1
|
Jiang J, Huang Y, Zeng Z, Zhao C. Harnessing Engineered Immune Cells and Bacteria as Drug Carriers for Cancer Immunotherapy. ACS NANO 2023; 17:843-884. [PMID: 36598956 DOI: 10.1021/acsnano.2c07607] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunotherapy continues to be in the spotlight of oncology therapy research in the past few years and has been proven to be a promising option to modulate one's innate and adaptive immune systems for cancer treatment. However, the poor delivery efficiency of immune agents, potential off-target toxicity, and nonimmunogenic tumors significantly limit its effectiveness and extensive application. Recently, emerging biomaterial-based drug carriers, including but not limited to immune cells and bacteria, are expected to be potential candidates to break the dilemma of immunotherapy, with their excellent natures of intrinsic tumor tropism and immunomodulatory activity. More than that, the tiny vesicles and physiological components derived from them have similar functions with their source cells due to the inheritance of various surface signal molecules and proteins. Herein, we presented representative examples about the latest advances of biomaterial-based delivery systems employed in cancer immunotherapy, including immune cells, bacteria, and their derivatives. Simultaneously, opportunities and challenges of immune cells and bacteria-based carriers are discussed to provide reference for their future application in cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
2
|
Tokhanbigli S, Alavifard H, Asadzadeh Aghdaei H, Zali MR, Baghaei K. Combination of pioglitazone and dendritic cell to optimize efficacy of immune cell therapy in CT26 tumor models. BIOIMPACTS : BI 2022; 13:333-346. [PMID: 37645031 PMCID: PMC10460770 DOI: 10.34172/bi.2022.24209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/28/2022] [Accepted: 06/20/2022] [Indexed: 08/31/2023]
Abstract
Introduction The maturation faith of dendritic cells is restrained by the inflammatory environment and cytokines, such as interleukin-6 and its downstream component. Therefore, introducing the suitable antigen to dendritic cells is crucial. However, reducing the severity of the suppressive tumor microenvironment is indispensable. The present study examined the combination therapy of lymphocyte antigen 6 family member E (LY6E) pulsed mature dendritic cells (LPMDCs) and pioglitazone against colorectal cancer (CRC) to elevate the effectiveness of cancer treatment through probable role of pioglitazone on inhibiting IL-6/STAT3 pathway. Methods Dendritic cells were generated from murine bone marrow and were pulsed with lymphocyte antigen 6 family member E peptide to assess antigen-specific T-cell proliferation and cytotoxicity assay with Annexin/PI. The effect of pioglitazone on interleukin (IL)-6/STAT3 was evaluated in vitro by real-time polymerase chain reaction (PCR). Afterward, the CRC model was established by subcutaneous injection of CT26, mouse colon carcinoma cell line, in female mice. After treatment, tumor, spleen, and lymph nodes samples were removed for histopathological, ELISA, and real-time PCR analysis. Results In vitro results revealed the potential of lysate-pulsed dendritic cells in the proliferation of double-positive CD3-8 splenocytes and inducing immunogenic cell death responses, whereas pioglitazone declined the expression of IL-6/STAT3 in colorectal cell lines. In animal models, the recipient of LPMDCs combined with pioglitazone demonstrated high tumor-infiltrating lymphocytes. Elevating the IL-12 and interferon-gamma (IFN-γ) levels and prolonged survival in lysate-pulsed dendritic cell and combination groups were observed. Conclusion Pioglitazone could efficiently ameliorate the immunosuppressive feature of the tumor microenvironment, mainly through IL-6. Accordingly, applying this drug combined with LPMDCs provoked substantial CD8 positive responses in tumor-challenged animal models.
Collapse
Affiliation(s)
- Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
GP96 and SMP30 Protein Priming of Dendritic Cell Vaccination Induces a More Potent CTL Response against Hepatoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2518847. [PMID: 35070229 PMCID: PMC8767371 DOI: 10.1155/2022/2518847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]
Abstract
Heat-shock protein (HSP) GP96 is a well-known adjuvant in immunotherapy. It belongs to the HSP90 family. Our previous study demonstrated that DC pulsed with recombinant senescence marker protein 30 (SMP30) could induce cytotoxic T lymphocytes (CTLs) against liver cancer cells in vitro. In this study, SMP30 and GP96 were subcloned into lentiviruses and transfected into DCs from healthy donors. We included six groups: the GP96-SMP30 group, GP96 group, SMP30 group, DC group, empty vector control group, and hepatoma extracted protein group. We used ELISA to detect cytokines and flow cytometry to assess CD80 and CD86 on DCs and the effect of CTLs. Our vector design was considered successful and further studied. In the SMP30 group, DC expresses more CCR7 and CD86 than the control group; in the SMP30+GP96 group, DC express more CCR7, CD86, and CD80 than the control group. Transfected DCs secreted more TNF-α and interferon-β and induced more CTLs than control DCs. SMP30 + GP96 effectively stimulated the proliferation of T cells compared with control treatment (P < 0.01). We detected the cytokines TNF-α, TNF-β, IL-12, and IFN (α, β, and γ) via ELISA (Figure 5) and verified the killing effect via FCM. Four E : T ratios (0 : 1, 10 : 1, 20 : 1, and 40 : 1) were tested. The higher the ratio was, the better the effects were. We successfully constructed a liver cancer model and tested the CTL effect in each group. The GP96 + SMP30 group showed a better effect than the other groups. GP96 and SMP30 can stimulate DCs together and produce more potent antitumor effects. Our research may provide a new efficient way to improve the therapeutic effect of DC vaccines in liver cancer.
Collapse
|
4
|
Profiling of the immune landscape in murine glioblastoma following blood brain/tumor barrier disruption with MR image-guided focused ultrasound. J Neurooncol 2022; 156:109-122. [PMID: 34734364 PMCID: PMC8714701 DOI: 10.1007/s11060-021-03887-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Glioblastoma (GB) poses formidable challenges to systemic immunotherapy approaches owing to the paucity of immune infiltration and presence of the blood brain/tumor barriers (BBB/BTB). We hypothesize that BBB/BTB disruption (BBB/BTB-D) with focused ultrasound (FUS) and microbubbles (MB) increases immune infiltration in GB. As a prelude to rational combination of FUS with ITx, we herein investigate the impact of localized BBB/BTB-D on innate and adaptive immune responses in an orthotopic murine GB model. METHODS Mice with GL261 gliomas received i.v. MB and underwent FUS BBB/BTB-D (1.1 MHz, 0.5 Hz pulse repetition frequency, 10 ms bursts, 0.4-0.6 MPa). Brains, meninges, and peripheral lymphoid organs were excised and examined by flow cytometry 1-2 weeks following FUS. RESULTS The number of dendritic cells (DC) was significantly elevated in GL261 tumors and draining cervical LN in response to sonication. CD86 + DC frequency was also upregulated with 0.6 MPa FUS, suggesting increased maturity. While FUS did not significantly alter CD8 + T cell frequency across evaluated organs, these cells upregulated checkpoint molecules at 1 week post-FUS, suggesting increased activation. By 2 weeks post-FUS, we noted emergence of adaptive resistance mechanisms, including upregulation of TIGIT on CD4 + T cells and CD155 on non-immune tumor and stromal cells. CONCLUSIONS FUS BBB/BTB-D exerts mild, transient inflammatory effects in gliomas-suggesting that its combination with adjunct therapeutic strategies targeting adaptive resistance may improve outcomes. The potential for FUS-mediated BBB/BTB-D to modify immunological signatures is a timely and important consideration for ongoing clinical trials investigating this regimen in GB.
Collapse
|
5
|
Abstract
Abstract
The rapid development of nanotechnology paved the way for further expansion of polymer chemistry and the fabrication of advanced polymeric membranes. Such modifications allowed enhancing or adding some unique properties, including mechanical strength, excellent biocompatibility, easily controlled degradability, and biological activity. This chapter discusses various applications of polymeric membranes in three significant areas of biomedicine, including tissue engineering, drug delivery systems, and diagnostics. It is intended to highlight here possible ways of improvement the properties of polymeric membranes, by modifying with other polymers, functional groups, compounds, drugs, bioactive components, and nanomaterials.
Collapse
Affiliation(s)
- Marta J. Woźniak-Budych
- NanoBioMedical Centre , Adam Mickiewicz University , Wszechnicy Piastowskiej 3 , Poznań 61-614 , Poland
| |
Collapse
|
6
|
Abd-Elhafeez HH, Hassan AHS, Hussein MT. Melatonin administration provokes the activity of dendritic reticular cells in the seminal vesicle of Soay ram during the non-breeding season. Sci Rep 2021; 11:872. [PMID: 33441634 PMCID: PMC7806754 DOI: 10.1038/s41598-020-79529-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DCs) are innate immune cells which engulf, process and present antigens to the naïve T-lymphocyte cells. However, little is known about the effect of melatonin on the DCs. The present study aimed to investigate the morphology and distribution of the DCs by transmission electron microscopy and Immunohistochemistry after melatonin administration. A total of 8 out of 15 adult ram was randomly selected to receive the melatonin implant and the remaining 7 animals received melatonin free implants. DCs showed positive immunoreactivity for CD117, S-100 protein and CD34. There is an obvious increase in the number of the positive immunoreactive cells to CD3, estrogen receptor alpha and progesterone in the treated groups. The expression of CD56 and MHCII in the DCs was abundant in the treated groups. The ultrastructure study revealed that melatonin exerts a stimulatory effect on the DCs which was associated with increment in the secretory activity of DCs. The secretory activity demarcated by an obvious increase in the number of mitochondria, cisternae of rER and a well-developed Golgi apparatus. The endosomal- lysosomal system was more developed in the treated groups. A rod-shaped Birbeck granule was demonstrated in the cytoplasm of the melatonin treated group. DCs were observed in a close contact to telocytes, T-Lymphocytes, nerve fibers and blood vessels. Taken together, melatonin administration elicits a stimulatory action on the DCs and macrophages through increasing the size, the number and the endosomal compartments which may correlate to increased immunity.
Collapse
Affiliation(s)
- Hanan H Abd-Elhafeez
- Department of Anatomy, Embryology and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - A H S Hassan
- Department of Anatomy, Embryology and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Manal T Hussein
- Department of Anatomy, Embryology and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
7
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
8
|
Nigro A, Montico B, Casolaro V, Dal Col J. A Novel Dendritic Cell-Based Vaccination Protocol to Stimulate Immunosurveillance of Aggressive Cancers. Methods Mol Biol 2019; 1884:317-333. [PMID: 30465213 DOI: 10.1007/978-1-4939-8885-3_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A major challenge in the development of a successful tumor vaccination is to break immune tolerance and to sensitize efficiently the immune system toward relevant tumor antigens, thus enabling T-cell-mediated antitumor responses in vivo. Dendritic cell (DC)-based immunotherapy shows the advantage to induce an adaptive immune response against the tumor, with the potential to generate a long-lasting immunological memory able to prevent further relapses and hopefully metastasis. Recently different preclinical studies highlighted the golden opportunity to exploit the features of immunogenic cell death (ICD) to generate ex vivo a highly immunogenic tumor cell lysate as potent antigen formulation for improved DC-based vaccine against aggressive cancers. This chapter focuses on the methods to obtain tumor lysates from cells undergoing ICD to be used for DC pulsing and to test the functionality of the generated DCs for antitumor vaccine development.
Collapse
Affiliation(s)
- Annunziata Nigro
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy
| | - Barbara Montico
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, CRO National Cancer Institute - IRCCS, Aviano, Pordenone, Italy
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, Baronissi, Salerno, Italy.
| |
Collapse
|
9
|
Zupančič E, Curato C, Kim JS, Yeini E, Porat Z, Viana AS, Globerson-Levin A, Waks T, Eshhar Z, Moreira JN, Satchi-Fainaro R, Eisenbach L, Jung S, Florindo HF. Nanoparticulate vaccine inhibits tumor growth via improved T cell recruitment into melanoma and huHER2 breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:835-847. [PMID: 29306001 DOI: 10.1016/j.nano.2017.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/26/2017] [Accepted: 12/18/2017] [Indexed: 12/19/2022]
Abstract
Nanoparticulate vaccines are promising tools to overcome cancer immune evasion. However, a deeper understanding on nanoparticle-immune cell interactions and treatments regime is required for optimal efficacy. We provide a comprehensive study of treatment schedules and mode of antigen-association to nanovaccines on the modulation of T cell immunity in vivo, under steady-state and tumor-bearing mice. The coordinated delivery of antigen and two adjuvants (Monophosphoryl lipid A, oligodeoxynucleotide cytosine-phosphate-guanine motifs (CpG)) by nanoparticles was crucial for dendritic cell activation. A single vaccination dictated a 3-fold increase on cytotoxic memory-T cells and raised antigen-specific immune responses against B16.M05 melanoma. It generated at least a 5-fold increase on IFN-γ cytokine production, and presented over 50% higher lymphocyte count in the tumor microenvironment, compared to the control. The number of lymphocytes at the tumor site doubled with triple immunization. This lymphocyte infiltration pattern was confirmed in mammary huHER2 carcinoma, with significant tumor reduction.
Collapse
Affiliation(s)
- Eva Zupančič
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculty of Medicine (Polo I), Coimbra, Portugal
| | - Caterina Curato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Jung-Seok Kim
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Ziv Porat
- Flow Cytometry unit, Biological Services Department, Weizmann Institute of Science, Rehovot, Israel
| | - Ana S Viana
- Chemistry and Biochemistry Center, Sciences Faculty, Universidade de Lisboa, Lisbon, Portugal
| | - Anat Globerson-Levin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Immunology research center, Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - Tova Waks
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Immunology research center, Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - Zelig Eshhar
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel; Immunology research center, Tel Aviv Sourasky Medical Center (TASMC), Tel Aviv, Israel
| | - João N Moreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Faculty of Medicine (Polo I), Coimbra, Portugal; Faculty of Pharmacy (FFUC), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Lea Eisenbach
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
10
|
Qamra A, Xing M, Padmanabhan N, Kwok JJT, Zhang S, Xu C, Leong YS, Lee Lim AP, Tang Q, Ooi WF, Suling Lin J, Nandi T, Yao X, Ong X, Lee M, Tay ST, Keng ATL, Gondo Santoso E, Ng CCY, Ng A, Jusakul A, Smoot D, Ashktorab H, Rha SY, Yeoh KG, Peng Yong W, Chow PK, Chan WH, Ong HS, Soo KC, Kim KM, Wong WK, Rozen SG, Teh BT, Kappei D, Lee J, Connolly J, Tan P. Epigenomic Promoter Alterations Amplify Gene Isoform and Immunogenic Diversity in Gastric Adenocarcinoma. Cancer Discov 2017; 7:630-651. [DOI: 10.1158/2159-8290.cd-16-1022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/27/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023]
|
11
|
The Combination of MBP and BCG-Induced Dendritic Cell Maturation through TLR2/TLR4 Promotes Th1 Activation In Vitro and Vivo. Mediators Inflamm 2017; 2017:1953680. [PMID: 28293065 PMCID: PMC5331320 DOI: 10.1155/2017/1953680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/19/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022] Open
Abstract
To explore whether TLR2/TLR4 could be involved in the maturation of dendritic cells and polarization of CD4+ T cells induced by dendritic cells stimulated with MBP and BCG, in vitro and in vivo experiments using TLR2−/− or TLR4−/− mice were employed. MBP and BCG elevated CD80, CD86 and MHC class II expressed on dendritic cells and increased IL-12 protein, induced DC maturation, and indirectly promoted Th1 activation. Moreover, MBP and BCG upregulated costimulatory molecules on DCs in a TLR2- and TLR4-dependent manner. The levels of IFN-γ, IL-4, and IL-10 in CD4+ T cells cocultured with dendritic cells from different types of mice were determined with ELISPOT or ELISA method. TLR2/TLR4 is important in the maturation and activation of dendritic cells and the activation of Th1 cells induced by stimulation with MBP and BCG. In conclusion, TLR2 and TLR4 play an important role in the upregulation of costimulatory molecules and MHC class II molecules on dendritic cells and the activation of Th1 cells induced by stimulation with MBP and BCG. The results above indicate that the combination of MBP and BCG induced the maturation and activation of dendritic cells and promoted Th1 activation via TLR2/TLR4.
Collapse
|
12
|
Hotblack A, Seshadri S, Zhang L, Hamrang-Yousefi S, Chakraverty R, Escors D, Bennett CL. Dendritic Cells Cross-Present Immunogenic Lentivector-Encoded Antigen from Transduced Cells to Prime Functional T Cell Immunity. Mol Ther 2017; 25:504-511. [PMID: 28153097 PMCID: PMC5368353 DOI: 10.1016/j.ymthe.2016.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/03/2022] Open
Abstract
Recombinant lentiviral vectors (LVs) are highly effective vaccination vehicles that elicit protective T cell immunity in disease models. Dendritic cells (DCs) acquire antigen at sites of vaccination and migrate to draining lymph nodes, where they prime vaccine-specific T cells. The potency with which LVs activate CD8+ T cell immunity has been attributed to the transduction of DCs at the immunization site and durable presentation of LV-encoded antigens. However, it is not known how LV-encoded antigens continue to be presented to T cells once directly transduced DCs have turned over. Here, we report that LV-encoded antigen is efficiently cross-presented by DCs in vitro. We have further exploited the temporal depletion of DCs in the murine CD11c.DTR (diphtheria toxin receptor) model to demonstrate that repopulating DCs that were absent at the time of immunization cross-present LV-encoded antigen to T cells in vivo. Indirect presentation of antigen from transduced cells by DCs is sufficient to prime functional effector T cells that control tumor growth. These data suggest that DCs cross-present immunogenic antigen from LV-transduced cells, thereby facilitating prolonged activation of T cells in the absence of circulating LV particles. These are findings that may impact on the future design of LV vaccination strategies.
Collapse
Affiliation(s)
- Alastair Hotblack
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK
| | - Sara Seshadri
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK; Cancer Institute, University College London, London WC1E 6DD, UK
| | - Lei Zhang
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK; Cancer Institute, University College London, London WC1E 6DD, UK
| | - Sahar Hamrang-Yousefi
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK; Cancer Institute, University College London, London WC1E 6DD, UK
| | - Ronjon Chakraverty
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK; Cancer Institute, University College London, London WC1E 6DD, UK
| | - David Escors
- Immunomodulation Group, Navarrabiomed-Fundaçion Miguel Servet, Calle de Irunlarrea 3, 31008 Pamplona, Spain
| | - Clare L Bennett
- Institute for Immunity and Transplantation, University College London, London NW3 2PF, UK; Cancer Institute, University College London, London WC1E 6DD, UK.
| |
Collapse
|
13
|
Kumar S, Kesharwani SS, Kuppast B, Rajput M, Ali Bakkari M, Tummala H. Discovery of inulin acetate as a novel immune-active polymer and vaccine adjuvant: synthesis, material characterization, and biological evaluation as a toll-like receptor-4 agonist. J Mater Chem B 2016; 4:7950-7960. [PMID: 32263785 DOI: 10.1039/c6tb02181f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vaccine adjuvants are an essential part of modern vaccine design, especially against intracellular pathogens such as M. tuberculosis, malarial parasite, HIV, influenza virus and Ebola. The present work offers a unique approach to designing novel vaccine adjuvants by identifying polymers that mimic "pathogen associated molecular patterns" (PAMPS) and engineering an immune-active particulate vaccine delivery system that uses the polymer. By using this strategy, we report the discovery of the first plant polymer based toll-like receptor-4 (TLR-4) agonist, inulin acetate (InAc). InAc was synthesised from the plant polysaccharide inulin. Inulin acetate as a polymer and particles prepared using InAc were characterised using various physicochemical techniques. The TLR-4 agonistic activity of InAc was established in multiple immune, microglial, dendritic, peripheral blood mononuclear (human and swine) and genetically modified epithelial cells (HEK293) that exclusively express TLR-4 on their surface. InAc activated all the above-mentioned cells to release proliferative cytokines; however, InAc failed to activate when the were cells either pre-incubated with a TLR-4 specific antagonist or isolated from mice deficient in adapter proteins involved in TLR signalling (Mal/MyD88). Antigen encapsulated microparticles prepared with TLR-4 agonist InAc mimicked pathogens to offer improved antigen delivery to dendritic cells compared to soluble antigen (47 times) or antigen encapsulated poly(lactic-co-glycolic acid) (PLGA) particles (1.57 times). In conclusion, InAc represents a novel polymer-based modern vaccine adjuvant targeting specific signalling pathways of the innate immune system, which could be formulated into a platform vaccine delivery system against cancer and viral diseases.
Collapse
Affiliation(s)
- Sunny Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, SAV # 255, Box 2202C, Brookings, SD-57007, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Pros and Cons of Antigen-Presenting Cell Targeted Tumor Vaccines. J Immunol Res 2015; 2015:785634. [PMID: 26583156 PMCID: PMC4637118 DOI: 10.1155/2015/785634] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 08/26/2015] [Accepted: 09/03/2015] [Indexed: 01/08/2023] Open
Abstract
In therapeutic antitumor vaccination, dendritic cells play the leading role since they decide if, how, when, and where a potent antitumor immune response will take place. Since the disentanglement of the complexity and merit of different antigen-presenting cell subtypes, antitumor immunotherapeutic research started to investigate the potential benefit of targeting these subtypes in situ. This review will discuss which antigen-presenting cell subtypes are at play and how they have been targeted and finally question the true meaning of targeting antitumor-based vaccines.
Collapse
|
15
|
Mbongue JC, Nicholas DA, Torrez TW, Kim NS, Firek AF, Langridge WHR. The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity. Vaccines (Basel) 2015; 3:703-29. [PMID: 26378585 PMCID: PMC4586474 DOI: 10.3390/vaccines3030703] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 08/26/2015] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase (IDO) is the first and rate limiting catabolic enzyme in the degradation pathway of the essential amino acid tryptophan. By cleaving the aromatic indole ring of tryptophan, IDO initiates the production of a variety of tryptophan degradation products called "kynurenines" that are known to exert important immuno-regulatory functions. Because tryptophan must be supplied in the diet, regulation of tryptophan catabolism may exert profound effects by activating or inhibiting metabolism and immune responses. Important for survival, the regulation of IDO biosynthesis and its activity in cells of the immune system can critically alter their responses to immunological insults, such as infection, autoimmunity and cancer. In this review, we assess how IDO-mediated catabolism of tryptophan can modulate the immune system to arrest inflammation, suppress immunity to cancer and inhibit allergy, autoimmunity and the rejection of transplanted tissues. Finally, we examine how vaccines may enhance immune suppression of autoimmunity through the upregulation of IDO biosynthesis in human dendritic cells.
Collapse
Affiliation(s)
- Jacques C Mbongue
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | - Dequina A Nicholas
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| | | | - Nan-Sun Kim
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
- Department of Molecular Biology, Chonbuk National University, Jeon-Ju 54896, Korea.
| | - Anthony F Firek
- Endocrinology Section, JL Pettis Memorial VA Medical Center, Loma Linda, CA 92357, USA.
| | - William H R Langridge
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
16
|
Silva JM, Zupancic E, Vandermeulen G, Oliveira VG, Salgado A, Videira M, Gaspar M, Graca L, Préat V, Florindo HF. In vivo delivery of peptides and Toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model. J Control Release 2014; 198:91-103. [PMID: 25483429 DOI: 10.1016/j.jconrel.2014.11.033] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
We hypothesized that the co-entrapment of melanoma-associated antigens and the Toll-like receptor (TLR) ligands Poly(I:C) and CpG, known to be Th1-immunopotentiators, in mannose-functionalized aliphatic polyester-based nanoparticles (NPs) could be targeted to mannose receptors on antigen-presenting cells and induce anti-tumor immune responses. High entrapment efficiencies of antigens and immunopotentiators in 150nm NPs were obtained. The co-entrapment of the model antigen ovalbumin and the TLR ligands was crucial to induce high IgG2c/IgG1 ratios and high levels of IFN-γ and IL-2. Mannose-functionalization of NPs potentiated the Th1 immune response. The nanoparticulate vaccines decreased the growth rate of murine B16F10 melanoma tumors in therapeutic and prophylatic settings. The combination of mannose-functionalized NPs containing MHC class I- or class II-restricted melanoma antigens and the TLR ligands induced the highest tumor growth delay. Overall, we demonstrate that the multifunctional properties of NPs in terms of targeting and antigen/adjuvant delivery have high cancer immunotherapeutic potential.
Collapse
Affiliation(s)
- Joana M Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Eva Zupancic
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Gaëlle Vandermeulen
- Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Vanessa G Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-025 Lisbon, Portugal
| | - Ana Salgado
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mafalda Videira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Manuela Gaspar
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Luis Graca
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-025 Lisbon, Portugal
| | - Véronique Préat
- Louvain Drug Research Institute, Advanced Drug Delivery & Biomaterials, Université Catholique de Louvain, 1200 Brussels, Belgium.
| | - Helena F Florindo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| |
Collapse
|
17
|
Ioannou K, Derhovanessian E, Tsakiri E, Samara P, Kalbacher H, Voelter W, Trougakos IP, Pawelec G, Tsitsilonis OE. Prothymosin α and a prothymosin α-derived peptide enhance T(H)1-type immune responses against defined HER-2/neu epitopes. BMC Immunol 2013; 14:43. [PMID: 24053720 PMCID: PMC3852324 DOI: 10.1186/1471-2172-14-43] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/17/2013] [Indexed: 12/31/2022] Open
Abstract
Background Active cancer immunotherapies are beginning to yield clinical benefit, especially those using peptide-pulsed dendritic cells (DCs). Different adjuvants, including Toll-like receptor (TLR) agonists, commonly co-administered to cancer patients as part of a DC-based vaccine, are being widely tested in the clinical setting. However, endogenous DCs in tumor-bearing individuals are often dysfunctional, suggesting that ex vivo educated DCs might be superior inducers of anti-tumor immune responses. We have previously shown that prothymosin alpha (proTα) and its immunoreactive decapeptide proTα(100–109) induce the maturation of human DCs in vitro. The aim of this study was to investigate whether proTα- or proTα(100–109)-matured DCs are functionally competent and to provide preliminary evidence for the mode of action of these agents. Results Monocyte-derived DCs matured in vitro with proTα or proTα(100–109) express co-stimulatory molecules and secrete pro-inflammatory cytokines. ProTα- and proTα(100–109)-matured DCs pulsed with HER-2/neu peptides induce TH1-type immune responses, prime autologous naïve CD8-positive (+) T cells to lyse targets expressing the HER-2/neu epitopes and to express a polyfunctional profile, and stimulate CD4+ T cell proliferation in an HER-2/neu peptide-dependent manner. DC maturation induced by proTα and proTα(100–109) is likely mediated via TLR-4, as shown by assessing TLR-4 surface expression and the levels of the intracellular adaptor molecules TIRAP, MyD88 and TRIF. Conclusions Our results suggest that proTα and proTα(100–109) induce both the maturation and the T cell stimulatory capacity of DCs. Although further studies are needed, evidence for a possible proTα and proTα(100–109) interaction with TLR-4 is provided. The initial hypothesis that proTα and the proTα-derived immunoactive decapeptide act as “alarmins”, provides a rationale for their eventual use as adjuvants in DC-based anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Kyriaki Ioannou
- Department of Animal and Human Physiology, Faculty of Biology, University of Athens, Athens 15784, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Di Franco S, Todaro M, Dieli F, Stassi G. Colorectal cancer defeating? Challenge accepted! Mol Aspects Med 2013; 39:61-81. [PMID: 23927966 DOI: 10.1016/j.mam.2013.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/01/2013] [Accepted: 07/23/2013] [Indexed: 02/07/2023]
Abstract
Colorectal tumours are actually considered as aberrant organs, within it is possible to notice a different stage of cell growth and differentiation. Their origin is reported to arise from a subpopulation of tumour cells endowed with, just like the healthy stem cells, self-renewal and aberrant multi-lineage differentiation capacity likely to be called colorectal cancer stem cells (CCSCs). Cancer stem cells (CSCs) fate, since their origin, reflects the influences from their microenvironment (or niche) both in the maintenance of stemness, in promoting their differentiation, and in inducing epithelial-mesenchymal transition, responsible of CSCs dissemination and subsequent formation of metastatic lesions. The tumour cells heterogeneity and their immuno-response resistance nowadays probably responsible of the failure of the conventional therapies, make this research field an open issue. Even more importantly, our increasing understanding of the cellular and molecular mechanisms that regulate CSC quiescence and cell cycle regulation, self-renewal, chemotaxis and resistance to cytotoxic agents, is expected to eventually result in tailor-made therapies with a significant impact on the morbidity and overall survival of colorectal cancer patients.
Collapse
Affiliation(s)
- S Di Franco
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffre' 5, 90127 Palermo, Italy
| | - M Todaro
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffre' 5, 90127 Palermo, Italy
| | - F Dieli
- Division of Immunology and Immunogenetics, Department of Biotechnology and Medical and Forensic Biopathological (DIBIMEF), Palermo, Italy
| | - G Stassi
- Department of Surgical and Oncological Sciences, University of Palermo, Via Liborio Giuffre' 5, 90127 Palermo, Italy.
| |
Collapse
|
19
|
Graves A, Hessamodini H, Wong G, Lim WH. Metastatic renal cell carcinoma: update on epidemiology, genetics, and therapeutic modalities. Immunotargets Ther 2013; 2:73-90. [PMID: 27471690 PMCID: PMC4928369 DOI: 10.2147/itt.s31426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The treatment of advanced renal cell carcinoma (RCC) remains a major therapeutic challenge for clinicians. Despite advances in the understanding of the immunobiology of RCC and the availability of several novel targeted agents, there has been little improvement in the survival of patients with metastatic RCC. This review will focus on the recent understanding of risk factors and treatment options and outcomes of metastatic RCC, in particular, targeted therapeutic agents that inhibit vascular endothelial growth factor and mammalian target of rapamycin pathways. Prospective studies are required to determine whether sequential targeted therapy will further improve progression-free survival in RCC. Ongoing research to develop novel agents with better tolerability and enhanced efficacy in the treatment of metastatic RCC is required.
Collapse
Affiliation(s)
- Angela Graves
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Hannah Hessamodini
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Germaine Wong
- Centre for Kidney Research, University of Sydney, Sydney, NSW, Australia
| | - Wai H Lim
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
20
|
Almunia C, Bretaudeau M, Held G, Babon A, Marchetti C, Castelli FA, Ménez A, Maillere B, Gillet D. Bee Venom Phospholipase A2, a Good "Chauffeur" for Delivering Tumor Antigen to the MHC I and MHC II Peptide-Loading Compartments of the Dendritic Cells: The Case of NY-ESO-1. PLoS One 2013; 8:e67645. [PMID: 23825678 PMCID: PMC3688974 DOI: 10.1371/journal.pone.0067645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/20/2013] [Indexed: 12/23/2022] Open
Abstract
Bee venom phospholipase A2 (bvPLA2) is a small, 15kDa enzyme which hydrolyses many phospholipids through interfacial binding. The mutated bvPLA2H34Q (bvPLA2m), in which histidine-34 is replaced by glutamine, is not catalytically active. This protein has been shown to be a suitable membrane anchor and has been suggested as a suitable tumor-antigen vector for the development of novel dendritic cell-based vaccines. To confirm this feature, in this study the fusion protein PNY, composed of NY-ESO-1(NY(s)) fused to the C-terminus of bvPLA2m, was engineered. bvPLA2m enhanced the binding of NY(s) to the membrane of human monocyte-derived dendritic cells (DCs) and, once taken up by the cells, the antigen fused to the vector was directed to both MHC I and MHC II peptide-loading compartments. bvPLA2m was shown to increase the cross-presentation of the NY(s)-derived, restricted HLA-A*02 peptide, NY-ESO-1157-165(NY157-165), at the T1 cell surface. DCs loaded with the fusion protein induced cross-priming of NY(s)-specific CD8 + T-cells with greater efficiency than DCs loaded with NY(s). Sixty-five percent of these NY(s)-specific CD8+ T-cell lines could also be activated with the DCs pulsed with the peptide, NY157-165. Of these CD8+ T-cell lines, two were able to recognize the human melanoma cell line, SK-MEL-37, in a context of HLA-A*02. Only a small number of bvPLA2m CD8+ T-cell lines were induced, indicating the low immunogenicity of the protein. It was concluded that bvPLA2m can be used as a membrane-binding vector to promote MHC class II peptide presentation and MHC class I peptide cross-presentation. Such a system can, therefore, be tested for the preparation of cell-based vaccines.
Collapse
Affiliation(s)
- Christine Almunia
- Service d’Ingénierie Moléculaire des Protéines, Institut de Biologie et Technologies de Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Gif Sur Yvette, France
- Service de Biochimie et de Toxicologie nucléaire, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l'énergie atomique et aux énergies alternatives, Bagnols sur Cèze, France
| | - Marie Bretaudeau
- Service de Biochimie et de Toxicologie nucléaire, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l'énergie atomique et aux énergies alternatives, Bagnols sur Cèze, France
| | - Gerhard Held
- Medizinische Klinik I, Universitaetsklinik des Saarlandes, Homburg, Germany
| | - Aurélie Babon
- Service d’Ingénierie Moléculaire des Protéines, Institut de Biologie et Technologies de Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Gif Sur Yvette, France
| | - Charles Marchetti
- Service de Biochimie et de Toxicologie nucléaire, Institut de Biologie Environnementale et Biotechnologie, Commissariat à l'énergie atomique et aux énergies alternatives, Bagnols sur Cèze, France
| | - Florence Anne Castelli
- Service d’Ingénierie Moléculaire des Protéines, Institut de Biologie et Technologies de Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Gif Sur Yvette, France
| | - André Ménez
- Service d’Ingénierie Moléculaire des Protéines, Institut de Biologie et Technologies de Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Gif Sur Yvette, France
- Museum National d'Histoire Naturelle, Paris, France
| | - Bernard Maillere
- Service d’Ingénierie Moléculaire des Protéines, Institut de Biologie et Technologies de Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Gif Sur Yvette, France
| | - Daniel Gillet
- Service d’Ingénierie Moléculaire des Protéines, Institut de Biologie et Technologies de Saclay, Commissariat à l'énergie atomique et aux énergies alternatives, Gif Sur Yvette, France
| |
Collapse
|
21
|
Silva JM, Videira M, Gaspar R, Préat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release 2013; 168:179-99. [PMID: 23524187 DOI: 10.1016/j.jconrel.2013.03.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 01/08/2023]
Abstract
The concept of therapeutic cancer vaccines is based on the activation of the immune system against tumor cells after the presentation of tumor antigens. Nanoparticles (NPs) have shown great potential as delivery systems for cancer vaccines as they potentiate the co-delivery of tumor-associated antigens and adjuvants to dendritic cells (DCs), insuring effective activation of the immune system against tumor cells. In this review, the immunological mechanisms behind cancer vaccines, including the role of DCs in the stimulation of T lymphocytes and the use of Toll-like receptor (TLR) ligands as adjuvants will be discussed. An overview of each of the three essential components of a therapeutic cancer vaccine - antigen, adjuvant and delivery system - will be provided with special emphasis on the potential of particulate delivery systems for cancer vaccines, in particular those made of biodegradable aliphatic polyesters, such as poly(lactic-co-glycolic acid) (PLGA) and poly-ε-caprolactone (PCL). Some of the factors that can influence NP uptake by DCs, including size, surface charge, surface functionalization and route of administration, will also be considered.
Collapse
Affiliation(s)
- Joana M Silva
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
22
|
Campisano S, Mac Keon S, Gazzaniga S, Ruiz MS, Traian MD, Mordoh J, Wainstok R. Anti-melanoma vaccinal capacity of CD11c-positive and -negative cell populations present in GM-CSF cultures derived from murine bone marrow precursors. Vaccine 2012; 31:354-61. [PMID: 23146677 DOI: 10.1016/j.vaccine.2012.10.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 10/25/2012] [Accepted: 10/31/2012] [Indexed: 01/09/2023]
Abstract
We have initially shown that DC/ApoNec vaccine can induce protection against the poorly immunogenic B16F1 melanoma in mice. The population of DC obtained for vaccination after 7days culture with murine GM-CSF is heterogeneous and presents about 60% of CD11c+ DC. Therefore, our purpose was to identify the phenotype of the cells obtained after differentiation and its immunogenicity once injected. DC were separated with anti-CD11c microbeads and the two populations identified in terms of CD11c positivity (DC+ and DC-) were also studied. Approximately 26.6% of the cells in DC+ fraction co-expressed CD11c+ and F4/80 markers and 75.4% were double positive for CD11c and CD11b markers. DC+ fraction also expressed Ly6G. DC- fraction was richer in CD11c-/F4/80+ macrophages (44.7%), some of which co-expressed Ly6G (41.8%), and F4/80-/Ly6-G+ neutrophils (34.6%). Both DC+ and DC- fractions displayed similar capacity to phagocyte and endocyte antigens and even expressed levels of MHC Class II and CD80, CD83 and CD86 costimulatory molecules similar to those in the DC fraction. However, only DC/ApoNec vaccine was capable to induce protection in mice (p<0.01). After 24h co-culture, no detectable level of IL-12 was recorded in DC/ApoNec vaccine, either in supernatant or intracellularly. Therefore, the protection obtained with DC/ApoNec vaccine seemed to be independent of the vaccine's ability to secrete this inflammatory cytokine at the time of injection. In conclusion, we demonstrated that all cell types derived from the culture of mouse bone marrow with GM-CSF are necessary to induce antitumor protection in vivo.
Collapse
Affiliation(s)
- Sabrina Campisano
- Depto. de Química Biológica, Ciudad Universitaria, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
23
|
Impact of valproic acid on dendritic cells function. Immunobiology 2012; 217:704-10. [DOI: 10.1016/j.imbio.2011.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 11/13/2011] [Accepted: 11/30/2011] [Indexed: 11/24/2022]
|
24
|
Frikeche J, Peric Z, Brissot E, Grégoire M, Gaugler B, Mohty M. Impact of HDAC inhibitors on dendritic cell functions. Exp Hematol 2012; 40:783-91. [PMID: 22728031 DOI: 10.1016/j.exphem.2012.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/10/2012] [Accepted: 06/14/2012] [Indexed: 12/18/2022]
Abstract
Histone deacetylase inhibitors are presently used in the routine clinic treatment against cancers. Recent data have established that some of these treatments have potent anti-inflammatory or immunomodulatory effects at noncytotoxic doses that might be of benefit in immuno-inflammatory disorders or post-transplantation. At least some of these effects result from the ability of histone deacetylase inhibitors to modulate the immune system. Dendritic cells are professional antigen presenting cells that play a major role in this immune system. Data summarized in this review brings some novel information on the impact of histone deacetylase inhibitors on dendritic cell functions, which may have broader implications for immunotherapeutic strategies.
Collapse
|
25
|
Martorelli D, Coppotelli G, Muraro E, Dolcetti R, Masucci MG. Remodeling of the epitope repertoire of a candidate idiotype vaccine by targeting to lysosomal degradation in dendritic cells. Cancer Immunol Immunother 2012; 61:881-92. [PMID: 22089857 PMCID: PMC11028998 DOI: 10.1007/s00262-011-1157-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 11/03/2011] [Indexed: 02/05/2023]
Abstract
The generation of efficacious vaccines against self-antigens expressed in tumor cells requires breakage of tolerance, and the refocusing of immune responses toward epitopes for which tolerance may not be established. While the presentation of tumor antigens by mature dendritic cells (mDC) may surpass tolerance, broadening of the antigenic repertoire remains an issue. We report that fusion of the candidate idiotype vaccine IGKV3-20 to the Gly-Ala repeat (GAr) of the Epstein-Barr virus nuclear antigen (EBNA)-1 inhibits degradation by the proteasome and redirects processing to the lysosome. mDCs transduced with a recombinant lentivirus encoding the chimeric idiotype efficiently primed CD4+ and CD8+ cytotoxic T-cell (CTL) responses that lysed autologous blasts expressing IGKV3-20 or pulsed with IGKV3-20 synthetic peptides, and HLA-matched IGKV3-20-positive tumor cell lines. Comparison of the cytotoxic response of CD4+ and CD8+ T lymphocytes activated by mDCs expressing the wild-type or chimeric IGKV3-20 reveled largely non-overlapping epitope repertoires in both CD4+ and CD8+ effectors. Thus, fusion to the GAr may provide an effective means to broaden the immune response to an endogenous protein by promoting the presentation of antigenic epitopes that require a lysosome-dependent processing step.
Collapse
Affiliation(s)
- Debora Martorelli
- Cancer Bio-immunotherapy Unit, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Giuseppe Coppotelli
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, SE-171 77 Stockholm, Sweden
| | - Elena Muraro
- Cancer Bio-immunotherapy Unit, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Riccardo Dolcetti
- Cancer Bio-immunotherapy Unit, Centro di Riferimento Oncologico, National Cancer Institute, Aviano, Italy
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institute, Box 285, SE-171 77 Stockholm, Sweden
| |
Collapse
|
26
|
Xie Q, Luo J, Zhu Z, Wang G, Wang J, Niu B. Nucleofection of a DNA vaccine into human monocyte-derived dendritic cells. Cell Immunol 2012; 276:135-43. [PMID: 22632899 DOI: 10.1016/j.cellimm.2012.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 04/19/2012] [Accepted: 04/30/2012] [Indexed: 11/27/2022]
Abstract
An efficient method for delivering DNA vaccines into dendritic cells is considered to be of paramount importance. Electroporation-based technology (nucleofection) has gained increasingly popularity, but few reports focused on the possible functional consequences related to this method. In this study, the nucleofection technique was used to transfer the recombinant plasmid into hMoDCs for phenotype expression analysis and immunopotency detection. The results showed that the nucleofection of increasing concentrations of plasmid DNA decreased the viability of the hMoDCs. The welfare of nucleofected hMoDCs depended on the dosage of the plasmid and the plasmid's retention time within the cells. Accompanied by the process of nucleofection, it would bring some non-specific changes. The methodology reported here is suggestive of a feasible system for DNA vaccine transfer into hMoDCs with the caution of certain undesired effect.
Collapse
Affiliation(s)
- Qiu Xie
- Department of Biotechnology, Capital Institute of Pediatrics, Beijing 100020, China
| | | | | | | | | | | |
Collapse
|
27
|
Gu W, Chen J, Yang L, Zhao KN. TNF-α promotes IFN-γ-induced CD40 expression and antigen process in Myb-transformed hematological cells. ScientificWorldJournal 2012; 2012:621969. [PMID: 22547990 PMCID: PMC3322478 DOI: 10.1100/2012/621969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/03/2011] [Indexed: 01/10/2023] Open
Abstract
Tumour necrosis factor-α, interferon-γ and interleukin-4 are critical cytokines in regulating the immune responses against infections and tumours. In this study, we investigated the effects of three cytokines on CD40 expression in Myb-transformed hematological cells and their regulatory roles in promoting these cells into dendritic cells. We observed that both interleukin-4 and interferon-γ increased CD40 expression in these hematological cells in a dose-dependent manner, although the concentration required for interleukin-4 was significantly higher than that for interferon-γ. We found that tumour necrosis factor-α promoted CD40 expression induced by interferon-γ, but not by interleukin-4. Our data showed that tumour necrosis factor-α plus interferon-γ-treated Myb-transformed hematological cells had the greatest ability to take up and process the model antigen DQ-Ovalbumin. Tumour necrosis factor-α also increased the ability of interferon-γ to produce the mixed lymphocyte reaction to allogenic T cells. Furthermore, only cotreatment with tumour necrosis factor-α and interferon-γ induced Myb-transformed hematological cells to express interleukin-6. These results suggest that tumour necrosis factor-α plays a key regulatory role in the development of dendritic cells from hematological progenitor cells induced by interferon-γ.
Collapse
Affiliation(s)
- Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
28
|
Chen X, Zeng Q, Wu MX. Improved efficacy of dendritic cell-based immunotherapy by cutaneous laser illumination. Clin Cancer Res 2012; 18:2240-9. [PMID: 22392913 DOI: 10.1158/1078-0432.ccr-11-2654] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE The present study investigates a convenient laser-based approach to enhance dendritic cell (DC) migration and improve DC-based immunotherapy in murine models. EXPERIMENTAL DESIGN Influence of laser illumination on dermal tissue microenvironment and migration of DCs following intradermal injection were determined by whole-mount immunohistochemistry, transmission electron microscope, and flow cytometry. We also investigated in vivo expansion of CTLs by flow cytometry, CTL activity by in vitro CTL assay, and antitumor efficacy of DC immunization following cutaneous laser illumination in both preventive and therapeutic tumor models. RESULTS Laser illumination was found to significantly enlarge perforations in the perilymphatic basement membrane, disarray collagen fibers, and disrupt cell-matrix interactions in the dermis. The altered dermal tissue microenvironment permitted more efficient migration of intradermally injected DCs from the dermis to the draining lymph nodes (dLN). Laser illumination also slightly but significantly enhanced the expression of costimulatory molecule CD80 and MHC I on inoculated DCs. As a result, more vigorous expansion of tumor-specific IFN-γ(+)CD8(+) T lymphocytes and enhanced CTL activity against 4T1 but not irrelevant tumor cells were obtained in the laser-treated group over the control group. Laser-augmented DC immunization also completely abrogated early growth of 4T1 tumor and B16F10 melanoma in preventive tumor models and significantly extended the survival of 4T1-resected mice in a therapeutic tumor model. CONCLUSION These data suggest a simple, safe, laser-based approach to significantly enhance DC-based immunotherapy.
Collapse
Affiliation(s)
- Xinyuan Chen
- Department of Dermatology, Harvard Medical School, Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
29
|
Caminschi I, Maraskovsky E, Heath WR. Targeting Dendritic Cells in vivo for Cancer Therapy. Front Immunol 2012; 3:13. [PMID: 22566899 PMCID: PMC3342351 DOI: 10.3389/fimmu.2012.00013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/20/2012] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies that recognize cell surface molecules have been used deliver antigenic cargo to dendritic cells (DC) for induction of immune responses. The encouraging anti-tumor immunity elicited using this immunization strategy suggests its suitability for clinical trials. This review discusses the complex network of DC, the functional specialization of DC subsets, the immunological outcomes of targeting different DC subsets and their cell surface receptors, and the requirements for the induction of effective anti-tumor CD4 and CD8 T cell responses that can recognize tumor-specific antigens. Finally, we review preclinical experiments and the progress toward targeting human DC in vivo.
Collapse
Affiliation(s)
- Irina Caminschi
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research Melbourne, VIC, Australia
| | | | | |
Collapse
|
30
|
Shiao SL, Ganesan AP, Rugo HS, Coussens LM. Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 2012; 25:2559-72. [PMID: 22190457 DOI: 10.1101/gad.169029.111] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Leukocytes and their soluble mediators play important regulatory roles in all aspects of solid tumor development. While immunotherapeutic strategies have conceptually held clinical promise, with the exception of a small percentage of patients, they have failed to demonstrate effective, consistent, and durable anti-cancer responses. Several subtypes of leukocytes that commonly infiltrate solid tumors harbor immunosuppressive activity and undoubtedly restrict the effectiveness of these strategies. Several of these same immune cells also foster tumor development by expression of potent protumor mediators. Given recent evidence revealing that immune-based mechanisms regulate the response to conventional cytotoxic therapy, it seems reasonable to speculate that tumor progression could be effectively diminished by combining cytotoxic strategies with therapies that blunt protumor immune-based effectors and/or neutralize those that instead impede development of desired anti-tumor immunity, thus providing synergistic effects between traditional cytotoxic and immune-modulatory approaches.
Collapse
Affiliation(s)
- Stephen L Shiao
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
31
|
The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin Dev Immunol 2011; 2011:430394. [PMID: 22110524 PMCID: PMC3216392 DOI: 10.1155/2011/430394] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/30/2011] [Accepted: 08/31/2011] [Indexed: 01/05/2023]
Abstract
Tumor cells commonly escape from elimination by innate and adaptive immune responses using multiple strategies among which is the active suppression of effector immune cells. Regulatory T lymphocytes (Treg) and tolerogenic dendritic cells play essential roles in the establishment and persistence of cancer-induced immunosuppression. Differentiating dendritic cells (DCs) exposed to tumor-derived factors may be arrested at an immature stage becoming inept at initiating immune responses and may induce effector T-cell anergy or deletion. These tolerogenic DCs, which accumulate in patients with different types of cancers, are also involved in the generation of Treg. In turn, Treg that expand during tumor progression contribute to the immune tolerance of cancer by impeding DCs' ability to orchestrate immune responses and by directly inhibiting antitumoral T lymphocytes. Herein we review these bidirectional communications between DCs and Treg as they relate to the promotion of cancer-induced tolerance.
Collapse
|
32
|
Alaniz L, Rizzo M, Garcia MG, Piccioni F, Aquino JB, Malvicini M, Atorrasagasti C, Bayo J, Echeverria I, Sarobe P, Mazzolini G. Low molecular weight hyaluronan preconditioning of tumor-pulsed dendritic cells increases their migratory ability and induces immunity against murine colorectal carcinoma. Cancer Immunol Immunother 2011; 60:1383-95. [PMID: 21638126 PMCID: PMC11028773 DOI: 10.1007/s00262-011-1036-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
We have recently shown that systemic administration of low molecular weight hyaluronan (LMW HA) significantly reduces colorectal carcinoma (CRC) growth in vivo. The elicited response is partially mediated by activated dendritic cells (DC). To potentiate the ability of DC loaded with whole tumor lysate (DC/TL) to induce immunity against CRC in mice, we aimed to study the effects of preconditioning DC with LMW HA for therapeutic vaccination. LMW HA improved maturation of ex vivo generated DC, increased IL-12, decreased IL-10 production, and enhanced a MLR activity in vitro. Although TNF-α showed a similar capacity to mature DC, preconditioning of DC/TL with LMW HA increased their ability to migrate in vitro toward CCL19 and CCL-21 in a CD44- and a TLR4-independent manner; this effect was superior to Poly(I:C), LPS, or TNF-α and partially associated with an increase in the expression of CCR7. Importantly, LMW HA dramatically enhanced the in vivo DC recruitment to tumor-regional lymph nodes. When these LMW HA-treated CRC tumor lysate-pulsed DC (DC/TL/LMW HA) were administered to tumor-bearing mice, a potent antitumor response was observed when compared to DC pulsed with tumor lysate alone and matured with TNF-α. Then, we showed that splenocytes isolated from animals treated with DC/TL/LMW HA presented a higher proliferative capacity, increased IFN-γ production, and secreted lower levels of the immunosuppressive IL-10. Besides, increased specific CTL response was observed in DC/TL/LMW HA-treated animals and induced long-term protection against tumor recurrence. Our data show that LMW HA is superior to other agents at inducing DC migration; therefore, LMW HA could be considered a new adjuvant candidate in the preparation of DC-based anticancer vaccines with potent immunostimulatory properties.
Collapse
Affiliation(s)
- Laura Alaniz
- Gene Therapy Laboratory, School of Medicine, Austral University, Avenida Presidente Perón 1500 (B1629ODT) Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Manglio Rizzo
- Gene Therapy Laboratory, School of Medicine, Austral University, Avenida Presidente Perón 1500 (B1629ODT) Derqui-Pilar, Buenos Aires, Argentina
| | - Mariana G. Garcia
- Gene Therapy Laboratory, School of Medicine, Austral University, Avenida Presidente Perón 1500 (B1629ODT) Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Flavia Piccioni
- Gene Therapy Laboratory, School of Medicine, Austral University, Avenida Presidente Perón 1500 (B1629ODT) Derqui-Pilar, Buenos Aires, Argentina
| | - Jorge B. Aquino
- Gene Therapy Laboratory, School of Medicine, Austral University, Avenida Presidente Perón 1500 (B1629ODT) Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - Mariana Malvicini
- Gene Therapy Laboratory, School of Medicine, Austral University, Avenida Presidente Perón 1500 (B1629ODT) Derqui-Pilar, Buenos Aires, Argentina
| | - Catalina Atorrasagasti
- Gene Therapy Laboratory, School of Medicine, Austral University, Avenida Presidente Perón 1500 (B1629ODT) Derqui-Pilar, Buenos Aires, Argentina
| | - Juan Bayo
- Gene Therapy Laboratory, School of Medicine, Austral University, Avenida Presidente Perón 1500 (B1629ODT) Derqui-Pilar, Buenos Aires, Argentina
| | - Itziar Echeverria
- CIMA, University of Navarra, Avenida Pio XII 55, 31008 Pamplona, Spain
| | - Pablo Sarobe
- CIMA, University of Navarra, Avenida Pio XII 55, 31008 Pamplona, Spain
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, School of Medicine, Austral University, Avenida Presidente Perón 1500 (B1629ODT) Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| |
Collapse
|
33
|
Impact of the hypomethylating agent 5-azacytidine on dendritic cells function. Exp Hematol 2011; 39:1056-63. [PMID: 21856273 DOI: 10.1016/j.exphem.2011.08.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/07/2011] [Accepted: 08/04/2011] [Indexed: 12/13/2022]
Abstract
Recent evidence suggested that 5-azacytidine (5-aza) can impact important immune functions via epigenetic modifications, making it an attractive candidate for pharmacologic manipulation of the immune system. The aim of this work was to study the effects of 5-aza on human dendritic cells (DC) generated from peripheral blood monocytes, and to test the type of immune response induced in patients treated with 5-aza. On the phenotypic level, CD40 and CD86 expression was significantly increased on mature DC exposed to 5-aza (5-aza-DC), compared with control untreated DC. Mature control DC and mature 5-aza-DC secreted comparable amounts of interleukin (IL)-6, IL-12p70, IL-23, and tumor necrosis factor-α. However, mature 5-aza-DC secreted significantly lower levels of IL-10 and IL-27 compared to mature control DC (p = 0.04 and p = 0.005, respectively). In the peripheral blood of 14 patients (7 males and 7 females; age range, 53-81 years) with advanced myeloid malignancies (8 acute myeloid leukemia and 6 myelodysplastic syndrome) treated with 5-aza, there was a significant decrease of IL-4-secreting CD4(+) T cells (p = 0.001), and a significant increase of IL-17A- and IL-21-secreting CD4(+) T cells (p = 0.003 and p = 0.01, respectively, compared to 5 healthy donors) suggesting a Th17 response pattern in the blood of patients receiving 5-aza. In all, these data suggest potentially novel mechanisms of action of epigenetic therapies, such as 5-aza, which may have broader implications for immunotherapeutic strategies.
Collapse
|
34
|
Quaglino E, Riccardo F, Macagno M, Bandini S, Cojoca R, Ercole E, Amici A, Cavallo F. Chimeric DNA Vaccines against ErbB2+ Carcinomas: From Mice to Humans. Cancers (Basel) 2011; 3:3225-41. [PMID: 24212954 PMCID: PMC3759195 DOI: 10.3390/cancers3033225] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/02/2011] [Accepted: 08/03/2011] [Indexed: 01/10/2023] Open
Abstract
DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2+ carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.
Collapse
Affiliation(s)
- Elena Quaglino
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Marco Macagno
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Silvio Bandini
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Rodica Cojoca
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Elisabetta Ercole
- Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin, Italy; E-Mails: (E.Q.); (F.R.); (M.M.); (S.B.); (R.C.); (E.E.)
| | - Augusto Amici
- Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino, Italy; E-Mail:
| | - Federica Cavallo
- Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino, Italy; E-Mail:
| |
Collapse
|
35
|
Schierer S, Hesse A, Knippertz I, Kaempgen E, Baur AS, Schuler G, Steinkasserer A, Nettelbeck DM. Human dendritic cells efficiently phagocytose adenoviral oncolysate but require additional stimulation to mature. Int J Cancer 2011; 130:1682-94. [PMID: 21557217 DOI: 10.1002/ijc.26176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 04/12/2011] [Indexed: 01/12/2023]
Abstract
Oncolytic adenoviruses are emerging agents for treatment of cancer by tumor-restricted virus infection and cell lysis. Clinical trials have shown that oncolytic adenoviruses are well tolerated in patients but also that their antitumor activity needs improvement. A promising strategy toward this end is to trigger systemic and prolonged antitumor immunity by adenoviral oncolysis. Antitumor immune activation depends in large part on antigen presentation and T cell activation by dendritic cells (DCs). Thus, it is likely that the interaction of lysed tumor cells with DCs is a key determinant of such "oncolytic vaccination." Our study reveals that human DCs effectively phagocytose melanoma cells at late stages of oncolytic adenovirus infection, when the cells die showing preferentially features of necrotic cell death. Maturation, migration toward CCL19 and T cell stimulatory capacity of DCs, crucial steps for immune induction, were, however, not induced by phagocytosis of oncolysate, but could be triggered by a cytokine maturation cocktail. Therefore, oncolytic adenoviruses and adenoviral oncolysate did not block DC maturation, which is in contrast to reports for other oncolytic viruses. These results represent a rationale for inserting immunostimulatory genes into oncolytic adenovirus genomes to assure critical DC maturation. Indeed, we report here that adenoviral transduction of melanoma cells with CD40L during oncolysis triggers the maturation of human DCs with T cell stimulatory capacity similar to DCs matured by cytokines. We conclude that triggering and shaping DC-induced antitumor immunity by oncolytic adenoviruses "armed" with immunostimulatory genes holds promise for improving the therapeutic outcome of viral oncolysis in patients.
Collapse
Affiliation(s)
- Stephan Schierer
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hangalapura BN, Oosterhoff D, de Groot J, Boon L, Tüting T, van den Eertwegh AJ, Gerritsen WR, van Beusechem VW, Pereboev A, Curiel DT, Scheper RJ, de Gruijl TD. Potent antitumor immunity generated by a CD40-targeted adenoviral vaccine. Cancer Res 2011; 71:5827-37. [PMID: 21747119 DOI: 10.1158/0008-5472.can-11-0804] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In situ delivery of tumor-associated antigen (TAA) genes into dendritic cells (DC) has great potential as a generally applicable tumor vaccination approach. Although adenoviruses (Ad) are an attractive vaccine vehicle in this regard, Ad-mediated transduction of DCs is hampered by the lack of expression of the Ad receptor CAR on the DC surface. DC activation also requires interaction of CD40 with its ligand CD40L to generate protective T-cell-mediated tumor immunity. Therefore, to create a strategy to target Ads to DCs in vivo, we constructed a bispecific adaptor molecule with the CAR ectodomain linked to the CD40L extracellular domain via a trimerization motif (CFm40L). By targeting Ad to CD40 with the use of CFm40L, we enhanced both transduction and maturation of cultured bone marrow-derived DCs. Moreover, we improved transduction efficiency of DCs in lymph node and splenic cell suspensions in vitro and in skin and vaccination site-draining lymph nodes in vivo. Furthermore, CD40 targeting improved the induction of specific CD8(+) T cells along with therapeutic efficacy in a mouse model of melanoma. Taken together, our findings support the use of CD40-targeted Ad vectors encoding full-length TAA for in vivo targeting of DCs and high-efficacy induction of antitumor immunity.
Collapse
Affiliation(s)
- Basav N Hangalapura
- Department of Medical Oncology and Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ezzelarab M, Thomson AW. Tolerogenic dendritic cells and their role in transplantation. Semin Immunol 2011; 23:252-63. [PMID: 21741270 DOI: 10.1016/j.smim.2011.06.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/10/2011] [Indexed: 01/09/2023]
Abstract
The pursuit of clinical transplant tolerance has led to enhanced understanding of mechanisms underlying immune regulation, including the characterization of immune regulatory cells, in particular antigen-presenting cells (APC) and regulatory T cells (Treg), that may play key roles in promoting operational tolerance. Dendritic cells (DC) are highly efficient APC that have been studied extensively in rodents and humans, and more recently in non-human primates. Owing to their ability to regulate both innate and adaptive immune responses, DC are considered to play crucial roles in directing the alloimmune response towards transplant tolerance or rejection. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, the induction of Treg, and inhibition of memory T cell responses. These properties have led to the use of tolerogenic DC as a therapeutic strategy to promote organ transplant tolerance. In rodents, infusion of donor- or recipient-derived tolerogenic DC can extensively prolong donor-specific allograft survival, in association with regulation of the host T cell response. In clinical transplantation, progress has been made in monitoring DC in relation to graft outcome, including studies in operational liver transplant tolerance. Although clinical trials involving immunotherapeutic DC for patients with cancer are ongoing, implementation of human DC therapy in clinical transplantation will require assessment of various critical issues. These include cell isolation and purification techniques, source, route and timing of administration, and combination immunosuppressive therapy. With ongoing non-human primate studies focused on DC therapy, these logistics can be investigated seeking the optimal approaches. The scientific rationale for implementation of tolerogenic DC therapy to promote clinical transplant tolerance is strong. Evaluation of technical and therapeutic logistic issues is an important next step prior to the application of tolerogenic DC in clinical organ transplantation.
Collapse
Affiliation(s)
- Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, BST W1540, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
38
|
Abstract
Most cancers remain incurable. Introduction of novel therapeutic methods, including new cytostatic regimens and targeted therapies, such as monoclonal antibodies and tyrosine kinase inhibitors, have increased remission rates as well as improved patient survival, but the ability to cure many cancer patients remains elusive. It is thus necessary to further develop alternative strategies to improve patient prognosis. The majority of patients who respond to induction therapy inevitably relapse, mainly because of the proliferation of residual malignant cells that have escaped control by induction chemotherapy. Therefore the eradication of minimal residual disease may be crucial to prevent a relapse and achieve a long-term remission. It seems that an advantageous treatment option may be cellular immunotherapy with dendritic-cell vaccines which might induce long-term specific anticancer responses with immune memory cells, which could contribute to effective and lasting elimination of malignant cells.
Collapse
Affiliation(s)
- J Rolinski
- Department of Clinical Immunology, Medical University of Lublin, Clinic Hospital SPSK-4, Lublin, Poland.
| | | |
Collapse
|
39
|
Tacken PJ, Figdor CG. Targeted antigen delivery and activation of dendritic cells in vivo: steps towards cost effective vaccines. Semin Immunol 2011; 23:12-20. [PMID: 21269839 DOI: 10.1016/j.smim.2011.01.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/05/2011] [Indexed: 12/13/2022]
Abstract
During the past decade, the immunotherapeutic potential of ex vivo generated professional antigen presenting dendritic cells (DCs) has been explored in the clinic. Albeit safe, clinical results have thus far been limited. A major disadvantage of current cell-based dendritic cell (DC) therapies, preventing universal implementation of this form of immunotherapy, is the requirement that vaccines need to be tailor made for each individual. Targeted delivery of antigens to DC surface receptors in vivo would circumvent this laborious and expensive ex vivo culturing steps involved with these cell-based therapies. In addition, the opportunity to target natural and often rare DC subsets in vivo might have advantages over loading more artificial ex vivo cultured DCs. Preclinical studies show targeting antigens to DCs effectively induces humoral responses, while cellular responses are induced provided a DC maturation or activation stimulus is co-administered. Here, we discuss strategies to target antigens to distinct DC subsets and to simultaneously employ adjuvants to activate these cells to induce immunity.
Collapse
Affiliation(s)
- Paul J Tacken
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Postbox 9101, 6500 HB Nijmegen, The Netherlands.
| | | |
Collapse
|
40
|
Hennies CM, Reboulet RA, Garcia Z, Nierkens S, Wolkers MC, Janssen EM. Selective expansion of merocytic dendritic cells and CD8DCs confers anti-tumour effect of Fms-like tyrosine kinase 3-ligand treatment in vivo. Clin Exp Immunol 2011; 163:381-91. [PMID: 21235535 DOI: 10.1111/j.1365-2249.2010.04305.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Vaccination with autologous cancer cells aims to enhance adaptive immune responses to tumour-associated antigens. The incorporation of Fms-like tyrosine kinase 3-ligand (FLT3L) treatment to the vaccination scheme has been shown previously to increase the immunogenicity of cancer vaccines, thereby enhancing their therapeutic potential. While evidence has been provided that FLT3L confers its effect through the increase of absolute dendritic cell (DC) numbers, it is currently unknown which DC populations are responsive to FLT3L and which effect FLT3L treatment has on DC functions. Here we show that the beneficial effects of FLT3L treatment resulted predominantly from a marked increase of two specific DC populations, the CD8 DCs and the recently identified merocytic DC (mcDC). These two DC populations (cross)-present cell-associated antigens to T cells in a natural killer (NK)-independent fashion. FLT3L treatment augmented the absolute numbers of these DCs, but did not change their activation status nor their capacity to prime antigen-specific T cells. While both DC populations effectively primed CD8(+) T cell responses to cell-associated antigens, only mcDC were capable to prime CD4(+) T cells to cell-associated antigens. Consequentially, the transfer of tumour vaccine-pulsed mcDC, but not of CD8 DCs, protected mice from subsequent tumour challenge in a vaccination model and resulted in eradication of established tumours in a therapeutic approach. These results show that the beneficial effect of FLT3L is associated with the induction of mcDC and suggests that selective targeting to mcDC or instilling mcDC 'characteristics' into conventional DC populations could significantly enhance the efficacy of tumour vaccines.
Collapse
Affiliation(s)
- C M Hennies
- Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
41
|
ten Brinke A, van Schijndel G, Visser R, de Gruijl TD, Zwaginga JJ, van Ham SM. Monophosphoryl lipid A plus IFNgamma maturation of dendritic cells induces antigen-specific CD8+ cytotoxic T cells with high cytolytic potential. Cancer Immunol Immunother 2010; 59:1185-95. [PMID: 20336295 PMCID: PMC11030766 DOI: 10.1007/s00262-010-0843-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/26/2010] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are promising antigen presenting cells for cancer treatment. Previously, we showed that the combination of monophosphoryl lipid A (MPLA) with IFNgamma generates mature DCs that produce IL-12 and polarize CD4(+) T cells towards a Th1 phenotype. Here, we extended these observations by showing that the DCs generated with the clinical grade maturation cocktail of MPLA/IFNgamma induce superior tumour antigen-specific CD8(+) CTL responses compared to the cytokine cocktail matured DCs that are currently used in the clinic. MPLA/IFNgamma DCs can induce CTL responses in healthy individuals as well as in melanoma patients. The CTL induction was mainly dependent on the IL-12 produced by the MPLA/IFNgamma DCs. The high amounts of induced CTLs are functional as they produce IFNgamma and lyse target cells and this cytolytic activity is antigen specific and HLA restricted. Furthermore, the CTLs proved to kill tumour cells expressing endogenous tumour antigen in vitro. Therefore, MPLA/IFNgamma DCs are very promising for the use in future cancer immunotherapy.
Collapse
Affiliation(s)
- Anja ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, P.O. Box 9190, 1006 AD, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Alyea EP, DeAngelo DJ, Moldrem J, Pagel JM, Przepiorka D, Sadelin M, Young JW, Giralt S, Bishop M, Riddell S. NCI First International Workshop on The Biology, Prevention and Treatment of Relapse after Allogeneic Hematopoietic Cell Transplantation: report from the committee on prevention of relapse following allogeneic cell transplantation for hematologic malignancies. Biol Blood Marrow Transplant 2010; 16:1037-69. [PMID: 20580849 PMCID: PMC3235046 DOI: 10.1016/j.bbmt.2010.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
Abstract
Prevention of relapse after allogeneic hematopoietic stem cell transplantation is the most likely approach to improve survival of patients treated for hematologic malignancies. Herein we review the limits of currently available transplant therapies and the innovative strategies being developed to overcome resistance to therapy or to fill therapeutic modalities not currently available. These novel strategies include nonimmunologic therapies, such as targeted preparative regimens and posttransplant drug therapy, as well as immunologic interventions, including graft engineering, donor lymphocyte infusions, T cell engineering, vaccination, and dendritic cell-based approaches. Several aspects of the biology of the malignant cells as well as the host have been identified that obviate success of even these newer strategies. To maximize the potential for success, we recommend pursuing research to develop additional targeted therapies to be used in the preparative regimen or as maintenance posttransplant, better characterize the T cell and dendritic cells subsets involved in graft-versus-host disease and the graft-versus-leukemia/tumor effect, identify strategies for timing immunologic or nonimmunologic therapies to eliminate the noncycling cancer stem cell, identify more targets for immunotherapies, develop new vaccines that will not be limited by HLA, and develop methods to identify populations at very high risk for relapse to accelerate clinical development and avoid toxicity in patients not at risk for relapse.
Collapse
Affiliation(s)
- Edwin P Alyea
- Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Henry CJ, Grayson JM, Brzoza-Lewis KL, Mitchell LM, Westcott MM, Cook AS, Hiltbold EM. The roles of IL-12 and IL-23 in CD8+ T cell-mediated immunity against Listeria monocytogenes: Insights from a DC vaccination model. Cell Immunol 2010; 264:23-31. [PMID: 20483409 PMCID: PMC2902594 DOI: 10.1016/j.cellimm.2010.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 04/21/2010] [Indexed: 02/02/2023]
Abstract
Listeria monocytogenes infection induces a strong inflammatory response characterized by the production of IL-12 and IFN-gamma and protective immunity against this pathogen is dependent on CD8+ T cells (CTL). Recent studies have suggested that these inflammatory cytokines affect the rate of memory CD8+ T cell generation as well as the number of short-lived effector cells generated. The role of the closely related cytokine, IL-23, in this response has not been examined. We hypothesized that IL-12 and IL-23 produced by dendritic cells collectively enhance the generation and function of memory cells. To test this hypothesis, we employed a DC vaccination approach. Mice lacking IL-12 and IL-23 were vaccinated with wild-type (WT), IL-12(-/-), or IL-12/23(-/-) DC and protection to Lm was monitored. Mice vaccinated with WT and IL-12(-/-) DC were resistant to lethal challenge with Lm. Surprisingly, mice vaccinated with IL-12/23(-/-) DC exhibited significantly reduced protection when challenged. Protection correlated with the relative size of the memory pools generated. In summary, these data indicate that IL-23 can partially compensate for the lack of IL-12 in the generation protective immunity against Lm.
Collapse
Affiliation(s)
- Curtis J. Henry
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO 88010
- Integrated Department of Immunology, National Jewish Health, Denver, CO 80206
| | - Jason M. Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Kristina L. Brzoza-Lewis
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Latoya M. Mitchell
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
- Department of Microbiology, University of Alabama-Birmingham, Birmingham, AL 35243
| | - Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Anne S. Cook
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Elizabeth M. Hiltbold
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
44
|
Cross-presentation by dendritic cells from live cells induces protective immune responses in vivo. Blood 2010; 115:4412-20. [PMID: 20308597 DOI: 10.1182/blood-2009-11-255935] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cross-presentation is an essential mechanism that allows dendritic cells (DCs) to efficiently present exogenous antigens to CD8(+) T cells. Among cellular antigen sources, apoptotic cells are commonly considered as the best for cross-presentation by DCs. However, the potential of live cells as a source of antigen has been overlooked. Here we explored whether DCs were able to capture and cross-present antigens from live cells. DCs internalized cytosolic and membrane material into vesicles from metabolically labeled live cells. Using time-lapse confocal microscopy in whole spleens, we showed that DCs internalized material from live cells in vivo. After ovalbumin uptake from live cells, DCs cross-primed ovalbumin-specific naive OT-I CD8(+) T cells in vitro. Injected into mice previously transferred with naive OT-I T cells, they also cross-primed in vivo, even in the absence of endogenous DCs able to present the epitope in the recipient mice. Interestingly, DCs induced stronger natural CD8(+) T-cell responses and protection against a lethal tumor challenge after capture of antigens from live melanoma cells than from apoptotic melanoma cells. The potential for cross-presentation from live cells uncovers a new type of cellular intercommunication and must be taken into account for induction of tolerance or immunity against self, tumors, grafts, or pathogens.
Collapse
|
45
|
Pfannenstiel LW, Lam SSK, Emens LA, Jaffee EM, Armstrong TD. Paclitaxel enhances early dendritic cell maturation and function through TLR4 signaling in mice. Cell Immunol 2010; 263:79-87. [PMID: 20346445 DOI: 10.1016/j.cellimm.2010.03.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/24/2010] [Accepted: 03/01/2010] [Indexed: 12/19/2022]
Abstract
Subclinical doses of Paclitaxel (PTX) given 1day prior to a HER-2/neu (neu)-targeted, granulocyte-macrophage colony stimulating factor (GM-CSF)-secreting whole-cell vaccine enhances neu-specific T cell responses and slows neu(+) tumor growth in tolerized HER-2/neu (neu-N) mice. We demonstrate that co-administration of PTX and Cyclophosphamide (CY) synergizes to slow tumor growth, and that in vitro, DC precursors exposed to PTX before LPS maturation results in greater co-stimulatory molecule expression, IL-12 production, and the ability to induce CD8(+) T cells with enhanced lytic activity against neu(+) tumors. PTX treatment also enhances maturation marker expression on CD11c(+) DCs isolated from vaccine-draining lymph nodes. Ex vivo, these DCs activate CD8(+) T cells with greater lytic capability than DC's from vaccine alone-treated neu-N mice. Finally, PTX treatment results in enhanced antigen-specific, IFN-gamma-secreting CD8(+) T cells in vivo. Thus, administration of PTX with a tumor vaccine improves T cell priming through enhanced maturation of DC.
Collapse
Affiliation(s)
- Lukas W Pfannenstiel
- Department of Oncology, Sidney Kimmel Cancer Center, Division of Immunology, Johns Hopkins University, USA
| | | | | | | | | |
Collapse
|
46
|
Enhancement of antitumor immunity by low-dose total body irradiationis associated with selectively decreasing the proportion and number of T regulatory cells. Cell Mol Immunol 2010; 7:157-62. [PMID: 20140010 DOI: 10.1038/cmi.2009.117] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Low-dose total body irradiation (LTBI) is used in the treatment of some cancers mainly for immune enhancement rather than cell killing. However, the mechanism underlying LTBI remains unknown. In this study, by analyzing the immune patterns of lymphocytes, we found that the percentage and absolute number of CD4(+)CD25(+)Foxp3(+) regulatory T cells are markedly decreased in naive mice following treatment with LTBI. On the contrary, the CD4(+)CD44(+)/CD8(+)CD44(+) effect or-memory T cells are greatly increased. Importantly, naive mice treated with dendritic cell-gp 100 tumor vaccines under LTBI induced an enhancement of antigen-specific proliferation and cytotoxicity as well as interferon-gamma (IFN-gamma) secretion against F10 melanoma tumor challenge, compared to treatment with either the tumor vaccine or LTBI alone. Consequently, the treatment resulted in a reduced tumor burden and prolonged mouse survival. Our data demonstrate that LTBI's enhancement of antitumor immunity was mainly associated with selectively decreasing the proportion and number of T regulatory cells,implying the potential application of the combination of LTBI and a tumor vaccine in antitumor therapy.
Collapse
|
47
|
Grégoire M. What's the place of immunotherapy in malignant mesothelioma treatments? Cell Adh Migr 2010; 4:153-61. [PMID: 20179421 DOI: 10.4161/cam.4.1.11361] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy of the pleura with a very poor prognosis. Treatments evaluated for malignant mesothelioma, including chemotherapy, radiotherapy and surgery are of limited efficacy. However, the fact that the tumors of some patients with MPM regress spontaneously or respond to immunotherapy suggests that the immune system may respond to MPM under some circumstances. In this respect, animal studies have demonstrated immunoreactivity of MPM to different immunotherapies. In the case of MPM, several clinical studies have demonstrated a correlation between the presence of a lymphocyte infiltrate and a better prognosis and humoral response directed against specific antigens related to tumor. Thus, MPM immunotherapy is undoubtedly a highly promising but also very challenging approach to the treatment of this disease that has slipped through the defense lines of the immune system. This article reviews past and recent developments of the clinical strategies that concern immunotherapy of mesothelioma.
Collapse
Affiliation(s)
- Marc Grégoire
- INSERM, U892, Research Center in Oncology Nantes-Angers, France.
| |
Collapse
|
48
|
Lee H. The Clinical Impact of the Dendritic Cell-based Cancer Vaccine: the Role in the Inflammatory Tumor Micro-environment. Chonnam Med J 2010. [DOI: 10.4068/cmj.2010.46.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hyunah Lee
- Clinical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Abstract
Advances in the understanding of the immunoregulatory functions of dendritic cells (DCs) in animal models and humans have led to their exploitation as anticancer vaccines. Although DC-based immunotherapy has proven clinically safe and efficient to induce tumor-specific immune responses, only a limited number of objective clinical responses have been reported in cancer patients. These relatively disappointing results have prompted the evaluation of multiple approaches to improve the efficacy of DC vaccines. The topic of this review focuses on personalized DC-based anticancer vaccines, which in theory have the potential to present to the host immune system the entire repertoire of antigens harbored by autologous tumor cells. We also discuss the implementation of these vaccines in cancer therapeutic strategies, their limitations and the future challenges for effective immunotherapy against cancer.
Collapse
Affiliation(s)
- Nona Janikashvili
- Department of Pediatrics, Steele Children’s Research Center, Arizona 85724, USA
| | - Nicolas Larmonier
- Department of Pediatrics, Steele Children’s Research Center, Arizona 85724, USA
- Department of Immunobiology, BIO5 Institute & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, Steele Children’s Research Center, Arizona 85724, USA
- Department of Immunobiology, BIO5 Institute & Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
- University of Arizona, Department of Pediatrics, 1501 N Campbell Ave, PO Box 245073, Tucson, AZ 85724-85073, USA
| |
Collapse
|
50
|
Cho JH, Kim MH, Lee KH, Kim KU, Jeon DS, Park HK, Kim YS, Lee MK, Park SK. The Effect of Gefitinib on Immune Response of Human Peripheral Blood Monocyte-Derived Dendritic Cells. Tuberc Respir Dis (Seoul) 2010. [DOI: 10.4046/trd.2010.69.6.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jin Hoon Cho
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Mi Hyun Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Kwang Ha Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Ki Uk Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Doo Soo Jeon
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Hye Kyung Park
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Yun Seong Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Min Ki Lee
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Soon Kew Park
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|