1
|
Abstract
Sepsis syndromes have been recognized since antiquity yet still pose significant challenges to modern medicine. One of the biggest challenges lies in the heterogeneity of triggers and its protean clinical manifestations, as well as its rapidly progressive and lethal nature. Thus, there is a critical need for biomarkers that can quickly and accurately detect sepsis onset and predict treatment response. In this review, we will briefly describe the current consensus definitions of sepsis and the ideal features of a biomarker. We will then delve into currently available and in-development markers of pathogens, hosts, and their interactions that together comprise the sepsis syndrome.
Collapse
Affiliation(s)
- Maya Cohen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert/Brown Medical School, Providence, RI, USA
| | - Debasree Banerjee
- Division of Pulmonary, Critical Care, and Sleep Medicine, Alpert/Brown Medical School, Providence, RI, USA
| |
Collapse
|
2
|
Bode C, Weis S, Sauer A, Wendel-Garcia P, David S. Targeting the host response in sepsis: current approaches and future evidence. Crit Care 2023; 27:478. [PMID: 38057824 PMCID: PMC10698949 DOI: 10.1186/s13054-023-04762-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
Sepsis, a dysregulated host response to infection characterized by organ failure, is one of the leading causes of death worldwide. Disbalances of the immune response play an important role in its pathophysiology. Patients may develop simultaneously or concomitantly states of systemic or local hyperinflammation and immunosuppression. Although a variety of effective immunomodulatory treatments are generally available, attempts to inhibit or stimulate the immune system in sepsis have failed so far to improve patients' outcome. The underlying reason is likely multifaceted including failure to identify responders to a specific immune intervention and the complex pathophysiology of organ dysfunction that is not exclusively caused by immunopathology but also includes dysfunction of the coagulation system, parenchymal organs, and the endothelium. Increasing evidence suggests that stratification of the heterogeneous population of septic patients with consideration of their host response might led to treatments that are more effective. The purpose of this review is to provide an overview of current studies aimed at optimizing the many facets of host response and to discuss future perspectives for precision medicine approaches in sepsis.
Collapse
Affiliation(s)
- Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Sebastian Weis
- Institute for Infectious Disease and Infection Control, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Friedrich-Schiller University Jena, Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute-HKI, Jena, Germany
| | - Andrea Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Pedro Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Balch JA, Chen UI, Liesenfeld O, Starostik P, Loftus TJ, Efron PA, Brakenridge SC, Sweeney TE, Moldawer LL. Defining critical illness using immunological endotypes in patients with and without sepsis: a cohort study. Crit Care 2023; 27:292. [PMID: 37474944 PMCID: PMC10360294 DOI: 10.1186/s13054-023-04571-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Sepsis is a heterogenous syndrome with limited therapeutic options. Identifying immunological endotypes through gene expression patterns in septic patients may lead to targeted interventions. We investigated whether patients admitted to a surgical intensive care unit (ICU) with sepsis and with high risk of mortality express similar endotypes to non-septic, but still critically ill patients using two multiplex transcriptomic metrics obtained both on admission to a surgical ICU and at set intervals. METHODS We analyzed transcriptomic data from 522 patients in two single-site, prospective, observational cohorts admitted to surgical ICUs over a 5-year period ending in July 2020. Using an FDA-cleared analytical platform (nCounter FLEX®, NanoString, Inc.), we assessed a previously validated 29-messenger RNA transcriptomic classifier for likelihood of 30-day mortality (IMX-SEV-3) and a 33-messenger RNA transcriptomic endotype classifier. Clinical outcomes included all-cause mortality, development of chronic critical illness, and secondary infections. Univariate and multivariate analyses were performed to assess for true effect and confounding. RESULTS Sepsis was associated with a significantly higher predicted and actual hospital mortality. At enrollment, the predominant endotype for both septic and non-septic patients was adaptive, though with significantly different distributions. Inflammopathic and coagulopathic septic patients, as well as inflammopathic non-septic patients, showed significantly higher frequencies of secondary infections compared to those with adaptive endotypes (p < 0.01). Endotypes changed during ICU hospitalization in 57.5% of patients. Patients who remained adaptive had overall better prognosis, while those who remained inflammopathic or coagulopathic had worse overall outcomes. For severity metrics, patients admitted with sepsis and a high predicted likelihood of mortality showed an inflammopathic (49.6%) endotype and had higher rates of cumulative adverse outcomes (67.4%). Patients at low mortality risk, whether septic or non-septic, almost uniformly presented with an adaptive endotype (100% and 93.4%, respectively). CONCLUSION Critically ill surgical patients express different and evolving immunological endotypes depending upon both their sepsis status and severity of their clinical course. Future studies will elucidate whether endotyping critically ill, septic patients can identify individuals for targeted therapeutic interventions to improve patient management and outcomes.
Collapse
Affiliation(s)
- Jeremy A Balch
- Sepsis and Critical Illness Research Center, Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, P. O. Box 100019, Gainesville, FL, 32610-0019, USA
| | - Uan-I Chen
- Inflammatix, Inc., Sunnyvale, CA, 94085, USA
| | | | - Petr Starostik
- UF Health Medical Laboratory at Rocky Point, Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Tyler J Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, P. O. Box 100019, Gainesville, FL, 32610-0019, USA
| | - Philip A Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, P. O. Box 100019, Gainesville, FL, 32610-0019, USA
| | - Scott C Brakenridge
- Sepsis and Critical Illness Research Center, Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, P. O. Box 100019, Gainesville, FL, 32610-0019, USA
- Department of Surgery, Harborview Medical Center, University of Washington School of Medicine, Seattle, WA, 63110, USA
| | | | - Lyle L Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, Shands Hospital, University of Florida College of Medicine, Room 6116, 1600 SW Archer Road, P. O. Box 100019, Gainesville, FL, 32610-0019, USA.
| |
Collapse
|
4
|
Balch JA, Chen UI, Liesenfeld O, Starostik P, Loftus TJ, Efron PA, Brakenridge SC, Sweeney TE, Moldawer LL. Defining critical illness using immunological endotypes in patients with and without of sepsis: A cohort study. RESEARCH SQUARE 2023:rs.3.rs-2874506. [PMID: 37214996 PMCID: PMC10197751 DOI: 10.21203/rs.3.rs-2874506/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background: Sepsis is a heterogenous syndrome with limited therapeutic options. Identifying characteristic gene expression patterns, or endotypes, in septic patients may lead to targeted interventions. We investigated whether patients admitted to a surgical ICU with sepsis and with high risk of mortality express similar endotypes to non-septic, but still critically ill patients using two multiplex transcriptomic metrics obtained both on admission to a surgical intensive care unit (ICU) and at set intervals. Methods: We analyzed transcriptomic data from 522 patients in two single-site, prospective, observational cohorts admitted to surgical ICUs over a 5-year period ending in July 2020 . Using an FDA-cleared analytical platform (nCounter FLEX ® , NanoString, Inc.), we assessed a previously validated 29-messenger RNA transcriptomic classifier for likelihood of 30-day mortality (IMX-SEV-3) and a 33-messenger RNA transcriptomic endotype classifier. Clinical outcomes included all-cause (in-hospital, 30-, 90-day) mortality, development of chronic critical illness (CCI), and secondary infections. Univariate and multivariate analyses were performed to assess for true effect and confounding. Results: Sepsis was associated with a significantly higher predicted and actual hospital mortality. At enrollment, the predominant endotype for both septic and non-septic patients was adaptive , though with significantly different distributions. Inflammopathic and coagulopathic septic patients, as well as inflammopathic non-septic patients, showed significantly higher frequencies of secondary infections compared to those with adaptive endotypes (p<0.01). Endotypes changed during ICU hospitalization in 57.5% of patients. Patients who remained adaptive had overall better prognosis, while those who remained inflammopathic or coagulopathic had worse overall outcomes. For severity metrics, patients admitted with sepsis and a high predicted likelihood of mortality showed an inflammopathic (49.6%) endotype and had higher rates of cumulative adverse outcomes (67.4%). Patients at low mortality risk, whether septic or non-septic, almost uniformly presented with an adaptive endotype (100% and 93.4%, respectively). Conclusion : Critically ill surgical patients express different and evolving immunological endotypes depending upon both their sepsis status and severity of their clinical course. Future studies will elucidate whether endotyping critically ill, septic patients can identify individuals for targeted therapeutic interventions to improve patient management and outcomes.
Collapse
|
5
|
Affiliation(s)
- Jerry J Zimmerman
- Pediatric Critical Care Medicine, Seattle Children's Hospital, Harborview Medical Center, Department of Pediatrics, University of Washington, School of Medicine, Seattle, WA
| |
Collapse
|
6
|
Babu S, Sreedhar R, Munaf M, Gadhinglajkar SV. Sepsis in the Pediatric Cardiac Intensive Care Unit: An Updated Review. J Cardiothorac Vasc Anesth 2023; 37:1000-1012. [PMID: 36922317 DOI: 10.1053/j.jvca.2023.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/25/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023]
Abstract
Sepsis remains among the most common causes of mortality in children with congenital heart disease (CHD). Extensive literature is available regarding managing sepsis in pediatric patients without CHD. Because the cardiovascular pathophysiology of children with CHD differs entirely from their typical peers, the available diagnosis and management recommendations for sepsis cannot be implemented directly in children with CHD. This review discusses the risk factors, etiopathogenesis, available diagnostic tools, resuscitation protocols, and anesthetic management of pediatric patients suffering from various congenital cardiac lesions. Further research should focus on establishing a standard guideline for managing children with CHD with sepsis and septic shock admitted to the intensive care unit.
Collapse
Affiliation(s)
- Saravana Babu
- Division of Cardiothoracic and Vascular Anesthesia, Sree Chitra Tirunal institute for medical sciences and technology, Trivandrum, India.
| | - Rupa Sreedhar
- Division of Cardiothoracic and Vascular Anesthesia, Sree Chitra Tirunal institute for medical sciences and technology, Trivandrum, India
| | - Mamatha Munaf
- Division of Cardiothoracic and Vascular Anesthesia, Sree Chitra Tirunal institute for medical sciences and technology, Trivandrum, India
| | - Shrinivas V Gadhinglajkar
- Division of Cardiothoracic and Vascular Anesthesia, Sree Chitra Tirunal institute for medical sciences and technology, Trivandrum, India
| |
Collapse
|
7
|
Abstract
Heterogeneity in sepsis and acute respiratory distress syndrome (ARDS) is increasingly being recognized as one of the principal barriers to finding efficacious targeted therapies. The advent of multiple high-throughput biological data ("omics"), coupled with the widespread access to increased computational power, has led to the emergence of phenotyping in critical care. Phenotyping aims to use a multitude of data to identify homogenous subgroups within an otherwise heterogenous population. Increasingly, phenotyping schemas are being applied to sepsis and ARDS to increase understanding of these clinical conditions and identify potential therapies. Here we present a selective review of the biological phenotyping schemas applied to sepsis and ARDS. Further, we outline some of the challenges involved in translating these conceptual findings to bedside clinical decision-making tools.
Collapse
Affiliation(s)
- Pratik Sinha
- Division of Clinical & Translational Research and Division of Critical Care, Department of Anesthesia, Washington University, St. Louis, Missouri, USA;
| | - Nuala J Meyer
- Division of Pulmonary, Allergy, and Critical Care Medicine; Center for Translational Lung Biology; and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine; Philadelphia, Pennsylvania, USA
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy & Sleep Medicine, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Komorowski M, Green A, Tatham KC, Seymour C, Antcliffe D. Sepsis biomarkers and diagnostic tools with a focus on machine learning. EBioMedicine 2022; 86:104394. [PMID: 36470834 PMCID: PMC9783125 DOI: 10.1016/j.ebiom.2022.104394] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
Over the last years, there have been advances in the use of data-driven techniques to improve the definition, early recognition, subtypes characterisation, prognostication and treatment personalisation of sepsis. Some of those involve the discovery or evaluation of biomarkers or digital signatures of sepsis or sepsis sub-phenotypes. It is hoped that their identification may improve timeliness and accuracy of diagnosis, suggest physiological pathways and therapeutic targets, inform targeted recruitment into clinical trials, and optimise clinical management. Given the complexities of the sepsis response, panels of biomarkers or models combining biomarkers and clinical data are necessary, as well as specific data analysis methods, which broadly fall under the scope of machine learning. This narrative review gives a brief overview of the main machine learning techniques (mainly in the realms of supervised and unsupervised methods) and published applications that have been used to create sepsis diagnostic tools and identify biomarkers.
Collapse
Affiliation(s)
- Matthieu Komorowski
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom,Corresponding author.
| | - Ashleigh Green
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kate C. Tatham
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom,Anaesthetics, Perioperative Medicine and Pain Department, Royal Marsden NHS Foundation Trust, 203 Fulham Rd, London, SW3 6JJ, United Kingdom
| | - Christopher Seymour
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - David Antcliffe
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Abstract
Research and practice in critical care medicine have long been defined by syndromes, which, despite being clinically recognizable entities, are, in fact, loose amalgams of heterogeneous states that may respond differently to therapy. Mounting translational evidence-supported by research on respiratory failure due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-suggests that the current syndrome-based framework of critical illness should be reconsidered. Here we discuss recent findings from basic science and clinical research in critical care and explore how these might inform a new conceptual model of critical illness. De-emphasizing syndromes, we focus on the underlying biological changes that underpin critical illness states and that may be amenable to treatment. We hypothesize that such an approach will accelerate critical care research, leading to a richer understanding of the pathobiology of critical illness and of the key determinants of patient outcomes. This, in turn, will support the design of more effective clinical trials and inform a more precise and more effective practice at the bedside.
Collapse
|
10
|
Pediatric sepsis biomarkers for prognostic and predictive enrichment. Pediatr Res 2022; 91:283-288. [PMID: 34127800 PMCID: PMC8202042 DOI: 10.1038/s41390-021-01620-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/29/2022]
Abstract
Sepsis is a major public health problem in children throughout the world. Given that the treatment guidelines emphasize early recognition, there is interest in developing biomarkers of sepsis, and most attention is focused on diagnostic biomarkers. While there is a need for ongoing discovery and development of diagnostic biomarkers for sepsis, this review will focus on less well-known applications of sepsis biomarkers. Among patients with sepsis, the biomarkers can give information regarding the risk of poor outcome from sepsis, risk of sepsis-related organ dysfunction, and subgroups of patients with sepsis who share underlying biological features potentially amenable to targeted therapeutics. These types of biomarkers, beyond the traditional concept of diagnosis, address the important concepts of prognostic and predictive enrichment, which are key components of bringing the promise of precision medicine to the bedside of children with sepsis.
Collapse
|
11
|
Affiliation(s)
- David M Maslove
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Sciences Centre, Kingston, ON, Canada
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, United Kingdom
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - J Kenneth Baillie
- Department of Critical Care Medicine, Queen's University, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Kingston Health Sciences Centre, Kingston, ON, Canada
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, United Kingdom
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Medeiros DNM, Shibata AO, Pizarro CF, Rosa MDLA, Cardoso MP, Troster EJ. Barriers and Proposed Solutions to a Successful Implementation of Pediatric Sepsis Protocols. Front Pediatr 2021; 9:755484. [PMID: 34858905 PMCID: PMC8631453 DOI: 10.3389/fped.2021.755484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022] Open
Abstract
The implementation of managed protocols contributes to a systematized approach to the patient and continuous evaluation of results, focusing on improving clinical practice, early diagnosis, treatment, and outcomes. Advantages to the adoption of a pediatric sepsis recognition and treatment protocol include: a reduction in time to start fluid and antibiotic administration, decreased kidney dysfunction and organ dysfunction, reduction in length of stay, and even a decrease on mortality. Barriers are: absence of a written protocol, parental knowledge, early diagnosis by healthcare professionals, venous access, availability of antimicrobials and vasoactive drugs, conditions of work, engagement of healthcare professionals. There are challenges in low-middle-income countries (LMIC). The causes of sepsis and resources differ from high-income countries. Viral agent such as dengue, malaria are common in LMIC and initial approach differ from bacterial infections. Some authors found increased or no impact in mortality or increased length of stay associated with the implementation of the SCC sepsis bundle which reinforces the importance of adapting it to most frequent diseases, disposable resources, and characteristics of healthcare professionals. Conclusions: (1) be simple; (2) be precise; (3) education; (5) improve communication; (5) work as a team; (6) share and celebrate results.
Collapse
Affiliation(s)
| | - Audrey Ogawa Shibata
- Pediatric Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | | | - Marta Pessoa Cardoso
- Pediatric Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Eduardo Juan Troster
- Faculdade Israelita de Ciências em Saúde, Hospital Albert Einstein, São Paulo, Brazil
| |
Collapse
|
13
|
Subphenotypes in critical care: translation into clinical practice. THE LANCET RESPIRATORY MEDICINE 2020; 8:631-643. [PMID: 32526190 DOI: 10.1016/s2213-2600(20)30124-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/06/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Despite progress in the supportive care available for critically ill patients, few advances have been made in the search for effective disease-modifying therapeutic options. The fact that many trials in critical care medicine have not identified a treatment benefit is probably due, in part, to the underlying heterogeneity of critical care syndromes. Numerous approaches have been proposed to divide populations of critically ill patients into more meaningful subgroups (subphenotypes), some of which might be more useful than others. Subclassification systems driven by clinical features and biomarkers have been proposed for acute respiratory distress syndrome, sepsis, acute kidney injury, and pancreatitis. Identifying the systems that are most useful and biologically meaningful could lead to a better understanding of the pathophysiology of critical care syndromes and the discovery of new treatment targets, and allow recruitment in future therapeutic trials to focus on predicted responders. This Review discusses proposed subphenotypes of critical illness syndromes and highlights the issues that will need to be addressed to translate subphenotypes into clinical practice.
Collapse
|
14
|
Abstract
Biomarker panels have the potential to advance the field of critical care medicine by stratifying patients according to prognosis and/or underlying pathophysiology. This article discusses the discovery and validation of biomarker panels, along with their translation to the clinical setting. The current literature on the use of biomarker panels in sepsis, acute respiratory distress syndrome, and acute kidney injury is reviewed.
Collapse
Affiliation(s)
- Susan R Conway
- Division of Critical Care Medicine, Children's National Medical Center, 111 Michigan Avenue Northwest, Washington, DC 20010, USA; Department of Pediatrics, George Washington University School of Medicine, Washington, DC, USA.
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
15
|
Abstract
Sepsis is a heterogeneous disease state that is both common and consequential in critically ill patients. Unfortunately, the heterogeneity of sepsis at the individual patient level has hindered advances in the field beyond the current therapeutic standards, which consist of supportive care and antibiotics. This complexity has prompted attempts to develop a precision medicine approach, with research aimed towards stratifying patients into more homogeneous cohorts with shared biological features, potentially facilitating the identification of new therapies. Several investigators have successfully utilized leukocyte-derived mRNA and discovery-based approaches to subgroup patients on the basis of biological similarities defined by transcriptomic signatures. A critical next step is to develop a consensus sepsis subclassification system, which includes transcriptomic signatures as well as other biological and clinical data. This goal will require collaboration among various investigative groups, and validation in both existing data sets and prospective studies. Such studies are required to bring precision medicine to the bedside of critically ill patients with sepsis.
Collapse
|
16
|
Endotype Transitions During the Acute Phase of Pediatric Septic Shock Reflect Changing Risk and Treatment Response. Crit Care Med 2019; 46:e242-e249. [PMID: 29252929 DOI: 10.1097/ccm.0000000000002932] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE We previously identified septic shock endotypes A and B based on 100 genes reflecting adaptive immunity and glucocorticoid receptor signaling. The endotypes differ with respect to outcome and corticosteroid responsiveness. We determined whether endotypes change during the initial 3 days of illness, and whether changes are associated with outcomes. DESIGN Observational cohort study including existing and newly enrolled participants. SETTING Multiple PICUs. PATIENTS Children with septic shock. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We measured the 100 endotyping genes at day 1 and day 3 of illness in 375 patients. We determined if endotype assignment changes over time, and whether changing endotype is associated with corticosteroid response and outcomes. We used multivariable logistic regression to adjust for illness severity, age, and comorbidity burden. Among the 132 subjects assigned to endotype A on day 1, 56 (42%) transitioned to endotype B by day 3. Among 243 subjects assigned to endotype B on day 1, 77 (32%) transitioned to endotype A by day 3. Assignment to endotype A on day 1 was associated with increased odds of mortality. This risk was modified by the subsequent day 3 endotype assignment. Corticosteroids were associated with increased risk of mortality among subjects who persisted as endotype A. CONCLUSIONS A substantial proportion of children with septic shock transition endotypes during the acute phase of illness. The risk of poor outcome and the response to corticosteroids change with changes in endotype assignment. Patients persisting as endotype A are at highest risk of poor outcomes.
Collapse
|
17
|
Precision Medicine and its Role in the Treatment of Sepsis: A Personalised View. ACTA ACUST UNITED AC 2019; 5:90-96. [PMID: 31431921 PMCID: PMC6698074 DOI: 10.2478/jccm-2019-0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
Abstract
In recent years, a new form of medicine has become increasingly significant, namely, personalised medicine (PM). PM is a form of care in which treatment is tailored for an individual patient. PM is about using multiple data sets to create a digital human mapping. A person’s biological traits are determined by the interactions of hundreds of genes and gene networks, as well as external factors such as diet and exercise. Combining and then investigating these multiple databases with powerful statistical tools, allows a new understanding of how genetic intricacy drives health and disease and so leads to a closer personalised medical approach that targets each individual’s unique genetic make-up. Sepsis is a systemic inflammatory response to infection, ranging from systemic inflammatory response syndrome (SIRS) to septic shock and multiple organ dysfunction syndromes (MODS). Sepsis is the most common cause of death in intensive care patients. Treatments in an ICU may need to be adapted to the continuous and rapid changes of the disease, making it challenging to identify a single target. PM is thus seen as the future of sepsis treatment in the ICU. The fact that individual patients respond differently to treatment should be regarded as a starting point in the approach to providing treatment. The disease itself comes secondary to this concept.
Collapse
|
18
|
Korang SK, Gluud C, Jakobsen JC. Glucocorticosteroids for sepsis in children. A protocol for a systematic review. Acta Anaesthesiol Scand 2019; 63:819-826. [PMID: 30919946 DOI: 10.1111/aas.13358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Sepsis is the primary diagnosis in more than 8% of all critically ill children and sepsis is among the ten leading causes of death in children <10 years. Glucocorticosteroids are currently recommended in septic children with fluid or catecholamine resistant refractory shock. Glucocorticosteroids are widely used for severe sepsis in paediatric intensive care units worldwide. However, the evidence on the clinical effects of glucocorticosteroids for sepsis in children is unclear. METHODS We will perform a systematic review with meta-analysis and Trial Sequential Analysis of randomised clinical trials. We will include randomised clinical trials assessing the effects of glucocorticosteroids vs placebo or no intervention as an add-on therapy to standard care for sepsis in children. For the assessment of harms, we will also include quasi-randomised studies and observational studies identified during our searches for randomised clinical trials. DISCUSSION This review will seek to assess whether glucocorticosteroids indeed have their therapeutic place in the standard treatment for sepsis in children.
Collapse
Affiliation(s)
- Steven Kwasi Korang
- Copenhagen Trial Unit, Department 7812, Rigshospitalet, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Paediatric Department, Holbaek Hospital, Holbaek, Denmark
| | - Christian Gluud
- Copenhagen Trial Unit, Department 7812, Rigshospitalet, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Cochrane Hepato-Biliary Group, Department 7812, Rigshospitalet, Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital, Copenhagen, Denmark
| | - Janus C Jakobsen
- Copenhagen Trial Unit, Department 7812, Rigshospitalet, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Cochrane Hepato-Biliary Group, Department 7812, Rigshospitalet, Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Cardiology, Holbaek Hospital, Holbaek, Denmark
| |
Collapse
|
19
|
Diagnosing and Managing Sepsis by Probing the Host Response to Infection: Advances, Opportunities, and Challenges. J Clin Microbiol 2019; 57:JCM.00425-19. [PMID: 31043466 DOI: 10.1128/jcm.00425-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a major source of mortality and morbidity globally. Accurately diagnosing sepsis remains challenging due to the heterogeneous nature of the disease, and delays in diagnosis and intervention contribute to high mortality rates. Measuring the host response to infection enables more rapid diagnosis of sepsis than is possible through direct detection of the causative pathogen, and recent advances in host response diagnostics and prognostics hold promise for improving outcomes. The current review discusses recent advances in the technologies used to probe the host response to infection, particularly those based on transcriptomics. These are discussed in the context of contemporary approaches to diagnosing and prognosing sepsis, and recommendations are made for successful development and validation of host response technologies.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Pediatric sepsis is a heterogeneous state associated with significant morbidity and mortality, but treatment strategies are limited. Clinical trials of immunomodulators in sepsis have shown no benefit, despite having a strong biological rationale. There is considerable interest in application of a precision medicine approach to pediatric sepsis to identify patients who are more likely to benefit from targeted therapeutic interventions. RECENT FINDINGS Precision medicine requires a clear understanding of the molecular basis of disease. 'Omics data' and bioinformatics tools have enabled identification of endotypes of pediatric septic shock, with corresponding biological pathways. Further, using a multibiomarker-based approach, patients at highest risk of poor outcomes can be identified at disease onset. Enrichment strategies, both predictive and prognostic, may be used to optimize patient selection in clinical trials and identify a subpopulation in whom therapy of interest may be trialed. A bedside-to-bench-to-bedside model may offer clinicians pragmatic tools to aid in decision-making. SUMMARY Precision medicine approaches may be used to subclassify, risk-stratify, and select pediatric patients with sepsis who may benefit from new therapies. Application of precision medicine will require robust basic and translational research, rigorous clinical trials, and infrastructure to collect and analyze big data.
Collapse
Affiliation(s)
- Mihir R. Atreya
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hector R. Wong
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
21
|
Bennett TD, Callahan TJ, Feinstein JA, Ghosh D, Lakhani SA, Spaeder MC, Szefler SJ, Kahn MG. Data Science for Child Health. J Pediatr 2019; 208:12-22. [PMID: 30686480 PMCID: PMC6486872 DOI: 10.1016/j.jpeds.2018.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tellen D Bennett
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; CU Data Science to Patient Value (D2V), University of Colorado School of Medicine, Aurora, CO; Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO; Adult and Child Consortium for Outcomes Research and Delivery Science (ACCORDS), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO; Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO.
| | - Tiffany J Callahan
- Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - James A Feinstein
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; Adult and Child Consortium for Outcomes Research and Delivery Science (ACCORDS), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Debashis Ghosh
- CU Data Science to Patient Value (D2V), University of Colorado School of Medicine, Aurora, CO; Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO; Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Michael C Spaeder
- Pediatric Critical Care, University of Virginia School of Medicine, Charlottesville, VA
| | - Stanley J Szefler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; Adult and Child Consortium for Outcomes Research and Delivery Science (ACCORDS), University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO
| | - Michael G Kahn
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO; Computational Bioscience Program, University of Colorado Denver Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
22
|
Abstract
Sepsis-related biomarkers have a variety of potential applications. The most well-known application is to differentiate patients with signs of systemic inflammation caused by infection, from those with systemic inflammation due to a non-infectious cause. This application is important for timely and judicious prescription of antibiotics. Apart from diagnostic applications, biomarkers can also be used to identify patients with sepsis who are at risk for poor outcome and to subgroup patients with sepsis based on biological commonalities. The latter two applications embody the concepts of prognostic and predictive enrichment, which are fundamental to precision medicine. This review will elaborate on these concepts, provide relevant examples, and discuss important considerations in the process of biomarkers discovery and development.
Collapse
Affiliation(s)
- Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| |
Collapse
|
23
|
McAlvin JB, Wylie RG, Ramchander K, Nguyen MT, Lok CK, Moroi M, Shomorony A, Vasilyev NV, Armstrong P, Yang J, Lieber AM, Okonkwo OS, Karnik R, Kohane DS. Antibody-modified conduits for highly selective cytokine elimination from blood. JCI Insight 2018; 3:121133. [PMID: 29997301 DOI: 10.1172/jci.insight.121133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Cytokines play an important role in dysregulated immune responses to infection, pancreatitis, ischemia/reperfusion injury, burns, hemorrhage, cardiopulmonary bypass, trauma, and many other diseases. Moreover, the imbalance between inflammatory and antiinflammatory cytokines can have deleterious effects. Here, we demonstrated highly selective blood-filtering devices - antibody-modified conduits (AMCs) - that selectively eliminate multiple specific deleterious cytokines in vitro. AMCs functionalized with antibodies against human vascular endothelial growth factor A or tumor necrosis factor α (TNF-α) selectively eliminated the target cytokines from human blood in vitro and maintained them in reduced states even in the face of ongoing infusion at supraphysiologic rates. We characterized the variables that determine AMC performance, using anti-human TNF-α AMCs to eliminate recombinant human TNF-α. Finally, we demonstrated selective cytokine elimination in vivo by filtering interleukin 1 β from rats with lipopolysaccharide-induced hypercytokinemia.
Collapse
Affiliation(s)
- J Brian McAlvin
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and.,Department of Medicine, Division of Medicine Critical Care, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Ryan G Wylie
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | | | - Minh T Nguyen
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Charles K Lok
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Morgan Moroi
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Andre Shomorony
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Armstrong
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Jason Yang
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexander M Lieber
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Obiajulu S Okonkwo
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, and
| |
Collapse
|
24
|
Hyperchloremia Is Associated With Complicated Course and Mortality in Pediatric Patients With Septic Shock. Pediatr Crit Care Med 2018; 19:155-160. [PMID: 29394222 PMCID: PMC5798001 DOI: 10.1097/pcc.0000000000001401] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Hyperchloremia is associated with poor outcome among critically ill adults, but it is unknown if a similar association exists among critically ill children. We determined if hyperchloremia is associated with poor outcomes in children with septic shock. DESIGN Retrospective analysis of a pediatric septic shock database. SETTING Twenty-nine PICUs in the United States. PATIENTS Eight hundred ninety children 10 years and younger with septic shock. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We considered the minimum, maximum, and mean chloride values during the initial 7 days of septic shock for each study subject as separate hyperchloremia variables. Within each category, we considered hyperchloremia as a dichotomous variable defined as a serum concentration greater than or equal to 110 mmol/L. We used multivariable logistic regression to determine the association between the hyperchloremia variables and outcome, adjusted for illness severity. We considered all cause 28-day mortality and complicated course as the primary outcome variables. Complicated course was defined as mortality by 28 days or persistence of greater than or equal to two organ failures at day 7 of septic shock. Secondarily, we conducted a stratified analysis using a biomarker-based mortality risk stratification tool. There were 226 patients (25%) with a complicated course and 93 mortalities (10%). Seventy patients had a minimum chloride greater than or equal to 110 mmol/L, 179 had a mean chloride greater than or equal to 110 mmol/L, and 514 had a maximum chloride greater than or equal to 110 mmol/L. A minimum chloride greater than or equal to 110 mmol/L was associated with increased odds of complicated course (odds ratio, 1.9; 95% CI, 1.1-3.2; p = 0.023) and mortality (odds ratio, 3.7; 95% CI, 2.0-6.8; p < 0.001). A mean chloride greater than or equal to 110 mmol/L was also associated with increased odds of mortality (odds ratio, 2.1; 95% CI, 1.3-3.5; p = 0.002). The secondary analysis yielded similar results. CONCLUSION Hyperchloremia is independently associated with poor outcomes among children with septic shock.
Collapse
|
25
|
Wong HR, Sweeney TE, Lindsell CJ. Simplification of a Septic Shock Endotyping Strategy for Clinical Application. Am J Respir Crit Care Med 2017; 195:263-265. [PMID: 28084830 DOI: 10.1164/rccm.201607-1535le] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Hector R Wong
- 1 Cincinnati Children's Hospital Medical Center Cincinnati, Ohio.,2 Cincinnati Children's Research Foundation Cincinnati, Ohio.,3 University of Cincinnati College of Medicine Cincinnati, Ohio and
| | | | | |
Collapse
|
26
|
Abstract
OBJECTIVES Recent transcriptomic studies describe two subgroups of adults with sepsis differentiated by a sepsis response signature. The implied biology and related clinical associations are comparable with recently reported pediatric sepsis endotypes, labeled "A" and "B." We classified adults with sepsis using the pediatric endotyping strategy and the sepsis response signature and determined how endotype assignment, sepsis response signature membership, and age interact with respect to mortality. DESIGN Retrospective analysis of publically available transcriptomic data representing critically ill adults with sepsis from which the sepsis response signature groups were derived and validated. SETTING Multiple ICUs. PATIENTS Adults with sepsis. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Transcriptomic data were conormalized into a single dataset yielding 549 unique cases with sepsis response signature assignments. Each subject was assigned to endotype A or B using the expression data for the 100 endotyping genes. There were 163 subjects (30%) assigned to endotype A and 386 to endotype B. There was a weak, positive correlation between endotype assignment and sepsis response signature membership. Mortality rates were similar between patients assigned endotype A and those assigned endotype B. A multivariable logistic regression model fit to endotype assignment, sepsis response signature membership, age, and the respective two-way interactions revealed that endotype A, sepsis response signature 1 membership, older age, and the interactions between them were associated with mortality. Subjects coassigned to endotype A, and sepsis response signature 1 had the highest mortality. CONCLUSIONS Combining the pediatric endotyping strategy with sepsis response signature membership might provide complementary, age-dependent, biological, and prognostic information.
Collapse
Affiliation(s)
- Hector R. Wong
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Research Foundation, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Timothy E. Sweeney
- Stanford Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Palo Alto, CA
- Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Kimberly W. Hart
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Purvesh Khatri
- Stanford Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Palo Alto, CA
- Division of Biomedical Informatics Research, Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
| | - Christopher J. Lindsell
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
27
|
Iroh Tam PY, Bendel CM. Diagnostics for neonatal sepsis: current approaches and future directions. Pediatr Res 2017; 82:574-583. [PMID: 28574980 DOI: 10.1038/pr.2017.134] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022]
Abstract
Progress has been made in the reduction of morbidity and mortality from neonatal sepsis. However, diagnosis continues to rely primarily on conventional microbiologic techniques, which can be inaccurate. The objective of this review is to provide the clinician with an overview of the current information available on diagnosing this condition. We review currently available diagnostic approaches for documenting neonatal sepsis and also describe novel approaches for diagnosing infection in neonates who are under development and investigation. Substantial progress has been made with molecular approaches and further development of non-culture-based methods offer promise. The potential ability to incorporate antimicrobial resistance gene testing in addition to pathogen identification may provide a venue to incorporate a predominantly molecular platform into a larger program of neonatal care.
Collapse
|
28
|
Prescott HC, Calfee CS, Thompson BT, Angus DC, Liu VX. Toward Smarter Lumping and Smarter Splitting: Rethinking Strategies for Sepsis and Acute Respiratory Distress Syndrome Clinical Trial Design. Am J Respir Crit Care Med 2017; 194:147-55. [PMID: 27244481 DOI: 10.1164/rccm.201512-2544cp] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Both quality improvement and clinical research efforts over the past few decades have focused on consensus definition of sepsis and acute respiratory distress syndrome (ARDS). Although clinical definitions based on readily available clinical data have advanced recognition and timely use of broad supportive treatments, they likely hinder the identification of more targeted therapies that manipulate select biological mechanisms underlying critical illness. Sepsis and ARDS are by definition heterogeneous, and patients vary in both their underlying biology and their severity of illness. We have long been able to identify subtypes of sepsis and ARDS that confer different prognoses. The key is that we are now on the verge of identifying subtypes that may confer different response to therapy. In this perspective, inspired by a 2015 American Thoracic Society International Conference Symposium entitled "Lumpers and Splitters: Phenotyping in Critical Illness," we highlight promising approaches to uncovering patient subtypes that may predict treatment responsiveness and not just differences in prognosis. We then discuss how this information can be leveraged to improve the success and translatability of clinical trials by using predictive enrichment and other design strategies. Last, we discuss the challenges and limitations to identifying biomarkers and endotypes and incorporating them into routine clinical practice.
Collapse
Affiliation(s)
- Hallie C Prescott
- 1 Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan.,2 Veterans Affairs Center for Clinical Management Research, Ann Arbor, Michigan
| | - Carolyn S Calfee
- 3 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,4 Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - B Taylor Thompson
- 5 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Harvard School of Medicine, Boston, Massachusetts
| | - Derek C Angus
- 6 Clinical Research, Investigation, and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Vincent X Liu
- 7 Division of Research, Kaiser Permanente, Oakland, California
| |
Collapse
|
29
|
Abstract
OBJECTIVE To describe new technologies (biomarkers and tests) used to assess and monitor the severity and progression of multiple organ dysfunction syndrome in children as discussed as part of the Eunice Kennedy Shriver National Institute of Child Health and Human Development MODS Workshop (March 26-27, 2015). DATA SOURCES Literature review, research data, and expert opinion. STUDY SELECTION Not applicable. DATA EXTRACTION Moderated by an experienced expert from the field, investigators developing and assessing new technologies to improve the care and understanding of critical illness presented their research and the relevant literature. DATA SYNTHESIS Summary of presentations and discussion supported and supplemented by relevant literature. CONCLUSIONS There are many innovative tools and techniques with the potential application for the assessment and monitoring of severity of multiple organ dysfunction syndrome. If the reliability and added value of these candidate technologies can be established, they hold promise to enhance the understanding, monitoring, and perhaps, treatment of multiple organ dysfunction syndrome in children.
Collapse
|
30
|
|
31
|
Jacobs L, Wong HR. Emerging infection and sepsis biomarkers: will they change current therapies? Expert Rev Anti Infect Ther 2016; 14:929-41. [PMID: 27533847 PMCID: PMC5087989 DOI: 10.1080/14787210.2016.1222272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Sepsis is a heterogeneous syndrome characterized by both immune hyperactivity and relative immune suppression. Biomarkers have the potential to improve recognition and management of sepsis through three main applications: diagnosis, monitoring response to treatment, and stratifying patients based on prognosis or underlying biological response. AREAS COVERED This review focuses on specific examples of well-studied, evidence-supported biomarkers, and discusses their role in clinical practice with special attention to antibiotic stewardship and cost-effectiveness. Biomarkers were selected based on availability of robust prospective trials and meta-analyses which supported their role as emerging tools to improve the clinical management of sepsis. Expert commentary: Great strides have been made in candidate sepsis biomarker discovery and testing, with the biomarkers in this review showing promise. Yet sepsis remains a dynamic illness with a great degree of biological heterogeneity - heterogeneity which may be further resolved by recently discovered gene expression-based endotypes in septic shock.
Collapse
Affiliation(s)
- Lauren Jacobs
- Department of Pediatrics, Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati OH, 45229, , Tel: 513-636-4529, Fax: 513-636-4267
| | - Hector R Wong
- Professor of Pediatrics, Director, Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, (corresponding author), Tel: 513-636-4529, Fax: 513-636-4267
| |
Collapse
|
32
|
Abstract
OBJECTIVES In this review, we will discuss risk factors for developing sepsis; the role of biomarkers in establishing an early diagnosis, in monitoring therapeutic efficacy, in stratification, and for the identification of sepsis endotypes; and the pathophysiology and management of severe sepsis and septic shock, with an emphasis on the impact of sepsis on cardiovascular function. DATA SOURCE MEDLINE and PubMed. CONCLUSIONS There is a lot of excitement in the field of sepsis research today. Scientific advances in the diagnosis and clinical staging of sepsis, as well as a personalized approach to the treatment of sepsis, offer tremendous promise for the future. However, at the same time, it is also evident that sepsis mortality has not improved enough, even with progress in our understanding of the molecular pathophysiology of sepsis.
Collapse
|
33
|
Maher KO, Chang AC, Shin A, Hunt J, Wong HR. Innovation in Pediatric Cardiac Intensive Care: An Exponential Convergence Toward Transformation of Care. World J Pediatr Congenit Heart Surg 2016; 6:588-96. [PMID: 26467873 DOI: 10.1177/2150135115606087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The word innovation is derived from the Latin noun innovatus, meaning renewal or change. Although companies such as Google and Apple are nearly synonymous with innovation, virtually all sectors in our current lives are imbued with yearn for innovation. This has led to organizational focus on innovative strategies as well as recruitment of chief innovation officers and teams in a myriad of organizations. At times, however, the word innovation seems like an overused cliché, as there are now more than 5,000 books in print with the word "innovation" in the title. More recently, innovation has garnered significant attention in health care. The future of health care is expected to innovate on a large scale in order to deliver sustained value for an overall transformative care. To date, there are no published reports on the state of the art in innovation in pediatric health care and in particular, pediatric cardiac intensive care. This report will address the issue of innovation in pediatric medicine with relevance to cardiac intensive care and delineate possible future directions and strategies in pediatric cardiac intensive care.
Collapse
Affiliation(s)
- Kevin O Maher
- Children's Hospital of Atlanta, Cardiac Intensive Care Unit, Sibley Heart Center Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anthony C Chang
- Sharon Disney Lund Medical Intelligence and Innovation Institute (MI3), Children's Hospital of Orange County, Orange, CA, USA Honors Cooperative Program in Biomedical Informatics and Artificial Intelligence, Stanford School of Medicine, Stanford, CA, USA
| | - Andrew Shin
- Cardiac Intensive Care Unit, Lucille Packard Children's Hospital, Palo Alto, CA, USA Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliette Hunt
- Cardiac Intensive Care Unit, Children's Hospital of Orange County, Orange, CA, USA Department of Pediatrics, University of California at Irvine School of Medicine, Irvine, CA, USA
| | - Hector R Wong
- Pediatric Intensive Care Unit, Cincinnati Children's Hospital, Cincinnati, OH, USA Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
34
|
Abstract
OBJECTIVES To characterize glucocorticoid receptor expression in peripheral WBCs of critically ill children using flow cytometry. DESIGN Prospective observational cohort. SETTING A university-affiliated, tertiary PICU. PATIENTS Fifty-two critically ill children. INTERVENTIONS Samples collected for measurement of glucocorticoid receptor expression and parallel cortisol levels. MEASUREMENTS AND MAIN RESULTS Subjects with cardiovascular failure had significantly lower glucocorticoid receptor expression both in CD4 lymphocytes (mean fluorescence intensity, 522 [354-787] vs 830 [511-1,219]; p = 0.036) and CD8 lymphocytes (mean fluorescence intensity, 686 [350-835] vs 946 [558-1,511]; p = 0.019) compared with subjects without cardiovascular failure. Subjects in the upper 50th percentile of Pediatric Risk of Mortality III scores and organ failure also had significantly lower glucocorticoid receptor expression in CD4 and CD8 lymphocytes. There was no linear correlation between cortisol concentrations and glucocorticoid receptor expression. CONCLUSIONS Our study suggests that patients with shock and increased severity of illness have lower glucocorticoid receptor expression in CD4 and CD8 lymphocytes. Glucocorticoid receptor expression does not correlate well with cortisol levels. Future studies could focus on studying glucocorticoid receptor expression variability and isoform distribution in the pediatric critically ill population as well as on different strategies to optimize glucocorticoid response.
Collapse
|
35
|
Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, Weiss SL, Fitzgerald J, Checchia PA, Meyer K, Shanley TP, Quasney M, Hall M, Gedeit R, Freishtat RJ, Nowak J, Shekhar RS, Gertz S, Dawson E, Howard K, Harmon K, Beckman E, Frank E, Lindsell CJ. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med 2015; 191:309-15. [PMID: 25489881 DOI: 10.1164/rccm.201410-1864oc] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
RATIONALE Using microarray data, we previously identified gene expression-based subclasses of septic shock with important phenotypic differences. The subclass-defining genes correspond to adaptive immunity and glucocorticoid receptor signaling. Identifying the subclasses in real time has theranostic implications, given the potential for immune-enhancing therapies and controversies surrounding adjunctive corticosteroids for septic shock. OBJECTIVES To develop and validate a real-time subclassification method for septic shock. METHODS Gene expression data for the 100 subclass-defining genes were generated using a multiplex messenger RNA quantification platform (NanoString nCounter) and visualized using gene expression mosaics. Study subjects (n = 168) were allocated to the subclasses using computer-assisted image analysis and microarray-based reference mosaics. A gene expression score was calculated to reduce the gene expression patterns to a single metric. The method was tested prospectively in a separate cohort (n = 132). MEASUREMENTS AND MAIN RESULTS The NanoString-based data reproduced two septic shock subclasses. As previously, one subclass had decreased expression of the subclass-defining genes. The gene expression score identified this subclass with an area under the curve of 0.98 (95% confidence interval [CI95] = 0.96-0.99). Prospective testing of the subclassification method corroborated these findings. Allocation to this subclass was independently associated with mortality (odds ratio = 2.7; CI95 = 1.2-6.0; P = 0.016), and adjunctive corticosteroids prescribed at physician discretion were independently associated with mortality in this subclass (odds ratio = 4.1; CI95 = 1.4-12.0; P = 0.011). CONCLUSIONS We developed and tested a gene expression-based classification method for pediatric septic shock that meets the time constraints of the critical care environment, and can potentially inform therapeutic decisions.
Collapse
Affiliation(s)
- Hector R Wong
- 1 Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dix A, Hünniger K, Weber M, Guthke R, Kurzai O, Linde J. Biomarker-based classification of bacterial and fungal whole-blood infections in a genome-wide expression study. Front Microbiol 2015; 6:171. [PMID: 25814982 PMCID: PMC4356159 DOI: 10.3389/fmicb.2015.00171] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/15/2015] [Indexed: 01/11/2023] Open
Abstract
Sepsis is a clinical syndrome that can be caused by bacteria or fungi. Early knowledge on the nature of the causative agent is a prerequisite for targeted anti-microbial therapy. Besides currently used detection methods like blood culture and PCR-based assays, the analysis of the transcriptional response of the host to infecting organisms holds great promise. In this study, we aim to examine the transcriptional footprint of infections caused by the bacterial pathogens Staphylococcus aureus and Escherichia coli and the fungal pathogens Candida albicans and Aspergillus fumigatus in a human whole-blood model. Moreover, we use the expression information to build a random forest classifier to classify if a sample contains a bacterial, fungal, or mock-infection. After normalizing the transcription intensities using stably expressed reference genes, we filtered the gene set for biomarkers of bacterial or fungal blood infections. This selection is based on differential expression and an additional gene relevance measure. In this way, we identified 38 biomarker genes, including IL6, SOCS3, and IRG1 which were already associated to sepsis by other studies. Using these genes, we trained the classifier and assessed its performance. It yielded a 96% accuracy (sensitivities >93%, specificities >97%) for a 10-fold stratified cross-validation and a 92% accuracy (sensitivities and specificities >83%) for an additional test dataset comprising Cryptococcus neoformans infections. Furthermore, the classifier is robust to Gaussian noise, indicating correct class predictions on datasets of new species. In conclusion, this genome-wide approach demonstrates an effective feature selection process in combination with the construction of a well-performing classification model. Further analyses of genes with pathogen-dependent expression patterns can provide insights into the systemic host responses, which may lead to new anti-microbial therapeutic advances.
Collapse
Affiliation(s)
- Andreas Dix
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany
| | - Kerstin Hünniger
- Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany
| | - Michael Weber
- Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany
| | - Reinhard Guthke
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany
| | - Oliver Kurzai
- Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany
| | - Jörg Linde
- Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute Jena, Germany
| |
Collapse
|
37
|
Weiss SL, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Shanley TP, Bigham MT, Fitzgerald J, Banschbach S, Beckman E, Howard K, Frank E, Harmon K, Wong HR. Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:623. [PMID: 25410281 PMCID: PMC4247726 DOI: 10.1186/s13054-014-0623-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/28/2014] [Indexed: 01/09/2023]
Abstract
Introduction Increasing evidence supports a role for mitochondrial dysfunction in organ injury and immune dysregulation in sepsis. Although differential expression of mitochondrial genes in blood cells has been reported for several diseases in which bioenergetic failure is a postulated mechanism, there are no data about the blood cell mitochondrial transcriptome in pediatric sepsis. Methods We conducted a focused analysis using a multicenter genome-wide expression database of 180 children ≤10 years of age with septic shock and 53 healthy controls. Using total RNA isolated from whole blood within 24 hours of PICU admission for septic shock, we evaluated 296 nuclear-encoded mitochondrial genes using a false discovery rate of 1%. A series of bioinformatic approaches were applied to compare differentially expressed genes across previously validated gene expression-based subclasses (groups A, B, and C) of pediatric septic shock. Results In total, 118 genes were differentially regulated in subjects with septic shock compared to healthy controls, including 48 genes that were upregulated and 70 that were downregulated. The top scoring canonical pathway was oxidative phosphorylation, with general downregulation of the 51 genes corresponding to the electron transport system (ETS). The top two gene networks were composed primarily of mitochondrial ribosomal proteins highly connected to ETS complex I, and genes encoding for ETS complexes I, II, and IV that were highly connected to the peroxisome proliferator activated receptor (PPAR) family. There were 162 mitochondrial genes differentially regulated between groups A, B, and C. Group A, which had the highest maximum number of organ failures and mortality, exhibited a greater downregulation of mitochondrial genes compared to groups B and C. Conclusions Based on a focused analysis of a pediatric septic shock transcriptomic database, nuclear-encoded mitochondrial genes were differentially regulated early in pediatric septic shock compared to healthy controls, as well as across genotypic and phenotypic distinct pediatric septic shock subclasses. The nuclear genome may be an important mechanism contributing to alterations in mitochondrial bioenergetic function and outcomes in pediatric sepsis. Electronic supplementary material The online version of this article (doi:10.1186/s13054-014-0623-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott L Weiss
- Division of Critical Care Medicine, Department of Anesthesia and Critical Care, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA. .,Center for Resuscitation Science, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Natalie Z Cvijanovich
- UCSF Benioff Children's Hospital Oakland, 1411 East 31st Street, Oakland, CA, 94602, USA.
| | - Geoffrey L Allen
- Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO, 64108, USA.
| | - Neal J Thomas
- Penn State Children's Hospital, 500 University Drive, Hershey, PA, 17033, USA.
| | - Robert J Freishtat
- Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC, 20010, USA.
| | - Nick Anas
- Children's Hospital of Orange County, 1201 W La Veta Avenue, Orange, CA, 92868, USA.
| | - Keith Meyer
- Miami Children's Hospital, 3100 SW 62nd Avenue, Miami, FL, 33155, USA.
| | - Paul A Checchia
- Texas Children's Hospital, 6621 Fannin Street, Houston, TX, 77030, USA.
| | - Thomas P Shanley
- CS Mott Children's Hospital at the University of Michigan, 1540 E Hospital Drive, Ann Arbor, MI, 48109, USA.
| | - Michael T Bigham
- Akron Children's Hospital, 1 Perkins Square, Akron, OH, 44302, USA.
| | - Julie Fitzgerald
- Division of Critical Care Medicine, Department of Anesthesia and Critical Care, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, 3620 Hamilton Walk, Philadelphia, PA, 19104, USA.
| | - Sharon Banschbach
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA.
| | - Eileen Beckman
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA.
| | - Kelli Howard
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA.
| | - Erin Frank
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA.
| | - Kelli Harmon
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA.
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 2005, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
| |
Collapse
|
38
|
Atkinson SJ, Wong HR. Identifying critically ill patients who may benefit from adjunctive corticosteroids: not as easy as we thought. Pediatr Crit Care Med 2014; 15:769-71. [PMID: 25280145 PMCID: PMC4187221 DOI: 10.1097/pcc.0000000000000203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sarah J. Atkinson
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH,Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH
| | - Hector R. Wong
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
39
|
Wong HR, Cvijanovich NZ, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Weiss SL, Shanley TP, Bigham MT, Banschbach S, Beckman E, Harmon K, Zimmerman JJ. Corticosteroids are associated with repression of adaptive immunity gene programs in pediatric septic shock. Am J Respir Crit Care Med 2014; 189:940-6. [PMID: 24650276 DOI: 10.1164/rccm.201401-0171oc] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RATIONALE Corticosteroids are prescribed commonly for patients with septic shock, but their use remains controversial and concerns remain regarding side effects. OBJECTIVES To determine the effect of adjunctive corticosteroids on the genomic response of pediatric septic shock. METHODS We retrospectively analyzed an existing transcriptomic database of pediatric septic shock. Subjects receiving any formulation of systemic corticosteroids at the time of blood draw for microarray analysis were classified in the septic shock corticosteroid group. We compared normal control subjects (n = 52), a septic shock no corticosteroid group (n = 110), and a septic shock corticosteroid group (n = 70) using analysis of variance. Genes differentially regulated between the no corticosteroid group and the corticosteroid group were analyzed using Ingenuity Pathway Analysis. MEASUREMENTS AND MAIN RESULTS The two study groups did not differ with respect to illness severity, organ failure burden, mortality, or mortality risk. There were 319 gene probes differentially regulated between the no corticosteroid group and the corticosteroid group. These genes corresponded predominately to adaptive immunity-related signaling pathways, and were down-regulated relative to control subjects. Notably, the degree of down-regulation was significantly greater in the corticosteroid group, compared with the no corticosteroid group. A similar pattern was observed for genes corresponding to the glucocorticoid receptor signaling pathway. CONCLUSIONS Administration of corticosteroids in pediatric septic shock is associated with additional repression of genes corresponding to adaptive immunity. These data should be taken into account when considering the benefit to risk ratio of adjunctive corticosteroids for septic shock.
Collapse
Affiliation(s)
- Hector R Wong
- 1 Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Post-ICU admission fluid balance and pediatric septic shock outcomes: a risk-stratified analysis. Crit Care Med 2014; 42:397-403. [PMID: 24145842 DOI: 10.1097/ccm.0b013e3182a64607] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Observed associations between fluid balance and septic shock outcomes are likely confounded by initial mortality risk. We conducted a risk-stratified analysis of the association between post-ICU admission fluid balance and pediatric septic shock outcomes. DESIGN Retrospective analysis of an ongoing multicenter pediatric septic shock clinical and biological database. SETTING Seventeen PICUs in the United States. PATIENTS Three hundred and seventeen children with septic shock. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We stratified subjects into three mortality risk categories (low, intermediate, and high) using a validated biomarker-based stratification tool. Within each category, we assessed three fluid balance variables: total fluid intake/kg/d during the first 24 hours, percent positive fluid balance during the first 24 hours, and cumulative percent positive fluid balance up to 7 days. We used logistic regression to estimate the effect of fluid balance on the odds of 28-day mortality, and on complicated course, which we defined as either death within 28 days or persistence of two or more organ failures at 7 days. There were 40 deaths, and 91 subjects had a complicated course. Increased cumulative percent positive fluid balance was associated with mortality in the low-risk cohort (n = 204; odds ratio, 1.035; 95% CI, 1.004-1.066) but not in the intermediate- and high-risk cohorts. No other associations with mortality were observed. Fluid intake, percent positive fluid balance in the first 24 hours, and cumulative percent positive fluid balance were all associated with increased odds of a complicated course in the low-risk cohort but not in the intermediate- and high-risk cohorts. CONCLUSIONS When stratified for mortality risk, increased fluid intake and positive fluid balance after ICU admission are associated with worse outcomes in pediatric septic shock patients with a low initial mortality risk but not in patients at moderate or high mortality risk.
Collapse
|
41
|
Maslove DM, Wong HR. Gene expression profiling in sepsis: timing, tissue, and translational considerations. Trends Mol Med 2014; 20:204-13. [PMID: 24548661 DOI: 10.1016/j.molmed.2014.01.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 01/15/2023]
Abstract
Sepsis is a complex inflammatory response to infection. Microarray-based gene expression studies of sepsis have illuminated the complex pathogen recognition and inflammatory signaling pathways that characterize sepsis. More recently, gene expression profiling has been used to identify diagnostic and prognostic gene signatures, as well as novel therapeutic targets. Studies in pediatric cohorts suggest that transcriptionally distinct subclasses might account for some of the heterogeneity seen in sepsis. Time series analyses have pointed to rapid and dynamic shifts in transcription patterns associated with various phases of sepsis. These findings highlight current challenges in sepsis knowledge translation, including the need to adapt complex and time-consuming whole-genome methods for use in the intensive care unit environment, where rapid diagnosis and treatment are essential.
Collapse
Affiliation(s)
- David M Maslove
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Research Foundation, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
42
|
Skibsted S, Bhasin MK, Aird WC, Shapiro NI. Bench-to-bedside review: future novel diagnostics for sepsis - a systems biology approach. Crit Care 2013; 17:231. [PMID: 24093155 PMCID: PMC4057467 DOI: 10.1186/cc12693] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The early, accurate diagnosis and risk stratification of sepsis remains an important challenge in the critically ill. Since traditional biomarker strategies have not yielded a gold standard marker for sepsis, focus is shifting towards novel strategies that improve assessment capabilities. The combination of technological advancements and information generated through the human genome project positions systems biology at the forefront of biomarker discovery. While previously available, developments in the technologies focusing on DNA, gene expression, gene regulatory mechanisms, protein and metabolite discovery have made these tools more feasible to implement and less costly, and they have taken on an enhanced capacity such that they are ripe for utilization as tools to advance our knowledge and clinical research. Medicine is in a genome-level era that can leverage the assessment of thousands of molecular signals beyond simply measuring selected circulating proteins. Genomics is the study of the entire complement of genetic material of an individual. Epigenetics is the regulation of gene activity by reversible modifications of the DNA. Transcriptomics is the quantification of the relative levels of messenger RNA for a large number of genes in specific cells or tissues to measure differences in the expression levels of different genes, and the utilization of patterns of differential gene expression to characterize different biological states of a tissue. Proteomics is the large-scale study of proteins. Metabolomics is the study of the small molecule profiles that are the terminal downstream products of the genome and consists of the total complement of all low-molecular-weight molecules that cellular processes leave behind. Taken together, these individual fields of study may be linked during a systems biology approach. There remains a valuable opportunity to deploy these technologies further in human research. The techniques described in this paper not only have the potential to increase the spectrum of diagnostic and prognostic biomarkers in sepsis, but they may also enable the discovery of new disease pathways. This may in turn lead us to improved therapeutic targets. The objective of this paper is to provide an overview and basic framework for clinicians and clinical researchers to better understand the 'omics technologies' to enhance further use of these valuable tools.
Collapse
Affiliation(s)
- Simon Skibsted
- Department of Emergency Medicine and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, 99 Brookline Street, Boston, MA 02215, USA
| | - Manoj K Bhasin
- Beth Israel Deaconess Medical Center Genomics and Core, 99 Brookline Avenue, Boston, MA 02115, USA
| | - William C Aird
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, 99 Brookline Street, Boston, MA 02215, USA
| | - Nathan I Shapiro
- Department of Emergency Medicine and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, 99 Brookline Street, Boston, MA 02215, USA
| |
Collapse
|
43
|
Abstract
For nearly a decade, our research group has had the privilege of developing and mining a multicenter, microarray-based, genome-wide expression database of critically ill children (≤10 y of age) with septic shock. Using bioinformatic and systems biology approaches, the expression data generated through this discovery-oriented, exploratory approach have been leveraged for a variety of objectives, which are reviewed here. Fundamental observations include widespread repression of gene programs corresponding to the adaptive immune system and biologically significant differential patterns of gene expression across developmental age groups. The data have also identified gene expression-based subclasses of pediatric septic shock having clinically relevant phenotypic differences. The data have also been leveraged for the discovery of novel therapeutic targets, as well as for the discovery and development of novel stratification and diagnostic biomarkers. Almost a decade of genome-wide expression profiling in pediatric septic shock is now demonstrating tangible results. The studies have progressed from an initial discovery-oriented and exploratory phase to a new phase in which the data are being translated and applied to address several areas of clinical need.
Collapse
Affiliation(s)
- Hector R. Wong
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center and Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
44
|
Kwan A, Hubank M, Rashid A, Klein N, Peters MJ. Transcriptional instability during evolving sepsis may limit biomarker based risk stratification. PLoS One 2013; 8:e60501. [PMID: 23544148 PMCID: PMC3609793 DOI: 10.1371/journal.pone.0060501] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
Background Sepsis causes extensive morbidity and mortality in children worldwide. Prompt recognition and timely treatment of sepsis is critical in reducing morbidity and mortality. Genomic approaches are used to discover novel pathways, therapeutic targets and biomarkers. These may facilitate diagnosis and risk stratification to tailor treatment strategies. Objective To investigate the temporal gene expression during the evolution of sepsis induced multi-organ failure in response to a single organism, Neisseria meningitidis, in previously healthy children. Method RNA was extracted from serial blood samples (6 time points over 48 hours from presentation) from five critically ill children with meningococcal sepsis. Extracted RNA was hybridized to Affymetrix arrays. The RNA underwent strict quality control and standardized quantitation. Gene expression results were analyzed using GeneSpring software and Ingenuity Pathway Analysis. Result A marked variability in differential gene expression was observed between time points and between patients revealing dynamic expression changes during the evolution of sepsis. While there was evidence of time-dependent changes in expected gene networks including those involving immune responses and inflammatory pathways, temporal variation was also evident in specific “biomarkers” that have been proposed for diagnostic and risk stratification functions. The extent and nature of this variability was not readily explained by clinical phenotype. Conclusion This is the first study of its kind detailing extensive expression changes in children during the evolution of sepsis. This highlights a limitation of static or single time point biomarker estimation. Serial estimations or more comprehensive network approaches may be required to optimize risk stratification in complex, time-critical conditions such as evolving sepsis.
Collapse
Affiliation(s)
- Antonia Kwan
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, United Kingdom
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Mike Hubank
- Molecular Haematology & Cancer Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Asrar Rashid
- Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Nigel Klein
- Infectious Diseases and Microbiology Unit, Institute of Child Health, University College London, London, United Kingdom
| | - Mark J. Peters
- Portex Unit for Paediatric Critical Care, Institute of Child Health, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Abstract
Sepsis remains an important challenge in pediatric critical care medicine. This review provides an appraisal of adjunctive therapies for sepsis and highlights opportunities for meeting selected challenges in the field. Future clinical studies should address long-term and functional outcomes as well as acute outcomes. Potential adjunctive therapies such as corticosteroids, hemofiltration, hemoadsorption, and plasmapheresis may have important roles, but still require formal and more rigorous testing by way of clinical trials. Finally, the design of future clinical trials should consider novel approaches for stratifying outcome risks as a means of improving the risk-to-benefit ratio of experimental therapies.
Collapse
Affiliation(s)
- William Hanna
- Division of Critical Care Medicine, Cincinnati Children's Hospital Research Foundation, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
46
|
Wong HR, Cvijanovich NZ, Hall M, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Lin R, Bigham MT, Sen A, Nowak J, Quasney M, Henricksen JW, Chopra A, Banschbach S, Beckman E, Harmon K, Lahni P, Shanley TP. Interleukin-27 is a novel candidate diagnostic biomarker for bacterial infection in critically ill children. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R213. [PMID: 23107287 PMCID: PMC3682317 DOI: 10.1186/cc11847] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/26/2012] [Indexed: 02/16/2023]
Abstract
Introduction Differentiating between sterile inflammation and bacterial infection in critically ill patients with fever and other signs of the systemic inflammatory response syndrome (SIRS) remains a clinical challenge. The objective of our study was to mine an existing genome-wide expression database for the discovery of candidate diagnostic biomarkers to predict the presence of bacterial infection in critically ill children. Methods Genome-wide expression data were compared between patients with SIRS having negative bacterial cultures (n = 21) and patients with sepsis having positive bacterial cultures (n = 60). Differentially expressed genes were subjected to a leave-one-out cross-validation (LOOCV) procedure to predict SIRS or sepsis classes. Serum concentrations of interleukin-27 (IL-27) and procalcitonin (PCT) were compared between 101 patients with SIRS and 130 patients with sepsis. All data represent the first 24 hours of meeting criteria for either SIRS or sepsis. Results Two hundred twenty one gene probes were differentially regulated between patients with SIRS and patients with sepsis. The LOOCV procedure correctly predicted 86% of the SIRS and sepsis classes, and Epstein-Barr virus-induced gene 3 (EBI3) had the highest predictive strength. Computer-assisted image analyses of gene-expression mosaics were able to predict infection with a specificity of 90% and a positive predictive value of 94%. Because EBI3 is a subunit of the heterodimeric cytokine, IL-27, we tested the ability of serum IL-27 protein concentrations to predict infection. At a cut-point value of ≥5 ng/ml, serum IL-27 protein concentrations predicted infection with a specificity and a positive predictive value of >90%, and the overall performance of IL-27 was generally better than that of PCT. A decision tree combining IL-27 and PCT improved overall predictive capacity compared with that of either biomarker alone. Conclusions Genome-wide expression analysis has provided the foundation for the identification of IL-27 as a novel candidate diagnostic biomarker for predicting bacterial infection in critically ill children. Additional studies will be required to test further the diagnostic performance of IL-27. The microarray data reported in this article have been deposited in the Gene Expression Omnibus under accession number GSE4607.
Collapse
|
47
|
Maslove DM, Tang BM, McLean AS. Identification of sepsis subtypes in critically ill adults using gene expression profiling. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R183. [PMID: 23036193 PMCID: PMC3682285 DOI: 10.1186/cc11667] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 10/04/2012] [Indexed: 12/16/2022]
Abstract
Introduction Sepsis is a syndromic illness that has traditionally been defined by a set of broad, highly sensitive clinical parameters. As a result, numerous distinct pathophysiologic states may meet diagnostic criteria for sepsis, leading to syndrome heterogeneity. The existence of biologically distinct sepsis subtypes may in part explain the lack of actionable evidence from clinical trials of sepsis therapies. We used microarray-based gene expression data from adult patients with sepsis in order to identify molecularly distinct sepsis subtypes. Methods We used partitioning around medoids (PAM) and hierarchical clustering of gene expression profiles from neutrophils taken from a cohort of septic patients in order to identify distinct subtypes. Using the medoids learned from this cohort, we then clustered a second independent cohort of septic patients, and used the resulting class labels to evaluate differences in clinical parameters, as well as the expression of relevant pharmacogenes. Results We identified two sepsis subtypes based on gene expression patterns. Subtype 1 was characterized by increased expression of genes involved in inflammatory and Toll receptor mediated signaling pathways, as well as a higher prevalence of severe sepsis. There were differences between subtypes in the expression of pharmacogenes related to hydrocortisone, vasopressin, norepinephrine, and drotrecogin alpha. Conclusions Sepsis subtypes can be identified based on different gene expression patterns. These patterns may generate hypotheses about the underlying pathophysiology of sepsis and suggest new ways of classifying septic patients both in clinical practice, and in the design of clinical trials.
Collapse
|
48
|
Wong HR, Salisbury S, Xiao Q, Cvijanovich NZ, Hall M, Allen GL, Thomas NJ, Freishtat RJ, Anas N, Meyer K, Checchia PA, Lin R, Shanley TP, Bigham MT, Sen A, Nowak J, Quasney M, Henricksen JW, Chopra A, Banschbach S, Beckman E, Harmon K, Lahni P, Lindsell CJ. The pediatric sepsis biomarker risk model. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R174. [PMID: 23025259 PMCID: PMC3682273 DOI: 10.1186/cc11652] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The intrinsic heterogeneity of clinical septic shock is a major challenge. For clinical trials, individual patient management, and quality improvement efforts, it is unclear which patients are least likely to survive and thus benefit from alternative treatment approaches. A robust risk stratification tool would greatly aid decision-making. The objective of our study was to derive and test a multi-biomarker-based risk model to predict outcome in pediatric septic shock. METHODS Twelve candidate serum protein stratification biomarkers were identified from previous genome-wide expression profiling. To derive the risk stratification tool, biomarkers were measured in serum samples from 220 unselected children with septic shock, obtained during the first 24 hours of admission to the intensive care unit. Classification and Regression Tree (CART) analysis was used to generate a decision tree to predict 28-day all-cause mortality based on both biomarkers and clinical variables. The derived tree was subsequently tested in an independent cohort of 135 children with septic shock. RESULTS The derived decision tree included five biomarkers. In the derivation cohort, sensitivity for mortality was 91% (95% CI 70 - 98), specificity was 86% (80 - 90), positive predictive value was 43% (29 - 58), and negative predictive value was 99% (95 - 100). When applied to the test cohort, sensitivity was 89% (64 - 98) and specificity was 64% (55 - 73). In an updated model including all 355 subjects in the combined derivation and test cohorts, sensitivity for mortality was 93% (79 - 98), specificity was 74% (69 - 79), positive predictive value was 32% (24 - 41), and negative predictive value was 99% (96 - 100). False positive subjects in the updated model had greater illness severity compared to the true negative subjects, as measured by persistence of organ failure, length of stay, and intensive care unit free days. CONCLUSIONS The pediatric sepsis biomarker risk model (PERSEVERE; PEdiatRic SEpsis biomarkEr Risk modEl) reliably identifies children at risk of death and greater illness severity from pediatric septic shock. PERSEVERE has the potential to substantially enhance clinical decision making, to adjust for risk in clinical trials, and to serve as a septic shock-specific quality metric.
Collapse
|
49
|
Possible interventional therapies in severe sepsis or septic shock. ACTA ACUST UNITED AC 2012; 50:74-7. [PMID: 22769862 DOI: 10.1016/j.aat.2012.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 01/19/2023]
Abstract
For many years, basic research with relatively straightforward pathophysiologic approaches has driven clinical trials using molecules that supposedly interfere positively with inflammatory processes. However, most of these trials have failed to demonstrate any outcome benefit. Indeed, we need to revisit current paradigms and to think about the possibility that outcome may be predetermined in severe sepsis or septic shock. In addition, an early diagnosis of sepsis prior to the onset of clinical decline is also of particular interest to health practitioners because this information increases the possibilities for early and specific treatment of this life threatening condition. Indeed, the time to initiate therapy is thought to be crucial and the major determent factor in surviving sepsis. Despite substantial progress in sepsis therapy, the gap between the discovery of new effective medical molecules and their implementation in the daily clinical practice of the intensive care unit remains a major hurdle. Fortunately, ongoing research continues to provide new information on the management of sepsis, in particular, severe sepsis or septic shock. High quality and effective management tools are necessary to bring evidence-based therapy to the bedside. On this basis, new therapies could be tested to reduce mortality rates with respect to recently published studies.
Collapse
|
50
|
Abstract
OBJECTIVES Pediatric septic shock continues to be an important public health problem. Several investigative groups have applied genetic and genomic approaches as a means of identifying novel pathways and therapeutic targets, discovery of sepsis-related biomarkers, and identification of septic shock subclasses. This review will highlight studies in pediatric sepsis with a focus on gene association studies and genome-wide expression profiling. DATA SOURCES A summary of published literature involving gene association and expression profiling studies specifically involving pediatric sepsis and septic shock. SUMMARY Several polymorphisms of genes broadly involved in inflammation, immunity, and coagulation have been linked with susceptibility to sepsis, or outcome of sepsis in children. Many of these studies involve meningococcemia, and the strongest association involves a functional polymorphism of the plasminogen activator inhibitor-1 promoter region and meningococcal sepsis. Expression profiling studies in pediatric septic shock have identified zinc supplementation and inhibition of matrix metalloproteinase-8 activity as potential, novel therapeutic approaches in sepsis. Studies focused on discovery of sepsis-related biomarkers have identified interleukin-8 as a robust outcome biomarker in pediatric septic shock. Additional studies have demonstrated the feasibility and clinical relevance of gene expression-based subclassification of pediatric septic shock. CONCLUSIONS Pediatric sepsis and septic shock are increasingly being studied by genetic and genomic approaches and the accumulating data hold the promise of enhancing our future approach to this ongoing clinical problem.
Collapse
|