1
|
Alsalloum A, Shevchenko JA, Sennikov S. NY-ESO-1 antigen: A promising frontier in cancer immunotherapy. Clin Transl Med 2024; 14:e70020. [PMID: 39275923 PMCID: PMC11399778 DOI: 10.1002/ctm2.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
Significant strides have been made in identifying tumour-associated antigens over the past decade, revealing unique epitopes crucial for targeted cancer therapy. Among these, the New York esophageal squamous cell carcinoma (NY-ESO-1) protein, a cancer/testis antigen, stands out. This protein is presented on the cell surface by major histocompatibility complex class I molecules and exhibits restricted expression in germline cells and various cancers, marking it as an immune-privileged site. Remarkably, NY-ESO-1 serves a dual role as both a tumour-associated antigen and its own adjuvant, implying a potential function as a damage-associated molecular pattern. It elicits strong humoural immune responses, with specific antibody frequencies significantly correlating with disease progression. These characteristics make NY-ESO-1 an appealing candidate for developing effective and specific immunotherapy, particularly for advanced stages of disease. In this review, we provide a comprehensive overview of NY-ESO-1 as an immunogenic tumour antigen. We then explore the diverse strategies for targeting NY-ESO-1, including cancer vaccination with peptides, proteins, DNA, mRNA, bacterial vectors, viral vectors, dendritic cells and artificial adjuvant vector cells, while considering the benefits and drawbacks of each strategy. Additionally, we offer an in-depth analysis of adoptive T-cell therapies, highlighting innovative techniques such as next-generation NY-ESO-1 T-cell products and the integration with lymph node-targeted vaccines to address challenges and enhance therapeutic efficacy. Overall, this comprehensive review sheds light on the evolving landscape of NY-ESO-1 targeting and its potential implications for cancer treatment, opening avenues for future tailored directions in NY-ESO-1-specific immunotherapy. HIGHLIGHTS: Endogenous immune response: NY-ESO-1 exhibited high immunogenicity, activating endogenous dendritic cells, T cells and B cells. NY-ESO-1-based cancer vaccines: NY-ESO-1 vaccines using protein/peptide, RNA/DNA, microbial vectors and artificial adjuvant vector cells have shown promise in enhancing immune responses against tumours. NY-ESO-1-specific T-cell receptor-engineered cells: NY-ESO-1-targeted T cells, along with ongoing innovations in engineered natural killer cells and other cell therapies, have improved the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Alaa Alsalloum
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
- Faculty of Natural SciencesNovosibirsk State UniversityNovosibirskRussia
| | - Julia A. Shevchenko
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
| | - Sergey Sennikov
- Laboratory of Molecular ImmunologyFederal State Budgetary Scientific Institution Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
- Department of ImmunologyV. Zelman Institute for Medicine and PsychologyNovosibirsk State UniversityNovosibirskRussia
| |
Collapse
|
2
|
Ai H, Yang H, Li L, Ma J, Liu K, Li Z. Cancer/testis antigens: promising immunotherapy targets for digestive tract cancers. Front Immunol 2023; 14:1190883. [PMID: 37398650 PMCID: PMC10311965 DOI: 10.3389/fimmu.2023.1190883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Digestive tract cancers, including esophageal, gastric, and colorectal cancers, are the major cause of death among cancer patients worldwide due to the heterogeneity of cancer cells, which limits the effectiveness of traditional treatment methods. Immunotherapy represents a promising treatment strategy for improving the prognosis of patients with digestive tract cancers. However, the clinical application of this approach is limited by the absence of optimal targets. Cancer/testis antigens are characterized by low or absent expression in normal tissues, but high expression in tumor tissues, making them an attractive target for antitumor immunotherapy. Recent preclinical trials have shown promising results for cancer/testis antigen-targeted immunotherapy in digestive cancer. However, practical problems and difficulties in clinical application remain. This review presents a comprehensive analysis of cancer/testis antigens in digestive tract cancers, covering their expression, function, and potential as an immunotherapy target. Additionally, the current state of cancer/testis antigens in digestive tract cancer immunotherapy is discussed, and we predict that these antigens hold great promise as an avenue for breakthroughs in the treatment of digestive tract cancers.
Collapse
Affiliation(s)
- Huihan Ai
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Hang Yang
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Liang Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jie Ma
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Department of Molecular and Cellular Biology, China-United States (US) Hormel (Henan) Cancer Institute, Zhengzhou, Henan, China
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi Li
- Department of General Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Yuan J, Li J, Gao C, Jiang C, Xiang Z, Wu J. Immunotherapies catering to the unmet medical need of cold colorectal cancer. Front Immunol 2022; 13:1022190. [PMID: 36275766 PMCID: PMC9579278 DOI: 10.3389/fimmu.2022.1022190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
As a common malignant tumor of gastrointestinal tract, the incidence of colorectal cancer (CRC) has gradually increased in recent years. In western developed countries, it has even become the second largest malignant tumor next to lung cancer. Immunotherapy is a hot topic in the field of cancer therapy, including immune checkpoint blockade (ICB), adoptive cell therapy (ACT), cancer vaccines and cytokines, aiming to improve the ability of the immune system to recognize, target and eliminate cancer cells. However, cold CRC, which accounts for a high proportion of CRC, is not so reactive to it. The development of immunotherapy to prevent cancer cells from forming “immune escape” pathways to the immune system in cold CRC, has been under increasing study attention. There is proof that an organic combination of radiotherapy, chemotherapy, and several immunotherapies can considerably boost the immune system’s capacity to eradicate tumor cells. In this review, we summarized the role of immunotherapy in colorectal cancer. In addition, we propose a breakthrough and strategy to improve the role of immunotherapy in cold CRC based on its characteristics.
Collapse
Affiliation(s)
- Jun Yuan
- Department of Clinical Laboratory, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng, China
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Ce Gao
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jian Wu, ; Ze Xiang,
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- *Correspondence: Jian Wu, ; Ze Xiang,
| |
Collapse
|
4
|
Kang S, Wang L, Xu L, Wang R, Kang Q, Gao X, Yu L. Decitabine enhances targeting of AML cells by NY-ESO-1-specific TCR-T cells and promotes the maintenance of effector function and the memory phenotype. Oncogene 2022; 41:4696-4708. [PMID: 36097193 PMCID: PMC9568428 DOI: 10.1038/s41388-022-02455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 12/03/2022]
Abstract
NY-ESO-1 is a well-known cancer-testis antigen (CTA) with re-expression in numerous cancer types, but its expression is suppressed in myeloid leukemia cells. Patients with acute myeloid leukemia (AML) receiving decitabine (DAC) exhibit induced expression of NY-ESO-1 in blasts; thus, we investigated the effects of NY-ESO-1-specific TCR-engineered T (TCR-T) cells combined with DAC against AML. NY-ESO-1-specific TCR-T cells could efficiently eliminate AML cell lines (including U937, HL60, and Kasumi-1cells) and primary AML blasts in vitro by targeting the DAC-induced NY-ESO-1 expression. Moreover, the incubation of T cells with DAC during TCR transduction (designated as dTCR-T cells) could further enhance the anti-leukemia efficacy of TCR-T cells and increase the generation of memory-like phenotype. The combination of DAC with NY-ESO-1-specific dTCR-T cells showed a superior anti-tumor efficacy in vivo and prolonged the survival of an AML xenograft mouse model, with three out of five mice showing complete elimination of AML cells over 90 days. This outcome was correlated with enhanced expressions of IFN-γ and TNF-α, and an increased proportion of central memory T cells (CD45RO+CD62L+ and CD45RO+CCR7+). Taken together, these data provide preclinical evidence for the combined use of DAC and NY-ESO-1-specific dTCR-T cells for the treatment of AML.
Collapse
Affiliation(s)
- Synat Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Lixin Wang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Lu Xu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Ruiqi Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qingzheng Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China. .,Central Laboratory, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen, 518000, Guangdong, China.
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
5
|
Yu G, Wang W, He X, Xu J, Xu R, Wan T, Wu Y. Synergistic Therapeutic Effects of Low Dose Decitabine and NY-ESO-1 Specific TCR-T Cells for the Colorectal Cancer With Microsatellite Stability. Front Oncol 2022; 12:895103. [PMID: 35774131 PMCID: PMC9239344 DOI: 10.3389/fonc.2022.895103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/17/2022] [Indexed: 12/26/2022] Open
Abstract
Patients of colorectal cancer (CRC) with microsatellite stability (MSS) show poor clinical response and little beneficial result from the immune-checkpoint inhibitors, due to the ‘cold’ tumor microenvironment. Meanwhile, decitabine can drive the ‘cold’ microenvironment towards ‘hot’ in multiple ways, such as upregulating the tumor associated antigen (TAA) and human leukocyte antigen (HLA) molecular. NY-ESO-1, one of the most important TAAs, can be observably induced in tumors by low dose decitabine, and present itself as ideal targets for antigen specific T cell receptor engineered T (TCR-T) cells. We innovatively used a synergistic tactic, combining decitabine and NY-ESO-1 specific TCR-T cells, for fighting the MSS CRC. Firstly, we confirmed the lysing effect of the NY-ESO-1 TCR-T cells on the NY-ESO-1+ and HLA-A2+ cells in vitro and in vivo. In A375 tumor-bearing mice, the results showed that NY-ESO-1 TCR-T cell therapy could inhibit A375 tumor growth and prolonged the survival time. Furthermore, the synergistic effect of decitabine and NY-ESO-1 TCR-T cells was shown to induce an even higher percentage of tumor cells being lysed in vitro than other control groups, and more potent tumor inhibition and longer survival time were observed in vivo. The innovative synergistic therapeutic strategy of decitabine and TCR-T cells for the CRC with MSS may be also effective in the treatment of other epithelial malignancies. Decitabine may likewise be adopted in combination with other cellular immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Wan
- *Correspondence: Tao Wan, ; Yanfeng Wu,
| | | |
Collapse
|
6
|
Kuang C, Park Y, Augustin RC, Lin Y, Hartman DJ, Seigh L, Pai RK, Sun W, Bahary N, Ohr J, Rhee JC, Marks SM, Beasley HS, Shuai Y, Herman JG, Zarour HM, Chu E, Lee JJ, Krishnamurthy A. Pembrolizumab plus azacitidine in patients with chemotherapy refractory metastatic colorectal cancer: a single-arm phase 2 trial and correlative biomarker analysis. Clin Epigenetics 2022; 14:3. [PMID: 34991708 PMCID: PMC8740438 DOI: 10.1186/s13148-021-01226-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND DNA mismatch repair proficient (pMMR) metastatic colorectal cancer (mCRC) is not responsive to pembrolizumab monotherapy. DNA methyltransferase inhibitors can promote antitumor immune responses. This clinical trial investigated whether concurrent treatment with azacitidine enhances the antitumor activity of pembrolizumab in mCRC. METHODS We conducted a phase 2 single-arm trial evaluating activity and tolerability of pembrolizumab plus azacitidine in patients with chemotherapy-refractory mCRC (NCT02260440). Patients received pembrolizumab 200 mg IV on day 1 and azacitidine 100 mg SQ on days 1-5, every 3 weeks. A low fixed dose of azacitidine was chosen in order to reduce the possibility of a direct cytotoxic effect of the drug, since the main focus of this study was to investigate its potential immunomodulatory effect. The primary endpoint of this study was overall response rate (ORR) using RECIST v1.1., and secondary endpoints were progression-free survival (PFS) and overall survival (OS). Tumor tissue was collected pre- and on-treatment for correlative studies. RESULTS Thirty chemotherapy-refractory patients received a median of three cycles of therapy. One patient achieved partial response (PR), and one patient had stable disease (SD) as best confirmed response. The ORR was 3%, median PFS was 1.9 months, and median OS was 6.3 months. The combination regimen was well-tolerated, and 96% of treatment-related adverse events (TRAEs) were grade 1/2. This trial was terminated prior to the accrual target of 40 patients due to lack of clinical efficacy. DNA methylation on-treatment as compared to pre-treatment decreased genome wide in 10 of 15 patients with paired biopsies and was significantly lower in gene promoter regions after treatment. These promoter demethylated genes represented a higher proportion of upregulated genes, including several immune gene sets, endogenous retroviral elements, and cancer-testis antigens. CD8+ TIL density trended higher on-treatment compared to pre-treatment. Higher CD8+ TIL density at baseline was associated with greater likelihood of benefit from treatment. On-treatment tumor demethylation correlated with the increases in tumor CD8+ TIL density. CONCLUSIONS The combination of pembrolizumab and azacitidine is safe and tolerable with modest clinical activity in the treatment for chemotherapy-refractory mCRC. Correlative studies suggest that tumor DNA demethylation and immunomodulation occurs. An association between tumor DNA demethylation and tumor-immune modulation suggests immune modulation and may result from treatment with azacitidine. Trial registration ClinicalTrials.gov, NCT02260440. Registered 9 October 2014, https://clinicaltrials.gov/ct2/show/NCT02260440 .
Collapse
Affiliation(s)
- Chaoyuan Kuang
- UPMC Hillman Cancer Center, Pittsburgh, USA.
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA.
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA.
- Albert Einstein Cancer Center, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 628, Bronx, NY, 10461, USA.
| | - Yongseok Park
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Ryan C Augustin
- Division of General Internal Medicine, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Yan Lin
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Douglas J Hartman
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Lindsey Seigh
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Reetesh K Pai
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Weijing Sun
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA
- University of Kansas Cancer Center, Westwood, USA
| | - Nathan Bahary
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA
- AHN Cancer Institute, Pittsburgh, USA
| | - James Ohr
- UPMC Hillman Cancer Center, Pittsburgh, USA
| | | | | | | | | | - James G Herman
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Epidemiology and Prevention Program, Pittsburgh, USA
| | - Hassane M Zarour
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Immunology and Immunotherapy Program, Pittsburgh, USA
| | - Edward Chu
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA
- Albert Einstein Cancer Center, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 628, Bronx, NY, 10461, USA
| | - James J Lee
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA
| | - Anuradha Krishnamurthy
- UPMC Hillman Cancer Center, Pittsburgh, USA
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, UPMC Cancer Pavilion, 5150 Centre Avenue, Room 463, Pittsburgh, PA, 15232, USA
- Hillman Cancer Center Cancer Therapeutics Program, Pittsburgh, USA
| |
Collapse
|
7
|
Mondino A, Manzo T. To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Front Immunol 2020; 11:1915. [PMID: 32973794 PMCID: PMC7481451 DOI: 10.3389/fimmu.2020.01915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
The generation of immunological memory is a hallmark of adaptive immunity by which the immune system "remembers" a previous encounter with an antigen expressed by pathogens, tumors, or normal tissues; and, upon secondary encounters, mounts faster and more effective recall responses. The establishment of T cell memory is influenced by both cell-intrinsic and cell-extrinsic factors, including genetic, epigenetic and environmental triggers. Our current knowledge of the mechanisms involved in memory T cell differentiation has instructed new opportunities to engineer T cells with enhanced anti-tumor activity. The development of adoptive T cell therapy has emerged as a powerful approach to cure a subset of patients with advanced cancers. Efficacy of this approach often requires long-term persistence of transferred T cell products, which can vary according to their origin and manufacturing conditions. Host preconditioning and post-transfer supporting strategies have shown to promote their engraftment and survival by limiting the competition with a hostile tumor microenvironment and between pre-existing immune cell subsets. Although in the general view pre-existing memory can confer a selective advantage to adoptive T cell therapy, here we propose that also "bad memories"-in the form of antigen-experienced T cell subsets-co-evolve with consequences on newly transferred lymphocytes. In this review, we will first provide an overview of selected features of memory T cell subsets and, then, discuss their putative implications for adoptive T cell therapy.
Collapse
Affiliation(s)
- Anna Mondino
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, IRCCS European Institute of Oncology, Milan, Italy
| |
Collapse
|
8
|
Nowicki TS, Farrell C, Morselli M, Rubbi L, Campbell KM, Macabali MH, Berent-Maoz B, Comin-Anduix B, Pellegrini M, Ribas A. Epigenetic Suppression of Transgenic T-cell Receptor Expression via Gamma-Retroviral Vector Methylation in Adoptive Cell Transfer Therapy. Cancer Discov 2020; 10:1645-1653. [PMID: 32699033 DOI: 10.1158/2159-8290.cd-20-0300] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022]
Abstract
Transgenic T-cell receptor (TCR) adoptive cell therapies recognizing tumor antigens are associated with robust initial response rates, but frequent disease relapse. This usually occurs in the setting of poor long-term persistence of cells expressing the transgenic TCR, generated using murine stem cell virus (MSCV) γ-retroviral vectors. Analysis of clinical transgenic adoptive cell therapy products in vivo revealed that despite strong persistence of the transgenic TCR DNA sequence over time, its expression was profoundly decreased over time at the RNA and protein levels. Patients with the greatest degrees of expression suppression displayed significant increases in DNA methylation over time within the MSCV promoter region, as well as progressive increases in DNA methylation within the entire MSCV vector over time. These increases in vector methylation occurred independently of its integration site within the host genomes. These results have significant implications for the design of future viral vector gene-engineered adoptive cell transfer therapies. SIGNIFICANCE: Cellular immunotherapies' reliance on retroviral vectors encoding foreign genetic material can be vulnerable to progressive acquisition of DNA methylation and subsequent epigenetic suppression of the transgenic product in TCR adoptive cell therapy. This must be considered in the design of future generations of cellular immunotherapies for cancer.This article is highlighted in the In This Issue feature, p. 1611.
Collapse
Affiliation(s)
- Theodore S Nowicki
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, California. .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California
| | - Colin Farrell
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, California
| | - Marco Morselli
- Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California, Los Angeles, Los Angeles, California.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Liudmilla Rubbi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Katie M Campbell
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Mignonette H Macabali
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Beata Berent-Maoz
- Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Begoña Comin-Anduix
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California
| | - Matteo Pellegrini
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California, Los Angeles, Los Angeles, California.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California.,Division of Hematology-Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, California.,Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, California.,Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
9
|
Nielsen AY, Ormhøj M, Traynor S, Gjerstorff MF. Augmenting engineered T-cell strategies in solid cancers through epigenetic priming. Cancer Immunol Immunother 2020; 69:2169-2178. [PMID: 32648166 DOI: 10.1007/s00262-020-02661-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
T-cell receptor (TCR)- and chimeric antigen receptor (CAR)-based adoptive cell transfer (ACT) has shown promising results in hematological malignancies, but remains immature in solid cancers. The challenges associated with identification of tumor-specific targets, the heterogenic antigen expression, limited T-cell trafficking to tumor sites and the hostile tumor microenvironment (TME), are all factors contributing to the limited efficacy of ACT therapies against solid tumors. Epigenetic priming of tumor cells and the microenvironment may be a way of overcoming these obstacles and improving the clinical efficacy of adoptive T-cell therapies in the future. Here, we review the current literature and suggest combining epigenetic modulators and ACT strategies as a way of augmenting the efficacy of TCR- and CAR-engineered T cells against solid tumors.
Collapse
Affiliation(s)
- Aaraby Y Nielsen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Maria Ormhøj
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark. .,Department of Oncology, Odense University Hospital, Odense, Denmark. .,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark.
| |
Collapse
|
10
|
Immunotherapy in gastrointestinal cancer: The current scenario and future perspectives. Cancer Treat Rev 2020; 88:102030. [PMID: 32505807 DOI: 10.1016/j.ctrv.2020.102030] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal cancers include colorectal, gastric, oesophageal, pancreatic and liver cancers. They continue to be a significant cause of mortality and morbidity worldwide. Current treatment strategies include chemotherapy, surgery, radiotherapy and targeted therapies. Immunotherapy has recently been incorporated in treatment regimens for some gastrointestinal malignancies and research into different immune modifying treatments is being carried out in this context. Approaches to immune modulation such as vaccination, adoptive cell therapy and checkpoint inhibition have shown varying clinical benefit, with most of the benefit seen in checkpoint inhibition. This review summarises recent advances and future direction of immunotherapy in patients with gastrointestinal malignancies.
Collapse
|
11
|
Maryamchik E, Gallagher KME, Preffer FI, Kadauke S, Maus MV. New directions in chimeric antigen receptor T cell [CAR-T] therapy and related flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:299-327. [PMID: 32352629 DOI: 10.1002/cyto.b.21880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor (CAR) T cells provide a promising approach to the treatment of hematologic malignancies and solid tumors. Flow cytometry is a powerful analytical modality, which plays an expanding role in all stages of CAR T therapy, from lymphocyte collection, to CAR T cell manufacturing, to in vivo monitoring of the infused cells and evaluation of their function in the tumor environment. Therefore, a thorough understanding of the new directions is important for designing and implementing CAR T-related flow cytometry assays in the clinical and investigational settings. However, the speed of new discoveries and the multitude of clinical and preclinical trials make it challenging to keep up to date in this complex field. In this review, we summarize the current state of CAR T therapy, highlight the areas of emergent research, discuss applications of flow cytometry in modern cell therapy, and touch upon several considerations particular to CAR detection and assessing the effectiveness of CAR T therapy.
Collapse
Affiliation(s)
- Elena Maryamchik
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Frederic I Preffer
- Clinical Cytometry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephan Kadauke
- Department of Pathology and Laboratory Medicine, Cell and Gene Therapy Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Cellular Immunotherapy Program, Department of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:109-131. [PMID: 32483735 DOI: 10.1007/978-3-030-43032-0_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T-cell immunotherapy may offer an approach to improve outcomes for patients with osteosarcoma who fail current therapies. In addition, it has the potential to reduce treatment-related complications for all patients. Generating tumor-specific T cells with conventional antigen-presenting cells ex vivo is time-consuming and often results in T-cell products with a low frequency of tumor-specific T cells. Furthermore, the generated T cells remain sensitive to the immunosuppressive tumor microenvironment. Genetic modification of T cells is one strategy to overcome these limitations. For example, T cells can be genetically modified to render them antigen specific, resistant to inhibitory factors, or increase their ability to home to tumor sites. Most genetic modification strategies have only been evaluated in preclinical models; however, early clinical phase trials are in progress. In this chapter, we will review the current status of gene-modified T-cell therapy with special focus on osteosarcoma, highlighting potential antigenic targets, preclinical and clinical studies, and strategies to improve current T-cell therapy approaches.
Collapse
|
13
|
The role of DNA-demethylating agents in cancer therapy. Pharmacol Ther 2019; 205:107416. [PMID: 31626871 DOI: 10.1016/j.pharmthera.2019.107416] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/20/2019] [Indexed: 12/29/2022]
Abstract
DNA methylation patterns are frequently altered in cancer cells as compared to normal cells. A large body of research associates these DNA methylation aberrations with cancer initiation and progression. Moreover, cancer cells seem to depend upon these aberrant DNA methylation profiles to thrive. Finally, DNA methylation modifications are reversible, highlighting the potential to target the global methylation patterns for cancer therapy. In this review, we will discuss the scientific and clinical aspects of DNA methylation in cancer. We will review the limited success of targeting DNA methylation in the clinic, the associated clinical challenges, the impact of novel DNA methylation inhibitors and how combination therapies are improving patient outcomes.
Collapse
|
14
|
Xing X, Zou Z, He C, Hu Z, Liang K, Liang W, Wang Y, Du X. Enhanced antitumor effect of cytotoxic T lymphocytes induced by dendritic cells pulsed with colorectal cancer cell lysate expressing α-Gal epitopes. Oncol Lett 2019; 18:864-871. [PMID: 31289564 DOI: 10.3892/ol.2019.10376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 04/24/2019] [Indexed: 01/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of gastrointestinal malignancy. Traditional therapeutic options for CRC exhibit a limited effect. Adoptive cellular therapy has emerged as a new treatment strategy for CRC. Dendritic cells (DCs) are potent antigen-presenting cells. Specific cytotoxic T lymphocytes (CTLs) activated by DCs pulsed with tumor lysate have been reported to be a safe and promising treatment approach for CRC. However, the antitumor effect of specific CTLs remains limited. The low immunogenicity of tumor-associated antigens (TAAs) is the main reason for this limited therapeutic effect. In the present study, α-gal epitopes were synthesized on the CRC cell line SW620 to increase the immunogenicity of TAAs. DCs were pulsed with α-gal-expressing tumor lysate and CTLs were activated by these DCs. The cytotoxicity of CTLs was measured in vitro. The results demonstrated that DCs pulsed with α-gal-expressing tumor lysate can increase the frequency of CD3+CD8+ CTLs and natural killer T cells, increase the level of tumor necrosis factor-α produced by CTLs and enhance the cytotoxicity of CTLs against tumor cells. Therefore, this novel approach may be an effective treatment strategy for patients with CRC.
Collapse
Affiliation(s)
- Xiaowei Xing
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zhenyu Zou
- Department of Hernia and Abdominal Wall Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100853, P.R. China
| | - Changzheng He
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Zilong Hu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Kai Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Wentao Liang
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yufeng Wang
- Department of Patient Admission Management, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xiaohui Du
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
15
|
Jansen YJL, Verset G, Schats K, Van Dam PJ, Seremet T, Kockx M, Van Laethem JLB, Neyns B. Phase I clinical trial of decitabine (5-aza-2'-deoxycytidine) administered by hepatic arterial infusion in patients with unresectable liver-predominant metastases. ESMO Open 2019; 4:e000464. [PMID: 30962963 PMCID: PMC6435241 DOI: 10.1136/esmoopen-2018-000464] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
DNA demethylating agents may increase the immunogenicity of malignant tumours and increase the efficacy of subsequent treatment with immune check point inhibitors. We investigated the safety of administrating the demethylating agent decitabine by hepatic arterial infusionin patients with unresectable liver meta stases from solid tumours in a dose escalation phase I clinical trial. A total of nine eligible patients were enrolled and initiated study treatment at three different dose levels (two patients at 10, four at 15 and six at a dose level of 20mg decitabine/m2/day) (per protocol there was no intent to escalate the dose above the median tolerated intravenous dose level). Decitabine was administered as a 1-hour hepatic arterial infusion on five consecutive days every 4 weeks. Intrapatient dose escalation was applied in five patients. Grades 1 and 2 haematological toxicity was the most frequent treatment-related adverse event. None of the patients experienced treatment-limiting adverse events. Expression analysis of 30 cancer test is antigens (CTA) in pretreatment and post-treatment biopsies from patients indicated an increased expression of 21 CTAs after treatment. There were no objective tumour responses on study treatment or during post study exposure to immune checkpoint therapy in four patients with uveal melanoma liver metastases. We conclude that the investigate d hepatic arterial administration regimen for decitabine can be safely applied, and a dose level of 20 mg/m2/day on five consecutive days every 4 weeks can be considered for further investigation in combinatorial immunotherapy regimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bart Neyns
- Oncology, Universitair ziekenhuis Brussel, Brussel, Belgium
| |
Collapse
|
16
|
Lee JJ, Chu E. Recent Advances in the Clinical Development of Immune Checkpoint Blockade Therapy for Mismatch Repair Proficient (pMMR)/non-MSI-H Metastatic Colorectal Cancer. Clin Colorectal Cancer 2018; 17:258-273. [PMID: 30072278 PMCID: PMC6612427 DOI: 10.1016/j.clcc.2018.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/10/2018] [Accepted: 06/14/2018] [Indexed: 12/11/2022]
Abstract
Metastatic colorectal cancer (mCRC) continues to be associated with a poor prognosis, and there remains a significant unmet need for novel agents and treatment regimens. Major breakthroughs have been made with immune checkpoint blockade therapy in several disease types, including DNA mismatch repair deficient/microsatellite instability-high (MSI-H) tumors. To date, however, immune checkpoint monotherapy has not shown significant clinical activity in the treatment of patients with mismatch repair proficient (pMMR)/non-MSI-H mCRC. The immune resistance mechanisms in pMMR/non-MSI-H mCRC have not yet been clearly elucidated. Significant efforts are currently focused on identifying effective combination immunotherapy regimens for the treatment of patients with pMMR/non-MSI-H mCRC. The combination of atezolizumab with cobimetinib had shown promising clinical activity in an early-phase clinical trial. Unfortunately, the IMblaze 370 (COTEZO) phase III trial of atezolizumab/cobimetinib combination in patients with mCRC failed to show significant improvement in overall survival in patients treated with the atezolizumab/combimetinib combination in comparison with regorafenib alone. This review summarizes the recent major advances in the clinical development of immunotherapy regimens for patients with pMMR/non-MSI-H mCRC.
Collapse
Affiliation(s)
- James J Lee
- Division of Hematology-Oncology, Department of Medicine, Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA.
| | - Edward Chu
- Division of Hematology-Oncology, Department of Medicine, Cancer Therapeutics Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
17
|
Fan J, Shang D, Han B, Song J, Chen H, Yang JM. Adoptive Cell Transfer: Is it a Promising Immunotherapy for Colorectal Cancer? Am J Cancer Res 2018; 8:5784-5800. [PMID: 30555581 PMCID: PMC6276301 DOI: 10.7150/thno.29035] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022] Open
Abstract
The last decade has witnessed significant advances in the adoptive cell transfer (ACT) technique, which has been appreciated as one of the most promising treatments for patients with cancer. Utilization of ACT can enhance the function of the immune system or improve the specificity and persistence of transferred cells. Various immune cells including T lymphocytes, natural killer cells, dendritic cells, and even stem cells can be used in the ACT despite their different functional mechanisms. Colorectal cancer (CRC) is among the most common malignancies and causes millions of deaths worldwide every year. In this review, we discuss the status and perspective of the ACT in the treatment of CRC.
Collapse
|
18
|
Chi Soh JE, Abu N, Jamal R. The potential immune-eliciting cancer testis antigens in colorectal cancer. Immunotherapy 2018; 10:1093-1104. [DOI: 10.2217/imt-2018-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The identification of cancer testis antigens (CTAs) has been an important finding in the search of potential targets for cancer immunotherapy. CTA is one of the subfamilies of the large tumor-associated antigens groups. It is aberrantly expressed in various types of human tumors but is absent in normal tissues except for the testis and placenta. This CTAs-restricted pattern of expression in human malignancies together with its potential immunogenic properties, has stirred the interest of many researchers to use CTAs as one of the ideal targets in cancer immunotherapy. To date, multiple studies have shown that CTAs-based vaccines can elicit clinical and immunological responses in different tumors, including colorectal cancer (CRC). This review details our current understanding of CTAs and CRC in regard to the expression and immunological responses as well as some of the critical hurdles in CTAs-based immunotherapy.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock J. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front Immunol 2018; 9:947. [PMID: 29770138 PMCID: PMC5941317 DOI: 10.3389/fimmu.2018.00947] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
NY-ESO-1 or New York esophageal squamous cell carcinoma 1 is a well-known cancer-testis antigen (CTAs) with re-expression in numerous cancer types. Its ability to elicit spontaneous humoral and cellular immune responses, together with its restricted expression pattern, have rendered it a good candidate target for cancer immunotherapy. In this review, we provide background information on NY-ESO-1 expression and function in normal and cancerous tissues. Furthermore, NY-ESO-1-specific immune responses have been observed in various cancer types; however, their utility as biomarkers are not well determined. Finally, we describe the immune-based therapeutic options targeting NY-ESO-1 that are currently in clinical trial. We will highlight the recent advancements made in NY-ESO-1 cancer vaccines, adoptive T cell therapy, and combinatorial treatment with checkpoint inhibitors and will discuss the current trends for future NY-ESO-1 based immunotherapy. Cancer treatment has been revolutionized over the last few decades with immunotherapy emerging at the forefront. Immune-based interventions have shown promising results, providing a new treatment avenue for durable clinical responses in various cancer types. The majority of successful immunotherapy studies have been reported in liquid cancers, whereas these approaches have met many challenges in solid cancers. Effective immunotherapy in solid cancers is hampered by the complex, dynamic tumor microenvironment that modulates the extent and phenotype of the antitumor immune response. Furthermore, many solid tumor-associated antigens are not private but can be found in normal somatic tissues, resulting in minor to detrimental off-target toxicities. Therefore, there is an ongoing effort to identify tumor-specific antigens to target using various immune-based modalities. CTAs are considered good candidate targets for immunotherapy as they are characterized by a restricted expression in normal somatic tissues concomitant with a re-expression in solid epithelial cancers. Moreover, several CTAs have been found to induce a spontaneous immune response, NY-ESO-1 being the most immunogenic among the family members. Hence, this review will focus on NY-ESO-1 and discuss the past and current NY-ESO-1 targeted immunotherapeutic strategies.
Collapse
Affiliation(s)
- Remy Thomas
- Cancer Research Center, Qatar Biomedical Research Institute, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Ghaneya Al-Khadairi
- Cancer Research Center, Qatar Biomedical Research Institute, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Jessica Roelands
- Immunology, Inflammation, and Metabolism Department, Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medicine, Doha, Qatar.,Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Wouter Hendrickx
- Immunology, Inflammation, and Metabolism Department, Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Doha, Qatar
| | - Davide Bedognetti
- Immunology, Inflammation, and Metabolism Department, Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
20
|
Epigenetic Strategies to Boost Cancer Immunotherapies. Int J Mol Sci 2017; 18:ijms18061108. [PMID: 28545238 PMCID: PMC5485932 DOI: 10.3390/ijms18061108] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 01/22/2023] Open
Abstract
Recently, immunotherapeutic approaches have shown impressive responses in a subset of cancer patients. However, the rate of success is low and a large percentage of treated patients do not experience clinical benefits. Therefore, additional strategies are needed to improve responses and select responsive patients. Emerging data suggest that epigenetic drugs can improve the responses to immunotherapy. Understanding the mechanisms of resistance to immunotherapy and the epigenetic events that take place during immune evasion is critical to providing a rational combined use of immunotherapies and epigenetic drugs. This review focuses in the epigenetic mechanisms involved in the responses to immunotherapy and how current drugs that target epigenetic regulators impact on them.
Collapse
|
21
|
Zhang Z, He Q, Tao Y, Guo J, Xu F, Wu LY, Zhao YS, Wu D, Zhou LY, Su JY, Song LX, Xiao C, Li X, Chang CK. Decitabine treatment sensitizes tumor cells to T-cell-mediated cytotoxicity in patients with myelodysplastic syndromes. Am J Transl Res 2017; 9:454-465. [PMID: 28337274 PMCID: PMC5340681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Decitabine treatment improves immunological recognition that increases expression of cancer-testis antigens (CTAs) against solid tumors. The mechanisms of decitabine enhancement of immunogenicity when used for patients with myelodysplastic syndromes (MDS) remain unclear. In the present study, we found relatively low baseline expression of MAGE-A1, MAGE-A3, and SP17 in MDS-derived cell lines. Decitabine treatment significantly improved MAGE-A1, MAGE-A3, and SP17 expression in these cell lines and in MDS patients. Decitabine-treated K562 and SKM-1 target cells with incrementally induced MAGE-A1, MAGE-A3, or SP17 levels up-regulated T lymphocyte function. Decitabine treatment improved CTA-specific cytotoxic T lymphocyte (CTL) recognition of MDS cells via the up-regulation of CTAs. This response was accompanied by enhanced T lymphocyte function and HLA class antigen expression, and increased ICAM-1. These findings suggested that decitabine may have a broad range of therapeutic applications when it is used in association with active adaptive immunity responses against up-regulated CTAs.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Qi He
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Ying Tao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Juan Guo
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Feng Xu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - You-Shan Zhao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Dong Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Li-Yu Zhou
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Ji-Ying Su
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Lu-Xi Song
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Chao Xiao
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Xiao Li
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, China
| |
Collapse
|
22
|
Wang J, Zhou P. New Approaches in CAR-T Cell Immunotherapy for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:371-381. [PMID: 29282693 DOI: 10.1007/978-981-10-6020-5_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite significant advances in surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of death from malignant tumors among women. Immunotherapy has recently become a critical component of breast cancer treatment with encouraging activity and mild safety profiles. CAR-T therapy using genetically modifying T cells with chimeric antigen receptors (CAR) is the most commonly used approach to generate tumor-specific T cells. It has shown good curative effect for a variety of malignant diseases, especially for hematological malignancies. In this review, we briefly introduce the history and the present state of CAR research. Then we discuss the barriers of solid tumors for CARs application and possible strategies to improve therapeutic response with a focus on breast cancer. At last, we outlook the future directions of CAR-T therapy including managing toxicities and developing universal CAR-T cells.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Penghui Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
23
|
Mass spectrometric analysis of the HLA class I peptidome of melanoma cell lines as a promising tool for the identification of putative tumor-associated HLA epitopes. Cancer Immunol Immunother 2016; 65:1377-1393. [PMID: 27600516 DOI: 10.1007/s00262-016-1897-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
Abstract
Melanoma is one of the most immunogenic tumors, and extensive lists of potential tumor rejection antigens have been collected during the last decades. By isolating human leukocyte antigen (HLA) class I complexes from five melanoma cell lines (FM-82, FM-93/2, Mel-624, MeWo and SK-Mel-5) and sequencing HLA-eluted peptides by mass spectrometry, we identified over 10,000 unique peptides with high confidence. The majority of the peptides were 8-11 amino acids in length and were predicted to bind to the respective HLA alleles. Over 250 epitopes, corresponding to previously described tumor-associated antigens, were identified, suggesting that HLA peptidome analysis may facilitate the characterization of putative tumor rejection antigens. MeWo and SK-Mel-5 cell lines were further interrogated for neo-epitopes, revealing one peptide from MeWo cells carrying an amino acid mutation. We also observed a remarkable overlap between A*03:01 peptides eluted from Mel-624 cells and A*03:01 peptides recovered from soluble HLA complexes purified from two melanoma patients, shedding light on the similarity of the HLA peptidome in cell lines and in patient-derived material. The reliable characterization of the HLA class I peptidome in melanoma promises to facilitate the identification of tumor rejection antigens and the development of immunotherapeutic strategies.
Collapse
|
24
|
Sand K, Theorell J, Bruserud Ø, Bryceson YT, Kittang AO. Reduced potency of cytotoxic T lymphocytes from patients with high-risk myelodysplastic syndromes. Cancer Immunol Immunother 2016; 65:1135-47. [PMID: 27481108 PMCID: PMC11029614 DOI: 10.1007/s00262-016-1865-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 07/01/2016] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are a group of clonal bone marrow disorders, with dysplasia, cytopenias and increased risk of progression to acute myeloid leukemia. A dysregulated immune system precipitates MDS, and to gain insights into the relevance of cytotoxic T lymphocyte (CTL) in this process, we examined the frequency and function of CX3CR1- and CD57-positive T lymphocytes from MDS patients. MATERIALS AND METHODS Peripheral blood and/or bone marrow samples from 31 MDS patients and 12 healthy controls were examined by flow cytometry. Expression of cytotoxic granule constituents, immunological co-receptors, adhesion molecules and markers of activation were quantified on unstimulated lymphocytes. Degranulation, cytotoxicity and conjugate formation with target cells following co-culture of CTL with target cell lines or autologous bone marrow-derived CD34(+) cells were quantified by flow cytometry. RESULTS CX3CR1 expression was increased in bone marrow from high-risk MDS patients compared to healthy controls. Expression of CD57 and CX3CR1 was closely correlated, identifying a CTL subset with high cytotoxic capacity. In vitro, TCR-induced redirected cytotoxicity was markedly decreased for high-risk MDS patients compared to controls. CTL from MDS patients with the lowest target cell cytotoxicity had reduced expression of adhesion molecules and formed fewer conjugates with target cells. DISCUSSION Although phenotypically defined CTL numbers were increased in the bone marrow of MDS patients, we found that CTL from high-risk MDS patients exhibited a lower TCR-induced redirected cytotoxic capacity. Thus, decreased T cell cytotoxicity seems related to reduced adhesion to target cells and may contribute to impaired anti-leukemic immune surveillance in MDS.
Collapse
Affiliation(s)
- Kristoffer Sand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jakob Theorell
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
| | - Yenan T Bryceson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Astrid Olsnes Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway.
| |
Collapse
|
25
|
TCR-engineered T cells to treat tumors: Seeing but not touching? Semin Immunol 2016; 28:10-21. [PMID: 26997556 DOI: 10.1016/j.smim.2016.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/02/2016] [Accepted: 03/04/2016] [Indexed: 12/17/2022]
Abstract
Adoptive transfer of T cells gene-engineered with T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to accurately select TCRs that demonstrate antigen-selective responses that are restricted to tumor cells and, at the same time, include strategies that restore or enhance the entry, migration and local accumulation of T cells in tumor tissues. Here, we present the current standing of TCR-engineered T cell therapy, discuss and propose procedures to select TCRs as well as strategies to sensitize the tumor to T cell trafficking, and provide a rationale for combination therapies with TCR-engineered T cells.
Collapse
|
26
|
Li X, Mei Q, Nie J, Fu X, Han W. Decitabine: a promising epi-immunotherapeutic agent in solid tumors. Expert Rev Clin Immunol 2015; 11:363-75. [DOI: 10.1586/1744666x.2015.1002397] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
|
28
|
Abstract
Current therapy for sarcomas, though effective in treating local disease, is often ineffective for patients with recurrent or metastatic disease. To improve outcomes, novel approaches are needed and cell therapy has the potential to meet this need since it does not rely on the cytotoxic mechanisms of conventional therapies. The recent successes of T-cell therapies for hematological malignancies have led to renewed interest in exploring cell therapies for solid tumors such as sarcomas. In this review, we will discuss current cell therapies for sarcoma with special emphasis on genetic approaches to improve the effector function of adoptively transferred cells.
Collapse
Affiliation(s)
- Melinda Mata
- Center for Cell & Gene Therapy, Texa Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| | - Stephen Gottschalk
- Center for Cell & Gene Therapy, Texa Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| |
Collapse
|
29
|
Abstract
Chimeric antigen receptor (CAR) T cells face a unique set of challenges in the context of solid tumors. To induce a favorable clinical outcome, CAR T cells have to surmount a series of increasingly arduous tasks. First, they have to be made specific for an antigen whose expression clearly demarcates tumor from normal tissue. Then, they must be able to home and penetrate the desmoplastic stroma that surrounds the tumor. Once within the tumor, they must expand, persist, and mediate cytotoxicity in a hostile milieu largely composed of immunosuppressive modulators. Whereas a seemingly herculean task, all of the aforementioned requirements can potentially be met effectively through both intrinsic and/or extrinsic modifications of CAR T cells. In this review, we delineate the barriers imposed by solid tumors on CARs and strategies that have and should be undertaken to improve therapeutic response.
Collapse
|
30
|
Soto-Pantoja DR, Terabe M, Ghosh A, Ridnour LA, DeGraff WG, Wink DA, Berzofsky JA, Roberts DD. CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res 2014; 74:6771-83. [PMID: 25297630 DOI: 10.1158/0008-5472.can-14-0037-t] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although significant advances in radiotherapy have increased its effectiveness in many cancer settings, general strategies to widen the therapeutic window between normal tissue toxicity and malignant tumor destruction would still offer great value. CD47 blockade has been found to confer radioprotection to normal tissues while enhancing tumor radiosensitivity. Here, we report that CD47 blockade directly enhances tumor immunosurveillance by CD8(+) T cells. Combining CD47 blockade with irradiation did not affect fibrosarcoma growth in T cell-deficient mice, whereas adoptive transfer of tumor-specific CD8(+) T cells restored combinatorial efficacy. Furthermore, ablation of CD8(+) T cells abolished radiotherapeutic response in immunocompetent syngeneic hosts. CD47 blockade in either target cells or effector cells was sufficient to enhance antigen-dependent CD8(+) CTL-mediated tumor cell killing in vitro. In CD47-deficient syngeneic hosts, engrafted B16 melanomas were 50% more sensitive to irradiation, establishing that CD47 expression in the microenvironment was sufficient to limit tumor radiosensitivity. Mechanistic investigations revealed increased tumor infiltration by cytotoxic CD8(+) T cells in a CD47-deficient microenvironment, with an associated increase in T cell-dependent intratumoral expression of granzyme B. Correspondingly, an inverse correlation between CD8(+) T-cell infiltration and CD47 expression was observed in human melanomas. Our findings establish that blocking CD47 in the context of radiotherapy enhances antitumor immunity by directly stimulating CD8(+) cytotoxic T cells, with the potential to increase curative responses.
Collapse
Affiliation(s)
- David R Soto-Pantoja
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Masaki Terabe
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Arunima Ghosh
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Lisa A Ridnour
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - William G DeGraff
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - David A Wink
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
31
|
Fang F, Zuo Q, Pilrose J, Wang Y, Shen C, Li M, Wulfridge P, Matei D, Nephew KP. Decitabine reactivated pathways in platinum resistant ovarian cancer. Oncotarget 2014; 5:3579-89. [PMID: 25003579 PMCID: PMC4116504 DOI: 10.18632/oncotarget.1961] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/12/2014] [Indexed: 01/08/2023] Open
Abstract
Combination therapy with decitabine, a DNMTi and carboplatin resensitized chemoresistant ovarian cancer (OC) to platinum inducing promising clinical activity. We investigated gene-expression profiles in tumor biopsies to identify decitabine-reactivated pathways associated with clinical response. Gene-expression profiling was performed using RNA from paired tumor biopsies before and 8 days after decitabine from 17 patients with platinum resistant OC. Bioinformatic analysis included unsupervised hierarchical-clustering, pathway and GSEA distinguishing profiles of "responders" (progression-free survival, PFS>6 months) and "non-responders" (PFS< 6 months). Functional validation of selected results was performed in OC cells/tumors. Pre-treatment tumors from responders expressed genes associated with enhanced glycosphingolipid biosynthesis, translational misregulation, decreased ABC transporter expression, TGF-β signaling, and numerous metabolic pathways. Analysis of post-treatment biopsies from responders revealed overexpression of genes associated with reduced Hedgehog pathway signaling, reduced DNA repair/replication, and cancer-associated metabolism. GO and GSEA analyses revealed upregulation of genes associated with glycosaminoglycan binding, cell-matrix adhesion, and cell-substrate adhesion. Computational findings were substantiated by experimental validation of expression of key genes involved in two critical pathways affected by decitabine (TGF-β and Hh). Gene-expression profiling identified specific pathways altered by decitabine and associated with platinum-resensitization and clinical benefit in OC. Our data could influence patient stratification for future studies using epigenetic therapies.
Collapse
Affiliation(s)
- Fang Fang
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Qingyao Zuo
- Department of Endocrinology, Beijing Jishuitan Hospital, Beijing, P.R. China
| | - Jay Pilrose
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Yinu Wang
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Changyu Shen
- Department of Biostatistics, Indiana University, Indianapolis, IN, USA
- Computational Biology & Bioinformatics, Indiana University, Indianapolis, IN, USA
| | - Meng Li
- Norris Medical Library, University of Southern California, Los Angeles, CA, USA
| | - Phillip Wulfridge
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
| | - Daniela Matei
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
- VA Roudebush Hospital, Indianapolis, IN, USA
- Department of Obstetrics and Gynecology
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
- Department of Obstetrics and Gynecology
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
32
|
Decitabine facilitates immune recognition of sarcoma cells by upregulating CT antigens, MHC molecules, and ICAM-1. Tumour Biol 2014; 35:5753-62. [PMID: 24584817 DOI: 10.1007/s13277-014-1764-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 02/14/2014] [Indexed: 01/22/2023] Open
Abstract
Rhabdomyosarcoma, osteosarcoma, and Ewing's sarcoma are the most common types of sarcoma in children. Despite standard therapy, nearly one third of the patients with Ewing's sarcoma relapse, and there are limited options with curative potential. Immunotherapy is a promising approach as it can target tumor-specific antigens that are specifically expressed on tumors while sparing non-malignant cells. We have demonstrated that a demethylating chemotherapeutic drug, 5-aza-2'-deoxycytidine (decitabine, DAC) can upregulate the expression of cancer-testis (CT) antigens, MHC molecules, and intracellular cell adhesion molecule-1 on pediatric sarcoma cell lines, resulting in enhanced killing of tumor cells by CT antigen-specific cytotoxic T lymphocytes derived from pediatric sarcoma patients. A significant increase in the mRNA expression levels of MAGE-A1 and MAGE-A3 were found in 70 %, and NY-ESO-1 in 80 % of the sarcoma lines following exposure to pharmacological levels of DAC. The high expression levels of MAGE-A1, MAGE-A3, and NY-ESO-1 were sustained in sarcoma lines and primary tumor lines over 30 days after the cessation of DAC. Furthermore, DAC treatment induced upregulation of MAGE-A1, MAGE-A3, or NY-ESO-1 protein expression in seven of nine lines studied. These studies show that demethylating chemotherapy could be combined with CT antigen-directed immunotherapy for treating pediatric sarcoma.
Collapse
|
33
|
Klippel ZK, Chou J, Towlerton AM, Voong LN, Robbins P, Bensinger WI, Warren EH. Immune escape from NY-ESO-1-specific T-cell therapy via loss of heterozygosity in the MHC. Gene Ther 2014; 21:337-42. [PMID: 24451117 PMCID: PMC4040020 DOI: 10.1038/gt.2013.87] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/16/2013] [Accepted: 12/18/2013] [Indexed: 01/11/2023]
Abstract
Adoptive immunotherapy of tumors with T cells specific for the cancer-testis antigen NY-ESO-1 has shown great promise in preclinical models and in early stage clinical trials. Tumor persistence or recurrence after NY-ESO-1-specific therapy occurs, however, and the mechanisms of recurrence remain poorly defined. In a murine xenograft model of NY-ESO-1+ multiple myeloma, we observed tumor recurrence after adoptive transfer of CD8+ T cells genetically redirected to the prototypic NY-ESO-1157-165 peptide presented by HLA-A*02:01. Analysis of the myeloma cells that had escaped from T cell control revealed intact expression of NY-ESO-1 and B2M, but selective, complete loss of HLA-A*02:01 expression from the cell surface. Loss of heterozygosity in the Major Histocompatibility Complex (MHC) involving the HLA-A locus was identified in the tumor cells, and further analysis revealed selective loss of the allele encoding HLA-A*02:01. Although loss of heterozygosity involving the MHC has not been described in myeloma patients with persistent or recurrent disease after immune therapies such as allogeneic hematopoietic cell transplantation (HCT), it has been described in patients with acute myelogenous leukemia who relapsed after allogeneic HCT. These results suggest that MHC loss should be evaluated in patients with myeloma and other cancers who relapse after adoptive NY-ESO-1-specific T cell therapy.
Collapse
Affiliation(s)
- Z K Klippel
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Medicine, University of Washington, Seattle, WA, USA
| | - J Chou
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Medicine, University of Washington, Seattle, WA, USA
| | - A M Towlerton
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - L N Voong
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Molecular Biosciences, Northwestern University, Bethesda, MD, USA
| | - P Robbins
- Surgery Branch, National Cancer Institute, Bethesda, MD, USA
| | - W I Bensinger
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Medicine, University of Washington, Seattle, WA, USA
| | - E H Warren
- 1] Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA [2] Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
Shiohama Y, Ohtake J, Ohkuri T, Noguchi D, Togashi Y, Kitamura H, Nishimura T. Identification of a meiosis-specific protein, MEIOB, as a novel cancer/testis antigen and its augmented expression in demethylated cancer cells. Immunol Lett 2014; 158:175-82. [PMID: 24440806 DOI: 10.1016/j.imlet.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/28/2013] [Accepted: 01/08/2014] [Indexed: 12/31/2022]
Abstract
Cancer/testis (CT) antigens, which are expressed in various cancer cells but not in normal cells except germline cells of the testis, have been used as targets for cancer vaccine therapy. 5-Aza-2'-deoxycytidine (DAC), a potent inhibitor of genomic and promoter-specific DNA methylation, inhibits DNA methyltransferase activity and is reported to induce the expression of certain CT antigens by the demethylation of promoter CpG islands of the treated cells. Here, using DAC-treated cancer cells, we searched for novel attractive target molecules that would be useful for cancer immunotherapy and found a meiosis-specific protein, meiosis specific with OB domains (MEIOB), to be a novel CT antigen. Indeed, the MEIOB gene is expressed only in the testis and not in other normal tissues. The mRNA expression of MEIOB was greatly enhanced in several lung cancer cell lines after the treatment with DAC. Furthermore, we identified a variety of helper epitopes of the MEIOB antigen, which were recognized by MEIOB antigen-specific T cells in a HLA-restriction manner. Finally, we demonstrated that IFN-γ production of MEIOB peptide-specific helper T cells in response to HLA-matched cancer cells was greatly augmented by treatment with DAC and IFN-γ. Taken together, these findings show DAC to be a promising tool for finding novel CT antigens and for developing a future novel combination cancer vaccine chemotherapy.
Collapse
Affiliation(s)
- Yasuo Shiohama
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Junya Ohtake
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Takayuki Ohkuri
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Daisuke Noguchi
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Yuji Togashi
- BioImmulance Co., Ltd., Shin-ei-363-32, Kiyota-ku, Sapporo 004-0839, Japan
| | - Hidemitsu Kitamura
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Takashi Nishimura
- Division of Immunoregulation, Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan; Division of ROYCE' Health Bioscience, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan.
| |
Collapse
|
35
|
DeRenzo C, Gottschalk S. Genetically modified T-cell therapy for osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:323-40. [PMID: 24924183 DOI: 10.1007/978-3-319-04843-7_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
T-cell immunotherapy may offer an approach to improve outcomes for patients with osteosarcoma, who fail current therapies. In addition, it has the potential to reduce treatment-related complications for all patients. Generating tumor-specific T cells with conventional antigen presenting cells ex vivo is time consuming and often results in T-cell products with a low frequency of tumor-specific T cells. In addition, the generated T cells remain sensitive to the immunosuppressive tumor microenvironment. Genetic modification of T cells is one strategy to overcome these limitations. For example, T cells can be genetically modified to render them antigen specific, resistant to inhibitory factors, or increase their ability to home to tumor sites. Most genetic modification strategies have only been evaluated in preclinical models, however early phase clinical trials are in progress. In this chapter we review the current status of gene-modified T-cell therapy with special focus on osteosarcoma, highlighting potential antigenic targets, preclinical and clinical studies, and strategies to improve current T-cell therapy approaches.
Collapse
Affiliation(s)
- Christopher DeRenzo
- Center for Cell and Gene Therapy, Houston Methodist, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX, 77030, USA
| | | |
Collapse
|
36
|
Sigalotti L, Fratta E, Coral S, Maio M. Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacol Ther 2013; 142:339-50. [PMID: 24384533 DOI: 10.1016/j.pharmthera.2013.12.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 12/14/2022]
Abstract
Continuously improving knowledge of the fine mechanisms regulating cross-talk between immune cells, and of their multi-faceted interactions with cancer cells, has prompted the development of several novel immunotherapeutic strategies for cancer treatment. Among these, modulation of the host's immune system by targeting immunological synapses has shown notable clinical efficacy in different tumor types. Despite this, objective clinical responses and, more importantly, long-term survival are achieved only by a fraction of patients; therefore, identification of the mechanism(s) responsible for the differential effectiveness of immune checkpoint blockade in specific patient populations is an area of intense investigation. Neoplastic cells can activate multiple mechanisms to escape from immune control; among these, epigenetic reprogramming is emerging as a key player. Selected tumor-associated antigens, Human Leukocyte Antigens, and accessory/co-stimulatory molecules required for efficient recognition of neoplastic cells by the immune system have been shown to be epigenetically silenced or down-regulated in cancer. Consistent with the inherent reversibility of epigenetic silencing, "epigenetic" drugs, such as inhibitors of DNA methyltransferases and of histone deacetylases, can restore the functional expression of these down-regulated molecules, thus improving the recognition of cancer cells by both the innate and adaptive immune responses. This review focuses on the immunomodulatory activity of epigenetic drugs and on their proposed clinical use in novel combined chemo-immunotherapeutic regimens for the treatment of solid tumors.
Collapse
Affiliation(s)
- Luca Sigalotti
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico Aviano, National Cancer Institute, Aviano, Italy
| | - Elisabetta Fratta
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico Aviano, National Cancer Institute, Aviano, Italy
| | - Sandra Coral
- Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Michele Maio
- Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.
| |
Collapse
|
37
|
Chou J, Fitzgibbon MP, Mortales CLL, Towlerton AMH, Upton MP, Yeung RS, McIntosh MW, Warren EH. Phenotypic and transcriptional fidelity of patient-derived colon cancer xenografts in immune-deficient mice. PLoS One 2013; 8:e79874. [PMID: 24278200 PMCID: PMC3835935 DOI: 10.1371/journal.pone.0079874] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/26/2013] [Indexed: 01/22/2023] Open
Abstract
Xenografts of human colorectal cancer (CRC) in immune-deficient mice have great potential for accelerating the study of tumor biology and therapy. We evaluated xenografts established in NOD/scid/IL2Rγ-null mice from the primary or metastatic tumors of 27 patients with CRC to estimate their capacity for expanding tumor cells for in vitro studies and to assess how faithfully they recapitulated the transcriptional profile of their parental tumors. RNA-seq analysis of parental human CRC tumors and their derivative xenografts demonstrated that reproducible transcriptional changes characterize the human tumor to murine xenograft transition. In most but not all cases, the human stroma, vasculature, and hematopoietic elements were systematically replaced by murine analogues while the carcinoma component persisted. Once established as xenografts, human CRC cells that could be propagated by serial transplantation remained transcriptionally stable. Three histologically atypical xenografts, established from patients with peritoneal metastases, contained abundant human stromal elements and blood vessels in addition to human tumor cells. The transcriptomes of these mixed tumor/stromal xenografts did not closely resemble those of their parental tumors, and attempts to propagate such xenografts by serial transplantation were unsuccessful. Stable expression of numerous genes previously identified as high priority targets for immunotherapy was observed in most xenograft lineages. Aberrant expression in CRC cells of human genes that are normally only expressed in hematopoietic cells was also observed. Our results suggest that human CRC cells expanded in murine xenografts have great utility for studies of tumor immunobiology and targeted therapies such as immunotherapy but also identify potential limitations.
Collapse
Affiliation(s)
- Jeffrey Chou
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Medical Oncology, Department of Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| | - Matthew P. Fitzgibbon
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Christie-Lynn L. Mortales
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrea M. H. Towlerton
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Melissa P. Upton
- Gastrointestinal and Liver Pathology Service, Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Raymond S. Yeung
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
| | - Martin W. McIntosh
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Edus H. Warren
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Division of Medical Oncology, Department of Medicine, University of Washington Medical Center, Seattle, Washington, United States of America
| |
Collapse
|
38
|
Kunert A, Straetemans T, Govers C, Lamers C, Mathijssen R, Sleijfer S, Debets R. TCR-Engineered T Cells Meet New Challenges to Treat Solid Tumors: Choice of Antigen, T Cell Fitness, and Sensitization of Tumor Milieu. Front Immunol 2013; 4:363. [PMID: 24265631 PMCID: PMC3821161 DOI: 10.3389/fimmu.2013.00363] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/24/2013] [Indexed: 01/18/2023] Open
Abstract
Adoptive transfer of T cells gene-engineered with antigen-specific T cell receptors (TCRs) has proven its feasibility and therapeutic potential in the treatment of malignant tumors. To ensure further clinical development of TCR gene therapy, it is necessary to target immunogenic epitopes that are related to oncogenesis and selectively expressed by tumor tissue, and implement strategies that result in optimal T cell fitness. In addition, in particular for the treatment of solid tumors, it is equally necessary to include strategies that counteract the immune-suppressive nature of the tumor micro-environment. Here, we will provide an overview of the current status of TCR gene therapy, and redefine the following three challenges of improvement: “choice of target antigen”; “fitness of T cells”; and “sensitization of tumor milieu.” We will categorize and discuss potential strategies to address each of these challenges, and argue that advancement of clinical TCR gene therapy critically depends on developments toward each of the three challenges.
Collapse
Affiliation(s)
- Andre Kunert
- Laboratory of Experimental Tumor Immunology, Erasmus MC Cancer Institute , Rotterdam , Netherlands ; Department of Medical Oncology, Erasmus MC Cancer Institute , Rotterdam , Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
New targets for the immunotherapy of colon cancer-does reactive disease hold the answer? Cancer Gene Ther 2013; 20:157-68. [PMID: 23492821 DOI: 10.1038/cgt.2013.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers in both men and women, posing a serious demographic and economic burden worldwide. In the United Kingdom, CRC affects 1 in every 20 people and it is often detected once well established and after it has spread beyond the bowel (Stage IIA-C and Stage IIIA-C). A diagnosis at such advanced stages is associated with poor treatment response and survival. However, studies have identified two sub-groups of post-treatment CRC patients--those with good outcome (reactive disease) and those with poor outcome (non-reactive disease). We aim to review the state-of-the-art for CRC with respect to the expression of cancer-testis antigens (CTAs) and their identification, evaluation and correlation with disease progression, treatment response and survival. We will also discuss the relationship between CTA expression and regulatory T-cell (Treg) activity to tumorigenesis and tumor immune evasion in CRC and how this could account for the clinical presentation of CRC. Understanding the molecular basis of reactive CRC may help us identify more potent novel immunotherapeutic targets to aid the effective treatment of this disease. In this review, based on our presentation at the 2012 International Society for the Cell and Gene Therapy of Cancer annual meeting, we will summarize some of the most current advances in CTA and CRC research and their influence on the development of novel immunotherapeutic approaches for this common and at times difficult to treat disease.
Collapse
|
40
|
Pollack SM, Li Y, Blaisdell MJ, Farrar EA, Chou J, Hoch BL, Loggers ET, Rodler E, Eary JF, Conrad EU, Jones RL, Yee C. NYESO-1/LAGE-1s and PRAME are targets for antigen specific T cells in chondrosarcoma following treatment with 5-Aza-2-deoxycitabine. PLoS One 2012; 7:e32165. [PMID: 22384167 PMCID: PMC3288075 DOI: 10.1371/journal.pone.0032165] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/20/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chondrosarcoma has no proven systemic option in the metastatic setting. The development of a non-cross-resistant strategy, such as cellular immunotherapy using antigen-specific T cells would be highly desirable. NY-ESO-1 and PRAME are members of the Cancer Testis Antigen (CTA) family that have been identified as promising targets for T cell therapy. LAGE-1 is a cancer testis antigen 90% homologous to NY-ESO-1, sharing the 157-165 A*0201 NY-ESO-1 epitope with its transcript variant, LAGE-1s. A number of CTA's have been induced using 5-Aza-2-Deoxycitabine (5-Aza-dC) in other cancers. We sought to evaluate the feasibility of targeting chondrosarcoma tumors using NY-ESO-1/LAGE-1s and PRAME specific T cells using 5-Aza-dC to induce antigen expression. METHODS We used 11 flash frozen tumors from the University of Washington tumor bank to test for the expression of NY-ESO-1, PRAME, LAGE-1s and LAGE-1L in chondrosarcoma tumors. Using four chondrosarcoma cell lines we tested the expression of these CTA's with and without 5-Aza-dC treatments. Finally, using NY-ESO-1/LAGE-1s and PRAME specific effectors that we generated from sarcoma patients, we evaluated the ability of these T cells to lyse A*0201 expressing chondrosarcoma cell lines in vitro both with and without 5-Aza-dC treatment. RESULTS A minority (36%) of chondrosarcoma tumors expressed either NY-ESO-1 or LAGE-1s at >10% of our reference value and none expressed PRAME at that level. However, in all four of the chondrosarcoma cell lines tested, NY-ESO-1 and PRAME expression could be induced following treatment with 5-Aza-dC including in cell lines where expression was absent or barely detectable. Furthermore, NY-ESO-1/LAGE-1s and PRAME specific CD8+ effector T cells were able to specifically recognize and lyse A*0201 expressing chondrosarcoma cell lines following 5-Aza-dC treatment. CONCLUSION These data suggest that adoptive immunotherapy in combination with 5-Aza-dC may be a potential strategy to treat unresectable or metastatic chondrosarcoma patients where no proven systemic therapies exist.
Collapse
Affiliation(s)
- Seth M. Pollack
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (SMP); (CY)
| | - Yonqing Li
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Megan J. Blaisdell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Erik A. Farrar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jeffrey Chou
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
| | - Benjamin L. Hoch
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth T. Loggers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Seattle, Washington, United States of America
| | - Eve Rodler
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
| | - Janet F. Eary
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Ernest U. Conrad
- Department of Orthopedics and Sports Medicine, University of Washington, Seattle, Washington, United States of America
| | - Robin L. Jones
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
| | - Cassian Yee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Oncology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (SMP); (CY)
| |
Collapse
|