1
|
Shehata AM, Fares NH, Amin BH, Mahmoud AA, Mahmoud YI. Morin attenuates sepsis-induced acute kidney injury by regulating inflammatory responses, oxidative stress and tubular regeneration (morin and sepsis-induced acute kidney injury). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104543. [PMID: 39179193 DOI: 10.1016/j.etap.2024.104543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Sepsis-associated acute kidney injury (AKI) is a health complication, encompassing excessive inflammatory response, oxidative stress, and tubular necrosis; leading to kidney failure and death. Sepsis treatments are nonspecific and palliative. In this study, we evaluated the effect of morin, a flavonoid with known nephroprotective capabilities, on sepsis-induced AKI by dividing eighty male mice into: normal, morin-treated, septic, and septic mice treated with morin. Half of the groups were sacrified 3 days post sepsis induction, while the rest was sacrified on the 7th day. Treating septic mice with morin resulted in the amelioration of sepsis-associated pathophysiological renal alterations and the increase of the survival and recovery rates compared with those of septic control group. These findings indicate that morin has a therapeutic effect against sepsis-associated AKI via its anti-inflammatory, antioxidant and regenerative effects. Thus, it could be used as potential pharmacological intervention for preventing renal complications of sepsis.
Collapse
Affiliation(s)
- Aya M Shehata
- Zoology Department, Faculty of Science, Ain Shams University, Egypt.
| | - Nagui H Fares
- Zoology Department, Faculty of Science, Ain Shams University, Egypt
| | - Basma H Amin
- The Regional Centre for Mycology and Biotechnology, Al, Azhar University, Egypt
| | - Asmaa A Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Egypt
| | - Yomna I Mahmoud
- Zoology Department, Faculty of Science, Ain Shams University, Egypt
| |
Collapse
|
2
|
May CN, Ow CP, Pustovit RV, Lane DJ, Jufar AH, Trask-Marino A, Peiris RM, Gunn A, Booth LC, Plummer MP, Bellomo R, Lankadeva YR. Reversal of cerebral ischaemia and hypoxia and of sickness behaviour by megadose sodium ascorbate in ovine Gram-negative sepsis. Br J Anaesth 2024; 133:316-325. [PMID: 38960833 DOI: 10.1016/j.bja.2024.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The mechanisms by which megadose sodium ascorbate improves clinical status in experimental sepsis is unclear. We determined its effects on cerebral perfusion, oxygenation, and temperature, and plasma levels of inflammatory biomarkers, nitrates, nitrites, and ascorbate in ovine Gram-negative sepsis. METHODS Sepsis was induced by i.v. infusion of live Escherichia coli for 31 h in unanaesthetised Merino ewes instrumented with a combination sensor in the frontal cerebral cortex to measure tissue perfusion, oxygenation, and temperature. Fluid resuscitation at 23 h was followed by i.v. megadose sodium ascorbate (0.5 g kg-1 over 30 min+0.5 g kg-1 h-1 for 6.5 h) or vehicle (n=6 per group). Norepinephrine was titrated to restore mean arterial pressure (MAP) to 70-80 mm Hg. RESULTS At 23 h of sepsis, MAP (mean [sem]: 85 [2] to 64 [2] mm Hg) and plasma ascorbate (27 [2] to 15 [1] μM) decreased (both P<0.001). Cerebral ischaemia (901 [58] to 396 [40] units), hypoxia (34 [1] to 19 [3] mm Hg), and hyperthermia (39.5 [0.1]°C to 40.8 [0.1]°C) (all P<0.001) developed, accompanied by malaise and lethargy. Sodium ascorbate restored cerebral perfusion (703 [121] units], oxygenation (30 [2] mm Hg), temperature (39.2 [0.1]°C) (all PTreatment<0.05), and the behavioural state to normal. Sodium ascorbate slightly reduced the sepsis-induced increase in interleukin-6, returned VEGF-A to normal (both PGroupxTime<0.01), and increased plasma ascorbate (20 000 [300] μM; PGroup<0.001). The effects of sodium ascorbate were not reproduced by equimolar sodium bicarbonate. CONCLUSIONS Megadose sodium ascorbate rapidly reversed sepsis-induced cerebral ischaemia, hypoxia, hyperthermia, and sickness behaviour. These effects were not reproduced by an equimolar sodium load.
Collapse
Affiliation(s)
- Clive N May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia.
| | - Connie P Ow
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ruslan V Pustovit
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Darius J Lane
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Alemayehu H Jufar
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Anton Trask-Marino
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Rachel M Peiris
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Adam Gunn
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Lindsea C Booth
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Mark P Plummer
- Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Intensive Care, Royal Adelaide Hospital, Adelaide, VIC, Australia
| | - Rinaldo Bellomo
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia; Department of Intensive Care, Royal Melbourne Hospital, Melbourne, VIC, Australia; Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia; Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Yugeesh R Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Picod A, Garcia B, Van Lier D, Pickkers P, Herpain A, Mebazaa A, Azibani F. Impaired angiotensin II signaling in septic shock. Ann Intensive Care 2024; 14:89. [PMID: 38877367 PMCID: PMC11178728 DOI: 10.1186/s13613-024-01325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Recent years have seen a resurgence of interest for the renin-angiotensin-aldosterone system in critically ill patients. Emerging data suggest that this vital homeostatic system, which plays a crucial role in maintaining systemic and renal hemodynamics during stressful conditions, is altered in septic shock, ultimately leading to impaired angiotensin II-angiotensin II type 1 receptor signaling. Indeed, available evidence from both experimental models and human studies indicates that alterations in the renin-angiotensin-aldosterone system during septic shock can occur at three distinct levels: 1. Impaired generation of angiotensin II, possibly attributable to defects in angiotensin-converting enzyme activity; 2. Enhanced degradation of angiotensin II by peptidases; and/or 3. Unavailability of angiotensin II type 1 receptor due to internalization or reduced synthesis. These alterations can occur either independently or in combination, ultimately leading to an uncoupling between the renin-angiotensin-aldosterone system input and downstream angiotensin II type 1 receptor signaling. It remains unclear whether exogenous angiotensin II infusion can adequately address all these mechanisms, and additional interventions may be required. These observations open a new avenue of research and offer the potential for novel therapeutic strategies to improve patient prognosis. In the near future, a deeper understanding of renin-angiotensin-aldosterone system alterations in septic shock should help to decipher patients' phenotypes and to implement targeted interventions.
Collapse
Affiliation(s)
- Adrien Picod
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France.
| | - Bruno Garcia
- Department of Intensive Care Medicine, Centre Hospitalier Universitaire de Lille, Lille, France
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
| | - Dirk Van Lier
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, Brussels, Belgium
- Department of Intensive Care Medicine, St. Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexandre Mebazaa
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France
- Department of Anesthesiology, Burns and Critical Care, Hopitaux Saint-Louis-Lariboisière, AP-HP, Paris, France
| | - Feriel Azibani
- INSERM, UMR-S 942 MASCOT-Université Paris-Cité, Paris, France
| |
Collapse
|
4
|
Fanous MS, de la Cruz JE, Michael OS, Afolabi JM, Kumar R, Adebiyi A. EARLY FLUID PLUS NOREPINEPHRINE RESUSCITATION DIMINISHES KIDNEY HYPOPERFUSION AND INFLAMMATION IN SEPTIC NEWBORN PIGS. Shock 2024; 61:885-893. [PMID: 38662580 PMCID: PMC11251746 DOI: 10.1097/shk.0000000000002343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Sepsis is the most frequent risk factor for acute kidney injury (AKI) in critically ill infants. Sepsis-induced dysregulation of kidney microcirculation in newborns is unresolved. The objective of this study was to use the translational swine model to evaluate changes in kidney function during the early phase of sepsis in newborns and the impact of fluid plus norepinephrine resuscitation. Newborn pigs (3-7-day-old) were allocated randomly to three groups: 1) sham, 2) sepsis (cecal ligation and puncture) without subsequent resuscitation, and 3) sepsis with lactated Ringer plus norepinephrine resuscitation. All animals underwent standard anesthesia and mechanical ventilation. Cardiac output and glomerular filtration rate were measured noninvasively. Mean arterial pressure, total renal blood flow, cortical perfusion, medullary perfusion, and medullary tissue oxygen tension (mtPO 2 ) were determined for 12 h. Cecal ligation and puncture decreased mean arterial pressure and cardiac output by more than 50%, with a proportional increase in renal vascular resistance and a 60-80% reduction in renal blood flow, cortical perfusion, medullary perfusion, and mtPO 2 compared to sham. Cecal ligation and puncture also decreased glomerular filtration rate by ~79% and increased AKI biomarkers. Isolated foci of tubular necrosis were observed in the septic piglets. Except for mtPO 2 , changes in all these parameters were ameliorated in resuscitated piglets. Resuscitation also attenuated sepsis-induced increases in the levels of plasma C-reactive protein, proinflammatory cytokines, lactate dehydrogenase, alanine transaminase, aspartate aminotransferase, and renal NLRP3 inflammasome. These data suggest that newborn pigs subjected to cecal ligation and puncture develop hypodynamic septic AKI. Early implementation of resuscitation lessens the degree of inflammation, AKI, and liver injury.
Collapse
Affiliation(s)
- Mina S. Fanous
- Stormont Vail Pediatric Critical Care, Topeka, Kansas
- Department of Physiology, University of TN Health Science Center, Memphis, Tennessee
| | - Julia E. de la Cruz
- Department of Physiology, University of TN Health Science Center, Memphis, Tennessee
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Olugbenga S. Michael
- Department of Physiology, University of TN Health Science Center, Memphis, Tennessee
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Jeremiah M. Afolabi
- Department of Physiology, University of TN Health Science Center, Memphis, Tennessee
| | - Ravi Kumar
- Department of Physiology, University of TN Health Science Center, Memphis, Tennessee
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Adebowale Adebiyi
- Department of Physiology, University of TN Health Science Center, Memphis, Tennessee
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- NextGen Precision Health, University of Missouri, Columbia, Missouri
- Department of Anesthesiology and Perioperative Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
5
|
Zhu W, Ou Y, Wang C, An R, Lai J, Shen Y, Ye X, Wang H. A neutrophil elastase inhibitor, sivelestat, attenuates sepsis-induced acute kidney injury by inhibiting oxidative stress. Heliyon 2024; 10:e29366. [PMID: 38638960 PMCID: PMC11024609 DOI: 10.1016/j.heliyon.2024.e29366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024] Open
Abstract
Background Sivelestat, a selective inhibitor of neutrophil elastase (NE), can mitigate sepsis-related acute lung injury. However, the role of sivelestat in inhibiting oxidative stress and attenuating sepsis-related acute kidney injury (AKI) remains unclear. Here, we reported the effects of sivelestat against oxidative stress-induced AKI by suppressing the production of oxidative stress indicators. Materials and methods A male Sprague-Dawley rat model of sepsis was established by cecal ligation and puncture (CLP). Sivelestat or normal saline was administered into jugular vein with a sustained-release drug delivery system. Indicators of inflammation and AKI, including white blood cells (WBC), neutrophils, lymphocytes, C-reactive proteins (CRP), procalcitonin (PCT), blood urea nitrogen (BUN), creatinine (Cr) and uric acid (UA), were assessed at 24 h post-sivelestat treatment. Indicators of liver injury, including direct bilirubin (DBIL), indirect bilirubin (IBIL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), were also assessed at 24 h post-sivelestat treatment. Indicators of oxidative stress, including superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px), were assessed at 12 h and 24 h post-sivelestat treatment. At 24 h post-sivelestat treatment, H&E staining of kidney and liver tissue was performed to observe pathological alterations. Results At 24 h post normal saline or sivelestat (0.2 g/kg body weight) treatment, WBC, neutrophil, CRP, PCT, MDA, BUN, Cr, UA, AST, ALT, DBIL and IBIL were increased, while SOD and GSH-Px were decreased, in septic rats treated with normal saline compared with that in non-septic rats treated with normal saline (all p < 0.05). The changes of these indicators were reversed in septic rats treated with sivelestat compared with that in septic rats treated with normal saline (all p < 0.05). Similar results were found regarding the levels of oxidative stress indicators at 12 h post-sivelestat treatment. The degenerative histopathological changes in both kidney and liver tissues were ameliorated upon sivelestat treatment. Conclusions Sivelestat plays a protective role in sepsis-related AKI by inhibiting oxidative stress. Our study reveals a possible therapeutic potential of sivelestat for oxidative stress-induced AKI.
Collapse
Affiliation(s)
- Wei Zhu
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Yingwei Ou
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Chunnian Wang
- Ningbo Clinical Pathology Diagnosis Center, Ningbo 315000, Zhejiang, China
| | - Rongcheng An
- Emergency and Critical Care Center, Department of Emergency Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Junmei Lai
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Ye Shen
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Xiangming Ye
- Rehabilitation Medicine Center, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Intensive rehabilitation unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Haochu Wang
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
6
|
Li L, Ling Z, Wang X, Zhang X, Li Y, Gao G. Proteomics-based screening of AKR1B1 as a therapeutic target and validation study for sepsis-associated acute kidney injury. PeerJ 2024; 12:e16709. [PMID: 38188141 PMCID: PMC10768659 DOI: 10.7717/peerj.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Background Sepsis and sepsis-associated acute kidney injury (SA-AKI) pose significant global health challenges, necessitating the development of innovative therapeutic strategies. Dysregulated protein expression has been implicated in the initiation and progression of sepsis and SA-AKI. Identifying potential protein targets and modulating their expression is crucial for exploring alternative therapies. Method We established an SA-AKI rat model using cecum ligation perforation (CLP) and employed differential proteomic techniques to identify protein expression variations in kidney tissues. Aldose reductase (AKR1B1) emerged as a promising target. The SA-AKI rat model received treatment with the aldose reductase inhibitor (ARI), epalrestat. Blood urea nitrogen (BUN) and creatinine (CRE) levels, as well as IL-1β, IL-6 and TNF-α levels in the serum and kidney tissues, were monitored. Hematoxylin-eosin (H-E) staining and a pathological damage scoring scale assessed renal tissue damage, while protein blotting determined PKC (protein kinase C)/NF-κB pathway protein expression. Result Differential proteomics revealed significant downregulation of seven proteins and upregulation of 17 proteins in the SA-AKI rat model renal tissues. AKR1B1 protein expression was notably elevated, confirmed by Western blot. ARI prophylactic administration and ARI treatment groups exhibited reduced renal injury, low BUN and CRE levels and decreased IL-1β, IL-6 and TNF-α levels compared to the CLP group. These changes were statistically significant (P < 0.05). AKR1B1, PKC-α, and NF-κB protein expression levels were also lowered in the ARI prophylactic administration and ARI treatment groups compared to the CLP group (P < 0.05). Conclusions Epalrestat appeared to inhibit the PKC/NF-κB inflammatory pathway by inhibiting AKR1B1, resulting in reduced inflammatory cytokine levels in renal tissues and blood. This mitigated renal tissue injuries and improved the systemic inflammatory response in the severe sepsis rat model. Consequently, AKR1B1 holds promise as a target for treating sepsis-associated acute kidney injuries.
Collapse
Affiliation(s)
- Lei Li
- Intensive Care Unit, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Zaiqin Ling
- Department of Tubercular Medicine, Shandong Public Health Clinical Center, Shandong University, Jinan, China
| | - Xingsheng Wang
- Department of Emergency, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xinxin Zhang
- Department of Emergency Medicine, Fuyang People’s Hospital of Anhui Medical University, Fuyang, China
| | - Yun Li
- Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| | - Guangsheng Gao
- Neurological Intensive Care Unit, Central Hospital Affliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Jiang W, Song L, Gong W, Zhang Y, Shi K, Liao T, Zhang C, Yu J, Zheng R. Low HDL-C can be a biomarker to predict persistent severe AKI in septic patients? A retrospective cohort study. Eur J Med Res 2023; 28:567. [PMID: 38053125 DOI: 10.1186/s40001-023-01513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
PURPOSES Low HDL-C is associated with an increased risk of sepsis-associated AKI and subsequent decline in eGFR. HDL-C possesses anti-inflammatory, antioxidant, and endothelial repair-promoting properties. The use of Apo A-I mimetic peptides, which are the main structural components of HDL-C, has been shown to improve renal function in animal models of sepsis. However, the diagnostic value of low HDL-C in persistent sepsis-associated AKI remains unclear. METHODS This is a retrospective cohort study based on MIMIC IV (V 2.2). The study population consisted of all adult septic patients admitted to the Beth Israel Deaconess Medical Center Intensive Care Unit from 2008 to 2019, with plasma HDL-C measured within 24 h of ICU admission. The primary endpoint was persistent severe sepsis-associated acute kidney injury (SA-AKI) and the secondary endpoint is kidney replacement therapy (KRT). Logistic regression was used to assess the correlation between HDL-C and persistent severe SA-AKI and KRT, and receiver operating characteristic (ROC) curve analysis was performed to evaluate predictive ability. RESULTS A total of 604 cases of SA-AKI patients were included in the analysis, among which 88 cases (14.5%) experienced persistent severe SA-AKI. The median (IQR) HDL-C level in the group with persistent severe SA-AKI was lower (33.0 [24.0-45.5]) compared to the non-persistent severe SA-AKI group (42.0 [31.0-53.0]). However, HDL-C showed poor discriminatory ability with an AUROC [95%CI] of 0.62 [0.56-0.69]. Clinical prediction models based on serum creatinine concentration, 24-h creatinine change, APSIIIscore, lactate levels, APTT, and heart rate performed well in predicting persistent severe SA-AKI with an AUROC [95%CI] of 0.876 [0.84-0.91]. However, adding HDL-C to this model did not improve predictive performance. CONCLUSIONS The plasma HDL-C measured within 24 h after admission to the ICU does not provide a good prediction for persistent severe SA-AKI, and it does not improve the clinical predictive ability compared to conventional variables.
Collapse
Affiliation(s)
- Wei Jiang
- Medical College, Yangzhou University, Yangzhou, 225001, China
- Department of Critical Care Medicine, Clinical Medicine College, Yangzhou University and Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Lin Song
- Medical College, Yangzhou University, Yangzhou, 225001, China
- Department of Critical Care Medicine, Clinical Medicine College, Yangzhou University and Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Weilei Gong
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yaosheng Zhang
- School of Clinical and Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Kerang Shi
- Medical College, Yangzhou University, Yangzhou, 225001, China
- Department of Critical Care Medicine, Clinical Medicine College, Yangzhou University and Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Ting Liao
- Medical College, Yangzhou University, Yangzhou, 225001, China
- Department of Critical Care Medicine, Clinical Medicine College, Yangzhou University and Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Chuanqing Zhang
- Medical College, Yangzhou University, Yangzhou, 225001, China
- Department of Critical Care Medicine, Clinical Medicine College, Yangzhou University and Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Jiangquan Yu
- Department of Critical Care Medicine, Clinical Medicine College, Yangzhou University and Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| | - Ruiqiang Zheng
- Department of Critical Care Medicine, Clinical Medicine College, Yangzhou University and Intensive Care Unit, Northern Jiangsu People's Hospital, Yangzhou, 225001, China.
| |
Collapse
|
8
|
Jufar AH, May CN, Booth LC, Evans RG, Cochrane AD, Marino B, Birchall I, Hood SG, McCall PR, Sanders RD, Yao ST, Ortega-Bernal V, Skene A, Bellomo R, Miles LF, Lankadeva YR. Effects of dexmedetomidine on kidney and brain tissue microcirculation and histology in ovine cardiopulmonary bypass: a randomised controlled trial. Anaesthesia 2023; 78:1481-1492. [PMID: 37880924 DOI: 10.1111/anae.16152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/27/2023]
Abstract
Cardiac surgery requiring cardiopulmonary bypass is associated with postoperative acute kidney injury and neurocognitive disorders, including delirium. Intra-operative inflammation and/or impaired tissue perfusion/oxygenation are thought to be contributors to these outcomes. It has been hypothesised that these problems may be ameliorated by the highly selective α2 -agonist, dexmedetomidine. We tested the effects of dexmedetomidine on renal and cerebral microcirculatory tissue perfusion, oxygenation and histology in a clinically relevant ovine model. Sixteen sheep were studied while conscious, after induction of anaesthesia and during 2 h of cardiopulmonary bypass. Eight sheep were allocated randomly to receive an intravenous infusion of dexmedetomidine (0.4-0.8 μg.kg-1 .h-1 ) from induction of anaesthesia to the end of cardiopulmonary bypass, and eight to receive an equivalent volume of matched placebo (0.9% sodium chloride). Commencement of cardiopulmonary bypass decreased renal medullary tissue oxygenation in the placebo group (mean (95%CI) 5.96 (4.24-7.23) to 1.56 (0.84-2.09) kPa, p = 0.001), with similar hypoxic levels observed in the dexmedetomidine group (6.33 (5.33-7.07) to 1.51 (0.33-2.39) kPa, p = 0.002). While no differences in kidney function (i.e. reduced creatinine clearance) were evident, a greater incidence of histological renal tubular injury was observed in sheep receiving dexmedetomidine (7/8 sheep) compared with placebo (2/8 sheep), p = 0.041. Graded on a semi-quantitative scale (0-3), median (IQR [range]) severity of histological renal tubular injury was higher in the dexmedetomidine group compared with placebo (1.5 (1-2 [0-3]) vs. 0 (0-0.3 [0-1]) respectively, p = 0.013). There was no difference in cerebral tissue microglial activation (neuroinflammation) between the groups. Dexmedetomidine did not reduce renal medullary hypoxia or cerebral neuroinflammation in sheep undergoing cardiopulmonary bypass.
Collapse
Affiliation(s)
- A H Jufar
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - C N May
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - L C Booth
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - R G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - A D Cochrane
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - B Marino
- Cell Saving and Perfusion Resources, Melbourne, Australia
| | - I Birchall
- Neurohistology Laboratory, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - S G Hood
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - P R McCall
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - R D Sanders
- Central Clinical School and NHMRC Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - S T Yao
- Cardiovascular Neuroscience Laboratory, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - V Ortega-Bernal
- Cardiovascular Neuroscience Laboratory, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| | - A Skene
- Department of Anatomical Pathology, Austin Health, Melbourne, Australia
| | - R Bellomo
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - L F Miles
- Department of Critical Care, University of Melbourne, Melbourne, Australia
| | - Y R Lankadeva
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| |
Collapse
|
9
|
Bejoy J, Farry JM, Qian ES, Dearing CH, Ware LB, Bastarache JA, Woodard LE. Ascorbate protects human kidney organoids from damage induced by cell-free hemoglobin. Dis Model Mech 2023; 16:dmm050342. [PMID: 37942584 PMCID: PMC10695115 DOI: 10.1242/dmm.050342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
Sepsis-associated acute kidney injury is associated with high morbidity and mortality in critically ill patients. Cell-free hemoglobin (CFH) is released into the circulation of patients with severe sepsis and the levels of CFH are independently associated with mortality. CFH treatment increased cytotoxicity in the human tubular epithelial cell line HK-2. To better model the intact kidney, we cultured human kidney organoids derived from induced pluripotent stem cells. We treated human kidney organoids grown using both three-dimensional and transwell protocols with CFH for 48 h. We found evidence for increased tubular toxicity, oxidative stress, mitochondrial fragmentation, endothelial cell injury and injury-associated transcripts compared to those of the untreated control group. To evaluate the protective effect of clinically available small molecules, we co-treated CFH-injured organoids with ascorbate (vitamin C) or acetaminophen for 48 h. We found significantly decreased toxicity, preservation of endothelial cells and reduced mitochondrial fragmentation in the group receiving ascorbate following CFH treatment. This study provides direct evidence that ascorbate or ascorbic acid protects human kidney cells from CFH-induced damage such as that in sepsis-associated acute kidney injury.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin M. Farry
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Eddie S. Qian
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Curtis H. Dearing
- Vanderbilt Experimental Research Training Inclusion Community Engagement Skills (VERTICES) program, Vanderbilt University, Nashville, TN 37232, USA
| | - Lorraine B. Ware
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Julie A. Bastarache
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| | - Lauren E. Woodard
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
- U.S. Department of Veterans Affairs, Nashville, TN 37212, USA
| |
Collapse
|
10
|
Almazmomi MA, Esmat A, Naeem A. Acute Kidney Injury: Definition, Management, and Promising Therapeutic Target. Cureus 2023; 15:e51228. [PMID: 38283512 PMCID: PMC10821757 DOI: 10.7759/cureus.51228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Acute kidney injury (AKI) is caused by a sudden loss of renal function, resulting in the build-up of waste products and a significant increase in mortality and morbidity. It is commonly diagnosed in critically ill patients, with its occurrence estimated at up to 50% in patients hospitalized in the intensive critical unit. Despite ongoing efforts, the death rate associated with AKI has remained high over the past half-century. Thus, it is critical to investigate novel therapy options for preventing the epidemic. Many studies have found that inflammation and Toll-like receptor-4 (TLR-4) activation have a significant role in the pathogenesis of AKI. Noteworthy, challenges in the search for efficient pharmacological therapy for AKI have arisen due to the multifaceted origin and complexity of the clinical history of people with the disease. This article focuses on kidney injury's epidemiology, risk factors, and pathophysiological processes. Specifically, it focuses on the role of TLRs especially type 4 in disease development.
Collapse
Affiliation(s)
- Meaad A Almazmomi
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Ahmed Esmat
- Pharmacology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
| | - Anjum Naeem
- Pharmaceutical Care Department, Ministry of National Guard - Health Affairs, Jeddah, SAU
| |
Collapse
|
11
|
Betrie AH, Ma S, Ow CPC, Peiris RM, Evans RG, Ayton S, Lane DJR, Southon A, Bailey SR, Bellomo R, May CN, Lankadeva YR. Renal arterial infusion of tempol prevents medullary hypoperfusion, hypoxia, and acute kidney injury in ovine Gram-negative sepsis. Acta Physiol (Oxf) 2023; 239:e14025. [PMID: 37548350 PMCID: PMC10909540 DOI: 10.1111/apha.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
AIM Renal medullary hypoperfusion and hypoxia precede acute kidney injury (AKI) in ovine sepsis. Oxidative/nitrosative stress, inflammation, and impaired nitric oxide generation may contribute to such pathophysiology. We tested whether the antioxidant and anti-inflammatory drug, tempol, may modify these responses. METHODS Following unilateral nephrectomy, we inserted renal arterial catheters and laser-Doppler/oxygen-sensing probes in the renal cortex and medulla. Noanesthetized sheep were administered intravenous (IV) Escherichia coli and, at sepsis onset, IV tempol (IVT; 30 mg kg-1 h-1 ), renal arterial tempol (RAT; 3 mg kg-1 h-1 ), or vehicle. RESULTS Septic sheep receiving vehicle developed renal medullary hypoperfusion (76 ± 16% decrease in perfusion), hypoxia (70 ± 13% decrease in oxygenation), and AKI (87 ± 8% decrease in creatinine clearance) with similar changes during IVT. However, RAT preserved medullary perfusion (1072 ± 307 to 1005 ± 271 units), oxygenation (46 ± 8 to 43 ± 6 mmHg), and creatinine clearance (61 ± 10 to 66 ± 20 mL min-1 ). Plasma, renal medullary, and cortical tissue malonaldehyde and medullary 3-nitrotyrosine decreased significantly with sepsis but were unaffected by IVT or RAT. Consistent with decreased oxidative/nitrosative stress markers, cortical and medullary nuclear factor-erythroid-related factor-2 increased significantly and were unaffected by IVT or RAT. However, RAT prevented sepsis-induced overexpression of cortical tissue tumor necrosis factor alpha (TNF-α; 51 ± 16% decrease; p = 0.003) and medullary Thr-495 phosphorylation of endothelial nitric oxide synthase (eNOS; 63 ± 18% decrease; p = 0.015). CONCLUSIONS In ovine Gram-negative sepsis, renal arterial infusion of tempol prevented renal medullary hypoperfusion and hypoxia and AKI and decreased TNF-α expression and uncoupling of eNOS. However, it did not affect markers of oxidative/nitrosative stress, which were significantly decreased by Gram-negative sepsis.
Collapse
Affiliation(s)
- Ashenafi H. Betrie
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Shuai Ma
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Division of Nephrology, Shanghai Ninth People's HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Connie P. C. Ow
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Rachel M. Peiris
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Roger G. Evans
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Biomedicine Discovery Institute and Department of PhysiologyMonash UniversityMelbourneVictoriaAustralia
| | - Scott Ayton
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Darius J. R. Lane
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Adam Southon
- Translational Neurodegeneration Laboratory, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
| | - Simon R. Bailey
- Faculty of Veterinary and Agricultural SciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Rinaldo Bellomo
- Department of Critical Care, Melbourne Medical SchoolThe University of MelbourneMelbourneVictoriaAustralia
- Australian and New Zealand Intensive Care Research CentreMonash UniversityMelbourneVictoriaAustralia
- Department of Intensive CareAustin HospitalMelbourneVictoriaAustralia
- Department of Intensive CareRoyal Melbourne HospitalMelbourneVictoriaAustralia
| | - Clive N. May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Department of Critical Care, Melbourne Medical SchoolThe University of MelbourneMelbourneVictoriaAustralia
| | - Yugeesh R. Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental HealthThe University of MelbourneMelbourneVictoriaAustralia
- Department of Critical Care, Melbourne Medical SchoolThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
12
|
Nguyen TC, Marini JC, Guillory B, Valladolid-Brown C, Martinez-Vargas M, Subramanyam D, Cohen D, Cirlos SC, Lam F, Stoll B, Didelija IC, Vonderohe C, Orellana R, Saini A, Pradhan S, Bashir D, Desai MS, Flores S, Virk M, Tcharmtchi H, Navaei A, Kaplan S, Lamberth L, Hulten KG, Scull BP, Allen CE, Akcan-Arikan A, Vijayan KV, Cruz MA. Pediatric Swine Model of Methicillin-Resistant Staphylococcus aureus Sepsis-Induced Coagulopathy, Disseminated Microvascular Thrombosis, and Organ Injuries. Crit Care Explor 2023; 5:e0916. [PMID: 37255626 PMCID: PMC10226618 DOI: 10.1097/cce.0000000000000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023] Open
Abstract
Sepsis-induced coagulopathy leading to disseminated microvascular thrombosis is associated with high mortality and has no existing therapy. Despite the high prevalence of Gram-positive bacterial sepsis, especially methicillin-resistant Staphylococcus aureus (MRSA), there is a paucity of published Gram-positive pediatric sepsis models. Large animal models replicating sepsis-induced coagulopathy are needed to test new therapeutics before human clinical trials. HYPOTHESIS Our objective is to develop a pediatric sepsis-induced coagulopathy swine model that last 70 hours. METHODS AND MODELS Ten 3 weeks old piglets, implanted with telemetry devices for continuous hemodynamic monitoring, were IV injected with MRSA (n = 6) (USA300, Texas Children's Hospital 1516 strain) at 1 × 109 colony forming units/kg or saline (n = 4). Fluid resuscitation was given for heart rate greater than 50% or mean arterial blood pressure less than 30% from baseline. Acetaminophen and dextrose were provided as indicated. Point-of-care complete blood count, prothrombin time (PT), activated thromboplastin time, d-dimer, fibrinogen, and specialized coagulation assays were performed at pre- and post-injection, at 0, 24, 48, 60, and 70 hours. Piglets were euthanized and necropsies performed. RESULTS Compared with the saline treated piglets (control), the septic piglets within 24 hours had significantly lower neurologic and respiratory scores. Over time, PT, d-dimer, and fibrinogen increased, while platelet counts and activities of factors V, VII, protein C, antithrombin, and a disintegrin and metalloproteinase with thrombospondin-1 motifs (13th member of the family) (ADAMTS-13) decreased significantly in septic piglets compared with control. Histopathologic examination showed minor focal organ injuries including microvascular thrombi and necrosis in the kidney and liver of septic piglets. INTERPRETATIONS AND CONCLUSIONS We established a 70-hour swine model of MRSA sepsis-induced coagulopathy with signs of consumptive coagulopathy, disseminated microvascular thrombosis, and early organ injuries with histological minor focal organ injuries. This model is clinically relevant to pediatric sepsis and can be used to study dysregulated host immune response and coagulopathy to infection, identify potential early biomarkers, and to test new therapeutics.
Collapse
Affiliation(s)
- Trung C Nguyen
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Juan C Marini
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Houston, TX
| | - Bobby Guillory
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Christian Valladolid-Brown
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Marina Martinez-Vargas
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Deepika Subramanyam
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Daniel Cohen
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Department of Pathology, Houston, TX
| | - Sonya C Cirlos
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Fong Lam
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
| | - Barbara Stoll
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Houston, TX
| | - Inka C Didelija
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Houston, TX
| | - Caitlin Vonderohe
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Houston, TX
| | - Renan Orellana
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Arun Saini
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
| | - Subhashree Pradhan
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
| | - Dalia Bashir
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Moreshwar S Desai
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Saul Flores
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Manpreet Virk
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Hossein Tcharmtchi
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Amir Navaei
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Sheldon Kaplan
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Linda Lamberth
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Kristina G Hulten
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Brooks P Scull
- Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Carl E Allen
- Division of Hematology and Oncology, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - Ayse Akcan-Arikan
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
- Division of Critical Care & Nephrology, Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, TX
| | - K Vinod Vijayan
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Miguel A Cruz
- Center for Translational Research on Inflammatory Diseases at the Michael E. DeBakey Veteran Administration Medical Center, Houston, TX
- Baylor College of Medicine, Division of Thrombosis Research, Department of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
13
|
Jin J, Chang RS, Xu S, Xia G, Wong JMJ, Fang Y, Jia P, Ding X. Aldehyde Dehydrogenase 2 Ameliorates LPS-Induced Acute Kidney Injury through Detoxification of 4-HNE and Suppression of the MAPK Pathway. J Immunol Res 2023; 2023:5513507. [PMID: 37064008 PMCID: PMC10101750 DOI: 10.1155/2023/5513507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Lipopolysaccharide (LPS)-induced septic acute kidney injury (AKI) is determined as a devastating organ dysfunction elicited by an inappropriate response to infection with high morbidity and mortality rates. Previous evidence has illustrated an indispensable role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the pathogenesis of sepsis-induced multiorgan abnormalities. Specifically, this study investigated the potential role of ALDH2 in sepsis-induced AKI. After LPS administration, we observed a significant decline in renal function, increased inflammatory cytokines, oxidative stress, 4-hydroxy-2-nonenal (4-HNE) accumulation, and apoptosis via MAPK activation in ALDH2-/- mice; in contrast, pretreatment with Alda-1 (an ALDH2 activator) alleviated the LPS-induced dysfunctions in mice. Moreover, in vitro analysis revealed that ALDH2 overexpression in mouse tubular epithelial cells (mTECs) improved the inflammatory response, oxidative stress, 4-HNE accumulation, and apoptosis via MAPK inhibition, whereas ALDH2 knockdown in mTECs aggravated these parameters via MAPK activation. Therefore, ALDH2 may protect against LPS-induced septic AKI by suppressing 4-HNE/MAPK pathway.
Collapse
Affiliation(s)
- Jifu Jin
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rebecca Suchi Chang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Sujuan Xu
- Orthopedic Research Institute of Hebei Province, Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Nephrology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guang Xia
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jennifer Ming Jen Wong
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Jia
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Fu Y, He C, Jia L, Ge C, Long L, Bai Y, Zhang N, Du Q, Shen L, Zhao H. Performance of the renal resistive index and usual clinical indicators in predicting persistent AKI. Ren Fail 2022; 44:2028-2038. [DOI: 10.1080/0886022x.2022.2147437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- You Fu
- Department of Critical Care Medicine, Hebei Medical University, Shijiazhuang City, China
- Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang City, China
| | - Cong He
- Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang City, China
| | - Lijing Jia
- Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang City, China
| | - Chen Ge
- Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang City, China
| | - Ling Long
- Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang City, China
| | - Yinxiang Bai
- Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang City, China
| | - Na Zhang
- Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang City, China
| | - Quansheng Du
- Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang City, China
| | - Limin Shen
- Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang City, China
| | - Heling Zhao
- Department of Critical Care Medicine, Hebei Medical University, Shijiazhuang City, China
- Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang City, China
| |
Collapse
|
15
|
Watchorn J, Huang D, Bramham K, Hutchings S. Decreased renal cortical perfusion, independent of changes in renal blood flow and sublingual microcirculatory impairment, is associated with the severity of acute kidney injury in patients with septic shock. Crit Care 2022; 26:261. [PMID: 36050737 PMCID: PMC9438253 DOI: 10.1186/s13054-022-04134-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
Background Reduced renal perfusion has been implicated in the development of septic AKI. However, the relative contributions of macro- and microcirculatory blood flow and the extent to which impaired perfusion is an intrinsic renal phenomenon or part of a wider systemic shock state remains unclear.
Methods Single-centre prospective longitudinal observational study was carried out. Assessments were made at Day 0, 1, 2 and 4 after ICU admission of renal cortical perfusion in 50 patients with septic shock and ten healthy volunteers using contrast-enhanced ultrasound (CEUS). Contemporaneous measurements were made using transthoracic echocardiography of cardiac output. Renal artery blood flow was calculated using velocity time integral and vessel diameter. Assessment of the sublingual microcirculation was made using handheld video microscopy. Patients were classified based on the degree of AKI: severe = KDIGO 3 v non-severe = KDIGO 0–2. Results At study enrolment, patients with severe AKI (37/50) had prolonged CEUS mean transit time (mTT) (10.2 vs. 5.5 s, p < 0.05), and reduced wash-in rate (WiR) (409 vs. 1203 au, p < 0.05) and perfusion index (PI) (485 vs. 1758 au, p < 0.05); differences persisted throughout the entire study. Conversely, there were no differences in either cardiac index, renal blood flow or renal resistive index. Sublingual microcirculatory variables were not significantly different between groups at study enrolment or at any subsequent time point. Although lactate was higher in the severe AKI group at study enrolment, these differences did not persist, and there were no differences in either ScvO2 or ScvCO2-SaCO2 between groups. Patients with severe AKI received higher doses of noradrenaline (0.34 vs. 0.21mcg/kg/min, p < 0.05). Linear regression analysis showed no correlation between mTT and cardiac index (R-0.18) or microcirculatory flow index (R-0.16). Conclusion Renal cortical hypoperfusion is a persistent feature in critically ill septic patients who develop AKI and does not appear to be caused by reductions in macrovascular renal blood flow or cardiac output. Cortical hypoperfusion appears not be associated with changes in the sublingual microcirculation, raising the possibility of a specific renal pathogenesis that may be amenable to therapeutic intervention. Trial Registration Clinical Trials.gov NCT03713307, 19 Oct 2018.
Collapse
|
16
|
Kynurenine Pathway-An Underestimated Factor Modulating Innate Immunity in Sepsis-Induced Acute Kidney Injury? Cells 2022; 11:cells11162604. [PMID: 36010680 PMCID: PMC9406744 DOI: 10.3390/cells11162604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, and it accounts for about half of the cases of acute kidney injury (AKI). Although sepsis is the most frequent cause of AKI in critically ill patients, its pathophysiological mechanisms are not well understood. Sepsis has the ability to modulate the function of cells belonging to the innate immune system. Increased activity of indoleamine 2,3-dioxygenase 1 (IDO1) and production of kynurenines are the major metabolic pathways utilized by innate immunity cells to maintain immunological tolerance. The activation of the kynurenine pathway (KP) plays a dual role in sepsis—in the early stage, the induction of IDO1 elicits strong proinflammatory effects that may lead to tissue damage and septic shock. Afterwards, depletion of tryptophan and production of kynurenines contribute to the development of immunosuppression that may cause the inability to overpower opportunistic infections. The presented review provides available data on the various interdependencies between elements of innate immunity and sepsis-induced AKI (SAKI) with particular emphasis on the immunomodulatory significance of KP in the above processes. We believe that KP activation may be one of the crucial, though underestimated, components of a deregulated host response to infection during SAKI.
Collapse
|
17
|
So BYF, Yap DYH, Chan TM. Circular RNAs in Acute Kidney Injury: Roles in Pathophysiology and Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23158509. [PMID: 35955644 PMCID: PMC9369393 DOI: 10.3390/ijms23158509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition, results in patient morbidity and mortality, and incurs considerable health care costs. Sepsis, ischaemia-reperfusion injury (IRI) and drug nephrotoxicity are the leading causes. Mounting evidence suggests that perturbations in circular RNAs (circRNAs) are observed in AKI of various aetiologies, and have pathogenic significance. Aberrant circRNA expressions can cause altered intracellular signalling, exaggerated oxidative stress, increased cellular apoptosis, excess inflammation, and tissue injury in AKI due to sepsis or IRI. While circRNAs are dysregulated in drug-induced AKI, their roles in pathogenesis are less well-characterised. CircRNAs also show potential for clinical application in diagnosis, prognostication, monitoring, and treatment. Prospective observational studies are needed to investigate the role of circRNAs in the clinical management of AKI, with special focus on the safety of therapeutic interventions targeting circRNAs and the avoidance of untoward off-target effects.
Collapse
|
18
|
The role of nitric oxide in sepsis-associated kidney injury. Biosci Rep 2022; 42:231441. [PMID: 35722824 PMCID: PMC9274646 DOI: 10.1042/bsr20220093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 01/09/2023] Open
Abstract
Sepsis is one of the leading causes of acute kidney injury (AKI), and several mechanisms including microcirculatory alterations, oxidative stress, and endothelial cell dysfunction are involved. Nitric oxide (NO) is one of the common elements to all these mechanisms. Although all three nitric oxide synthase (NOS) isoforms are constitutively expressed within the kidneys, they contribute in different ways to nitrergic signaling. While the endothelial (eNOS) and neuronal (nNOS) isoforms are likely to be the main sources of NO under basal conditions and participate in the regulation of renal hemodynamics, the inducible isoform (iNOS) is dramatically increased in conditions such as sepsis. The overexpression of iNOS in the renal cortex causes a shunting of blood to this region, with consequent medullary ischemia in sepsis. Differences in the vascular reactivity among different vascular beds may also help to explain renal failure in this condition. While most of the vessels present vasoplegia and do not respond to vasoconstrictors, renal microcirculation behaves differently from nonrenal vascular beds, displaying similar constrictor responses in control and septic conditions. The selective inhibition of iNOS, without affecting other isoforms, has been described as the ideal scenario. However, iNOS is also constitutively expressed in the kidneys and the NO produced by this isoform is important for immune defense. In this sense, instead of a direct iNOS inhibition, targeting the NO effectors such as guanylate cyclase, potassium channels, peroxynitrite, and S-nitrosothiols, may be a more interesting approach in sepsis-AKI and further investigation is warranted.
Collapse
|
19
|
Abstract
The definition of sepsis has evolved significantly over the past three decades. Today, sepsis is defined as a dysregulated host immune response to microbial invasion leading to end organ dysfunction. Septic shock is characterized by hypotension requiring vasopressors after adequate fluid resuscitation with elevated lactate. Early recognition and intervention remain hallmarks for sepsis management. We addressed the current literature and assimilated thought regarding optimum initial resuscitation of the patient with sepsis. A nuanced understanding of the physiology of lactate is provided in our review. Physiologic and practical knowledge of steroid and vasopressor therapy for sepsis is crucial and addressed. As blood purification may interest the nephrologist treating sepsis, we have also added a brief discussion of its status.
Collapse
Affiliation(s)
- Sharad Patel
- Department of Critical Care, Rowan University Cooper Medical School, Camden, New Jersey
| | - Nitin Puri
- Department of Critical Care, Cooper Hospital University Medical Center, Camden, New Jersey
| | - R Phillip Dellinger
- Department of Critical Care, Cooper Hospital University Medical Center, Camden, New Jersey
| |
Collapse
|
20
|
Chen Y, Jing H, Tang S, Liu P, Cheng Y, Fan Y, Chen H, Zhou J. Non-Coding RNAs in Sepsis-Associated Acute Kidney Injury. Front Physiol 2022; 13:830924. [PMID: 35464083 PMCID: PMC9024145 DOI: 10.3389/fphys.2022.830924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
Sepsis is a systemic inflammatory response caused by a severe infection that leads to multiple organ damage, including acute kidney injury (AKI). In intensive care units (ICU), the morbidity and mortality associated with sepsis-associated AKI (SA-AKI) are gradually increasing due to lack of effective and early detection, as well as proper treatment. Non-coding RNAs (ncRNAs) exert a regulatory function in gene transcription, RNA processing, post-transcriptional translation, and epigenetic regulation of gene expression. Evidence indicated that miRNAs are involved in inflammation and programmed cell death during the development of sepsis-associated AKI (SA-AKI). Moreover, lncRNAs and circRNAs appear to be an essential regulatory mechanism in SA-AKI. In this review, we summarized the molecular mechanism of ncRNAs in SA-AKI and discussed their potential in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yanna Chen
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Huan Jing
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Simin Tang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Pei Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ye Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Youling Fan
- Department of Anesthesiology, The First People’s Hospital of Kashgar, Xinjiang, China
- Department of Anesthesiology, The Second People’s Hospital of Panyu, Guangzhou, China
| | - Hongtao Chen
- Department of Anesthesiology, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jun Zhou,
| |
Collapse
|
21
|
Experimental models of acute kidney injury for translational research. Nat Rev Nephrol 2022; 18:277-293. [PMID: 35173348 DOI: 10.1038/s41581-022-00539-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
Preclinical models of human disease provide powerful tools for therapeutic discovery but have limitations. This problem is especially apparent in the field of acute kidney injury (AKI), in which clinical trial failures have been attributed to inaccurate modelling performed largely in rodents. Multidisciplinary efforts such as the Kidney Precision Medicine Project are now starting to identify molecular subtypes of human AKI. In addition, over the past decade, there have been developments in human pluripotent stem cell-derived kidney organoids as well as zebrafish, rodent and large animal models of AKI. These organoid and AKI models are being deployed at different stages of preclinical therapeutic development. However, the traditionally siloed, preclinical investigator-driven approaches that have been used to evaluate AKI therapeutics to date rarely account for the limitations of the model systems used and have given rise to false expectations of clinical efficacy in patients with different AKI pathophysiologies. To address this problem, there is a need to develop more flexible and integrated approaches, involving teams of investigators with expertise in a range of different model systems, working closely with clinical investigators, to develop robust preclinical evidence to support more focused interventions in patients with AKI.
Collapse
|
22
|
Li C, Wang W, Xie SS, Ma WX, Fan QW, Chen Y, He Y, Wang JN, Yang Q, Li HD, Jin J, Liu MM, Meng XM, Wen JG. The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Front Med (Lausanne) 2021; 8:796724. [PMID: 34926535 PMCID: PMC8674574 DOI: 10.3389/fmed.2021.796724] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a systemic inflammatory response syndrome caused by infection, following with acute injury to multiple organs. Sepsis-induced acute kidney injury (AKI) is currently recognized as one of the most severe complications related to sepsis. The pathophysiology of sepsis-AKI involves multiple cell types, including macrophages, vascular endothelial cells (ECs) and renal tubular epithelial cells (TECs), etc. More significantly, programmed cell death including apoptosis, necroptosis and pyroptosis could be triggered by sepsis in these types of cells, which enhances AKI progress. Moreover, the cross-talk and connections between these cells and cell death are critical for better understanding the pathophysiological basis of sepsis-AKI. Mitochondria dysfunction and oxidative stress are traditionally considered as the leading triggers of programmed cell death. Recent findings also highlight that autophagy, mitochondria quality control and epigenetic modification, which interact with programmed cell death, participate in the damage process in sepsis-AKI. The insightful understanding of the programmed cell death in sepsis-AKI could facilitate the development of effective treatment, as well as preventive methods.
Collapse
Affiliation(s)
- Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology and Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shuai-Shuai Xie
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qian-Wen Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ying Chen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan He
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qin Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan Jin
- Key Laboratory of Anti-inflammatory and Immunopharmacology (Ministry of Education), Department of Pharmacology, Anhui Medical University, Hefei, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, The Key Laboratory of Anti-Inflammatory of Immune Medicines (Ministry of Education), Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Wen L, Li Y, Li S, Hu X, Wei Q, Dong Z. Glucose Metabolism in Acute Kidney Injury and Kidney Repair. Front Med (Lausanne) 2021; 8:744122. [PMID: 34912819 PMCID: PMC8666949 DOI: 10.3389/fmed.2021.744122] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The kidneys play an indispensable role in glucose homeostasis via glucose reabsorption, production, and utilization. Conversely, aberrant glucose metabolism is involved in the onset, progression, and prognosis of kidney diseases, including acute kidney injury (AKI). In this review, we describe the regulation of glucose homeostasis and related molecular factors in kidneys under normal physiological conditions. Furthermore, we summarize recent investigations about the relationship between glucose metabolism and different types of AKI. We also analyze the involvement of glucose metabolism in kidney repair after injury, including renal fibrosis. Further research on glucose metabolism in kidney injury and repair may lead to the identification of novel therapeutic targets for the prevention and treatment of kidney diseases.
Collapse
Affiliation(s)
- Lu Wen
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Ying Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Siyao Li
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Xiaoru Hu
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Zheng Dong
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Research Department, Charlie Norwood VA Medical Center, Augusta, GA, United States
| |
Collapse
|
24
|
Zhang W, Qi R, Li T, Zhang X, Shi Y, Xu M, Zhu T. Kidney Organoids as a Novel Platform to Evaluate Lipopolysaccharide-Induced Oxidative Stress and Apoptosis in Acute Kidney Injury. Front Med (Lausanne) 2021; 8:766073. [PMID: 34912825 PMCID: PMC8666666 DOI: 10.3389/fmed.2021.766073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening syndrome. Lipopolysaccharide (LPS) is a widely used inducer for modeling SA-AKI both in vivo and in vitro. However, due to the innate complexity of the kidney architecture, the mechanisms underlying the pathogenesis of SA-AKI, as well as those involved in LPS-induced kidney injury remain to be clarified. Kidney organoids derived from human pluripotent stem cells (hPSCs) act as a model of multiple types of kidney cells in vitro and eliminate potential confounders in vivo. In the current study, we established LPS-induced kidney injury models both in vivo and in human kidney organoids. Kidney function, pathological changes, and markers of oxidative stress were evaluated with/without the presence of methylprednisolone (MP) treatment both in vivo and in vitro. The extent of LPS-induced oxidative stress and apoptosis in kidney organoids was further investigated in vitro. LPS-induced acute kidney injury in mice, together with pathological changes and increased oxidative stress, as well as enhanced apoptosis in kidney cells were evaluated. These phenomena were ameliorated by MP treatment. Experiments in kidney organoids showed that the LPS-induced apoptotic effects occurred mainly in podocytes and proximal tubular cells. Our experiments demonstrated the efficacy of using kidney organoids as a solid platform to study LPS-induced kidney injury. LPS induced oxidative stress as well as apoptosis in kidney cells independently of changes in perfusion or immune cell infiltration. MP treatment partially alleviated LPS-induced injury by reducing kidney cell oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruochen Qi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tingting Li
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuepeng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| |
Collapse
|
25
|
Manrique-Caballero CL, Kellum JA, Gómez H, De Franco F, Giacchè N, Pellicciari R. Innovations and Emerging Therapies to Combat Renal Cell Damage: NAD + As a Drug Target. Antioxid Redox Signal 2021; 35:1449-1466. [PMID: 33499758 PMCID: PMC8905249 DOI: 10.1089/ars.2020.8066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/29/2022]
Abstract
Significance: Acute kidney injury (AKI) is a common and life-threatening complication in hospitalized and critically ill patients. It is defined by an abrupt deterioration in renal function, clinically manifested by increased serum creatinine levels, decreased urine output, or both. To execute all its functions, namely excretion of waste products, fluid/electrolyte balance, and hormone synthesis, the kidney requires incredible amounts of energy in the form of adenosine triphosphate. Recent Advances: Adequate mitochondrial functioning and nicotinamide adenine dinucleotide (NAD+) homeostasis are essential to meet these high energetic demands. NAD+ is a ubiquitous essential coenzyme to many cellular functions. NAD+ as an electron acceptor mediates metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis, serves as a cosubstrate of aging molecules (i.e., sirtuins), participates in DNA repair mechanisms, and mediates mitochondrial biogenesis. Critical Issues: In many forms of AKI and chronic kidney disease, renal function deterioration has been associated with mitochondrial dysfunction and NAD+ depletion. Based on this, therapies aiming to restore mitochondrial function and increase NAD+ availability have gained special attention in the last two decades. Future Directions: Experimental and clinical studies have shown that by restoring mitochondrial homeostasis and increasing renal tubulo-epithelial cells, NAD+ availability, AKI incidence, and chronic long-term complications are significantly decreased. This review covers some general epidemiological and pathophysiological concepts; describes the role of mitochondrial homeostasis and NAD+ metabolism; and analyzes the underlying rationale and role of NAD+ aiming therapies as promising preventive and therapeutic strategies for AKI. Antioxid. Redox Signal. 35, 1449-1466.
Collapse
Affiliation(s)
- Carlos L. Manrique-Caballero
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John A. Kellum
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hernando Gómez
- Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
26
|
Tenzi J, Hurtado J, Nin N, Rodriguez F, Molina C, Aunchayna M. Renal histopathology in critically ill patients with Septic Acute Kidney Injury(S-AKI). J Crit Care 2021; 68:38-41. [PMID: 34872015 DOI: 10.1016/j.jcrc.2021.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To describe the kidney histopathology of patients with S-AKI and correlate the histological findings with AKI severity, presence of septic shock, and the degree of multiple organic dysfunction (MOD) using the SOFA score. MATERIALS AND METHODS This was a prospective, observational, and analytical study of a cohort of critically ill patients with S-AKI who died from sepsis at the "Hospital Español" intensive care unit (ICU). Kidney necropsies were performed within 2 h after death. RESULTS We considered twenty (20) patients, with all of them exhibiting S-AKI stage 3 at the same time. In renal histopathology analysis, nonspecific tubulointerstitial (TI) lesions were found in almost all patients (95%). The more frequently found nonspecific TI lesions involved leukocyte infiltration (85%). Necrotic TI lesions were found in 6 patients (30%), and necrotic tubular cell casts were the most frequent lesions (50% of patients). It was not possible to demonstrate an association between the presence of necrotic TI lesions and factors such as the APACHE II score, the global SOFA score, ICU stays, AKI length and renal replacement therapy (RRT). CONCLUSIONS The main histopathological findings in kidney necropsies in patients with S-AKI KDIGO 3, showed nonspecific TI lesions, and TI necrosis was only observed in 30% of the cases; therefore, S-AKI cannot be considered to be synonymous with acute tubular necrosis (ATN).
Collapse
Affiliation(s)
- Jordán Tenzi
- Unidad de Medicina Intensiva Hospital Español, ASSE, Montevideo, Uruguay.
| | - Javier Hurtado
- Unidad de Medicina Intensiva Hospital Español, ASSE, Montevideo, Uruguay
| | - Nicolás Nin
- Unidad de Medicina Intensiva Hospital Español, ASSE, Montevideo, Uruguay
| | - Fernando Rodriguez
- Unidad de Medicina Intensiva Hospital Español, ASSE, Montevideo, Uruguay
| | - Claudia Molina
- Unidad de Medicina Intensiva Hospital Español, ASSE, Montevideo, Uruguay
| | - Maria Aunchayna
- Laboratorio Anatomía Patológica Hospital Maciel, ASSE, Montevideo, Uruguay
| |
Collapse
|
27
|
Lan S, Yang B, Migneault F, Turgeon J, Bourgault M, Dieudé M, Cardinal H, Hickey MJ, Patey N, Hébert MJ. Caspase-3-dependent peritubular capillary dysfunction is pivotal for the transition from acute to chronic kidney disease after acute ischemia-reperfusion injury. Am J Physiol Renal Physiol 2021; 321:F335-F351. [PMID: 34338031 DOI: 10.1152/ajprenal.00690.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/21/2021] [Indexed: 11/22/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is a major risk factor for chronic renal failure. Caspase-3, an effector responsible for apoptosis execution, is activated within the peritubular capillary (PTC) in the early stage of IRI-induced acute kidney injury (AKI). Recently, we showed that caspase-3-dependent microvascular rarefaction plays a key role in fibrosis development after mild renal IRI. Here, we further characterized the role of caspase-3 in microvascular dysfunction and progressive renal failure in both mild and severe AKI, by performing unilateral renal artery clamping for 30/60 min with contralateral nephrectomy in wild-type (C57BL/6) or caspase-3-/- mice. In both forms of AKI, caspase-3-/- mice showed better long-term outcomes despite worse initial tubular injury. After 3 wk, they showed reduced PTC injury, decreased PTC collagen deposition and α-smooth muscle actin expression, and lower tubular injury scores compared with wild-type animals. Caspase-3-/- mice with severe IRI also showed better preservation of long-term renal function. Intravital imaging and microcomputed tomography revealed preserved PTC permeability and better terminal capillary density in caspase-3-/- mice. Collectively, these results demonstrate the pivotal importance of caspase-3 in regulating long-term renal function after IRI and establish the predominant role of PTC dysfunction as a major contributor to progressive renal dysfunction.NEW & NOTEWORTHY Our findings demonstrate the pivotal importance of caspase-3 in regulating renal microvascular dysfunction, fibrogenesis, and long-term renal impairment after acute kidney injury induced by ischemia-reperfusion injury. Furthermore, this study establishes the predominant role of peritubular capillary integrity as a major contributor to progressive renal dysfunction after ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Shanshan Lan
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Canadian Donation Transplant Research Program, Edmonton, Alberta, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Bing Yang
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Canadian Donation Transplant Research Program, Edmonton, Alberta, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Francis Migneault
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Canadian Donation Transplant Research Program, Edmonton, Alberta, Canada
| | - Julie Turgeon
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Canadian Donation Transplant Research Program, Edmonton, Alberta, Canada
| | - Maude Bourgault
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | - Mélanie Dieudé
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Canadian Donation Transplant Research Program, Edmonton, Alberta, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Héloïse Cardinal
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Canadian Donation Transplant Research Program, Edmonton, Alberta, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Natacha Patey
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Josée Hébert
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Canadian Donation Transplant Research Program, Edmonton, Alberta, Canada
- Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Ow CPC, Trask-Marino A, Betrie AH, Evans RG, May CN, Lankadeva YR. Targeting Oxidative Stress in Septic Acute Kidney Injury: From Theory to Practice. J Clin Med 2021; 10:jcm10173798. [PMID: 34501245 PMCID: PMC8432047 DOI: 10.3390/jcm10173798] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022] Open
Abstract
Sepsis is the leading cause of acute kidney injury (AKI) and leads to increased morbidity and mortality in intensive care units. Current treatments for septic AKI are largely supportive and are not targeted towards its pathophysiology. Sepsis is commonly characterized by systemic inflammation and increased production of reactive oxygen species (ROS), particularly superoxide. Concomitantly released nitric oxide (NO) then reacts with superoxide, leading to the formation of reactive nitrogen species (RNS), predominantly peroxynitrite. Sepsis-induced ROS and RNS can reduce the bioavailability of NO, mediating renal microcirculatory abnormalities, localized tissue hypoxia and mitochondrial dysfunction, thereby initiating a propagating cycle of cellular injury culminating in AKI. In this review, we discuss the various sources of ROS during sepsis and their pathophysiological interactions with the immune system, microcirculation and mitochondria that can lead to the development of AKI. We also discuss the therapeutic utility of N-acetylcysteine and potential reasons for its efficacy in animal models of sepsis, and its inefficacy in ameliorating oxidative stress-induced organ dysfunction in human sepsis. Finally, we review the pre-clinical studies examining the antioxidant and pleiotropic actions of vitamin C that may be of benefit for mitigating septic AKI, including future implications for clinical sepsis.
Collapse
Affiliation(s)
- Connie P. C. Ow
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka 564-8565, Japan
| | - Anton Trask-Marino
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
| | - Ashenafi H. Betrie
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Roger G. Evans
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC 3800, Australia
| | - Clive N. May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Yugeesh R. Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia; (C.P.C.O.); (A.T.-M.); (A.H.B.); (R.G.E.); (C.N.M.)
- Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, VIC 3052, Australia
- Correspondence: ; Tel.: +61-3-8344-0417; Fax: +61-3-9035-3107
| |
Collapse
|
29
|
The application of omic technologies to research in sepsis-associated acute kidney injury. Pediatr Nephrol 2021; 36:1075-1086. [PMID: 32356189 PMCID: PMC7606209 DOI: 10.1007/s00467-020-04557-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Abstract
Acute kidney injury (AKI) is common in critically ill children and adults, and sepsis-associated AKI (SA-AKI) is the most frequent cause of AKI in the ICU. To date, no mechanistically targeted therapeutic interventions have been identified. High-throughput "omic" technologies (e.g., genomics, proteomics, metabolomics, etc.) offer a new angle of approach to achieve this end. In this review, we provide an update on the current understanding of SA-AKI pathophysiology. Omic technologies themselves are briefly discussed to facilitate interpretation of studies using them. We next summarize the body of SA-AKI research to date that has employed omic technologies. Importantly, omic studies are helping to elucidate a pathophysiology of SA-AKI centered around cellular stress responses, metabolic changes, and dysregulation of energy production that underlie its clinical features. Finally, we propose opportunities for future research using clinically relevant animal models, integrating multiple omic technologies and ultimately progressing to translational human studies focusing therapeutic strategies on targeted disease mechanisms.
Collapse
|
30
|
Standage SW, Xu S, Brown L, Ma Q, Koterba A, Lahni P, Devarajan P, Kennedy MA. NMR-based serum and urine metabolomic profile reveals suppression of mitochondrial pathways in experimental sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2021; 320:F984-F1000. [PMID: 33843271 DOI: 10.1152/ajprenal.00582.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sepsis-associated acute kidney injury (SA-AKI) is a significant problem in the critically ill that causes increased death. Emerging understanding of this disease implicates metabolic dysfunction in its pathophysiology. This study sought to identify specific metabolic pathways amenable to potential therapeutic intervention. Using a murine model of sepsis, blood and tissue samples were collected for assessment of systemic inflammation, kidney function, and renal injury. Nuclear magnetic resonance (NMR)-based metabolomics quantified dozens of metabolites in serum and urine that were subsequently submitted to pathway analysis. Kidney tissue gene expression analysis confirmed the implicated pathways. Septic mice had elevated circulating levels of inflammatory cytokines and increased levels of blood urea nitrogen and creatinine, indicating both systemic inflammation and poor kidney function. Renal tissue showed only mild histological evidence of injury in sepsis. NMR metabolomic analysis identified the involvement of mitochondrial pathways associated with branched-chain amino acid metabolism, fatty acid oxidation, and de novo NAD+ biosynthesis in SA-AKI. Renal cortical gene expression of enzymes associated with those pathways was predominantly suppressed. Renal cortical fatty acid oxidation rates were lower in septic mice with high inflammation, and this correlated with higher serum creatinine levels. Similar to humans, septic mice demonstrated renal dysfunction without significant tissue disruption, pointing to metabolic derangement as an important contributor to SA-AKI pathophysiology. Metabolism of branched-chain amino acid and fatty acids and NAD+ synthesis, which all center on mitochondrial function, appeared to be suppressed. Developing interventions to activate these pathways may provide new therapeutic opportunities for SA-AKI.NEW & NOTEWORTHY NMR-based metabolomics revealed disruptions in branched-chain amino acid metabolism, fatty acid oxidation, and NAD+ synthesis in sepsis-associated acute kidney injury. These pathways represent essential processes for energy provision in renal tubular epithelial cells and may represent targetable mechanisms for therapeutic intervention.
Collapse
Affiliation(s)
- Stephen W Standage
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Shenyuan Xu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio
| | - Lauren Brown
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adeleine Koterba
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Prasad Devarajan
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio.,Division of Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio
| |
Collapse
|
31
|
Lankadeva YR, Peiris RM, Okazaki N, Birchall IE, Trask-Marino A, Dornom A, Vale TAM, Evans RG, Yanase F, Bellomo R, May CN. Reversal of the Pathophysiological Responses to Gram-Negative Sepsis by Megadose Vitamin C. Crit Care Med 2021; 49:e179-e190. [PMID: 33239507 PMCID: PMC7803449 DOI: 10.1097/ccm.0000000000004770] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Oxidative stress appears to initiate organ failure in sepsis, justifying treatment with antioxidants such as vitamin C at megadoses. We have therefore investigated the safety and efficacy of megadose sodium ascorbate in sepsis. DESIGN Interventional study. SETTING Research Institute. SUBJECTS Adult Merino ewes. INTERVENTIONS Sheep were instrumented with pulmonary and renal artery flow-probes, and laser-Doppler and oxygen-sensing probes in the kidney. Conscious sheep received an infusion of live Escherichia coli for 31 hours. At 23.5 hours of sepsis, sheep received fluid resuscitation (30 mL/kg, Hartmann solution) and were randomized to IV sodium ascorbate (0.5 g/kg over 0.5 hr + 0.5 g/kg/hr for 6.5 hr; n = 5) or vehicle (n = 5). Norepinephrine was titrated to restore mean arterial pressure to baseline values (~80 mm Hg). MEASUREMENTS AND MAIN RESULTS Sepsis-induced fever (41.4 ± 0.2°C; mean ± se), tachycardia (141 ± 2 beats/min), and a marked deterioration in clinical condition in all cases. Mean arterial pressure (86 ± 1 to 67 ± 2 mm Hg), arterial Po2 (102.1 ± 3.3 to 80.5 ± 3.4 mm Hg), and renal medullary tissue Po2 (41 ± 5 to 24 ± 2 mm Hg) decreased, and plasma creatinine doubled (71 ± 2 to 144 ± 15 µmol/L) (all p < 0.01). Direct observation indicated that in all animals, sodium ascorbate dramatically improved the clinical state, from malaise and lethargy to a responsive, alert state within 3 hours. Body temperature (39.3 ± 0.3°C), heart rate (99.7 ± 3 beats/min), and plasma creatinine (32.6 ± 5.8 µmol/L) all decreased. Arterial (96.5 ± 2.5 mm Hg) and renal medullary Po2 (48 ± 5 mm Hg) increased. The norepinephrine dose was decreased, to zero in four of five sheep, whereas mean arterial pressure increased (to 83 ± 2 mm Hg). We confirmed these physiologic findings in a coronavirus disease 2019 patient with shock by compassionate use of 60 g of sodium ascorbate over 7 hours. CONCLUSIONS IV megadose sodium ascorbate reversed the pathophysiological and behavioral responses to Gram-negative sepsis without adverse side effects. Clinical studies are required to determine if such a dose has similar benefits in septic patients.
Collapse
Affiliation(s)
- Yugeesh R Lankadeva
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, VIC, Australia
| | - Rachel M Peiris
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Nobuki Okazaki
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- Department of Anesthesiology and Resuscitology, Okayama University, Okayama, Japan
| | - Ian E Birchall
- Neuropathology Laboratory, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Anton Trask-Marino
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Anthony Dornom
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Tom A M Vale
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
| | - Roger G Evans
- Department of Physiology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, VIC, Australia
| | - Fumitaka Yanase
- School of Medicine, University of Melbourne, VIC, Australia
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, VIC, Australia
- School of Medicine, University of Melbourne, VIC, Australia
- Department of Intensive Care, Austin Hospital, Melbourne, VIC, Australia
| | - Clive N May
- Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, University of Melbourne, VIC, Australia
| |
Collapse
|
32
|
Abosamak MF, Lippi G, Benoit SW, Henry BM, Shama AAA. Bladder urine oxygen partial pressure monitoring: Could it be a tool for early detection of acute kidney injury? EGYPTIAN JOURNAL OF ANAESTHESIA 2021. [DOI: 10.1080/11101849.2021.1878686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Mohammed Fawzi Abosamak
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Giuseppe Lippi
- Department of Neuroscience, Section of Clinical Biochemistry, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Stefanie W. Benoit
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Brandon Michael Henry
- Cardiac Intensive Care Unit, The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | | |
Collapse
|
33
|
Leisman DE, Fernandes TD, Bijol V, Abraham MN, Lehman JR, Taylor MD, Capone C, Yaipan O, Bellomo R, Deutschman CS. Impaired angiotensin II type 1 receptor signaling contributes to sepsis-induced acute kidney injury. Kidney Int 2020; 99:148-160. [PMID: 32882263 DOI: 10.1016/j.kint.2020.07.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
Abstract
In sepsis-induced acute kidney injury, kidney blood flow may increase despite decreased glomerular filtration. Normally, angiotensin-II reduces kidney blood flow to maintain filtration. We hypothesized that sepsis reduces angiotensin type-1 receptor (AT1R) expression to account for this observation and tested this hypothesis in a patient case-control study and studies in mice. Seventy-three mice underwent cecal ligation and puncture (a sepsis model) or sham operation. Additionally, 94 septic mice received losartan (selective AT1R antagonist), angiotensin II without or with losartan, or vehicle. Cumulative urine output, kidney blood flow, blood urea nitrogen, and creatinine were measured. AT1R expression was assessed using ELISA, qPCR, and immunofluorescence. A blinded pathologist evaluated tissue for ischemic injury. AT1R expression was compared in autopsy tissue from seven patients with sepsis to that of the non-involved portion of kidney from ten individuals with kidney cancer and three non-infected but critically ill patients. By six hours post ligation/puncture, kidney blood flow doubled, blood urea nitrogen rose, and urine output fell. Concurrently, AT1R expression significantly fell 2-fold in arterioles and the macula densa. Creatinine significantly rose by 24 hours and sham operation did not alter measurements. Losartan significantly exacerbated ligation/puncture-induced changes in kidney blood flow, blood urea nitrogen, creatinine, and urine output. There was no histologic evidence of cortical ischemia. Significantly, angiotensin II prevented changes in kidney blood flow, creatinine, and urine output compared to vehicle. Co-administering losartan with angiotensin-II reversed this protection. Relative to both controls, patients with sepsis had low AT1R expression in arterioles and macula densa. Thus, murine cecal ligation/puncture and clinical sepsis decrease renal AT1R expression. Angiotensin II prevents functional changes while AT1R-blockade exacerbates them independent of ischemia in mice.
Collapse
Affiliation(s)
- Daniel E Leisman
- Icahn School of Medicine at Mount Sinai, New York, New York, USA; Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | - Tiago D Fernandes
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Vanesa Bijol
- Department of Pathology, North Shore University Hospital, Manhasset, New York, USA; Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York, USA
| | - Mabel N Abraham
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Jake R Lehman
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York, USA
| | - Matthew D Taylor
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA; Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York, USA
| | - Christine Capone
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA; Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York, USA
| | - Omar Yaipan
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Rinaldo Bellomo
- Data Analytics, Research and Evaluation (DARE) Centre, Austin Hospital, University of Melbourne, Melbourne, Australia; Department of Intensive Care, Austin Hospital, Melbourne, Australia; Centre of Integrated Critical Care, University of Melbourne, Melbourne, Australia; School of Medicine, University of Melbourne, Melbourne, Australia
| | - Clifford S Deutschman
- Sepsis Research Laboratory, Feinstein Institute for Medical Research, Manhasset, New York, USA; Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA; Zucker School of Medicine at Hofstra-Northwell, Hempstead, New York, USA
| |
Collapse
|
34
|
Abstract
Sepsis is a major cause of acute kidney injury (AKI) among patients in the intensive care unit. However, the numbers of basic science papers for septic AKI account for only 1% of all publications on AKI. This may be partially attributable to the specific pathophysiology of septic AKI as compared to that of the other types of AKI because it shows only modest histological changes despite functional decline and often requires real-time functional analysis. To increase the scope of research in this field, this article reviews the basic research information that has been reported thus far on the subject of septic AKI, mainly from the viewpoint of functional dysregulation, including some knowledge acquired with multiphoton intravital imaging. Moreover, the efficacy and limitation of the potential novel therapies are discussed. Finally, the author proposes several points that should be considered when designing the study, such as monitoring the long-term effects of the intervention and reflecting the clinical settings for identifying the molecular mechanisms and for challenging the intervention effects.
Collapse
Affiliation(s)
- Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan.
| |
Collapse
|
35
|
Uhel F, Peters-Sengers H, Falahi F, Scicluna BP, van Vught LA, Bonten MJ, Cremer OL, Schultz MJ, van der Poll T. Mortality and host response aberrations associated with transient and persistent acute kidney injury in critically ill patients with sepsis: a prospective cohort study. Intensive Care Med 2020; 46:1576-1589. [PMID: 32514599 PMCID: PMC7381452 DOI: 10.1007/s00134-020-06119-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 12/26/2022]
Abstract
Purpose Sepsis is the most frequent cause of acute kidney injury (AKI). The “Acute Disease Quality Initiative Workgroup” recently proposed new definitions for AKI, classifying it as transient or persistent. We investigated the incidence, mortality, and host response aberrations associated with transient and persistent AKI in sepsis patients. Methods A total of 1545 patients admitted with sepsis to 2 intensive care units in the Netherlands were stratified according to the presence (defined by any urine or creatinine RIFLE criterion within the first 48 h) and evolution of AKI (with persistent defined as remaining > 48 h). We determined 30-day mortality by logistic regression adjusting for confounding variables and analyzed 16 plasma biomarkers reflecting pathways involved in sepsis pathogenesis (n = 866) and blood leukocyte transcriptomes (n = 392). Results AKI occurred in 37.7% of patients, of which 18.4% was transient and 81.6% persistent. On admission, patients with persistent AKI had higher disease severity scores and more frequently had severe (injury or failure) RIFLE AKI stages than transient AKI patients. Persistent AKI, but not transient AKI, was associated with increased mortality by day 30 and up to 1 year. Persistent AKI was associated with enhanced and sustained inflammatory and procoagulant responses during the first 4 days, and a more severe loss of vascular integrity compared with transient AKI. Baseline blood gene expression showed minimal differences with respect to the presence or evolution of AKI. Conclusion Persistent AKI is independently associated with sepsis mortality, as well as with sustained inflammatory and procoagulant responses, and loss of vascular integrity as compared with transient AKI. Electronic supplementary material The online version of this article (10.1007/s00134-020-06119-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabrice Uhel
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Fahimeh Falahi
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Lonneke A van Vught
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Marc J Bonten
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of medicine, University of Oxford, Oxford, UK
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Room G2-130; Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Titeca-Beauport D, Daubin D, Van Vong L, Belliard G, Bruel C, Alaya S, Chaoui K, Andrieu M, Rouquette-Vincenti I, Godde F, Pascal M, Diouf M, Vinsonneau C, Klouche K, Maizel J. Urine cell cycle arrest biomarkers distinguish poorly between transient and persistent AKI in early septic shock: a prospective, multicenter study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:280. [PMID: 32487237 PMCID: PMC7268340 DOI: 10.1186/s13054-020-02984-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/12/2020] [Indexed: 12/31/2022]
Abstract
Background The urine biomarkers tissue inhibitor of metalloproteinases-2 (TIMP-2) and insulin-like growth factor-binding protein 7 (IGFBP7) have been validated for predicting and stratifying AKI. In this study, we analyzed the utility of these biomarkers for distinguishing between transient and persistent AKI in the early phase of septic shock. Methods We performed a prospective, multicenter study in 11 French ICUs. Patients presenting septic shock, with the development of AKI within the first 6 h, were included. Urine [TIMP-2]*[IGFBP7] was determined at inclusion (0 h), 6 h, 12 h, and 24 h. AKI was considered transient if it resolved within 3 days. Discriminative power was evaluated by receiver operating characteristic (ROC) curve analysis. Results We included 184 patients, within a median [IQR] time of 1.0 [0.0–3.0] h after norepinephrine (NE) initiation; 100 (54%) patients presented transient and 84 (46%) presented persistent AKI. Median [IQR] baseline urine [TIMP-2]*[IGFBP7] was higher in the persistent AKI group (2.21 [0.81–4.90] (ng/ml)2/1000) than in the transient AKI group (0.75 [0.20–2.12] (ng/ml)2/1000; p < 0.001). Baseline urine [TIMP-2]*[IGFBP7] was poorly discriminant, with an AUROC [95% CI] of 0.67 [0.59–0.73]. The clinical prediction model combining baseline serum creatinine concentration, baseline urine output, baseline NE dose, and baseline extrarenal SOFA performed well for the prediction of persistent AKI, with an AUROC [95% CI] of 0.81 [0.74–0.86]. The addition of urine [TIMP-2]*[IGFBP7] to this model did not improve the predictive performance. Conclusions Urine [TIMP-2]*[IGFBP7] measurements in the early phase of septic shock discriminate poorly between transient and persistent AKI and do not improve clinical prediction over that achieved with the usual variables. Trial registration NCT02812784
Collapse
Affiliation(s)
- Dimitri Titeca-Beauport
- BoReal Study Group, Medical Intensive Care Unit and EA7517, Amiens University Hospital, F-80054, Amiens, France.
| | - Delphine Daubin
- Department of Intensive Care Medicine, Lapeyronie University Hospital, Montpellier, France
| | - Ly Van Vong
- Intensive Care Unit, Groupe Hospitalier Sud Ile de France, 270 avenue Marc Jacquet, 77000, Melun, France
| | - Guillaume Belliard
- Medical-Surgical Intensive Care Unit, Centre Hospitalier de Bretagne Sud, Lorient, France
| | - Cédric Bruel
- Medical and Surgical Intensive Care Unit, Groupe Hospitalier Paris Saint Joseph, Paris, France
| | - Sami Alaya
- Intensive Care Unit, Centre Hospitalier Général, 13300, Salon-de-Provence, France
| | - Karim Chaoui
- Intensive Care Unit, Jean Rougier Hospital, 335, rue du Président Wilson, 46000, Cahors, France
| | - Maud Andrieu
- Medical and Surgical Intensive Care Unit, Centre Hospitalier de Dax-Côte d'Argent, Dax, France
| | - Isabelle Rouquette-Vincenti
- Department of Anesthesia and Intensive Care, Princess Grace Hospital, Avenue Pasteur, Monaco (Principality), Monaco
| | - Frederic Godde
- Département de Réanimation Polyvalente, Centre Hospitalier Avranches-Granville, Granville, France
| | - Michel Pascal
- Intensive Care Unit, Centre Hospitalier de Mont De Marsan, 40000, Mont-de-Marsan, France
| | - Momar Diouf
- Clinical Research and Innovation Directorate, Amiens University Hospital, Amiens, France
| | | | - Kada Klouche
- Department of Intensive Care Medicine, Lapeyronie University Hospital, Montpellier, France
| | - Julien Maizel
- BoReal Study Group, Medical Intensive Care Unit and EA7517, Amiens University Hospital, F-80054, Amiens, France
| |
Collapse
|
37
|
Lankadeva YR, Okazaki N, Evans RG, Bellomo R, May CN. Renal Medullary Hypoxia: A New Therapeutic Target for Septic Acute Kidney Injury? Semin Nephrol 2019; 39:543-553. [DOI: 10.1016/j.semnephrol.2019.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Dexmedetomidine reduces norepinephrine requirements and preserves renal oxygenation and function in ovine septic acute kidney injury. Kidney Int 2019; 96:1150-1161. [DOI: 10.1016/j.kint.2019.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/29/2022]
|
39
|
Dynamic Contrast-Enhanced Ultrasound Identifies Microcirculatory Alterations in Sepsis-Induced Acute Kidney Injury. Crit Care Med 2019; 46:1284-1292. [PMID: 29771701 DOI: 10.1097/ccm.0000000000003209] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES We developed quantitative methods to analyze microbubble kinetics based on renal contrast-enhanced ultrasound imaging combined with measurements of sublingual microcirculation on a fixed area to quantify early microvascular alterations in sepsis-induced acute kidney injury. DESIGN Prospective controlled animal experiment study. SETTING Hospital-affiliated animal research institution. SUBJECTS Fifteen female pigs. INTERVENTIONS The animals were instrumented with a renal artery flow probe after surgically exposing the kidney. Nine animals were given IV infusion of lipopolysaccharide to induce septic shock, and six were used as controls. MEASUREMENTS AND MAIN RESULTS Contrast-enhanced ultrasound imaging was performed on the kidney before, during, and after having induced shock. Sublingual microcirculation was measured continuously using the Cytocam on the same spot. Contrast-enhanced ultrasound effectively allowed us to develop new analytical methods to measure dynamic variations in renal microvascular perfusion during shock and resuscitation. Renal microvascular hypoperfusion was quantified by decreased peak enhancement and an increased ratio of the final plateau intensity to peak enhancement. Reduced intrarenal blood flow could be estimated by measuring the microbubble transit times between the interlobar arteries and capillary vessels in the renal cortex. Sublingual microcirculation measured using the Cytocam in a fixed area showed decreased functional capillary density associated with plugged sublingual capillary vessels that persisted during and after fluid resuscitation. CONCLUSIONS In our lipopolysaccharide model, with resuscitation targeted at blood pressure, contrast-enhanced ultrasound imaging can identify renal microvascular alterations by showing prolonged contrast enhancement in microcirculation during shock, worsened by resuscitation with fluids. Concomitant analysis of sublingual microcirculation mirrored those observed in the renal microcirculation.
Collapse
|
40
|
Extracellular DNA traps in inflammation, injury and healing. Nat Rev Nephrol 2019; 15:559-575. [PMID: 31213698 DOI: 10.1038/s41581-019-0163-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Following strong activation signals, several types of immune cells reportedly release chromatin and granular proteins into the extracellular space, forming DNA traps. This process is especially prominent in neutrophils but also occurs in other innate immune cells such as macrophages, eosinophils, basophils and mast cells. Initial reports demonstrated that extracellular traps belong to the bactericidal and anti-fungal armamentarium of leukocytes, but subsequent studies also linked trap formation to a variety of human diseases. These pathological roles of extracellular DNA traps are now the focus of intensive biomedical research. The type of pathology associated with the release of extracellular DNA traps is mainly determined by the site of trap formation and the way in which these traps are further processed. Targeting the formation of aberrant extracellular DNA traps or promoting their efficient clearance are attractive goals for future therapeutic interventions, but the manifold actions of extracellular DNA traps complicate these approaches.
Collapse
|
41
|
Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 2019; 96:1083-1099. [PMID: 31443997 DOI: 10.1016/j.kint.2019.05.026] [Citation(s) in RCA: 795] [Impact Index Per Article: 132.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022]
Abstract
Sepsis-associated acute kidney injury (S-AKI) is a frequent complication of the critically ill patient and is associated with unacceptable morbidity and mortality. Prevention of S-AKI is difficult because by the time patients seek medical attention, most have already developed acute kidney injury. Thus, early recognition is crucial to provide supportive treatment and limit further insults. Current diagnostic criteria for acute kidney injury has limited early detection; however, novel biomarkers of kidney stress and damage have been recently validated for risk prediction and early diagnosis of acute kidney injury in the setting of sepsis. Recent evidence shows that microvascular dysfunction, inflammation, and metabolic reprogramming are 3 fundamental mechanisms that may play a role in the development of S-AKI. However, more mechanistic studies are needed to better understand the convoluted pathophysiology of S-AKI and to translate these findings into potential treatment strategies and add to the promising pharmacologic approaches being developed and tested in clinical trials.
Collapse
Affiliation(s)
- Sadudee Peerapornratana
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Excellence Center for Critical Care Nephrology, Division of Nephrology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Laboratory Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Carlos L Manrique-Caballero
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hernando Gómez
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John A Kellum
- Center for Critical Care Nephrology, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; The Clinical Research, Investigation and Systems Modeling of Acute Illness Center, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
42
|
Scindia Y, Wlazlo E, Leeds J, Loi V, Ledesma J, Cechova S, Ghias E, Swaminathan S. Protective Role of Hepcidin in Polymicrobial Sepsis and Acute Kidney Injury. Front Pharmacol 2019; 10:615. [PMID: 31244655 PMCID: PMC6563000 DOI: 10.3389/fphar.2019.00615] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/15/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Acute kidney injury (AKI) portends worse prognosis following sepsis, with limited available interventions. Host iron acquisition by pathogens and systemic inflammatory response are key events in the pathogenesis of sepsis. In sepsis, hepcidin induces iron sequestration to limit iron availability to pathogens. Hepcidin is also known to limit inflammation. Since its role in pathophysiology of sepsis-associated AKI is unknown, we investigated the effect of exogenous hepcidin in endotoxin- and peritonitis-induced pathology and AKI. Methods: C57BL/6 mice were treated with saline or 50–100 µg of hepcidin, pre- and post-LPS injection, or cecal ligation and puncture (CLP, model of peritonitis). Splenectomized mice were challenged with LPS, with and without hepcidin. Mice were euthanized at 24 h after LPS injection and at different time points after CLP. Systemic inflammation and renal injury markers were assessed. Direct effect of hepcidin on renal tubular and endothelial cells was evaluated using endotoxin-induced cytotoxic serum. Role of heavy chain ferritin (H-ferritin) in mediating hepcidin-induced anti-inflammatory effect on LPS stimulated macrophages was evaluated with siRNA studies. Results: Twenty-four hours pretreatment with hepcidin significantly reduced LPS-induced AKI. Hepcidin ameliorated LPS-induced increase in serum TNFα and renal Cox-2, and prevented loss in PGC1α and cytochrome c oxidase activity. This was associated with reduced glomerular injury and preserved mitochondrial structure. Hepcidin did not exert direct protection on the renal parenchymal cells but reduced endotoxin-induced serum cytotoxicity to mitigate renal injury. Splenectomy reduced LPS-induced early inflammation and AKI, independent of hepcidin, indicating the importance of systemic inflammation. Higher splenic H-ferritin in hepcidin-treated animals was associated with reduced splenocytes apoptosis and inflammation. Hepcidin reduced LPS-induced IL-6 secretion in macrophages in H-ferritin dependent manner. Hepcidin significantly reduced CLP-induced AKI, and mortality (20% hepcidin treated vs 80% PBS treated). Importantly hepcidin reduced bacteremia and AKI even when administered after onset of sepsis. Conclusion: We demonstrate a protective role of hepcidin in endotoxin- and peritonitis-induced pathologies and AKI, exerted primarily through its anti-inflammatory effects, and antibacterial property. Macrophage H-ferritin plays an important role in hepcidin-mediated protection against endotoxin-induced inflammation. We uncover a novel prophylactic and therapeutic role of hepcidin in sepsis-associated bacteremia, AKI, and mortality.
Collapse
Affiliation(s)
- Yogesh Scindia
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Ewa Wlazlo
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Joseph Leeds
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Valentina Loi
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Jonathan Ledesma
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Sylvia Cechova
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Elizabeth Ghias
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| | - Sundararaman Swaminathan
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
43
|
Abstract
Sepsis is defined as organ dysfunction resulting from the host's deleterious response to infection. One of the most common organs affected is the kidneys, resulting in sepsis associated acute kidney injury (SA-AKI) that contributes to the morbidity and mortality of sepsis. A growing body of knowledge has illuminated the clinical risk factors, pathobiology, response to treatment, and elements of renal recovery that have advanced our ability to prevent, detect, and treat SA-AKI. Despite these advances, SA-AKI remains an important concern and clinical burden, and further study is needed to reduce the acute and chronic consequences. This review summarizes the relevant evidence, with a focus on the risk factors, early recognition and diagnosis, treatment, and long term consequences of SA-AKI. In addition to literature pertaining to SA-AKI specifically, pertinent sepsis and acute kidney injury literature relevant to SA-AKI was included.
Collapse
Affiliation(s)
- Jason T Poston
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago
| |
Collapse
|
44
|
|
45
|
Pan T, Jia P, Chen N, Fang Y, Liang Y, Guo M, Ding X. Delayed Remote Ischemic Preconditioning ConfersRenoprotection against Septic Acute Kidney Injury via Exosomal miR-21. Theranostics 2019; 9:405-423. [PMID: 30809283 PMCID: PMC6376188 DOI: 10.7150/thno.29832] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/29/2018] [Indexed: 12/26/2022] Open
Abstract
Sepsis is a common and life-threatening systemic disorder, often leading to acute injury of multiple organs. Here, we show that remote ischemic preconditioning (rIPC), elicited by brief episodes of ischemia and reperfusion in femoral arteries, provides protective effects against sepsis-induced acute kidney injury (AKI). Methods: Limb rIPC was conducted on mice in vivo 24 h before the onset of cecal ligation and puncture (CLP), and serum exosomes derived from rIPC mice were infused into CLP-challenged recipients. In vitro, we extracted and identified exosomes from differentiated C2C12 cells (myotubes) subjected to hypoxia and reoxygenation (H/R) preconditioning, and the exosomes were administered to lipopolysaccharide (LPS)-treated mouse tubular epithelial cells (mTECs) or intravenously injected into CLP-challenged miR-21 knockout mice for rescue experiments. Results: Limb rIPC protected polymicrobial septic mice from multiple organ dysfunction, systemic accumulation of inflammatory cytokines and accelerated parenchymal cell apoptosis through upregulation of miR-21 in a hypoxia-inducible factor 1α (HIF-1α)-dependent manner in the ischemic limbs of mice. However, in miR-21 knockout mice or mice that received HIF-1α siRNA injection into hind limb muscles, the organ protection conferred by limb rIPC was abolished. Mechanistically, we discovered that miR-21 was transported from preischemic limbs to remote organs via serum exosomes. In kidneys, the enhanced exosomal miR-21 derived from cultured myotubes with H/R or the serum of mice treated with rIPC integrated into renal tubular epithelial cells and then targeted the downstream PDCD4/NF-κB and PTEN/AKT pathways, exerting anti-inflammatory and anti-apoptotic effects and consequently attenuating sepsis-induced renal injury both in vivo and in vitro. Conclusion: This study demonstrates a critical role for exosomal miR-21 in renoprotection conferred by limb rIPC against sepsis and suggests that rIPC and exosomes might serve as the possible therapeutic strategies for sepsis-induced kidney injury.
Collapse
|
46
|
Basu RK. Dynamic Biomarker Assessment: A Diagnostic Paradigm to Match the AKI Syndrome. Front Pediatr 2019; 7:535. [PMID: 32039106 PMCID: PMC6986245 DOI: 10.3389/fped.2019.00535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) affects one in four neonates, children, and adults admitted to the intensive care unit (ICU). AKI-associated outcomes, including mortality, are significantly worsened. Several decades of research demonstrate evidence for a need to rethink the pathophysiology and drivers of injury as well as to reconsider the existing diagnostic framework. Novel urinary and serum biomarkers of injury have, however, not been readily integrated into practice-partially because of the limited scope to current testing. The predominant focus to date has been the adjudication of a single biomarker measured at a single point of time for the prediction of either AKI progression or disease-related mortality. This approach is pragmatically problematic. The imprecise, umbrella classification of AKI diagnosis coupled with the absence of a consistently effective set of therapies creates a difficult rubric for biomarkers to demonstrate value in the scope of practice. AKI is, however, not a binary process but more an ICU syndrome-with complex biology underpinning injury, interacting and disrupting other organ function, multidimensional in manifestation, and varying in severity over time. As such, a more appropriate diagnostic paradigm is needed. In this minireview, the status quo for AKI diagnosis and associated limitations will be discussed, and a novel, dynamic, and multidimensional paradigm will be presented. Appreciation of AKI as an ICU syndrome and creation of an appropriately matching and sophisticated diagnostic platform of injury assessment are possible and represent the next step in AKI management.
Collapse
Affiliation(s)
- Rajit K Basu
- Division of Critical Care, Department of Pediatrics, Emory School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, United States
| |
Collapse
|
47
|
Effects of Fluid Bolus Therapy on Renal Perfusion, Oxygenation, and Function in Early Experimental Septic Kidney Injury. Crit Care Med 2019; 47:e36-e43. [DOI: 10.1097/ccm.0000000000003507] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Aslan A, van den Heuvel MC, Stegeman CA, Popa ER, Leliveld AM, Molema G, Zijlstra JG, Moser J, van Meurs M. Kidney histopathology in lethal human sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:359. [PMID: 30591070 PMCID: PMC6307291 DOI: 10.1186/s13054-018-2287-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/04/2018] [Indexed: 01/19/2023]
Abstract
Purpose The histopathology of sepsis-associated acute kidney injury (AKI) in critically ill patients remains an understudied area. Previous studies have identified that acute tubular necrosis (ATN) is not the only driver of sepsis-AKI. The focus of this study was to identify additional candidate processes that may drive sepsis-AKI. To do this we immunohistochemically characterized the histopathological and cellular features in various compartments of human septic kidneys. Methods We studied the following histopathological features: leukocyte subsets, fibroblast activation, cellular proliferation, apoptosis, and fibrin deposition in the glomerulus and the tubulointerstitium in human post-mortem kidney biopsy tissue. Biopsy tissue samples from 27 patients with sepsis-AKI were collected 33 min (range 24–150) after death in the ICU. The unaffected part of the kidneys from 12 patients undergoing total nephrectomy as a result of renal carcinoma served as controls. Results Immunohistochemical analysis revealed the presence of more neutrophils and macrophages in the glomeruli and more neutrophils in the tubulointerstitium of renal tissue from patients with sepsis compared to control renal tissue. Type II macrophages were predominant, with some macrophages expressing both type I and type II markers. In contrast, there were almost no macrophages found in control kidneys. The number of activated (myo)fibroblasts was low in the glomeruli of sepsis-AKI kidneys, yet this was not observed in the tubulointerstitium. Cell proliferation and fibrin deposition were more pronounced in the glomeruli and tubulointerstitium of sepsis-AKI than in control kidneys. Conclusions The extensive heterogeneity of observations among and within patients emphasizes the need to thoroughly characterize patients with sepsis-AKI in a large sample of renal biopsy tissue from patients with sepsis. Electronic supplementary material The online version of this article (10.1186/s13054-018-2287-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adnan Aslan
- Department of Critical Care, University of Groningen, University Medical Center Groningen, P.O. 30.001, Hanzeplein 1, 9700 RB, Groningen, Netherlands.,Department of Pathology & Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Marius C van den Heuvel
- Department of Pathology & Medical Biology, Pathology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Coen A Stegeman
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Eliane R Popa
- Department of Pathology & Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Annemarie M Leliveld
- Department of Urology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Grietje Molema
- Department of Pathology & Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Jan G Zijlstra
- Department of Critical Care, University of Groningen, University Medical Center Groningen, P.O. 30.001, Hanzeplein 1, 9700 RB, Groningen, Netherlands.
| | - Jill Moser
- Department of Critical Care, University of Groningen, University Medical Center Groningen, P.O. 30.001, Hanzeplein 1, 9700 RB, Groningen, Netherlands.,Department of Pathology & Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| | - Matijs van Meurs
- Department of Critical Care, University of Groningen, University Medical Center Groningen, P.O. 30.001, Hanzeplein 1, 9700 RB, Groningen, Netherlands.,Department of Pathology & Medical Biology, Medical Biology Section, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 RB, Groningen, Netherlands
| |
Collapse
|
49
|
Truche AS, Ragey SP, Souweine B, Bailly S, Zafrani L, Bouadma L, Clec'h C, Garrouste-Orgeas M, Lacave G, Schwebel C, Guebre-Egziabher F, Adrie C, Dumenil AS, Zaoui P, Argaud L, Jamali S, Goldran Toledano D, Marcotte G, Timsit JF, Darmon M. ICU survival and need of renal replacement therapy with respect to AKI duration in critically ill patients. Ann Intensive Care 2018; 8:127. [PMID: 30560526 PMCID: PMC6297118 DOI: 10.1186/s13613-018-0467-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Transient and persistent acute kidney injury (AKI) could share similar physiopathological mechanisms. The objective of our study was to assess prognostic impact of AKI duration on ICU mortality. DESIGN Retrospective analysis of a prospective database via cause-specific model, with 28-day ICU mortality as primary end point, considering discharge alive as a competing event and taking into account time-dependent nature of renal recovery. Renal recovery was defined as a decrease of at least one KDIGO class compared to the previous day. SETTING 23 French ICUs. PATIENTS Patients of a French multicentric observational cohort were included if they suffered from AKI at ICU admission between 1996 and 2015. INTERVENTION None. RESULTS A total of 5242 patients were included. Initial severity according to KDIGO creatinine definition was AKI stage 1 for 2458 patients (46.89%), AKI stage 2 for 1181 (22.53%) and AKI stage 3 for 1603 (30.58%). Crude 28-day ICU mortality according to AKI severity was 22.74% (n = 559), 27.69% (n = 327) and 26.26% (n = 421), respectively. Renal recovery was experienced by 3085 patients (58.85%), and its rate was significantly different between AKI severity stages (P < 0.01). Twenty-eight-day ICU mortality was independently lower in patients experiencing renal recovery [CSHR 0.54 (95% CI 0.46-0.63), P < 0.01]. Lastly, RRT requirement was strongly associated with persistent AKI whichever threshold was chosen between day 2 and 7 to delineate transient from persistent AKI. CONCLUSIONS Short-term renal recovery, according to several definitions, was independently associated with higher mortality and RRT requirement. Moreover, distinction between transient and persistent AKI is consequently a clinically relevant surrogate outcome variable for diagnostic testing in critically ill patients.
Collapse
Affiliation(s)
- A S Truche
- UMR 1137 - IAME Team 5 - DeSCID : Decision SCiences in Infectious Diseases, Control and Care, Inserm/Paris Diderot University, Sorbonne Paris Cité, Paris, France
- Medical Intensive Care Unit, Grenoble University Hospital, Grenoble 1 University, U823, La Tronche, France
- Nephrology Dialysis Renal Transplantation, Grenoble University Hospital, La Tronche, France
| | - S Perinel Ragey
- Medical Intensive Care Unit, Croix Rousse Hospital, Lyon University Hospital, Lyon, France
| | - B Souweine
- Medical Intensive Care Unit, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - S Bailly
- UMR 1137 - IAME Team 5 - DeSCID : Decision SCiences in Infectious Diseases, Control and Care, Inserm/Paris Diderot University, Sorbonne Paris Cité, Paris, France
- Medical Intensive Care Unit, Grenoble University Hospital, Grenoble 1 University, U823, La Tronche, France
| | - L Zafrani
- Medical Intensive Care Unit, AP-HP, Saint Louis Hospital, Paris, France
- Medicine University, Paris 7 University, Paris, France
| | - L Bouadma
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Hospital, Paris Diderot University, 75018, Paris, France
| | - C Clec'h
- Intensive Care Unit, AP-HP, Avicenne Hospital, Paris, France
- Medicine University, Paris 13 University, Bobigny, France
| | - M Garrouste-Orgeas
- Intensive Care Unit, Saint Joseph Hospital Network, Paris, France
- Medicine University, Paris Descartes University, Sorbonne Cite, Paris, France
| | - G Lacave
- Medical Intensive Care Unit, André Mignot Hospital, Versailles, France
| | - C Schwebel
- Medical Intensive Care Unit, Grenoble University Hospital, Grenoble 1 University, U823, La Tronche, France
| | - F Guebre-Egziabher
- Nephrology Dialysis Renal Transplantation, Grenoble University Hospital, La Tronche, France
| | - C Adrie
- Physiology Department, Cochin University Hospital, Assistance Publique, Hôpitaux de Paris (AP-HP), Paris Descartes University des, Sorbonne Cite, Paris, France
| | - A S Dumenil
- Medical-Surgical Intensive Care Unit, AP-HP, Antoine Béclère University Hospital, Clamart, France
| | - Ph Zaoui
- Nephrology Dialysis Renal Transplantation, Grenoble University Hospital, La Tronche, France
| | - L Argaud
- Medical Intensive Care Unit, Edouard Herriot University Hospital, Lyon, France
| | - S Jamali
- Critical Care Medicine Unit, Dourdan Hospital, Dourdan, France
| | | | - G Marcotte
- Surgical ICU, Edouard Herriot University Hospital, Lyon, France
| | - J F Timsit
- UMR 1137 - IAME Team 5 - DeSCID : Decision SCiences in Infectious Diseases, Control and Care, Inserm/Paris Diderot University, Sorbonne Paris Cité, Paris, France
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Hospital, Paris Diderot University, 75018, Paris, France
| | - M Darmon
- Medical Intensive Care Unit, AP-HP, Saint Louis Hospital, Paris, France.
- Medicine University, Paris 7 University, Paris, France.
- ECSTRA Team, Biostatistics and Clinical Epidemiology, UMR 1153 (Center of Epidemiology and Biostatistics Sorbonne Paris Cité, CRESS), INSERM, Paris, France.
| |
Collapse
|
50
|
Zhang Z, Gao Y, Qiao X. WITHDRAWN: Spleen tyrosine kinase (SYK) protects renal tubular epithelial cell against hypoxia injury in children with acute kidney injury. Gene 2018:S0378-1119(18)31156-9. [PMID: 30408549 DOI: 10.1016/j.gene.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/13/2018] [Accepted: 11/03/2018] [Indexed: 11/21/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Medicine School of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ya Gao
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China.
| | - Ximin Qiao
- Central Hospital of Xianyang, Xianyang 712000, Shaanxi, China
| |
Collapse
|