human leukocyte antigen-DR (mHLA-DR) expression, a global functional marker of immune competence. Persistence of IAI is associated with prolonged intensive care unit length of stay, increased secondary infection rates, and death. Immunomodulation to reverse IAI was shown beneficial in early immunostimulatory (randomized controlled) clinical trials. METHODS Prospective 1:1 randomized controlled clinical study to compare the course of mHLA-DR in patients scheduled for cardiac surgery for IE. Patients will receive either best standard of care plus cytokine adsorption during surgery while on cardiopulmonary bypass (protocol A) versus best standard of care alone, that is, surgery without cytokine adsorption (protocol B). A total of 54 patients will be recruited and randomized. The primary endpoint is a change in quantitative expression of mHLA-DR (antibodies per cell on CD14+ monocytes/ macrophages, assessed using a quantitative standardized assay) from baseline (preoperation [pre-OP], visit 1) to day 1 post-OP (visit 4). DISCUSSION This randomized controlled clinical trial (RECReATE) will compare 2 clinical treatment protocols and will investigate whether cytokine adsorption restores monocytic immune competence (reflected by increased mHLA-DR expression) in patients with IE undergoing cardiac surgery. TRIAL REGISTRATION This protocol was registered in ClinicalTrials.gov, under number NCT03892174, first listed on March 27, 2019.
Collapse
Affiliation(s)
| | | | - Gabor Erdoes
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Markus M. Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Experimental In Vivo Sepsis Models to Monitor Immune Cell Apoptosis and Survival in Laboratory Mice. Methods Mol Biol 2017; 1419:69-81. [PMID: 27108432 DOI: 10.1007/978-1-4939-3581-9_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Sepsis is amongst the world's biggest public health problems with more than 20 million cases worldwide and a high morbidity rate of up to 50 %. Despite advances in modern medicine in the past few decades, incidence is expected to further increase due to an aging population and accompanying comorbidities such as cancer and diabetes. Due to the complexity of the disease, available treatment options are limited. Growing evidence links apoptotic cell death of lymphocytes and concomitant immune suppression to overall patient survival. In order to establish novel therapeutic approaches targeting this life threatening immune paralysis, researchers rely heavily on animal models to decipher the molecular mechanisms underlying this high impact disease. Here we describe variations of in vivo mouse models that can be used to study inflammation, cellular apoptosis, and survival in mice subjected to experimental polymicrobial sepsis and to a secondary infection during the immune suppressive secondary stage.
Collapse
|
15
|
Pfortmueller CA, Meisel C, Fux M, Schefold JC. Assessment of immune organ dysfunction in critical illness: utility of innate immune response markers. Intensive Care Med Exp 2017; 5:49. [PMID: 29063386 PMCID: PMC5653680 DOI: 10.1186/s40635-017-0163-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
In critically ill patients, organ dysfunctions are routinely assessed, monitored, and treated. Mounting data show that substantial critical illness-induced changes in the immune system can be observed in most ICU patients and that not only "hyper-inflammation" but also persistence of an anti-inflammatory phenotype (as in sepsis-associated immunosuppression) is associated with increased morbidity and mortality. Despite common perception, changes in functional immunity cannot be adequately assessed by routine inflammatory biomarkers such as C-reactive protein, procalcitonin, or numerical analysis of leukocyte (sub)-counts. Cytokines appear also not suited due to their short half-life and pleiotropy, their unexclusive origin from immune cells, and their potential to undergo antagonization by circulating inactivating molecules. Thus, beyond leukocyte quantification and use of routine biomarkers, direct assessment of immune cell function seems required to characterize the immune systems' status. This may include determination of, e.g., ex vivo cellular cytokine release, phagocytosis activity, and/or antigen-presenting capacity. In this regard, standardized flow-cytometric assessment of the major histocompatibility-II complex human leukocyte antigen (-D related) (HLA-DR) has gained particular interest. Monocytic HLA-DR (mHLA-DR) controls the interplay between innate and adaptive immunity and may serve as a "global" biomarker of injury-associated immunosuppression, and its decreased expression is associated with adverse clinical outcomes (e.g., secondary infection risk, mortality). Importantly, recent data demonstrate that injury-associated immunosuppression can be reversed-opening up new therapeutic avenues in affected patients. Here we discuss the potential scientific and clinical value of assessment of functional immunity with a focus on monocytes/macrophages and review the current state of knowledge and potential perspectives for affected critically ill patients.
Collapse
Affiliation(s)
- Carmen Andrea Pfortmueller
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Christian Meisel
- Department of Medical Immunology, Charité University Hospital Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Department of Immunology, Labor Berlin Charité Vivantes, Sylter Strasse 2, 13353, Berlin, Germany
| | - Michaela Fux
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
| |
Collapse
|
16
|
Berger D, Schefold JC. Life ain't no SOFA-considerations after yet another failed clinical sepsis trial. J Thorac Dis 2017; 9:438-440. [PMID: 28449438 DOI: 10.21037/jtd.2017.02.68] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
17
|
Berger D, Bloechlinger S, von Haehling S, Doehner W, Takala J, Z'Graggen WJ, Schefold JC. Dysfunction of respiratory muscles in critically ill patients on the intensive care unit. J Cachexia Sarcopenia Muscle 2016; 7:403-12. [PMID: 27030815 PMCID: PMC4788634 DOI: 10.1002/jcsm.12108] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/18/2015] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
Muscular weakness and muscle wasting may often be observed in critically ill patients on intensive care units (ICUs) and may present as failure to wean from mechanical ventilation. Importantly, mounting data demonstrate that mechanical ventilation itself may induce progressive dysfunction of the main respiratory muscle, i.e. the diaphragm. The respective condition was termed 'ventilator-induced diaphragmatic dysfunction' (VIDD) and should be distinguished from peripheral muscular weakness as observed in 'ICU-acquired weakness (ICU-AW)'. Interestingly, VIDD and ICU-AW may often be observed in critically ill patients with, e.g. severe sepsis or septic shock, and recent data demonstrate that the pathophysiology of these conditions may overlap. VIDD may mainly be characterized on a histopathological level as disuse muscular atrophy, and data demonstrate increased proteolysis and decreased protein synthesis as important underlying pathomechanisms. However, atrophy alone does not explain the observed loss of muscular force. When, e.g. isolated muscle strips are examined and force is normalized for cross-sectional fibre area, the loss is disproportionally larger than would be expected by atrophy alone. Nevertheless, although the exact molecular pathways for the induction of proteolytic systems remain incompletely understood, data now suggest that VIDD may also be triggered by mechanisms including decreased diaphragmatic blood flow or increased oxidative stress. Here we provide a concise review on the available literature on respiratory muscle weakness and VIDD in the critically ill. Potential underlying pathomechanisms will be discussed before the background of current diagnostic options. Furthermore, we will elucidate and speculate on potential novel future therapeutic avenues.
Collapse
Affiliation(s)
- David Berger
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| | - Stefan Bloechlinger
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland; Department of Clinical Cardiology, Inselspital University Hospital of Bern Bern Switzerland
| | - Stephan von Haehling
- Department of Cardiology and Center for Innovative Clinical Trials University of Göttingen Göttingen Germany
| | - Wolfram Doehner
- Center for Stroke Research Berlin Charite Universitätsmedizin Berlin Berlin Germany
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| | - Werner J Z'Graggen
- Department of Neurosurgery and Dept. of Neurology, Inselspital University Hospital of Bern Bern Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital University Hospital of Bern Bern Switzerland
| |
Collapse
|
18
|
Horvath T, Fischer U, Müller L, Ott S, Bassetti CL, Wiest R, Sendi P, Schefold JC. Mycoplasma-induced minimally conscious state. SPRINGERPLUS 2016; 5:143. [PMID: 27026840 PMCID: PMC4764598 DOI: 10.1186/s40064-016-1832-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/15/2016] [Indexed: 11/29/2022]
Abstract
Mycoplasma pneumoniae (M. pneumoniae) frequently causes community-acquired respiratory tract infection and often presents as atypical pneumonia. Following airborne infection and a long incubation period, affected patients mostly suffer from mild or even asymptomatic and self-limiting disease. In particular in school-aged children, M. pneumoniae is associated with a wide range of extrapulmonary manifestations including central nervous system (CNS) disease. In contrast to children, severe CNS manifestations are rarely observed in adults. We report a case of a 37 year-old previously healthy immunocompetent adult with fulminant M. pneumoniae-induced progressive encephalomyelitis who was initially able to walk to the emergency department. A few hours later, she required controlled mechanical ventilation for ascending transverse spinal cord syndrome, including complete lower extremity paraplegia. Severe M. pneumoniae-induced encephalomyelitis was postulated, and antimicrobial, anti-inflammatory and immunosuppressive therapy was applied on the intensive care unit. Despite early and targeted therapy using four different immunosuppressive strategies, clinical success was limited. In our patient, locked-in syndrome developed followed by persistent minimally conscious state. The neurological status was unchanged until day 230 of follow-up. Our case underlines that severe M. pneumoniae- related encephalomyelitis must not only be considered in children, but also in adults. Moreover, it can be fulminant and fatal in adults. Our case enhances the debate for an optimal antimicrobial agent with activity beyond the blood–brain barrier. Furthermore, it may underline the difficulty in clinical decision making regarding early antimicrobial treatment in M. pneumoniae disease, which is commonly self-limited.
Collapse
Affiliation(s)
- Thomas Horvath
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Urs Fischer
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Lionel Müller
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Sebastian Ott
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Claudio L Bassetti
- Department of Neurology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, Bern University Hospital, 3010 Bern, Switzerland
| | - Parham Sendi
- Department of Infectious Diseases, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| |
Collapse
|
19
|
Bechtel-Grosch U, Beguelin C, Berezowska S, Dufour JF, Takala J, Schefold JC. Fulminant hepatic and multiple organ failure following acute viral tonsillitis: a case report. J Med Case Rep 2016; 10:7. [PMID: 26785992 PMCID: PMC4719572 DOI: 10.1186/s13256-015-0777-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 11/30/2015] [Indexed: 11/25/2022] Open
Abstract
Background Pyogenic tonsillitis may often be observed in the general Western population. In severe cases, it may require antibiotic treatment or even hospitalization and often a prompt clinical response will be noted. Here we present an unusual case of progressive multiple organ failure including fulminant liver failure following acute tonsillitis initially mistaken for “classic” pyogenic (that is bacterial) tonsillitis. Case presentation A 68-year-old previously healthy white man was referred with suspicion of pyogenic angina. After tonsillectomy, he developed acute liver failure and consecutive multiple organ failure including acute hemodynamic, pulmonary and dialysis-dependent renal failure. Immunohistopathological analysis of his tonsils and liver as well as serum polymerase chain reaction analyses revealed herpes simplex virus-2 to be the causative pathogen. Treatment included high-dose acyclovir and multiorgan supportive intensive care therapy. His final outcome was favorable. Conclusions Fulminant herpes simplex virus-2-induced multiple organ failure is rarely observed in the Western hemisphere and should be considered a potential diagnosis in patients with tonsillitis and multiple organ failure including acute liver failure. From a clinical perspective, it seems important to note that fulminant herpes simplex virus-2 infection may masquerade as “routine” bacterial severe sepsis/septic shock. This persevering condition should be diagnosed early and treated goal-oriented in order to gain control of this life-threatening condition.
Collapse
Affiliation(s)
- Ursina Bechtel-Grosch
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, CH 3010, Bern, Switzerland
| | - Charles Beguelin
- Department of Infectious Diseases, Inselspital, Bern University Hospital, CH 3010, Bern, Switzerland
| | - Sabina Berezowska
- Institute of Pathology, University of Bern, CH 3010, Bern, Switzerland
| | - Jean-Francois Dufour
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, CH 3010, Bern, Switzerland
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, CH 3010, Bern, Switzerland
| | - Joerg C Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, CH 3010, Bern, Switzerland.
| |
Collapse
|
20
|
Watanabe N, Suzuki Y, Inokuchi S, Inoue S. Sepsis induces incomplete M2 phenotype polarization in peritoneal exudate cells in mice. J Intensive Care 2016; 4:6. [PMID: 26759721 PMCID: PMC4709882 DOI: 10.1186/s40560-015-0124-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/29/2015] [Indexed: 11/10/2022] Open
Abstract
Background Macrophages can differentiate into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes upon exposure to a pathogen or a cytokine microenvironment. However, M1/M2 macrophage polarization in polymicrobial sepsis has not been fully characterized. Methods The polarity of peritoneal exudate (PE) cells from mice that had undergone cecal ligation and puncture (CLP) and the response of those cells to lipopolysaccharide (LPS) in terms of cytokine and chemokine expression were examined. Results PE cells from CLP mice demonstrated a shift toward the M2 phenotype in terms of marker enzyme expression. In addition, the CLP-derived PE cells showed apparent unresponsiveness to LPS stimulation with regard to expression of pro-inflammatory cytokines such as TNF-α, while the expression of anti-inflammatory cytokines such as IL-10 was induced. Nevertheless, the CLP-PE cells failed to express M2 chemokines including chemokine (C-C motif) ligand 17 (CCL17), CCL22, and CCL24, all of which are important for T cell recruitment. Conclusions The results suggested that a shift of naïve monocytes/macrophages to the M2 phenotype, along with the lack of M2 chemokine expression in septic monocytes/macrophages, might be responsible for immunosuppression after sepsis. Electronic supplementary material The online version of this article (doi:10.1186/s40560-015-0124-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nobuo Watanabe
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1193 Japan
| | - Yusuke Suzuki
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1193 Japan
| | - Sadaki Inokuchi
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1193 Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1193 Japan
| |
Collapse
|
21
|
Schefold JC, Porz L, Uebe B, Poehlmann H, von Haehling S, Jung A, Unterwalder N, Meisel C. Diminished HLA-DR expression on monocyte and dendritic cell subsets indicating impairment of cellular immunity in pre-term neonates: a prospective observational analysis. J Perinat Med 2015; 43:609-18. [PMID: 25418981 DOI: 10.1515/jpm-2014-0226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/26/2014] [Indexed: 01/09/2023]
Abstract
AIMS The risk of neonates for severe infection/sepsis is reciprocally proportional to gestational age and birth weight. As monocytes and dendritic cells (DC) are recognised key antigen-presenting immune cells, we aimed to elucidate whether neonatal age is associated with reduced expression of human-leukocyte antigen-DR (HLA-DR) antigens on subsets of monocytes and DCs. METHODS Forty-three consecutive neonates (20 male, mean gestational age 236.0±26.8 days; mean 1-min Apgar score 7.5±2.0) were included in a monocentric prospective observational analysis. Patients were grouped according to gestational age (n=15 full-term, n=28 pre-term defined as <33 weeks). Ten healthy adult volunteers were assessed also. Flow-cytometric assessment of HLA-DR expression was performed in subsets of peripheral blood myeloid and plasmacytoid DCs (MDC and PDC) and monocytes (CD14brightCD16negative/CD14positiveCD16positive/CD14dimCD16positive). Clinical and routine laboratory data were followed up. RESULTS At birth, leukocyte counts were increased in full-term neonates. Monocyte counts were significantly increased in neonates when compared with adults (all P<0.05). A significant numerical increase of CD14brightCD16negative and CD14positiveCD16positive monocytes was noted in pre-term and full-term neonates (all P<0.05), while HLA-DR expression in these subsets was significantly diminished (most pronounced in pre-term infants, P<0.0001). MDC and PDC HLA-DR expression was reduced also (all P<0.05). Clinical indices (e.g., pH, days on antibiotics/mechanical ventilation, fever/sepsis) were not found to correlate with immunological indices. CONCLUSIONS We observed a markedly diminished HLA-DR expression on monocyte and DC subsets in pre-term and full-term neonates, which may contribute to impaired antimicrobial defence mechanisms in the early days of life.
Collapse
|
22
|
Inoue S, Vasilevskis EE, Pandharipande PP, Girard TD, Graves AJ, Thompson J, Shintani A, Ely EW. The impact of lymphopenia on delirium in ICU patients. PLoS One 2015; 10:e0126216. [PMID: 25992641 PMCID: PMC4439144 DOI: 10.1371/journal.pone.0126216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/31/2015] [Indexed: 12/01/2022] Open
Abstract
Background Immunosuppressed states may predispose patients to development of acute brain injury during times of critical illness. Lymphopenia is a non-specific yet commonly used bedside marker of immunosuppressed states. Methods We examined whether lymphopenia would predict development of acute brain dysfunction (delirium and/or coma) in 518 patients enrolled in the Bringing to Light the Risk Factors and Incidence of Neuropsychological Dysfunction in ICU Survivors (BRAIN-ICU) study in medical and surgical ICUs of a tertiary care, university-based medical center. Utilizing proportional odds logistic regression and Cox proportional hazards survival analysis, we assessed the relationship between pre-enrollment lymphocytes and subsequent cognitive outcomes including delirium- and coma-free days (DCFDs) and 30-day mortality. Results There were no statistically significant associations between lymphocytes and DCFDs (p = 0.17); additionally, the relationship between lymphocytes and mortality was not statistically significant (p = 0.71). Among 259 patients without history of cancer or diabetes, there was no statistically significant association between lymphocytes and DCFDs (p = 0.07). Conclusion lymphopenia, a commonly used bedside marker of immunosuppression, does not appear to be a marker of risk for acute brain injury (delirium/coma) or 30-day mortality in general medical/surgical ICU patients.
Collapse
Affiliation(s)
- Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- * E-mail:
| | - Eduard E. Vasilevskis
- Division of General Internal Medicine and Public Health, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Geriatric Research, Education and Clinical Center (GRECC), Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Pratik P. Pandharipande
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Timothy D. Girard
- Division of Allergy/Pulmonary/Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Geriatric Research, Education and Clinical Center (GRECC), Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Amy J. Graves
- Department of Biostatistics, Vanderbilt University School of Medicine Nashville, Tennessee, United States of America
| | - Jennifer Thompson
- Department of Biostatistics, Vanderbilt University School of Medicine Nashville, Tennessee, United States of America
| | - Ayumi Shintani
- Department of Biostatistics, Vanderbilt University School of Medicine Nashville, Tennessee, United States of America
| | - E. Wesley Ely
- Division of Allergy/Pulmonary/Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Geriatric Research, Education and Clinical Center (GRECC), Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
23
|
Inoue S, Suzuki K, Komori Y, Morishita Y, Suzuki-Utsunomiya K, Hozumi K, Inokuchi S, Sato T. Persistent inflammation and T cell exhaustion in severe sepsis in the elderly. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:R130. [PMID: 24962182 PMCID: PMC4230031 DOI: 10.1186/cc13941] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 06/02/2014] [Indexed: 12/17/2022]
Abstract
Introduction Sepsis is known as a complex immunological response with hyperinflammation in the acute phase followed by immunosuppression. Although aging is crucial in sepsis, the impact of aging on inflammation and immunosuppression is still unclear. The purpose of this study was to investigate the relationship between inflammation and immunosuppression in aged patients and mice after sepsis. Methods Fifty-five patients with severe sepsis and 30 healthy donors were prospectively enrolled, and 90-day survival was compared between elderly (≥65 years) and adult (18–64 years) septic patients with serial measurement of serum interleukin (IL)-6. Within 24 h after diagnosis of severe sepsis, peripheral blood mononuclear cells were stimulated ex vivo to measure expression of the activation maker CD25 in T cells, IL-2 levels in the supernatant, and proliferation. In the mouse study, young (6–8 weeks) and aged (20–22 months) C57/B6 mice were subjected to cecal ligation and puncture (CLP), and survival was compared after 7 days with serial measurement of serum IL-6. Expression of the negative co-stimulatory molecules, CD25, and IL-2 in CD4+ T cells was measured. Results The survival rate in elderly sepsis patients and aged septic mice was significantly lower than that in adult patients and young septic mice (60% vs. 93% in septic patients, 0% vs. 63% in septic mice, P < 0.05). Serum IL-6 levels in elderly sepsis patients and aged septic mice were persistently higher than those in adult patients and young septic mice. Expression of negative co-stimulatory molecules in CD4+ T cells in the spleen, lymph nodes, and peripheral blood was significantly higher in aged mice than in young mice (P < 0.01). Ex vivo stimulation decreased CD25 expression, IL-2 production, and proliferation to a greater extent in CD4+ T cells from elderly patients and aged septic mice than in those from adult patients and young septic mice. Elderly patients demonstrated increased detection of gram-negative bacteria at days 14–16 and 28–32 after sepsis (P < 0.05). Conclusions Persistent inflammation and T cell exhaustion may be associated with decreased survival in elderly patients and mice after sepsis.
Collapse
|
24
|
Bae JS, Lee W, Nam JO, Kim JE, Kim SW, Kim IS. Transforming growth factor β-induced protein promotes severe vascular inflammatory responses. Am J Respir Crit Care Med 2014; 189:779-86. [PMID: 24506343 DOI: 10.1164/rccm.201311-2033oc] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
RATIONALE Sepsis is a systemic inflammatory condition resulting from bacterial infections; it has a high mortality rate and limited therapeutic options. Despite extensive research into the mechanisms driving bacterial sepsis, the target molecules controlling vascular leakage are still largely unknown. Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein expressed in several cell types, which is known to interact with integrins. OBJECTIVES The aim of this study was to determine the roles of TGFBIp in vascular proinflammatory responses, and the mechanisms of action driving these responses. METHODS Circulating levels of TGFBIp were measured in patients admitted to the hospital with sepsis, severe sepsis, and septic shock and in cecal ligation and puncture (CLP)-induced septic mice. Effects of TGFBIp knockout on CLP-induced septic mortality and effects of TGFBIp on multiple vascular proinflammatory responses were determined. MEASUREMENTS AND MAIN RESULTS Circulating levels of TGFBIp were significantly elevated compared with healthy controls, and were strongly correlated with disease severity. High blood TGFBIp levels were also observed in CLP-induced septic mice. The absence of the TGFBIp gene in mice attenuated CLP-induced sepsis. TGFBIp enhanced vascular proinflammatory responses including vascular permeability, adhesion and migration of leukocytes, and disruption of adherence junctions through interacting with integrin αvβ5. CONCLUSIONS Collectively, our findings demonstrate that the TGFBIp-αvβ5 axis can elicit severe inflammatory responses, suggesting it to be a potential target for development of diagnostics and therapeutics for sepsis.
Collapse
Affiliation(s)
- Jong-Sup Bae
- 1 College of Pharmacy, Research Institute of Pharmaceutical Sciences
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Reduction of immunocompetent T cells followed by prolonged lymphopenia in severe sepsis in the elderly. Crit Care Med 2013; 41:810-9. [PMID: 23328259 DOI: 10.1097/ccm.0b013e318274645f] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate the immunological changes caused by severe sepsis in elderly patients. DESIGN One-year, prospective observational study. SETTING Emergency department and intensive care unit of a single university hospital. PATIENTS Seventy-three patients with severe sepsis and 72 healthy donors. MEASUREMENTS AND MAIN RESULTS In elderly septic patients (aged 65 yr and over), 3-month survival was significantly reduced compared with that for adult patients (18-64 yr) (60% vs. 89%, p < 0.01). We found that lymphopenia was prolonged for at least 21 days in elderly nonsurvivors of sepsis, while the number of lymphocytes recovered in both adult and elderly survivors of sepsis. In order to examine the immunological status of septic patients, blood samples were collected within 48 hrs of diagnosis of severe sepsis, and peripheral blood mononuclear cells were purified for flow cytometric analysis. T cell levels were significantly reduced in both adult and elderly septic patients, compared with those in healthy donors (56% and 57% reduction, respectively). Interestingly, the immunocompetent CD28+ subset of CD4+ T cells decreased, whereas the immunosuppressive PD-1+ T cells and the percentage of regulatory T cells (CD4+ T cells that are both Foxp3+ and CD25+) increased in elderly patients, especially nonsurvivors, presumably reflecting the initial signs of immunosuppression. CONCLUSION Reduction of immunocompetent T cells followed by prolonged lymphopenia may be associated with poor prognosis in elderly septic patients.
Collapse
|
27
|
Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011; 306:2594-605. [PMID: 22187279 PMCID: PMC3361243 DOI: 10.1001/jama.2011.1829] [Citation(s) in RCA: 1203] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Severe sepsis is typically characterized by initial cytokine-mediated hyperinflammation. Whether this hyperinflammatory phase is followed by immunosuppression is controversial. Animal studies suggest that multiple immune defects occur in sepsis, but data from humans remain conflicting. OBJECTIVES To determine the association of sepsis with changes in host innate and adaptive immunity and to examine potential mechanisms for putative immunosuppression. DESIGN, SETTING, AND PARTICIPANTS Rapid postmortem spleen and lung tissue harvest was performed at the bedsides of 40 patients who died in intensive care units (ICUs) of academic medical centers with active severe sepsis to characterize their immune status at the time of death (2009-2011). Control spleens (n = 29) were obtained from patients who were declared brain-dead or had emergent splenectomy due to trauma; control lungs (n = 20) were obtained from transplant donors or from lung cancer resections. MAIN OUTCOME MEASURES Cytokine secretion assays and immunophenotyping of cell surface receptor-ligand expression profiles were performed to identify potential mechanisms of immune dysfunction. Immunohistochemical staining was performed to evaluate the loss of immune effector cells. RESULTS The mean ages of patients with sepsis and controls were 71.7 (SD, 15.9) and 52.7 (SD, 15.0) years, respectively. The median number of ICU days for patients with sepsis was 8 (range, 1-195 days), while control patients were in ICUs for 4 or fewer days. The median duration of sepsis was 4 days (range, 1-40 days). Compared with controls, anti-CD3/anti-CD28-stimulated splenocytes from sepsis patients had significant reductions in cytokine secretion at 5 hours: tumor necrosis factor, 5361 (95% CI, 3327-7485) pg/mL vs 418 (95% CI, 98-738) pg/mL; interferon γ, 1374 (95% CI, 550-2197) pg/mL vs 37.5 (95% CI, -5 to 80) pg/mL; interleukin 6, 3691 (95% CI, 2313-5070) vs 365 (95% CI, 87-642) pg/mL; and interleukin 10, 633 (95% CI, -269 to 1534) vs 58 (95% CI, -39 to 156) pg/mL; (P < .001 for all). There were similar reductions in 5-hour lipopolysaccharide-stimulated cytokine secretion. Cytokine secretion in sepsis patients was generally less than 10% that in controls, independent of age, duration of sepsis, corticosteroid use, and nutritional status. Although differences existed between spleen and lung, flow cytometric analysis showed increased expression of selected inhibitory receptors and ligands and expansion of suppressor cell populations in both organs. Unique differences in cellular inhibitory molecule expression existed in immune cells isolated from lungs of sepsis patients vs cancer patients and vs transplant donors. Immunohistochemical staining showed extensive depletion of splenic CD4, CD8, and HLA-DR cells and expression of ligands for inhibitory receptors on lung epithelial cells. CONCLUSIONS Patients who die in the ICU following sepsis compared with patients who die of nonsepsis etiologies have biochemical, flow cytometric, and immunohistochemical findings consistent with immunosuppression. Targeted immune-enhancing therapy may be a valid approach in selected patients with sepsis.
Collapse
Affiliation(s)
- Jonathan S Boomer
- Department of Medicine, Washington University School of Medicine, 660 S Euclid, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schefold JC. Immunostimulation using granulocyte- and granulocyte-macrophage colony stimulating factor in patients with severe sepsis and septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:136. [PMID: 21489333 PMCID: PMC3219352 DOI: 10.1186/cc10092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sepsis is associated with failure of multiple organs, including failure of the immune system. The resulting 'sepsis-associated immunosuppression' resembles a state of immunological anergy that is characterized by repeated 'infectious hits', prolonged multiple-organ failure, and death. As a consequence, adjunctive treatment approaches using measures of immunostimulation with colony-stimulating factors (CSFs) were tested in animal experiments and clinical trials. Herein, data from randomized clinical trials will be discussed in the context of a recently published meta-analysis investigating the effects of granulocyte- and granulocyte-macrophage colony-stimulating factor therapy in patients with severe sepsis and septic shock.
Collapse
Affiliation(s)
- Joerg C Schefold
- Department of Nephrology and Intensive Care Medicine, University Medicine Berlin, Charité Campus Virchow Clinic, Augustenburger Platz 1, 13353 Berlin, Germany.
| |
Collapse
|
29
|
Bo L, Wang F, Zhu J, Li J, Deng X. Granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF) for sepsis: a meta-analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:R58. [PMID: 21310070 PMCID: PMC3221991 DOI: 10.1186/cc10031] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/18/2011] [Accepted: 02/10/2011] [Indexed: 02/07/2023]
Abstract
Introduction To investigate the effects of G-CSF or GM-CSF therapy in non-neutropenic patients with sepsis. Methods A systematic literature search of Medline, Embase and Cochrane Central Register of Controlled Trials was conducted using specific search terms. A manual review of references was also performed. Eligible studies were randomized control trials (RCTs) that compared granulocyte-colony stimulating factor (G-CSF) or granulocyte-macrophage colony stimulating factor (GM-CSF) therapy with placebo for the treatment of sepsis in adults. Main outcome measures were all-cause mortality at 14 days and 28 days after initiation of G-CSF or GM-CSF therapy, in-hospital mortality, reversal rate from infection, and adverse events. Results Twelve RCTs with 2,380 patients were identified. In regard to 14-day mortality, a total of 9 death events occurred among 71 patients (12.7%) in the treatment group compared with 13 events among 67 patients (19.4%) in the placebo groups. Meta-analysis showed there was no significant difference in 28-day mortality when G-CSF or GM-CSF were compared with placebo (relative risks (RR) = 0.93, 95% confidence interval (CI): 0.79 to 1.11, P = 0.44; P for heterogeneity = 0.31, I2 = 15%). Compared with placebo, G-CSF or GM-CSF therapy did not significantly reduce in-hospital mortality (RR = 0.97, 95% CI: 0.69 to 1.36, P = 0.86; P for heterogeneity = 0.80, I2 = 0%). However, G-CSF or GM-CSF therapy significantly increased the reversal rate from infection (RR = 1.34, 95% CI: 1.11 to 1.62, P = 0.002; P for heterogeneity = 0.47, I2 = 0%). No significant difference was observed in adverse events between groups (RR = 0.93, 95% CI: 0.70 to 1.23, P = 0.62; P for heterogeneity = 0.03, I2 = 58%). Sensitivity analysis by excluding one trial did not significantly change the results of adverse events (RR = 1.05, 95% CI: 0.84 to 1.32, P = 0.44; P for heterogeneity = 0.17, I2 = 36%). Conclusions There is no current evidence supporting the routine use of G-CSF or GM-CSF in patients with sepsis. Large prospective multicenter clinical trials investigating monocytic HLA-DR (mHLA-DR)-guided G-CSF or GM-CSF therapy in patients with sepsis-associated immunosuppression are warranted.
Collapse
Affiliation(s)
- Lulong Bo
- Department of Anesthesiology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| | | | | | | | | |
Collapse
|
30
|
Schefold JC, Bierbrauer J, Weber-Carstens S. Intensive care unit-acquired weakness (ICUAW) and muscle wasting in critically ill patients with severe sepsis and septic shock. J Cachexia Sarcopenia Muscle 2010; 1:147-157. [PMID: 21475702 PMCID: PMC3060654 DOI: 10.1007/s13539-010-0010-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 10/14/2010] [Indexed: 01/04/2023] Open
Abstract
Sepsis presents a major health care problem and remains one of the leading causes of death within the intensive care unit (ICU). Therapeutic approaches against severe sepsis and septic shock focus on early identification. Adequate source control, administration of antibiotics, preload optimization by fluid resuscitation and further hemodynamic stabilisation using vasopressors whenever appropriate are considered pivotal within the early-golden-hours of sepsis. However, organ dysfunction develops frequently in and represents a significant comorbidity of sepsis. A considerable amount of patients with sepsis will show signs of severe muscle wasting and/or ICU-acquired weakness (ICUAW), which describes a frequently observed complication in critically ill patients and refers to clinically weak ICU patients in whom there is no plausible aetiology other than critical illness. Some authors consider ICUAW as neuromuscular organ failure, caused by dysfunction of the motor unit, which consists of peripheral nerve, neuromuscular junction and skeletal muscle fibre. Electrophysiologic and/or biopsy studies facilitate further subclassification of ICUAW as critical illness myopathy, critical illness polyneuropathy or critical illness myoneuropathy, their combination. ICUAW may protract weaning from mechanical ventilation and impede rehabilitation measures, resulting in increased morbidity and mortality. This review provides an insight on the available literature on sepsis-mediated muscle wasting, ICUAW and their potential pathomechanisms.
Collapse
Affiliation(s)
- Joerg C. Schefold
- Department of Nephrology and Intensive Care Medicine, Charité University Medicine, Campus Virchow Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Jeffrey Bierbrauer
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité University Medicine, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité University Medicine, Campus Virchow Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
31
|
Schefold JC. Measurement of monocytic HLA-DR (mHLA-DR) expression in patients with severe sepsis and septic shock: assessment of immune organ failure. Intensive Care Med 2010; 36:1810-2. [DOI: 10.1007/s00134-010-1965-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 07/01/2010] [Indexed: 10/19/2022]
|
32
|
High-mobility group box-1 protein serum levels do not reflect monocytic function in patients with sepsis-induced immunosuppression. Mediators Inflamm 2010; 2010:745724. [PMID: 20652004 PMCID: PMC2905954 DOI: 10.1155/2010/745724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/14/2010] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND High-mobility group box-1 (HMGB-1) protein is released during "late sepsis" by activated monocytes. We investigated whether systemic HMGB-1 levels are associated with indices of monocytic activation/function in patients with sepsis-induced immunosuppression. METHODOLOGY 36 patients (31 male, 64 +/- 14 years) with severe sepsis/septic shock and monocytic deactivation (reduced mHLA-DR expression and TNF-alpha release) were assessed in a subanalysis of a placebo-controlled immunostimulatory trial using GM-CSF. HMGB-1 levels were assessed over a 9-day treatment interval. Data were compared to standardized biomarkers of monocytic immunity (mHLA-DR expression, TNF-alpha release). PRINCIPLE FINDINGS HMGB-1 levels were enhanced in sepsis but did not differ between treatment and placebo groups at baseline (14.6 +/- 13.5 versus 12.5 +/- 11.5 ng/ml, P = .62). When compared to controls, HMGB-1 level increased transiently in treated patients at day 5 (27.8 +/- 21.7 versus 11.0 +/- 14.9, P = .01). Between group differences were not noted at any other point of assessment. HMGB-1 levels were not associated with markers of monocytic function or clinical disease severity. CONCLUSIONS GM-CSF treatment for sepsis-induced immunosuppression induces a moderate but only transient increase in systemic HMGB-1 levels. HMGB-1 levels should not be used for monitoring of monocytic function in immunostimulatory trials as they do not adequately portray contemporary changes in monocytic immunity.
Collapse
|
33
|
Poehlmann H, Schefold JC, Zuckermann-Becker H, Volk HD, Meisel C. Phenotype changes and impaired function of dendritic cell subsets in patients with sepsis: a prospective observational analysis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:R119. [PMID: 19604380 PMCID: PMC2750167 DOI: 10.1186/cc7969] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/10/2009] [Accepted: 07/15/2009] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Patients with sepsis often demonstrate severely impaired immune responses. The hallmark of this state of immunoparalysis is monocytic deactivation characterized by decreased human leukocyte antigen (HLA)-DR expression and reduced production of proinflammatory cytokines. Recently, diminished numbers of dendritic cells (DCs) were reported in patients with sepsis. However, little is known about DC phenotype and function in human sepsis. We therefore compared phenotypic and functional changes in monocyte and DC subsets in patients with sepsis and immunoparalysis. METHODS In a prospective observational analysis, 16 consecutive patients with severe sepsis and septic shock (age 59.2 +/- 9.7 years, 13 male, Sequential Organ Failure Assessment score 6.1 +/- 2.7) and immunoparalysis (monocytic HLA-DR expression < 5,000 antibodies/cell) and 16 healthy volunteers were included. Peripheral blood DC counts, HLA-DR expression and ex vivo cytokine production were evaluated in comparison with monocyte subsets over time. RESULTS At baseline, a profound reduction in the numbers of myeloid DCs (MDCs), plasmacytoid DCs (PDCs), and CD14dimCD16positive monocytes was observed in sepsis whereas CD14brightCD16negative and CD14brightCD16positive monocyte numbers were increased. HLA-DR expression was reduced on all monocyte and DC subsets. Production of proinflammatory cytokines and intracellular cytokine staining in response to lipopolysaccharide and lipoteichoic acid was impaired in monocyte subsets and MDCs, whereas IL-10 secretion was increased. IFNalpha response by stimulated PDCs was significantly decreased compared with controls. At day 28, HLA-DR expression and cytokine production of DC and monocyte subsets remained lower in septic patients compared with controls. CONCLUSIONS In sepsis, long-lasting functional deactivation is common to all circulating monocyte and DC subsets. In addition to decreased peripheral blood DC counts, functional impairment of antigen-presenting cells may contribute to an impaired antimicrobial defense in sepsis.
Collapse
Affiliation(s)
- Holger Poehlmann
- Department of Medical Immunology, Charité Universitätsmedizin Berlin, Campus Mitte, Chariteplatz 1, Berlin 10117, Germany.
| | | | | | | | | |
Collapse
|
34
|
Meisel C, Schefold JC, Pschowski R, Baumann T, Hetzger K, Gregor J, Weber-Carstens S, Hasper D, Keh D, Zuckermann H, Reinke P, Volk HD. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med 2009; 180:640-8. [PMID: 19590022 DOI: 10.1164/rccm.200903-0363oc] [Citation(s) in RCA: 452] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Sustained sepsis-associated immunosuppression is associated with uncontrolled infection, multiple organ dysfunction, and death. OBJECTIVES In the first controlled biomarker-guided immunostimulatory trial in sepsis, we tested whether granulocyte-macrophage colony-stimulating factor (GM-CSF) reverses monocyte deactivation, a hallmark of sepsis-associated immunosuppression (primary endpoint), and improves the immunological and clinical course of patients with sepsis. METHODS In a prospective, randomized, double-blind, placebo-controlled, multicenter trial, 38 patients (19/group) with severe sepsis or septic shock and sepsis-associated immunosuppression (monocytic HLA-DR [mHLA-DR] <8,000 monoclonal antibodies (mAb) per cell for 2 d) were treated with GM-CSF (4 microg/kg/d) or placebo for 8 days. The patients' clinical and immunological course was followed up for 28 days. MEASUREMENTS AND MAIN RESULTS Both groups showed comparable baseline mHLA-DR levels (5,609 +/- 3,628 vs. 5,659 +/- 3,332 mAb per cell), which significantly increased within 24 hours in the GM-CSF group. After GM-CSF treatment, mHLA-DR was normalized in 19/19 treated patients, whereas this occurred in 3/19 control subjects only (P < 0.001). GM-CSF also restored ex-vivo Toll-like receptor 2/4-induced proinflammatory monocytic cytokine production. In patients receiving GM-CSF, a shorter time of mechanical ventilation (148 +/- 103 vs. 207 +/- 58 h, P = 0.04), an improved Acute Physiology and Chronic Health Evaluation-II score (P = 0.02), and a shorter length of both intrahospital and intensive care unit stay was observed (59 +/- 33 vs. 69 +/- 46 and 41 +/- 26 vs. 52 +/- 39 d, respectively, both not significant). Side effects related to the intervention were not noted. CONCLUSIONS Biomarker-guided GM-CSF therapy in sepsis is safe and effective for restoring monocytic immunocompetence. Use of GM-CSF may shorten the time of mechanical ventilation and hospital/intensive care unit stay. A multicenter trial powered for the improvement of clinical parameters and mortality as primary endpoints seems indicated. Clinical trial registered with www.clinicaltrials.gov (NCT00252915).
Collapse
Affiliation(s)
- Christian Meisel
- Department of Medical Immunology, Charité Campus Mitte, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|