1
|
Kamil NN, Xiao S, Syed Salleh SN, Xu H, Zhuang CC. Nonlinear impacts of climate anomalies on oil palm productivity. Heliyon 2024; 10:e35798. [PMID: 39170218 PMCID: PMC11337023 DOI: 10.1016/j.heliyon.2024.e35798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 08/04/2024] [Indexed: 08/23/2024] Open
Abstract
Oil palm contributes to various global needs as one of the most productive oil crops, but there exist ongoing concerns regarding its yield reductions and associated environmental impacts resulting from land conversion. This is the first detailed report investigating the nonlinear threats to estate-level oil palm yields posed by El Niño Southern Oscillation (ENSO) in the equatorial Pacific Ocean, a major driver of climate variability. Using the Malaysian Palm Oil Board administrative records on monthly performances reported by oil palm estates through the e-submissions portal spanning from January 2015 to June 2023, we focused on elucidating the impacts of ENSO on fresh fruit bunch yield, oil extraction rate, and oil yield. We found that both El Niño and La Niña conditions, characterized by extreme levels of ENSO indices cumulated over lags of 0-23 months prior to harvest, were associated with statistically significant reductions in yields. Lag association patterns unveiled that production risks were linked to pre-harvest exposure to extreme ENSO indices in various time windows. Subgroup analyses further revealed that the effects were pronounced in labor-intensive estates and those lacking fertilizer investments. This study underscores the necessity for adaptation strategies in response to future climate anomalies.
Collapse
Affiliation(s)
- Nur Nadia Kamil
- Economics and Industry Development Division, Malaysian Palm Oil Board, Selangor, Malaysia
| | - Saizi Xiao
- School of Economics, University of Nottingham Malaysia, Selangor, Malaysia
| | - Sharifah Nabilah Syed Salleh
- Department of Economics, Kulliyyah of Economics and Management Sciences, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing, China
| | | |
Collapse
|
2
|
Xu H, Zhuang CC, Oddo VM, Malembaka EB, He X, Zhang Q, Huang W. Maternal preconceptional and prenatal exposure to El Niño Southern Oscillation levels and child mortality: a multi-country study. Nat Commun 2024; 15:6034. [PMID: 39019882 PMCID: PMC11254917 DOI: 10.1038/s41467-024-50467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
El Niño Southern Oscillation (ENSO) has been shown to relate to the epidemiology of childhood infectious diseases, but evidence for whether they increase child deaths is limited. Here, we investigate the impact of mothers' ENSO exposure during and prior to delivery on child mortality by constructing a retrospective cohort study in 38 low- and middle-income countries. We find that high levels of ENSO indices cumulated over 0-12 lagged months before delivery are associated with significant increases in risks of under-five mortality; with the hazard ratio ranging from 1.33 (95% confidence interval [CI], 1.26, 1.40) to 1.89 (95% CI, 1.78, 2.00). Child mortality risks are particularly related to maternal exposure to El Niño-like conditions in the 0th-1st and 6th-12th lagged months. The El Niño effects are larger in rural populations and those with unsafe sources of drinking water and less education. Thus, preventive interventions are particularly warranted for the socio-economically disadvantaged.
Collapse
Affiliation(s)
- Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing, China
- Peking University Institute of Environmental Medicine, Beijing, China
| | | | - Vanessa M Oddo
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Espoir Bwenge Malembaka
- Center for Tropical Diseases and Global Health, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
- Faculty of Medicine, Université Catholique de Bukavu, Bukavu, Democratic Republic of the Congo
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xinghou He
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing, China
- Peking University Institute of Environmental Medicine, Beijing, China
| | - Qinghong Zhang
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, Beijing, China
- Peking University Institute of Environmental Medicine, Beijing, China
| |
Collapse
|
3
|
Liu L, Wang T, Xu H, Zhu Y, Guan X, He X, Fang J, Xie Y, Zhang Q, Song X, Zhao Q, Huang W. Exposure to ambient oxidant pollution associated with ceramide changes and cardiometabolic responses. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104276. [PMID: 37717721 DOI: 10.1016/j.etap.2023.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Evidence of impact of ambient oxidant pollution on cardiometabolic responses remains limited. We aimed to examine associations of oxidant pollutants with cardiometabolic responses, and effect modification by ceramides. During 2019-2020, 152 healthy adults were visited 4 times in Beijing, China, and indicators of ceramides, glucose homeostasis, and vascular function were measured. We found significant increases in ceramides of 13.9% (p = 0.020) to 110.1% (p = 0.005) associated with an interquartile increase in oxidant pollutants at prior 1-7 days. Exposure to oxidant pollutants was also related to elevations in insulin and reductions in adiponectin, and elevations in systolic and diastolic blood pressure. Further, stratified analyses revealed larger changes in oxidant pollutant related cardiometabolic responses among participants with higher ceramide levels compared to those with lower levels. Our findings suggested cardiometabolic effects associated with exposure to oxidant pollutants, which may be modified by ceramide levels.
Collapse
Affiliation(s)
- Lingyan Liu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; Department of Geriatrics, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Tong Wang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Hongbing Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China.
| | - Yutong Zhu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xinpeng Guan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xinghou He
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Jiakun Fang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Yunfei Xie
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Qiaochi Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Xiaoming Song
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Qian Zhao
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China
| | - Wei Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, and Peking University Institute of Environmental Medicine, Beijing, China; State Key Laboratory of Vascular Homeostasis and Remodeling,Peking University, Beijing, China.
| |
Collapse
|
4
|
Vaičiulis V, Venclovienė J, Miškinytė A, Ustinavičienė R, Dėdelė A, Kalinienė G, Lukšienė D, Tamošiūnas A, Seiduanova L, Radišauskas R. Association between Outdoor Air Pollution and Fatal Acute Myocardial Infarction in Lithuania between 2006 and 2015: A Time Series Design. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4549. [PMID: 36901560 PMCID: PMC10002310 DOI: 10.3390/ijerph20054549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Air pollution has a significant effect on human health and there is a broad body of evidence showing that exposure to air pollution is associated with an increased risk of adverse health effects. The main objective of this study was to assess the association of traffic-related air pollutants with fatal AMI during the ten-year period. METHODS The study was conducted in Kaunas city, where the WHO MONICA register included a total of 2273 adult cases of fatal AMI cases during the 10-year study period. We focused on the period between 2006 and 2015. The associations between exposure to traffic-related air pollution and the risk of fatal AMI were evaluated by using a multivariate Poisson regression model, RR presented per an increase in IQR. RESULTS It was found that the risk of fatal AMI was significantly higher in all subjects (RR 1.06; 95% CI 1.00-1.12) and women (RR 1.12; 95% CI 1.02-1.22) when the concentration of PM10 in the ambient air was increased 5-11 days before the onset of AMI, adjusting for NO2 concentration. The effect was stronger during spring in all subjects (RR 1.12; 95% CI 1.03-1.22), in men (RR 1.13; 95% CI 1.01-1.26), in younger-aged (RR 1.15; 95% CI 1.03-1.28), and in winter in women (RR 1.24; 95% CI 1.03-1.50). CONCLUSIONS Our findings show that ambient air pollution increases the risk of fatal AMI, and this pertains to PM10 specifically.
Collapse
Affiliation(s)
- Vidmantas Vaičiulis
- Health Research Institute, Lithuanian University of Health Sciences, Tilzes St. 18, 47181 Kaunas, Lithuania
- Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, Tilzes St. 18, 47181 Kaunas, Lithuania
| | - Jonė Venclovienė
- Department of Environmental Sciences, Vytautas Magnus University, Donelaičio St. 58, 44248 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave. 15, 50162 Kaunas, Lithuania
| | - Auksė Miškinytė
- Department of Environmental Sciences, Vytautas Magnus University, Donelaičio St. 58, 44248 Kaunas, Lithuania
| | - Rūta Ustinavičienė
- Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, Tilzes St. 18, 47181 Kaunas, Lithuania
| | - Audrius Dėdelė
- Department of Environmental Sciences, Vytautas Magnus University, Donelaičio St. 58, 44248 Kaunas, Lithuania
| | - Gintarė Kalinienė
- Health Research Institute, Lithuanian University of Health Sciences, Tilzes St. 18, 47181 Kaunas, Lithuania
- Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, Tilzes St. 18, 47181 Kaunas, Lithuania
| | - Dalia Lukšienė
- Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, Tilzes St. 18, 47181 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave. 15, 50162 Kaunas, Lithuania
| | - Abdonas Tamošiūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave. 15, 50162 Kaunas, Lithuania
| | - Laura Seiduanova
- Department of Health Politics and Management, School of Public Health, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Ričardas Radišauskas
- Department of Environmental and Occupational Medicine, Lithuanian University of Health Sciences, Tilzes St. 18, 47181 Kaunas, Lithuania
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Ave. 15, 50162 Kaunas, Lithuania
| |
Collapse
|
5
|
Huang Y, Wang Y, Zhang T, Wang P, Huang L, Guo Y. Exploring Health Effects under Specific Causes of Mortality Based on 90 Definitions of PM 2.5 and Cold Spell Combined Exposure in Shanghai, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2423-2434. [PMID: 36724352 DOI: 10.1021/acs.est.2c06461] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, a total of 90 definitions were set up based on six air pollution definitions, five cold spell definitions, and three combined exposure scenarios. The relative risks (RRs) on all-cause, circulatory, and respiratory mortality were explored by a model combining a distributed linear lag model with quasi-Poisson regression. The definition in which daily PM2.5 increases more than 75 μg/m3 for at least 2 days and the average temperature falls below the 10th percentile for at least 2 days produced the best model fit performance in all-cause mortality. The high peaks of the health effect were generally observed around the lag days 6-9. The cumulative relative risks (CRRs) were more significant in the simultaneous-exposure scenario and higher in respiratory mortality, where the highest CRR (12.15, 3.69-40.03) was observed in definition P1T5, in which daily PM2.5 increases more than 75 μg/m3, and the average temperature falls below the 2.5th percentile for at least two days. For relative risk due to interaction (RERI), we found positive additive interactions (RERI > 0) between PM2.5 pollution and cold spell, especially in respiratory mortality. Clarifying the definition of combined events can help policymakers to capture health risks and construct more effective risk warning systems.
Collapse
Affiliation(s)
- Yujia Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yiyi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ting Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Peng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
| | - Lei Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public and Preventive Medicine, Monash University, Melbourne 3004, VIC, Australia
| |
Collapse
|
6
|
Luo H, Liu C, Chen X, Lei J, Zhu Y, Zhou L, Gao Y, Meng X, Kan H, Xuan J, Chen R. Ambient air pollution and hospitalization for type 2 diabetes in China: A nationwide, individual-level case-crossover study. ENVIRONMENTAL RESEARCH 2023; 216:114596. [PMID: 36272593 DOI: 10.1016/j.envres.2022.114596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Scarce evidence is available on the short-term association between air pollution and type 2 diabetes (T2D). We aimed to evaluate the associations between short-term exposure to six criteria air pollutants and hospitalization for T2D based on a national registry. We conducted an individual-level, time-stratified case-crossover study among inpatients with a primary diagnosis of T2D from 153 hospitals across 20 provincial regions in China (2013-2021). Daily concentrations of fine particulate matter (PM2.5), inhalable particle (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO), and ozone were collected from the nearest monitoring stations. T2D patients were separated into those admission for T2D with and without complications. Distributed lag non-linear models combined with conditional logistic regressions were used to estimate the associations. A total of 88,904 patients were hospitalized for T2D. Short-term exposures to all six air pollutants above except for ozone were significantly associated with the risk of hospitalization for T2D and both subclasses. An interquartile range increase in the concentrations of PM2.5, PM10, NO2, SO2, and CO at lag 0-2 d was associated with higher hospitalization risk of T2D by 1.71% (95%CI: 0.56%, 2.87%), 2.08% (0.88%, 3.29%), 4.85% (3.29%, 6.44%), 2.44% (1.22%, 3.67%) and 2.55% (1.24%, 3.88%), respectively. The associations of T2D hospitalizations were stronger in cold season than in warm season. Air pollutants had more acute and stronger associations with T2D with complications. The exposure-response relationship curves showed no thresholds, and the slopes were larger for T2D with complications. This nationwide individual-level, case-crossover study provides the first comprehensive evidence that short-term exposure to multiple criteria air pollutants may increase the risk of hospitalizations for T2D, especially for T2D with complications.
Collapse
Affiliation(s)
- Huihuan Luo
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiyin Chen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jian Lei
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yixiang Zhu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Lu Zhou
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Ya Gao
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xia Meng
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jianwei Xuan
- Health Economic Research Institute, School of Pharmacy, Sun Yat-Shen University, GuangZhou, 510275, China.
| | - Renjie Chen
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Chaulin AM, Sergeev AK. Modern Concepts of the Role of Fine Particles (PM 2.5) in the Genesis of Atherosclerosis and Myocardial Damage: Clinical and Epidemiological Data, the Main Pathophysiological Mechanisms. Curr Cardiol Rev 2023; 19:e170822207573. [PMID: 35980071 PMCID: PMC10201893 DOI: 10.2174/1573403x18666220817103105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/22/2022] Open
Abstract
Due to the fact that atherosclerotic cardiovascular diseases (CVDs) dominate in the structure of morbidity, disability and mortality of the population, the study of the risk factors for the development of atherosclerotic CVDs, as well as the study of the underlying pathogenetic mechanisms thereof, is the most important area of scientific research in modern medicine. Understanding these aspects will allow improving the set of treatment and preventive measures and activities. One of the important risk factors for the development of atherosclerosis, which has been actively studied recently, is air pollution with fine particulate matter (PM 2.5). According to clinical and epidemiological data, the level of air pollution with PM 2.5 exceeds the normative indicators in most regions of the world and is associated with subclinical markers of atherosclerosis and mortality from atherosclerotic CVDs. The aim of this article is to systematize and discuss in detail the role of PM 2.5 in the development of atherosclerosis and myocardial damage with the consideration of epidemiological and pathogenetic aspects. Materials and Methods: This narrative review is based on the analysis of publications in the Medline, PubMed, and Embase databases. The terms "fine particles" and "PM 2.5" in combination with "pathophysiological mechanisms," "cardiovascular diseases", "atherosclerosis", "cardiac troponins", "myocardial damage" and "myocardial injury" were used to search publications. Conclusion: According to the conducted narrative review, PM 2.5 should be regarded as the significant risk factor for the development of atherosclerotic CVDs. The pro-atherogenic effect of fine particulate matter is based on several fundamental and closely interrelated pathophysiological mechanisms: endothelial dysfunction, impaired lipid metabolism, increased oxidative stress and inflammatory reactions, impaired functioning of the vegetative nervous system and increased activity of the hemostatic system. In addition, PM 2.5 causes subclinical damage to cardiac muscle cells by several mechanisms: apoptosis, oxidative stress, decreased oxygen delivery due to coronary atherosclerosis and ischemic damage of cardiomyocytes. Highly sensitive cardiac troponins are promising markers for detecting subclinical myocardial damage in people living in polluted regions.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara, 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara, 443099, Russia
| | | |
Collapse
|
8
|
Xu H, Zhuang CC, Guan X, He X, Wang T, Wu R, Zhang Q, Huang W. Associations of climate variability driven by El Niño-southern oscillation with excess mortality and related medical costs in Chinese elderly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158196. [PMID: 35995158 DOI: 10.1016/j.scitotenv.2022.158196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Climate variability driven by El Niño-Southern Oscillation (ENSO) is a significant public health concern in parallel with global population aging; however, its role in healthy aging is less studied. We examined the longitudinal impacts of ENSO exposure on excess mortality and related medical costs in the elderly from 23 provinces of China. A total of 27,533 non-accidental all-cause deaths were recorded in 30,763 participants during 1998-2018. We found that both low and high levels of ENSO metrics over lags of 0-12 months were associated with increased mortality risks. Specifically, comparing the 10th percentile (-1.8) and 90th percentile (2.0) multivariate El Niño index (MEI) levels to the reference level with the minimum effect of MEI exposure, the risk of mortality was 1.87 (95 % confidence interval [CI], 1.75, 2.00) and 4.89 (95 % CI, 4.36, 5.49), respectively. ENSO exposure was also positively related to medical costs. Further, the associations were stronger among drinkers, lower-income participants, and those with higher blood pressure and heart rate measured at the most recent follow-ups. Our results suggested that ENSO exposure was capable of heightening mortality risks and medical burden among older elderly adults, highlighting that climate variability driven by ENSO could be a crucial determinant of healthy aging.
Collapse
Affiliation(s)
- Hongbing Xu
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine, Beijing 100191, China
| | - Castiel Chen Zhuang
- Peking University School of Economics, Beijing 100871, China; Department of Economics, University of Washington, Seattle, WA 98195, USA.
| | - Xinpeng Guan
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine, Beijing 100191, China
| | - Xinghou He
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine, Beijing 100191, China
| | - Tong Wang
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine, Beijing 100191, China
| | - Rongshan Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qinghong Zhang
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China
| | - Wei Huang
- Department of Occupational and Environmental Health, Peking University School of Public Health, Peking University Institute of Environmental Medicine, Beijing 100191, China
| |
Collapse
|
9
|
Zhang F, Zhang X, Zhu S, Zhao G, Li T, Han A, Zhang X, Zhao T, Li D, Zhu W. The associations between short-term exposure to ambient particulate matter and hospitalizations for osteoporotic fracture in Hangzhou: a time-stratified case-crossover study. Arch Osteoporos 2022; 18:4. [PMID: 36469172 DOI: 10.1007/s11657-022-01192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Our results suggested that short-term exposure to particulate matter (PM) might increase the risks of hospitalizations for osteoporotic fractures. Government should protect its citizens by putting in place policies to reduce unhealthy emissions and air pollution. INTRODUCTION Osteoporotic fractures are accompanied by high rates of disability and mortality. PM has been linked with many health outcomes. However, few studies focus on the association of short-term exposure to ambient PM and osteoporotic fractures. METHODS Data on daily mean air pollution, meteorological factors, and hospitalizations for osteoporotic fractures were collected from Hangzhou, China, 2020-2021. A time-stratified case-crossover design with extended Cox proportional hazards regression was applied to assess the associations between PM and osteoporotic fractures. RESULTS Short-term exposure to PM significantly increased the risks of hospitalizations for osteoporotic fractures at cumulative lag days. Per 10 μg/m3 increased in PM2.5 (PM with an aerodynamic diameter ≤ 2.5 μm), PMC (PM with an aerodynamic diameter between 2.5 μm and 10 μm), and PM10 (PM with an aerodynamic diameter ≤ 10 μm) were associated with 5.65% (95% confidence intervals (CIs): 1.29, 10.19), 3.19% (0.11, 6.36), and 2.45% (0.57, 4.37) increase in hospitalizations for osteoporotic fractures, respectively. Significant PM-osteoporotic fracture associations were only observed in females and people aged over 65 years old. For the season, the estimates of PM on hospitalizations for osteoporotic fractures were 6.30% (95% CIs: 1.62, 11.20) in the cold season vs. 2.16% (95% CIs: - 4.62, 9.42) in the warm season for per 10 μg/m3 increase of PM2.5, and 0.99 (95% CIs: - 2.69, 4.80) vs. 6.72% (95% CIs: 0.68, 13.13) for PMC. CONCLUSIONS Our study showed PM was positively linked with the risk of osteoporotic fractures. Females and people aged over 65 years old were more susceptible to PM. The adverse impacts of PM2.5 in the cold season and PMC in the warm season were worthy of special attention.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xupeng Zhang
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Gaichan Zhao
- Department of Public Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tianzhou Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Aojing Han
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Tingxiao Zhao
- Center for Plastic & Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People's Hospital, Hangzhou, 310014, China.
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
10
|
Zhang F, Zhou F, Liu H, Zhang X, Zhu S, Zhang X, Zhao G, Li D, Zhu W. Long-term exposure to air pollution might decrease bone mineral density T-score and increase the prevalence of osteoporosis in Hubei province: evidence from China Osteoporosis Prevalence Study. Osteoporos Int 2022; 33:2357-2368. [PMID: 35831465 DOI: 10.1007/s00198-022-06488-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
UNLABELLED We hypothesized that air pollution could cause oxidative damage and inflammation in the human body, which was linked to bone loss. Our result showed that long-term exposure to air pollution might decrease bone mineral density (BMD) T-score and increase the prevalence of osteoporosis in Hubei province. INTRODUCTION Osteoporosis is becoming an increasingly serious public health problem with the advent of global aging. Long-term exposure to air pollution has been linked to multitudinous adverse health outcomes, but evidence is still relatively limited and inconsistent for BMD T-score and osteoporosis. This study aimed at exploring the associations between long-term exposure to air pollution and BMD T-score and osteoporosis. METHODS The Hubei part of the China Osteoporosis Prevalence Study was extracted. Data on air pollutants were collected by the national air quality real-time release platform of China Environmental Monitoring Station. Linear mixed models and multilevel logistic regression analyses were performed to assess the associations between air pollution and BMD T-score and osteoporosis, respectively. Subgroup analyses were conducted to identify vulnerable populations. RESULTS A total of 1845 participants were included in this cross-section study. Per 10 ug/m3 increase in PM2.5 and SO2 were associated with 0.20 (95% CI: 0.04, 0.36) and 0.31 (95% CI: 0.11, 0.51) decrease in BMD T-score of the neck of femur, respectively. Per 10 ug/m3 increase in CO was linked with 0.03 (95% CI: 0.02, 0.05) decrease in BMD T-score of the total hip. Per 1 ug/m3 increase in PM2.5 was associated with 5% increase in the prevalence of osteoporosis in all participants. In general, the higher concentrations of PM2.5 with the more adverse effect on osteoporosis (P for trend = 0.01). The impact of PM2.5 on osteoporosis in males was higher than that in females [1.29, 95% CI (1.11, 1.50) vs 1.01, 95% CI (0.95, 1.07)]. Per 1 ug/m3 increase in PM10 corresponded with 4% elevation in the risks of osteoporosis in rural population. The ORs (95% CI) for the association of osteoporosis and NO2 in ever/current smoking and drinking population were 1.07 (1.01, 1.13) and 1.05 (1.00, 1.09), respectively. SO2 had a statistically significant positive effect on people with comorbidity [OR = 1.10, (95% CI: 1.00 to 1.21)], while none in people without comorbidity [OR = 0.96, (95% CI: 0.88 to 1.05)]. CONCLUSION Our study provided evidence that long-term exposure to PM2.5 was linked with the decreased BMD T-score and increased risk of osteoporosis among all participants. The adverse impacts of PM2.5, PM10, and NO2 were larger in males than in females. People having comorbidity, living in rural areas, and current/ever smoking or drinking were more vulnerable to air pollution. Public health departments should consider air pollution to formulate better preventive measures for osteoporosis.
Collapse
Affiliation(s)
- Faxue Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Fang Zhou
- Institute of Chronic Disease Prevention and Cure, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Hao Liu
- Institute of Chronic Disease Prevention and Cure, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
| | - Xupeng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Shijie Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Xiaowei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Gaichan Zhao
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China
| | - Dejia Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| | - Wei Zhu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
11
|
Chaulin AM, Sergeev AK. The Role of Fine Particles (PM 2.5) in the Genesis of Atherosclerosis and Myocardial Damage: Emphasis on Clinical and Epidemiological Data, and Pathophysiological Mechanisms. Cardiol Res 2022; 13:268-282. [PMID: 36405225 PMCID: PMC9635774 DOI: 10.14740/cr1366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/05/2022] [Indexed: 09/26/2023] Open
Abstract
Due to the fact that atherosclerotic cardiovascular diseases (CVDs) dominate in the structure of morbidity, disability and mortality of the population, the study of the risk factors for the development of atherosclerotic CVDs, as well as the study of the underlying pathogenetic mechanisms thereof, is the most important area of scientific research in modern medicine. Understanding these aspects will allow to improve the set of treatment and preventive measures and activities. One of the important risk factors for the development of atherosclerosis, which has been actively studied recently, is air pollution with fine particulate matter (PM 2.5). According to clinical and epidemiological data, the level of air pollution with PM 2.5 exceeds the normative indicators in most regions of the world and is associated with subclinical markers of atherosclerosis and mortality from atherosclerotic CVDs. The aim of this article is to systematize and discuss in detail the role of PM 2.5 in the development of atherosclerosis and myocardial damage.
Collapse
Affiliation(s)
- Aleksey Michailovich Chaulin
- Department of Cardiology and Cardiovascular Surgery, Samara State Medical University, Samara 443099, Russia
- Department of Histology and Embryology, Samara State Medical University, Samara 443099, Russia
| | | |
Collapse
|
12
|
He MZ, Kloog I, Just AC, Gutiérrez-Avila I, Colicino E, Téllez-Rojo MM, Luisa Pizano-Zárate M, Tamayo-Ortiz M, Cantoral A, Soria-Contreras DC, Baccarelli AA, Wright RO, Yitshak-Sade M. Intermediate- and long-term associations between air pollution and ambient temperature and glycated hemoglobin levels in women of child bearing age. ENVIRONMENT INTERNATIONAL 2022; 165:107298. [PMID: 35597113 PMCID: PMC9233109 DOI: 10.1016/j.envint.2022.107298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Air pollution has been linked to obesity while higher ambient temperatures typically reduce metabolic demand in a compensatory manner. Both relationships may impact glucose metabolism, thus we examined the association between intermediate- and long-term exposure to fine particulate matter (PM2.5) and ambient temperature and glycated hemoglobin(HbA1c), a longer-term marker of glucose control. METHODS We assessed 3-month, 6-month, and 12-month average air pollution and ambient temperature at 1-km2 spatial resolution via satellite remote sensing models (2013-2019), and assessed HbA1c at four, six, and eight years postpartum in women enrolled in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort based in Mexico City. PM2.5 and ambient temperature were matched to participants' addresses and confirmed by GPS tracker. Using linear mixed-effects models, we examined the association between 3-month, 6-month, and 12-month average PM2.5 and ambient temperature with repeated log-transformed HbA1c values. All models included a random intercept for each woman and were adjusted for calendar year, season, and individual-level confounders (age, marital status, smoking, alcohol consumption level, and education level). RESULTS We analyzed 1,265 HbA1c measurements of 484 women. Per 1 µg/m3 increase in 3-month and 6-month PM2.5, HbA1c levels increased by 0.28% (95% confidence interval (95 %CI): 0.14, 0.42%) and 0.28% (95 %CI: 0.04, 0.52%) respectively. No association was seen for 12-month average PM2.5. Per 1 °C increase in ambient temperature, HbA1c levels decreased by 0.63% (95 %CI: -1.06, -0.21%) and 0.61% (95 %CI: -1.08, -0.13%), while the 12-month average again is not associated with HbA1c. CONCLUSIONS Intermediate-term exposure to PM2.5 and ambient temperature are associated with opposing changes in HbA1c levels, in this region of high PM2.5 and moderate temperature fluctuation. These effects, measurable in mid-adult life, may portend future risk of type 2 diabetes and possible heart disease.
Collapse
Affiliation(s)
- Mike Z He
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States.
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States; Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Allan C Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Iván Gutiérrez-Avila
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - María Luisa Pizano-Zárate
- Nutrition and Bioprogramming Coordination, National Institute of Perinatology, Mexico City, Mexico; UMF 4, South Delegation of the Federal District, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | | | - Diana C Soria-Contreras
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, United States
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Maayan Yitshak-Sade
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
13
|
Wyatt L, Kamat G, Moyer J, Weaver AM, Diaz-Sanchez D, Devlin RB, Di Q, Schwartz JD, Cascio WE, Ward-Caviness CK. Associations between short-term exposure to PM 2.5 and cardiomyocyte injury in myocardial infarction survivors in North Carolina. Open Heart 2022; 9:openhrt-2021-001891. [PMID: 35750420 PMCID: PMC9234784 DOI: 10.1136/openhrt-2021-001891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Objective Short-term ambient fine particulate matter (PM2.5) is associated with adverse cardiovascular events including myocardial infarction (MI). However, few studies have examined associations between PM2.5 and subclinical cardiomyocyte damage outside of overt cardiovascular events. Here we evaluate the impact of daily PM2.5 on cardiac troponin I, a cardiomyocyte specific biomarker of cellular damage. Methods We conducted a retrospective cohort study of 2924 patients identified using electronic health records from the University of North Carolina Healthcare System who had a recorded MI between 2004 and 2016. Troponin I measurements were available from 2014 to 2016, and were required to be at least 1 week away from a clinically diagnosed MI. Daily ambient PM2.5 concentrations were estimated at 1 km resolution and assigned to patient residence. Associations between log-transformed troponin I and daily PM2.5 were evaluated using distributed lag linear mixed effects models adjusted for patient demographics, socioeconomic status and meteorology. Results A 10 µg/m3 elevation in PM2.5 3 days before troponin I measurement was associated with 0.06 ng/mL higher troponin I (95% CI=0.004 to 0.12). In stratified models, this association was strongest in patients that were men, white and living in less urban areas. Similar associations were observed when using 2-day rolling averages and were consistently strongest when using the average exposure over the 5 days prior to troponin I measurement. Conclusions Daily elevations in PM2.5 were associated with damage to cardiomyocytes, outside of the occurrence of an MI. Poor air quality may cause persistent damage to the cardiovascular system leading to increased risk of cardiovascular disease and adverse cardiovascular events.
Collapse
Affiliation(s)
- Lauren Wyatt
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina, USA
| | - Gauri Kamat
- Brown University, Providence, Rhode Island, USA
| | - Joshua Moyer
- US Environmental Protection Agency Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina, USA
| | - Anne M Weaver
- US Environmental Protection Agency Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina, USA
| | - David Diaz-Sanchez
- US Environmental Protection Agency Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina, USA
| | - Robert B Devlin
- US Environmental Protection Agency Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina, USA
| | - Qian Di
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Joel D Schwartz
- Harvard T.H. Chan School of Public Health, Department of Environmental Health, Harvard University, Boston, Massachusetts, USA
| | - Wayne E Cascio
- US Environmental Protection Agency Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina, USA
| | - Cavin K Ward-Caviness
- US Environmental Protection Agency Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina, USA
| |
Collapse
|
14
|
Bernardi M, Biondi-Zoccai G, Versaci F. Air pollution and cardiovascular risk: is it time to change guidelines? Open Heart 2022; 9:openhrt-2022-001961. [PMID: 35750421 PMCID: PMC9234796 DOI: 10.1136/openhrt-2022-001961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2022] [Indexed: 11/04/2022] Open
Affiliation(s)
- Marco Bernardi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, University of Rome La Sapienza, Rome, Lazio, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Rome, Lazio, Italy .,Mediterranea Cardiocentro, Napoli, Campania, Italy
| | - Francesco Versaci
- UOC UTIC Emodinamica e Cardiologia, Ospedale Santa Maria Goretti, Latina, Lazio, Italy
| |
Collapse
|
15
|
Lv LS, Zhou CL, Jin DH, Ma WJ, Liu T, Xie YJ, Xu YQ, Zhang XE. Impact of ambient temperature on life loss per death from cardiovascular diseases: a multicenter study in central China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15791-15799. [PMID: 34633619 PMCID: PMC8827384 DOI: 10.1007/s11356-021-16888-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND In the context of global climate change, studies have focused on the ambient temperature and mortality of cardiovascular diseases (CVDs). However, little is known about the effect of ambient temperature on year of life lost (YLL), especially the life loss per death caused by ambient temperature. In this study, we aimed to assess the relationship between ambient temperature and life loss and estimate the impact of ambient temperature on life loss per death. METHODS We collected daily time series of mortality and meteorological data from 70 locations in Hunan province, central China, in periods ranging from Jan. 1, 2013, to Dec. 31, 2017. Crude rates of YLL were calculated per 100,000 people per year (YLL/100,000 population) for each location. A distributed lag nonlinear model and multivariate meta-regression were used to estimate the associations between ambient temperature and YLL rates. Then, the average life loss per death attributable to ambient temperature was calculated. RESULTS There were 711,484 CVD deaths recorded within the study period. The exposure-response curve between ambient temperature and YLL rates was inverted J or U-shaped. Relative to the minimum YLL rate temperature, the life loss risk of extreme cold temperature lasted for 10 to 12 days, whereas the risk of extreme hot temperature appeared immediately and lasted for 3 days. On average, the life loss per death attributable to non-optimum ambient temperatures was 1.89 (95% CI, 1.21-2.56) years. Life loss was mainly caused by cold temperature (1.13, 95% CI, 0.89‑1.37), particularly moderate cold (1.00, 95% CI, 0.78‑1.23). For demographic characteristics, the mean life loss per death was relatively higher for males (2.07, 95% CI, 1.44‑2.68) and younger populations (3.72, 95% CI, 2.06‑5.46) than for females (1.88, 95% CI, 1.21-2.57) and elderly people (1.69, 95% CI, 1.28-2.10), respectively. CONCLUSIONS We found that both cold and hot temperatures significantly aggravated premature death from CVDs. Our results indicated that the whole range of effects of ambient temperature on CVDs should be given attention.
Collapse
Affiliation(s)
- Ling-Shuang Lv
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Chun-Liang Zhou
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China.
| | - Dong-Hui Jin
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Wen-Jun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Yi-Jun Xie
- Hunan Provincial Climate Center, Changsha, 410007, China
| | - Yi-Qing Xu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Xing-E Zhang
- Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| |
Collapse
|
16
|
Chen J, Wang T, Xu H, Zhu Y, Du Y, Liu B, Zhao Q, Zhang Y, Liu L, Yuan L, Fang J, Xie Y, Liu S, Wu R, Shao D, Song X, He B, Brunekreef B, Huang W. An extended analysis of cardiovascular benefits of indoor air filtration intervention among elderly: a randomized crossover trial (Beijing indoor air purifier study, BIAPSY). GLOBAL HEALTH JOURNAL 2022. [DOI: 10.1016/j.glohj.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Impact of ambient temperature on ovarian reserve. Fertil Steril 2021; 116:1052-1060. [PMID: 34116830 DOI: 10.1016/j.fertnstert.2021.05.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To examine the association between ambient temperature and antral follicle count (AFC), a standard measure of ovarian reserve. DESIGN Prospective cohort study. SETTING Fertility center at an academic hospital in the northeastern United States. PATIENT(S) 631 women attending the Massachusetts General Hospital Fertility Center (2005-2015) who participated in the Environment and Reproductive Health Study. INTERVENTION(S) Daily temperature at the women's residential address was estimated for the 90 days before their antral follicle scan using a spatially refined gridded climate data set. We evaluated the associations between temperature and AFC using Poisson regression with robust standard errors, adjusting for relative humidity, fine particulate matter exposure, age, education, smoking status, year and month of AFC, and diagnosis of diminished ovarian reserve and ovulation disorders. MAIN OUTCOME MEASURE(S) Antral follicle count as measured with transvaginal ultrasonography. RESULT(S) A 1°C increase in average maximum temperature during the 90 days before ovarian reserve testing was associated with a -1.6% (95% confidence interval [CI], -2.8, -0.4) lower AFC. Associations remained negative, but were attenuated, for average maximum temperature exposure in the 30 days (-0.9%, 95% CI, -1.8, 0.1) and 14 days (-0.8%, 95% CI, -1.6, 0.0) before AFC. The negative association between average maximum temperature and AFC was stronger in November through June than during the summer months, suggesting that timing of heat exposure and acclimatization to heat may be important factors to consider in future research. CONCLUSION(S) Exposure to higher temperatures was associated with lower ovarian reserve. These results raise concern that rising ambient temperatures worldwide may result in accelerated reproductive aging among women.
Collapse
|
18
|
Jung CC, Chen NT, Hsia YF, Hsu NY, Su HJ. Influence of Indoor Temperature Exposure on Emergency Department Visits Due to Infectious and Non-Infectious Respiratory Diseases for Older People. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105273. [PMID: 34063510 PMCID: PMC8156969 DOI: 10.3390/ijerph18105273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022]
Abstract
Previous studies have demonstrated that outdoor temperature exposure was an important risk factor for respiratory diseases. However, no study investigates the effect of indoor temperature exposure on respiratory diseases and further assesses cumulative effect. The objective of this study is to study the cumulative effect of indoor temperature exposure on emergency department visits due to infectious (IRD) and non-infectious (NIRD) respiratory diseases among older adults. Subjects were collected from the Longitudinal Health Insurance Database in Taiwan. The cumulative degree hours (CDHs) was used to assess the cumulative effect of indoor temperature exposure. A distributed lag nonlinear model with quasi-Poisson function was used to analyze the association between CDHs and emergency department visits due to IRD and NIRD. For IRD, there was a significant risk at 27, 28, 29, 30, and 31 °C when the CDHs exceeded 69, 40, 14, 5, and 1 during the cooling season (May to October), respectively, and at 19, 20, 21, 22, and 23 °C when the CDHs exceeded 8, 1, 1, 35, and 62 during the heating season (November to April), respectively. For NIRD, there was a significant risk at 19, 20, 21, 22, and 23 °C when the CDHs exceeded 1, 1, 16, 36, and 52 during the heating season, respectively; the CDHs at 1 was only associated with the NIRD at 31 °C during the cooling season. Our data also indicated that the CDHs was lower among men than women. We conclude that the cumulative effects of indoor temperature exposure should be considered to reduce IRD risk in both cooling and heating seasons and NIRD risk in heating season and the cumulative effect on different gender.
Collapse
Affiliation(s)
- Chien-Cheng Jung
- Department of Public Health, China Medical University, Taichung City 406060, Taiwan;
| | - Nai-Tzu Chen
- Research Center of Environmental Trace Toxic Substances, National Cheng Kung University, Tainan City 70403, Taiwan;
| | - Ying-Fang Hsia
- Big Data Center, China Medical University Hospital, Taichung City 404332, Taiwan;
| | - Nai-Yun Hsu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan;
| | - Huey-Jen Su
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan City 70403, Taiwan;
- Correspondence: ; Tel.: +886-6-275-2459; Fax: +886-6-274-3748
| |
Collapse
|
19
|
Zhang S, Breitner S, Cascio WE, Devlin RB, Neas LM, Ward-Caviness C, Diaz-Sanchez D, Kraus WE, Hauser ER, Schwartz J, Peters A, Schneider A. Association between short-term exposure to ambient fine particulate matter and myocardial injury in the CATHGEN cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116663. [PMID: 33581627 DOI: 10.1016/j.envpol.2021.116663] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/24/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has been associated with a higher risk for coronary events. Elevated circulating cardiac troponins (cTn) are suggestive of myocardial injury in both ischemic and non-ischemic conditions. However, little is known about the association between PM2.5 and cTn. In this study, we investigated short-term PM2.5 effects on cardiac troponin T (cTnT), as well as N-terminal-pro brain natriuretic peptide (NT-pro BNP) and inflammatory biomarkers among cardiac catheterized participants. We analyzed 7444 plasma cTnT measurements in 2732 participants who presented to Duke University Hospital with myocardial infarction symptoms between 2001 and 2012, partly along with measurements of NT-pro BNP and inflammatory biomarkers. Daily PM2.5 concentrations were predicted by a neural network-based hybrid model and were assigned to participants' residential addresses. We applied generalized estimating equations to assess associations of PM2.5 with biomarker levels and the risk of a positive cTnT test (cTnT > 0.1 ng/mL). The median plasma cTnT concentration at presentation was 0.05 ng/mL and the prevalence of a positive cTnT test was 35.4%. For an interquartile range (7.6 μg/m3) increase in PM2.5 on the previous day, cTnT concentrations increased by 7.7% (95% CI: 3.4-12.3) and the odds ratio of a positive cTnT test was 1.08 (1.01-1.16). Participants under 60 years (effect estimate: 15.2%; 95% CI: 7.4-23.5) or living in rural areas (12.3%; 95% CI: 4.8-20.3) were more susceptible. There was evidence for increases in fibrinogen and NT-pro BNP associated with elevated PM2.5 on the concurrent and previous two days. Our study suggests that acute PM2.5 exposure may elevate indicators of myocardial tissue damage. This finding substantiates the association of air pollution exposure with adverse cardiovascular events.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wayne E Cascio
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert B Devlin
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Lucas M Neas
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Cavin Ward-Caviness
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David Diaz-Sanchez
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, USA
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, School of Medicine, Duke University, Durham, NC, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | | |
Collapse
|