1
|
Terol-Úbeda AC, Fernández-González JF, Roldán-Hernández CA, Martín ML, Morán A, García-Domingo M, García-Pedraza JÁ. Sex influence on serotonergic modulation of the vascular noradrenergic drive in rats. Br J Pharmacol 2025; 182:1025-1037. [PMID: 39489611 DOI: 10.1111/bph.17380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 09/29/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND AND PURPOSE In male rats, the serotonergic system modulates sympathetic outflow at vascular levels, causing sympatho-inhibition and sympatho-excitation, mainly via 5-HT1D/1A and 5-HT3 receptors, respectively. However, sex influence on vascular serotonergic regulation has not yet been elucidated. This study aimed to analyse the 5-HT sympatho-modulatory role in female rats, characterising the 5-HT receptors involved. EXPERIMENTAL APPROACH Female Wistar (14- to 16-week-old) rats were prepared for sympathetic stimulation. Mean blood pressure (MBP) and heart rate (HR) were continuously measured. Vasopressor responses were obtained by electrical stimulation of the sympathetic outflow (0.1-5 Hz) or i.v. noradrenaline (0.01-0.5 μg·kg-1). 5-HT-related drug effects on adrenergic system were determined. Age-matched male rats were used as control. KEY RESULTS Basal MBP in females was lower than in male rats, whereas electrical-induced increases in MBP were similar. In females, 5-HT exerted a dose-dependent inhibition on the sympathetic-evoked vasoconstrictions, that was reproduced by some agonists; 5-CT (5-HT1/5/7) and L-694,247 (5-HT1D), whereas the selective 5-HT2A/2B/2C (α-methyl-5-HT) and 5-HT3 agonist (1-PBG) increased the electrically-produced vasopressor responses. None of the other drugs tested (targeting 5-HT1A/1B/1F, 5-HT2B/2C, 5-HT4, 5-HT5A or 5-HT7) modified these vasoconstrictions. Only 1-PBG (5-HT3) modified the vasoconstrictions induced by exogenous noradrenaline. CONCLUSIONS AND IMPLICATIONS In female rats, vascular serotonergic sympatholytic effects are due to prejunctional 5-HT1D receptor activation, whereas pre and/or postjunctional 5-HT3 and prejunctional 5-HT2A receptor activation is involved in the potentiating effect of vascular sympathetic neurotransmission. These findings may open novel sex-differential therapeutic strategies for treating cardiovascular conditions.
Collapse
Affiliation(s)
- Anaïs Clara Terol-Úbeda
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Juan Francisco Fernández-González
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Andrés Roldán-Hernández
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - María Luisa Martín
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Asunción Morán
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Mónica García-Domingo
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - José Ángel García-Pedraza
- Laboratorio de Farmacología. Departamento de Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
2
|
Livia R, Kim H, Emily M, Luise MM, Haiko S, Julia S. "Estrogens and human brain networks: A systematic review of structural and functional neuroimaging studies". Front Neuroendocrinol 2024:101174. [PMID: 39733923 DOI: 10.1016/j.yfrne.2024.101174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/23/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
Estrogen fluctuations during the menstrual cycle, puberty, postpartum, or in the menopausal transition are associated with cognitive, affective, and behavioral effects. Additionally, estrogens are essential in hormonal contraception, menopausal hormone therapy, or gender-affirming hormone therapy. This systematic review summarizes findings on the role of estrogens for structure, function, and connectivity of human brain networks. We searched PubMed, Web of Science, and ScienceDirect for neuroimaging articles assessing estrogens published since 2008. We included 54 studies (N = 2,494 participants) on endogenous estrogen, and 28 studies (N = 1740 participants) on exogenous estrogen conditions. Estrogen-related changes were reported for emotion, reward, memory, and resting-state networks, and in regional white and gray matter, with a particular neural plasticity in the hippocampus and amygdala. By examining study designs, imaging measures, and analysis methods, this review highlights the role of neuroimaging in advancing neuroendocrine and neurocognitive research, particularly promoting brain health for women and individuals with ovaries.
Collapse
Affiliation(s)
- Ruehr Livia
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany.
| | - Hoffmann Kim
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany; Humboldt-Universität zu Berlin, Berlin School of Mind and Brain, Unter den Linden 6, 10099 Berlin, Germany.
| | - May Emily
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany.
| | - Münch Marie Luise
- Leipzig Reproductive Health Research Center, Liebigstraße 20A, 04103 Leipzig, Germany.
| | - Schlögl Haiko
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Straße 27, 04103 Leipzig, Germany.
| | - Sacher Julia
- Centre for Integrative Women's Health and Gender Medicine, Medical Faculty & University Hospital Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103 Leipzig, Germany; Max Planck School of Cognition, Stephanstraße 1A, 04103 Leipzig, Germany; Cognitive Neurology, University Medical Center Leipzig, Liebigstraße 16, 04103 Leipzig, Germany; Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstraße 20, 04103 Leipzig, Germany.
| |
Collapse
|
3
|
Lasisi-Sholola AS, Hammed SO, Ajike RA, Akhigbe RE, Afolabi OA. Estrogen replacement therapy reverses spatial memory loss and pyramidal cell neurodegeneration in the prefrontal cortex of lead-exposed ovariectomized Wistar rats. Curr Res Toxicol 2024; 7:100200. [PMID: 39583742 PMCID: PMC11582547 DOI: 10.1016/j.crtox.2024.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Background Although menopause is a component of chronological aging, it may be induced by exposure to heavy metals like lead. Interestingly, lead exposure, just like the postmenopausal state, has been associated with spatial memory loss and neurodegeneration; however, the impact of hormone replacement therapy (HRT) on menopause and lead-induced spatial memory loss and neurodegeneration is yet to be reported. Aim The present study investigated the effect and associated mechanism of HRT on ovariectomized-driven menopausal state and lead exposure-induced spatial memory loss and neurodegeneration. Materials and methods Thirty adult female Wistar rats were randomized into 6 groups (n = 5 rats/group); the sham-operated vehicle-treated, ovariectomized (OVX), OVX + HRT, lead-exposed, OVX + lead, and OVX + Lead + HRT groups. Treatment was daily via gavage and lasted for 28 days. Results Ovariectomy and lead exposure impaired spatial memory deficit evidenced by a significant reduction in novel arm entry, time spent in the novel arm, alternation, time exploring novel and familiar objects, and discrimination index. These findings were accompanied by a marked distortion in the histology of the prefrontal cortex, and a decline in serum dopamine level and pyramidal neurons. In addition, ovariectomy and lead exposure induced metabolic disruption (as depicted by a marked rise in lactate level and lactate dehydrogenase and creatinine kinase activities), oxidative stress (evidenced by a significant increase in MDA level, and decrease in GSH level, and SOD and catalase activities), inflammation (as shown by significant upregulation of myeloperoxidase activity, and TNF-α and IL-1β), and apoptosis (evidenced by a rise in caspase 3 activity) of the prefrontal cortex. The observed biochemical and histological perturbations were attenuated by HRT. Conclusions This study revealed that HRT attenuated ovariectomy and lead-exposure-induced spatial memory deficit and pyramidal neurodegeneration by suppressing oxidative stress, inflammation, and apoptosis of the prefrontal cortex.
Collapse
Affiliation(s)
- Abiodun Shukrat Lasisi-Sholola
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Sodiq Opeyemi Hammed
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Richard Adedamola Ajike
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Oladele Ayobami Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
4
|
Plumb AN, Lesnak JB, Kolling LJ, Marcinkiewcz CA, Sluka KA. Local Synthesis of Estradiol in the Rostral Ventromedial Medulla Protects against Widespread Muscle Pain in Male Mice. eNeuro 2024; 11:ENEURO.0332-24.2024. [PMID: 39111835 PMCID: PMC11360981 DOI: 10.1523/eneuro.0332-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/30/2024] Open
Abstract
Animal studies consistently demonstrate that testosterone is protective against pain in multiple models, including an animal model of activity-induced muscle pain. In this model, females develop widespread muscle hyperalgesia, and reducing testosterone levels in males results in widespread muscle hyperalgesia. Widespread pain is believed to be mediated by changes in the central nervous system, including the rostral ventromedial medulla (RVM). The enzyme that converts testosterone to estradiol, aromatase, is highly expressed in the RVM. Therefore, we hypothesized that testosterone is converted by aromatase to estradiol locally in the RVM to prevent development of widespread muscle hyperalgesia in male mice. This was tested through pharmacological inhibition of estrogen receptors (ERs), aromatase, or ER-α in the RVM which resulted in contralateral hyperalgesia in male mice (C57BL/6J). ER inhibition in the RVM had no effect on hyperalgesia in female mice. As prior studies show modulation of estradiol signaling alters GABA receptor and transporter expression, we examined if removal of testosterone in males would decrease mRNA expression of GABA receptor subunits and vesicular GABA transporter (VGAT). However, there were no differences in mRNA expression of GABA receptor subunits of VGAT between gonadectomized and sham control males. Lastly, we used RNAscope to determine expression of ER-α in the RVM and show expression in inhibitory (VGAT+), serotonergic (tryptophan hydroxylase 2+), and μ-opioid receptor expressing (MOR+) cells. In conclusion, testosterone protects males from development of widespread hyperalgesia through aromatization to estradiol and activation of ER-α which is widely expressed in multiple cell types in the RVM.
Collapse
Affiliation(s)
- Ashley N Plumb
- Departments of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, 52242
| | - Joseph B Lesnak
- Departments of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, 52242
| | - Louis J Kolling
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, 52242
| | | | - Kathleen A Sluka
- Departments of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, 52242
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, 52242
| |
Collapse
|
5
|
Shetty J, Pandey D, Reddy D. High imperforate transverse vaginal septum with vaginal cicatrisation: a surgical tribulation. BMJ Case Rep 2024; 17:e257180. [PMID: 38442970 PMCID: PMC10916103 DOI: 10.1136/bcr-2023-257180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
An early adolescent girl was referred to us with cryptomenorrhoea, and pelvic pain consistent with obstructed menstruation. Originally presumed to be a case of imperforate hymen, she was referred to our centre after two failed surgical misadventures at correcting the obstruction. MRI revealed a haematometrocolpos, high transverse complete vaginal septum and an occluded vagina. She underwent a laparoscopic drainage of the collection, septal resection and a vaginoplasty with an absorbable Interceed graft. Postoperative recovery was smooth and she was sent with instructions to use a vaginal mould daily. Successful surgical treatment requires precise preoperative planning with MRI. A vaginal-assisted laparoscopic approach turned out to be advantageous in resecting the septum to a large extent due to the associated cicatrised vagina. The use of Interceed, a novel mould and harnessing system, ensured a favourable postoperative outcome by bolstering patient motivation due to its less challenging technique of use.
Collapse
Affiliation(s)
- Jyothi Shetty
- OBGYN, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Deeksha Pandey
- OBGYN, Sree Mookambika Institute of Medical Sciences, Kanyakumari, Tamil Nadu, India
| | - Deepa Reddy
- OBGYN, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Albrahim T, Alangry R, Alotaibi R, Almandil L, Alburikan S. Effects of Regular Exercise and Intermittent Fasting on Neurotransmitters, Inflammation, Oxidative Stress, and Brain-Derived Neurotrophic Factor in Cortex of Ovariectomized Rats. Nutrients 2023; 15:4270. [PMID: 37836554 PMCID: PMC10574130 DOI: 10.3390/nu15194270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
A collection of metabolic disorders and neurodegenerative diseases linked to oxidative stress and neuroinflammation frequently affect postmenopausal women or estrogen deprivation. Recent research has focused on alternative therapies that can enhance these women's quality of life. This study set out to investigate the effects of physical exercise (EX) and intermittent fasting (IF) on oxidants/antioxidants, inflammatory cytokines, neurotransmitters, and brain-derived neurotrophic factor (BDNF) in the cortex of rats. Additionally, it sought to assess the response to oxidative stress and neuroinflammation in the brains of rats following ovariectomy (OVX) and the potential mechanisms of these interventions. Fifty female rats were divided into one of the following groups 30 days after bilateral OVX: Control, OVX, OVX + EX, OVX + IF, and OVX + EX + IF groups. The rats in the Control and OVX groups continued their normal activities and had unrestricted access to food and water, but the rats in the OVX + EX and OVX + EX + IF groups had a 4-week treadmill training program, and the rats in the OXV + IF and OVX + EX + IF groups fasted for 13 h each day. The rats were killed, the cerebral cortex was taken, tissue homogenates were created, and various parameters were estimated using these homogenates. The results show that ovariectomized rats had decreased levels of neurotransmitters (DA, NE, and SE), acetylcholinesterase, brain GSH (glutathione), SOD (superoxide dismutase), catalase, GPx (glutathione peroxidase), and TAC (total antioxidant capacity), as well as elevated levels of proinflammatory cytokines and mediators (TNF-α, IL-1β, Cox-2). While ovariectomy-induced declines in neurotransmitters, enzymatic and nonenzymatic molecules, neuroinflammation, and oxidative brain damage were considerably mitigated and prevented by treadmill exercise and intermittent fasting, BDNF was significantly increased. These results suggest that ovariectomy can impair rat neuronal function and regular treadmill exercise and intermittent fasting seem to protect against ovariectomy-induced neuronal impairment through the inhibition of oxidative stress and neuroinflammation and increased BDNF levels in the brain cortex. However, combining regular exercise and intermittent fasting did not provide additional benefits compared to either treatment alone.
Collapse
Affiliation(s)
- Tarfa Albrahim
- Department of Health Sciences, Clinical Nutrition, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; (R.A.); (R.A.); (L.A.); (S.A.)
| | | | | | | | | |
Collapse
|
7
|
Pepermans RA, Prossnitz ER. Assessing Estrogenic Activity of Classical Estrogen Receptor-Binding Compounds. Methods Mol Biol 2022; 2418:187-201. [PMID: 35119667 DOI: 10.1007/978-1-0716-1920-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The classical estrogen receptor α (ERα) has been a clinical therapeutic target for decades. ERα-targeted drugs have shown great clinical success, in particular as antagonists for the treatment of ERα-positive breast cancers. However, ERα-targeted agonists have also been clinically useful (e.g., for the treatment of osteoporosis). The breast cancer field is regularly identifying novel ERα-binding compounds with the goal of identifying new potential ERα-targeted therapeutics. To determine whether such newly identified ERα-binding compounds have clinical potential, it is important to characterize the estrogenic activity (i.e., both receptor-mediated agonism and/or antagonism) of these compounds. This chapter focuses on methods that allow determination of whether an ERα-binding compound acts as an agonist or antagonist of the receptor and whether the compound induces degradation of the receptor.
Collapse
Affiliation(s)
- Richard A Pepermans
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
8
|
Ovariectomy Induces Microglial Cell Activation and Inflammatory Response in Rat Prefrontal Cortices to Accelerate the Chronic Unpredictable Stress-Mediated Anxiety and Depression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3609758. [PMID: 32509856 PMCID: PMC7251427 DOI: 10.1155/2020/3609758] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/04/2020] [Indexed: 01/21/2023]
Abstract
Perimenopausal women are associated with increased risks of depression and anxiety, which may be potentially related to the lack of ovarian hormone with antidepression activity in the body. However, the precise mechanism remains unclear so far. This study first adopted the Sprague-Dawley (SD) female rats to construct the ovariectomy (OVX) combined with a chronic unpredictable stress (CUS) model. Then, a series of behavioral experimental results revealed that the ovariectomized rats receiving CUS had remarkably elevated anxiety and depression behaviors relative to those in sham group rats, and the sucrose preference rate in the sucrose preference test (SPT) was evidently reduced. In elevated plus maze test (EPM) experiment, the open arm entry time and open arm duration were decreased. In the open field test (OFT), the number of line crossings, rearing number, center square entries, and center square duration were reduced; the grooming time was extended; and the number of fecal particles in rats was increased. In the forced swimming test (FST), the rat immobility rate was increased, while the numbers of swimming and crawling were decreased. Afterwards, we discovered that OVX downregulated the serum levels of estradiol and corticosterone in rats. Thereafter, IF results suggested that OVX dramatically induced the increasing of the number of activated microglial cells in prefrontal cortices and the level of M1-type marker iNOS. Finally, PCR results demonstrated that, compared with the sham group, the proinflammatory and prooxidative genes, such as IL-1β, IL-6, TNF-α, iNOS, and CX3CR1, were upregulated in the prefrontal cortices of OVX rats after CUS stimulation, whereas the anti-inflammatory factor Arg1 and microglial cell negative regulatory factor CD200 were downregulated. To sum up, OVX enhances the CUS-mediated anxiety and depression phenomena in rats, and its mechanism may be related to inducing the activation and polarization of microglial cells in the prefrontal cortex of animal and to accelerating the inflammatory response.
Collapse
|
9
|
Altered Brain Structure and Functional Connectivity Associated with Pubertal Hormones in Girls with Precocious Puberty. Neural Plast 2019; 2019:1465632. [PMID: 31933625 PMCID: PMC6942889 DOI: 10.1155/2019/1465632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/25/2019] [Accepted: 11/11/2019] [Indexed: 01/07/2023] Open
Abstract
Pubertal hormones play an important role in brain and psychosocial development. However, the role of abnormal HPG axis states in altering brain function and structure remains unclear. The present study is aimed at determining whether there were significant differences in gray matter volume (GMV) and resting state (RS) functional connectivity (FC) patterns in girls with idiopathic central precocious puberty (CPP) and peripheral precocious puberty (PPP). We further explored the correlation between these differences and serum pubertal hormone levels. To assess this, we recruited 29 idiopathic CPP girls and 38 age-matched PPP girls. A gonadotropin-releasing hormone (GnRH) stimulation test was performed, and pubertal hormone levels (including luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol (E2), prolactin, and cortisol) were assessed. All subjects underwent multimodal magnetic resonance imaging of brain structure and function. Voxel-based morphometry (VBM) analysis was paired with seed-to-voxel whole-brain RS-FC analysis to calculate the GMV and RS-FC in idiopathic CPP and PPP girls. Correlation analyses were used to assess the effects of pubertal hormones on brain regions with structural and functional differences between the groups. We found that girls with CPP exhibited decreased GMV in the left insula and left fusiform gyrus, while connectivity between the left and right insula and the right middle frontal gyrus (MFG), as well as the left fusiform gyrus and right amygdala, was reduced in girls with CPP. Furthermore, the GMV of the left insula and peak FSH levels were negatively correlated while higher basal and peak E2 levels were associated with increased bilateral insula RS-FC. These findings suggest that premature activation of the HPG axis and pubertal hormone fluctuations alter brain structure and function involved in the cognitive and emotional process in early childhood. These findings provide vital insights into the early pathophysiology of idiopathic CPP.
Collapse
|
10
|
Xie X, Liu P, Chen T, Wang Y, Liu X, Ye P, Xiang W, Yan Z. Influence of the hypothalamus-pituitary-gonadal axis reactivation and corresponding surging sex hormones on the amplitude of low-frequency oscillations in early pubertal girls: A resting state fMRI study. J Affect Disord 2019; 256:288-294. [PMID: 31200166 DOI: 10.1016/j.jad.2019.05.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/11/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND There has been a myriad of neuroimaging studies that have suggested that pubertal stages and sex steroid fluctuations contribute to pubertal brain maturation. Investigations on the influence of hypothalamus-pituitary-gonadal (HPG) axis reactivation and the correlated elevated sex hormones on brain maturation have not unraveled these interactions to date. Here, we aimed to explore the impact of the reactivated HPG axis on spontaneous brain activity changes, by analyzing the amplitude of low-frequency fluctuation (ALFF) in developing girls aged 8-11 years old. METHODS The gonadotropin-releasing hormone (GnRH) stimulation test was used to determine the HPG axis status and categorize subjects into two groups (HPG+ or HPG- group). Intelligence quotient (IQ) and the parent-rated Child Behavior Checklist (CBCL) were used to evaluate cognitive and behavioral performance. Two-sample t-tests were used to compare intergroup differences, the relations between brain areas' activities, age and hormonal levels were conducted by Pearson or Spearman correlation analyses. RESULTS Compared with the HPG- group, the HPG+ group showed decreased ALFF values in the left superior temporal gyrus (STG) but increased ALFF values in the right superior frontal gyrus (SFG). In addition, in the HPG+ group, prolactin (PRL) levels were positively correlated with ALFF values in the right SFG, and there was significant negative correlation between ALFF values in the left STG and CBCL activities scores. LIMITATIONS Due to the cross-sectional design of the present study, further study is needed to determine the relationships between age, reawakening of the HPG axis and related sex hormones and spontaneous brain activity change. CONCLUSIONS These findings suggested that the reactivated HPG axis and elevated PRL level could affect changes in brain activity and this effect may be the neuroendocrine basis of mood, cognition, and social behavior changes in early pubertal girls.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Peining Liu
- Department of Child Healthcare, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tao Chen
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yu Wang
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaozheng Liu
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Peipei Ye
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wei Xiang
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhihan Yan
- Department of Radiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
11
|
Estrogens and SERMS as adjunctive treatments for schizophrenia. Front Neuroendocrinol 2019; 53:100743. [PMID: 30922675 DOI: 10.1016/j.yfrne.2019.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 01/25/2023]
Abstract
More than thirty years have passed since sex and gender differences were noted in the age of onset, course and outcomes for schizophrenia. The 'estrogen hypothesis" was coined in the 1990's to describe neuroprotective effects of estrogen. Intervention studies in schizophrenia patients with estradiol and selective estrogen receptor modulators (SERMs) are promising but psychiatrists and other health practitioners do not generally take up this useful adjunctive treatment for their female patients with schizophrenia. The reasons for this are manifold, but overall a cultural shift in the practice of psychiatry is needed to recognise the specific needs of women with schizophrenia and tailor treatments, such as hormone adjuncts to improve the outcomes for this significant population. The two main aims of this article are to review the evidence and theory of estrogen treatments in schizophrenia and to recommend translation of adjunctive estrogen treatment into clinical practice for women with schizophrenia.
Collapse
|
12
|
Mueck AO, Ruan X, Prasauskas V, Grob P, Ortmann O. Behandlung der vaginalen Atrophie mit einer Kombination von Östriol und Laktobazillen. GYNAKOLOGISCHE ENDOKRINOLOGIE 2018. [DOI: 10.1007/s10304-018-0208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Mueck AO, Ruan X, Prasauskas V, Grob P, Ortmann O. Treatment of vaginal atrophy with estriol and lactobacilli combination: a clinical review. Climacteric 2018; 21:140-147. [PMID: 29381086 DOI: 10.1080/13697137.2017.1421923] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, a vast quantity of clinical data has been accumulated on the pathophysiology of symptomatic vulvovaginal atrophy (VVA)/genitourinary syndrome of menopause (GSM) in peri- and postmenopausal women and on the treatment options for these conditions. Guidelines from several societies have recently been updated in favor of VVA/GSM vaginal therapy with the lowest possible doses of estrogens. The combination of a vaginal ultra-low dose of 0.03 mg of estriol (E3) and lyophilized, viable Lactobacillus acidophilus KS400 (0.03 mg-E3/L) is a unique product with a dual mechanism of action supporting not only the proliferation and maturation of the vaginal epithelium, but also restoration of the lactobacillary microflora. It has been demonstrated efficiently to establish and maintain a healthy vaginal ecosystem. Use of this combination considerably improves the clinical signs and symptoms as well as the quality of life of menopausal women suffering from vaginal atrophy. This combination therapy is well tolerated with a low overall incidence of side-effects and negligible estriol absorption. Based on recent scientific evidence and current treatment guidelines, the 0.03 mg-E3/L combination could be considered one of the options for the treatment of symptomatic vaginal atrophy in aging menopausal women.
Collapse
Affiliation(s)
- A O Mueck
- a Sections of Endocrinology & Menopause, Department of Women's Health , University Hospitals of Tuebingen , Tuebingen , Germany.,b Department of Gynecological Endocrinology, Beijing Obstetrics & Gynecology Hospital , Capital Medical University , Beijing , China
| | - X Ruan
- a Sections of Endocrinology & Menopause, Department of Women's Health , University Hospitals of Tuebingen , Tuebingen , Germany.,b Department of Gynecological Endocrinology, Beijing Obstetrics & Gynecology Hospital , Capital Medical University , Beijing , China
| | - V Prasauskas
- c Scientific & Medical Department , Medinova AG , Zurich , Switzerland
| | - P Grob
- c Scientific & Medical Department , Medinova AG , Zurich , Switzerland
| | - O Ortmann
- d Department of Obstetrics & Gynecology , University Medical Center Regensburg , Regensburg , Germany
| |
Collapse
|
14
|
Syan SK, Minuzzi L, Costescu D, Smith M, Allega OR, Coote M, Hall GBC, Frey BN. Influence of endogenous estradiol, progesterone, allopregnanolone, and dehydroepiandrosterone sulfate on brain resting state functional connectivity across the menstrual cycle. Fertil Steril 2017; 107:1246-1255.e4. [PMID: 28476183 DOI: 10.1016/j.fertnstert.2017.03.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/18/2017] [Accepted: 03/22/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To [1] study brain resting state functional connectivity (Rs-FC) in a well-characterized sample of healthy women in the mid-follicular and late luteal phases of the menstrual cycle; and [2] examine the correlation between endogenous E2, P, allopregnanolone, and DHEAS and patterns of Rs-FC across the menstrual cycle. DESIGN We studied the Rs-FC of the default mode network, salience network, meso-paralimbic network, fronto-parietal network, visual network, and sensorimotor network in the mid-follicular and late luteal phases. Serum levels of E2, P, allopregnanolone, and DHEAS were correlated to patterns of functional connectivity. SETTING University medical center. PATIENT(S) Twenty-five healthy women with regular menstrual cycles. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Functional connectivity of key brain networks at rest and correlations of hormones to Rs-FC in the mid-follcuar and late luteal menstrual phases. RESULT(S) There were no differences in Rs-FC between the mid-follicular and late luteal menstrual phases using either independent component analysis or seed-based analysis. However, specific correlations between each hormone and patterns of functional connectivity were found in both menstrual cycle phases. CONCLUSION(S) It seems that the association between female sex hormones and brain Rs-FC is menstrual cycle phase-dependent. Future studies should examine the cognitive and behavioral correlates of this association in regularly cycling women.
Collapse
Affiliation(s)
- Sabrina K Syan
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada; Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Luciano Minuzzi
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada; Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Dustin Costescu
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Mara Smith
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Olivia R Allega
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada; Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Marg Coote
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Geoffrey B C Hall
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada; Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Benicio N Frey
- MiNDS Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada; Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
15
|
Lai YJ, Yu D, Zhang JH, Chen GJ. Cooperation of Genomic and Rapid Nongenomic Actions of Estrogens in Synaptic Plasticity. Mol Neurobiol 2016; 54:4113-4126. [PMID: 27324789 PMCID: PMC5509832 DOI: 10.1007/s12035-016-9979-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022]
Abstract
Neuroplasticity refers to the changes in the molecular and cellular processes of neural circuits that occur in response to environmental experiences. Clinical and experimental studies have increasingly shown that estrogens participate in the neuroplasticity involved in cognition, behavior, and memory. It is generally accepted that estrogens exert their effects through genomic actions that occur over a period of hours to days. However, emerging evidence indicates that estrogens also rapidly influence the neural circuitry through nongenomic actions. In this review, we provide an overview of the genomic and nongenomic actions of estrogens and discuss how these actions may cooperate in synaptic plasticity. We then summarize the role of epigenetic modifications, synaptic protein synthesis, and posttranslational modifications, and the splice variants of estrogen receptors in the complicated network of estrogens. The combination of genomic and nongenomic mechanisms endows estrogens with considerable diversity in modulating neural functions including synaptic plasticity.
Collapse
Affiliation(s)
- Yu-Jie Lai
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou Municipal Hospital, Haikou, Hainan, 570208, China
| | - Dan Yu
- Department of Neurology, Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Haikou Municipal Hospital, Haikou, Hainan, 570208, China
| | - John H Zhang
- Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
16
|
Vargas KG, Milic J, Zaciragic A, Wen KX, Jaspers L, Nano J, Dhana K, Bramer WM, Kraja B, van Beeck E, Ikram MA, Muka T, Franco OH. The functions of estrogen receptor beta in the female brain: A systematic review. Maturitas 2016; 93:41-57. [PMID: 27338976 DOI: 10.1016/j.maturitas.2016.05.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 05/31/2016] [Indexed: 01/22/2023]
Abstract
Females have unique and additional risk factors for neurological disorders. Among classical estrogen receptors, estrogen receptor beta (ERβ) has been suggested as a therapeutic target. However, little is known about the role of ERβ in the female brain. Six electronic databases were searched for articles evaluating the role of ERβ in the female brain and the influence of age and menopause on ERβ function. After screening 3186 titles and abstracts, 49 articles were included in the review, all of which were animal studies. Of these, 19 focused on cellular signaling, 7 on neuroendocrine pathways, 8 on neurological disorders, 4 on neuroprotection and 19 on psychological and psychiatric outcomes (6 studies evaluated two or more outcomes). Our findings showed that ERβ phosphorylated and activated intracellular second messenger proteins and regulated protein expression of genes involved in neurological functions. It also promoted neurogenesis, modulated the neuroendocrine regulation of stress response, conferred neuroprotection against ischemia and inflammation, and reduced anxiety- and depression-like behaviors. Targeting ERβ may constitute a novel treatment for menopausal symptoms, including anxiety, depression, and neurological diseases. However, to establish potential therapeutic and preventive strategies targeting ERβ, future studies should be conducted in humans to further our understanding of the importance of ERβ in women's mental and cognitive health.
Collapse
Affiliation(s)
- Kris G Vargas
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jelena Milic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Ke-Xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Loes Jaspers
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Bledar Kraja
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania; University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Ed van Beeck
- Department of Public Health, Erasmus University Medical Center, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands; Department of Neurology, Erasmus University Medical Center, The Netherlands; Department of Radiology, Erasmus University Medical Center, The Netherlands
| | - Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Ouyang P, Wenger NK, Taylor D, Rich-Edwards JW, Steiner M, Shaw LJ, Berga SL, Miller VM, Merz NB. Strategies and methods to study female-specific cardiovascular health and disease: a guide for clinical scientists. Biol Sex Differ 2016; 7:19. [PMID: 27034774 PMCID: PMC4815158 DOI: 10.1186/s13293-016-0073-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/21/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND In 2001, the Institute of Medicine's (IOM) report, "Exploring the Biological Contributions to Human Health: Does Sex Matter?" advocated for better understanding of the differences in human diseases between the sexes, with translation of these differences into clinical practice. Sex differences are well documented in the prevalence of cardiovascular (CV) risk factors, the clinical manifestation and incidence of cardiovascular disease (CVD), and the impact of risk factors on outcomes. There are also physiologic and psychosocial factors unique to women that may affect CVD risk, such as issues related to reproduction. METHODS The Society for Women's Health Research (SWHR) CV Network compiled an inventory of sex-specific strategies and methods for the study of women and CV health and disease across the lifespan. References for methods and strategy details are provided to gather and evaluate this information. Some items comprise robust measures; others are in development. RESULTS To address female-specific CV health and disease in population, physiology, and clinical trial research, data should be collected on reproductive history, psychosocial variables, and other factors that disproportionately affect CVD in women. Variables related to reproductive health include the following: age of menarche, menstrual cycle regularity, hormone levels, oral contraceptive use, pregnancy history/complications, polycystic ovary syndrome (PCOS) components, menopause age, and use and type of menopausal hormone therapy. Other factors that differentially affect women's CV risk include diabetes mellitus, autoimmune inflammatory disease, and autonomic vasomotor control. Sex differences in aging as well as psychosocial variables such as depression and stress should also be considered. Women are frequently not included/enrolled in mixed-sex CVD studies; when they are included, information on these variables is generally not collected. These omissions limit the ability to determine the role of sex-specific contributors to CV health and disease. Lack of sex-specific knowledge contributes to the CVD health disparities that women face. CONCLUSIONS The purpose of this review is to encourage investigators to consider ways to increase the usefulness of physiological and psychosocial data obtained from clinical populations, in an effort to improve the understanding of sex differences in clinical CVD research and health-care delivery for women and men.
Collapse
Affiliation(s)
- Pamela Ouyang
- />Johns Hopkins University, Baltimore, MD USA
- />Division of Cardiology, Johns Hopkins Bayview Medical Center, 301 Building, Suite 2400, 4940 Eastern Ave, Baltimore, MD 21224 USA
| | | | | | | | | | | | | | | | - Noel Bairey Merz
- />Barbra Streisand Women’s Heart Center, Cedars-Sinai Heart Institute, Los Angeles, CA USA
| |
Collapse
|
18
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol 2015; 36:72-89. [PMID: 25159586 DOI: 10.1016/j.yfrne.2014.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022]
Abstract
There is now a growing appreciation that estrogens are capable of rapidly activating a number of signaling cascades within the central nervous system. In addition, there are an increasing number of studies reporting that 17β-estradiol, the major biologically active estrogen, can modulate cognition within a rapid time frame. Here we review recent studies that have begun to uncover the molecular and cellular framework which contributes to estrogens ability to rapidly modulate cognition. We first describe the mechanisms by which estrogen receptors (ERs) can couple to intracellular signaling cascades, either directly, or via the transactivation of other receptors. Subsequently, we review the evidence that estrogen can rapidly modulate both neuronal function and structure in the hippocampus and the cortex. Finally, we will discuss how estrogens may influence cognitive function through the modulation of neuronal structure, and the implications this may have on the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Katherine Sellers
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK.
| |
Collapse
|
20
|
Depression in peri- and postmenopausal women: prevalence, pathophysiology and pharmacological management. Drugs Aging 2014; 30:677-85. [PMID: 23801148 DOI: 10.1007/s40266-013-0100-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Epidemiologic and clinic data have unequivocally supported the notion that women experience more psychiatric problems at some point in their lives compared with men, particularly mood and anxiety symptoms and sleep problems. It is also known that, for some women, such increased risk might be associated with reproductive cycle events such as the postpartum period or the menopausal transition. These periods are not only marked by substantial hormone variations but also quite often accompanied by stressful events and changes in personal, family and professional responsibilities. The complexity of these reproductive-related 'windows of vulnerability' poses a challenge to physicians and other professionals dedicated to women's health across the lifespan. The menopausal transition and early postmenopausal years constitute a characteristic example; during this period in life, dynamic changes in sex hormones and reproductive function co-occur with modifications in metabolism, sexuality, lifestyle behaviours and overall health, sometimes affecting a woman's quality of life and overall functioning. For most women, however, this transition has little or no significant impact on their mental wellness. A prior depressive episode--particularly if related to reproductive events--is the strongest predictor of mood symptoms or depression during menopausal years. Also, the presence and severity of vasomotor symptoms and other health-related issues appear to modulate the risk for depression in midlife women. Mechanistically, estrogen plays an important modulatory role in mood and cognitive regulation, hence the effects noted when midlife women are exposed to significant estrogen fluctuations or to estrogen-based therapies (use or withdrawal). Transdermal estradiol, as well as serotonergic and noradrenergic antidepressants, have shown efficacy in the management of depression in this population. Other evidence-based treatment options (hormonal, pharmacological, behavioural) are available to clinicians and health professionals who care for this population.
Collapse
|
21
|
Li T, Xiao X, Zhang J, Zhu Y, Hu Y, Zang J, Lu K, Yang T, Ge H, Peng X, Lan D, Liu L. Age and sex differences in vascular responsiveness in healthy and trauma patients: contribution of estrogen receptor-mediated Rho kinase and PKC pathways. Am J Physiol Heart Circ Physiol 2014; 306:H1105-15. [PMID: 24531808 DOI: 10.1152/ajpheart.00645.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several medical conditions exhibit age- and sex-based differences. Whether or not traumatic shock exhibits such differences with regard to vascular responsiveness is not clear. In a cohort of 177 healthy subjects and 842 trauma patients (21–82 years) as well as different ages (4, 8, 10, 14, 18, and 24 wk; 1 and 1.5 years) and sexes of Sprague-Dawley normal and traumatic shock rats, the age- and sex-based differences of vascular responsiveness and the underlying mechanisms were investigated. Middle-aged and young women as well as female rats of reproductive age had higher vascular responsiveness in the normal condition and a lower decrease in vascular responsiveness after traumatic shock than older men and male rats of identical age. Exogenous supplementation of 17β-estrdiol increased vascular reactivity in both male and femal rats of 8–24 wk and preserved vascular responsiveness in rats following traumatic shock. No effect was observed in rats 1 to 1.5 years. These protective effects of estrogen were closely related to G protein-coupled receptor (GPR)30, estrogen receptor-mediated Rho kinase, and PKC pathway activation. Vascular responsiveness exhibits age- and sex-based differences in healthy subjects and trauma patients. Estrogen and its receptor (GPR30) mediated activation of Rho kinase and PKC using genomic and nongenomic mechanisms to elicit protective effects in vascular responsiveness. This finding is important for the personalized treatment for several age- and sex-related diseases involving estrogen.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xudong Xiao
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Yi Hu
- Department of Anesthesiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Jiatao Zang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Kaizhi Lu
- Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Tiande Yang
- Department of Anesthesiology, South Western Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Hengjiang Ge
- Department of Anesthesiology, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Xiaoyong Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Dan Lan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
22
|
Haimov-Kochman R, Berger I. Cognitive functions of regularly cycling women may differ throughout the month, depending on sex hormone status; a possible explanation to conflicting results of studies of ADHD in females. Front Hum Neurosci 2014; 8:191. [PMID: 24744721 PMCID: PMC3978296 DOI: 10.3389/fnhum.2014.00191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/16/2014] [Indexed: 12/25/2022] Open
Abstract
Attention Deficit/Hyperactivity Disorder (ADHD) is considered as a model of neuro-developmental cognitive function. ADHD research previously studied mainly males. A major biological distinction between the genders is the presence of a menstrual cycle, which is associated with variations in sex steroid hormone levels. There is a growing body of literature showing that sex hormones have the ability to regulate intracellular signaling systems that are thought to be abnormal in ADHD. Thus, it is conceivable to believe that this functional interaction between sex hormones and molecules involved with synaptic plasticity and neurotransmitter systems may be associated with some of the clinical characteristics of women with ADHD. In spite of the impact of sex hormones on major neurotransmitter systems of the brain in a variety of clinical settings, the menstrual cycle is usually entered to statistical analyses as a nuisance or controlled for by only testing male samples. Evaluation of brain structure, function and chemistry over the course of the menstrual cycle as well as across the lifespan of women (premenarche, puberty, cycling period, premenopause, postmenopause) is critical to understanding sex differences in both normal and aberrant mental function and behavior. The studies of ADHD in females suggest confusing and non-consistent conclusions. None of these studies examined the possible relationship between phase of the menstrual cycle, sex hormones levels and ADHD symptoms. The menstrual cycle should therefore be taken into consideration in future studies in the neurocognitive field since it offers a unique opportunity to understand whether and how subtle fluctuations of sex hormones and specific combinations of sex hormones influence neuronal circuits implicated in the cognitive regulation of emotional processing. The investigation of biological models involving the role of estrogen, progesterone, and other sex steroids has the potential to generate new and improved diagnostic and treatment strategies that could change the course of cognitive-behavioral disorders such as ADHD.
Collapse
Affiliation(s)
- Ronit Haimov-Kochman
- Unit of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical CenterJerusalem, Israel
| | - Itai Berger
- The Neuro-Cognitive Center, Pediatric Wing, Hadassah Hebrew University Medical CenterJerusalem, Israel
| |
Collapse
|
23
|
Wright L, Simpson W, Van Lieshout RJ, Steiner M. Depression and cardiovascular disease in women: is there a common immunological basis? A theoretical synthesis. Ther Adv Cardiovasc Dis 2014; 8:56-69. [DOI: 10.1177/1753944714521671] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Clinical studies have established an inherent comorbidity between depression and the development of cardiovascular disease (CVD). Furthermore, this comorbidity seems to be more amplified in women than in men. To further investigate this comorbidity, a thorough literature review was conducted on studies from 1992 to date. The PubMed database was accessed using the keywords: cardiovascular disease, inflammation, depression, and sex differences. Both human and animal studies were considered. This review takes the standpoint that depression and CVD are both inflammatory disorders, and that their co-occurrence may be related to how the hypothalamic–pituitary–adrenal axis, serotonergic transmission and circulation, and the renin–angiotensin–aldosterone system via angiotensin II are affected by the excess secretion of proinflammatory cytokines. More recently, preliminary research attributes this systemic inflammation to a global deficiency in CD4+CD25+FOXP3 regulatory T cells. 17-β estradiol and progesterone mediated modulation of cytokine secretion may partially explain the sex differences observed. These hormones and reproductive events associated with hormonal fluctuations are discussed in depth, including the analysis of perinatal models of depression and CVD, including preeclampsia. However, as evidenced by this review, there is a need for mechanistic research in humans to truly understand the nature and directionality of the relationship between depression and CVD.
Collapse
Affiliation(s)
- Lauren Wright
- MiNDS Neuroscience Program, McMaster University, Canada and Women’s Health Concerns Clinic, St Joseph’s Healthcare, Hamilton, ON, Canada
| | - William Simpson
- MiNDS Neuroscience Program, McMaster University, Canada and Women’s Health Concerns Clinic, St Joseph’s Healthcare, Hamilton, ON, Canada
| | - Ryan J. Van Lieshout
- MiNDS Neuroscience Program, McMaster University, Canada and Women’s Health Concerns Clinic, St Joseph’s Healthcare, and Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Meir Steiner
- MiNDS Neuroscience Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Canada and Women’s Health Concerns Clinic, St Joseph’s Healthcare, 301 James Street South, Hamilton, ON, Canada L8P 3B6
| |
Collapse
|
24
|
Frey BN, Dias RS. Sex hormones and biomarkers of neuroprotection and neurodegeneration: implications for female reproductive events in bipolar disorder. Bipolar Disord 2014; 16:48-57. [PMID: 24206266 DOI: 10.1111/bdi.12151] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 06/29/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Previous studies have suggested that women with bipolar disorder are at higher risk for mood episodes during periods of intense hormonal fluctuation (e.g., premenstrual, postpartum, perimenopause). There is converging literature showing that estrogen and progesterone can modulate neurotransmitter systems and intracellular signaling pathways known to be affected by mood stabilizing agents. Here, we critically review clinical aspects of reproductive cycle events in women with bipolar disorder and preclinical studies, with a focus on the functional interactions between sex hormones and biomarkers of neuroprotection and neurodegeneration that are thought to be involved in the neurobiology of bipolar disorder: brain-derived neurotrophic factor, oxidative stress, and inflammation. METHODS A MedLine search using estrogen, progesterone, brain-derived neurotrophic factor, oxidative stress, and inflammation as key words was conducted. RESULTS Data showed that estrogen and progesterone closely interact with brain-derived neurotrophic factor, oxidative stress, and inflammation pathways. CONCLUSIONS This relationship between sex hormones and the pathways of neuroprotection/neurodegeneration may be relevant to the psychopathological aspects of bipolar disorder in women.
Collapse
Affiliation(s)
- Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Program and Women's Health Concerns Clinic, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | | |
Collapse
|
25
|
Pinsonneault JK, Sullivan D, Sadee W, Soares CN, Hampson E, Steiner M. Association study of the estrogen receptor gene ESR1 with postpartum depression--a pilot study. Arch Womens Ment Health 2013; 16:499-509. [PMID: 23917948 PMCID: PMC3833886 DOI: 10.1007/s00737-013-0373-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/09/2013] [Indexed: 12/17/2022]
Abstract
Perinatal mood disorders, such as postpartum depression (PPD), are costly for society, with potentially serious consequences for mother and child. While multiple genes appear to play a role in PPD susceptibility, the contributions of specific genetic variations remain unclear. Previously implicated as a candidate gene, the estrogen receptor alpha gene (ESR1) is a key player in mediating hormonal differences during pregnancy and the postpartum period. This study addresses genetic factors in perinatal mood disorders, testing nine polymorphisms in ESR1. Two hundred fifty-seven postpartum women were screened for mood disorders, including 52 women with PPD and 32 without any symptoms of mood disorders. We detected a significant association for the upstream TA microsatellite repeat with Edinburgh Postnatal Depression Scale scores (p = 0.007). The same variant was also associated with the occurrence of PPD. Separately, 11 candidate functional polymorphisms in 7 additional genes were genotyped to investigate gene-gene interaction with the ESR1 TA repeat, identifying a potential interaction with the serotonin transporter. Our results support a role for ESR1 in the etiology of PPD, possibly through the modulation of serotonin signaling. Our findings for ESR1 could have broad implications for other disorders and therapies that involve estrogens.
Collapse
Affiliation(s)
- Julia K. Pinsonneault
- Department of Pharmacology and Program in Pharmacogenomics, The Ohio State University
| | - Danielle Sullivan
- Department of Pharmacology and Program in Pharmacogenomics, The Ohio State University,The Department of Biostatistics, College of Public Health, The Ohio State University
| | - Wolfgang Sadee
- Department of Pharmacology and Program in Pharmacogenomics, The Ohio State University
| | - Claudio N. Soares
- Women's Health Concerns Clinic, St. Joseph's Healthcare, Department of Psychiatry & Behavioral Neurosciences and Obstetrics & Gynecology, McMaster University
| | - Elizabeth Hampson
- Department of Psychology and Graduate Program in Neuroscience, University of Western Ontario
| | - Meir Steiner
- Women's Health Concerns Clinic, St. Joseph's Healthcare, Department of Psychiatry & Behavioral Neurosciences and Obstetrics & Gynecology, McMaster University
| |
Collapse
|
26
|
Srivastava DP, Woolfrey KM, Penzes P. Insights into rapid modulation of neuroplasticity by brain estrogens. Pharmacol Rev 2013; 65:1318-50. [PMID: 24076546 PMCID: PMC3799233 DOI: 10.1124/pr.111.005272] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits, contributing to cognition, with potential relevance for the development of novel estrogenic-based therapies for neurodevelopmental or neurodegenerative disorders.
Collapse
Affiliation(s)
- Deepak P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, 125 Coldharbour Lane, The James Black Centre, Institute of Psychiatry, King's College London, London, SE5 9NU, UK.
| | | | | |
Collapse
|
27
|
Steiner M, Li T. Luteal phase and symptom-onset dosing of SSRIs/SNRIs in the treatment of premenstrual dysphoria: clinical evidence and rationale. CNS Drugs 2013; 27:583-9. [PMID: 23728922 DOI: 10.1007/s40263-013-0069-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Premenstrual dysphoria (PMD) affects 3-8 % of women in their reproductive years worldwide. This paper summarizes the studies establishing the efficacy of continuous, luteal phase, and symptom-onset dosing of selective serotonin reuptake inhibitors (SSRIs) and dual serotonin and norepinephrine reuptake inhibitors (SNRIs) in treating women with PMD. The evidence indicates that for some women, symptom-onset dosing with escitalopram, fluoxetine, and paroxetine controlled release (CR) is as effective as continuous or luteal phase dosing. The wide range of clinical efficacy of SSRIs/SNRIs suggests that they exert their therapeutic effect through multiple pathways. This paper offers a few alternative mechanisms of action to explain the rapid response to SSRIs/SNRIs in women with PMD.
Collapse
Affiliation(s)
- Meir Steiner
- Women's Health Concerns Clinic, St. Joseph's Healthcare, 301 James Street South, Hamilton, ON, L8P 3B6, Canada.
| | | |
Collapse
|
28
|
Kulkarni J, Gavrilidis E, Hayes E, Heaton V, Worsley R. Special biological issues in the management of women with schizophrenia. Expert Rev Neurother 2012; 12:823-33. [PMID: 22853790 DOI: 10.1586/ern.12.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Schizophrenia is a debilitating and pervasive mental illness with devastating effects on psychological, cognitive and social wellbeing, and for which current treatment options are far from ideal. Gender differences and the influence of the female reproductive life cycle on the onset, course and symptoms of schizophrenia and the discovery of estrogen's remarkable psychoprotective properties in animal models led to the proposal of the 'estrogen protection hypothesis' of schizophrenia. This has fueled the recent successful investigation of estradiol as a potential adjuvant therapeutic agent in the management of schizophrenia in women. This review explains the scientific rationale behind the estrogen hypothesis and how it can be clinically utilized to address concerns unique to the care of women with schizophrenia.
Collapse
Affiliation(s)
- Jayashri Kulkarni
- Monash Alfred Psychiatry Research Centre, Level One, Old Baker Building, The Alfred Hospital, Commercial Road, Melbourne 3004, Australia.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Increasing evidence from epidemiological, preclinical and clinical studies suggests that estrogens may exert psychoprotective effects in schizophrenia. Observations of gender differences in the onset and course of schizophrenia have prompted exploration of the effects of estrogen on the CNS. The aim of this paper is to provide an overview of different applications of adjunctive estrogen as a possible treatment for symptoms of schizophrenia in both men and women. Recent trials have suggested that estrogen augmentation therapy may be able to enhance the management of schizophrenia; however, the clinical application of estrogen as a treatment has been limited by potential side effects, the most worrying being breast and uterine cancer in women, and feminization in men. Selective estrogen receptor modulators (SERMs), however, may offer therapeutic benefits for both men and women with schizophrenia without posing threat to breast and uterine tissue and without feminizing effects. The use of estrogen opens up new possibilities for both men and women in the treatment of severe mental illnesses such as schizophrenia. With further preclinical and clinical research, it is hoped that this promising field of hormone modulation can continue to evolve and eventually be translated into real therapeutic potential.
Collapse
Affiliation(s)
- Jayashri Kulkarni
- The Monash Alfred Psychiatry Research Centre, The Alfred Hospital and Monash University Faculty of Medicine, Nursing and Health Sciences - Central Clinical School, Melbourne, VIC, Australia.
| | | | | | | |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW It is a well established fact that many serious mental illnesses, in particular psychoses such as schizophrenia, may have a significant hormonal aetiological component. This study aims to discuss the oestrogen protection hypothesis of schizophrenia in particular, with an emphasis on findings from the recent literature in support of this theory. RECENT FINDINGS Epidemiological and life-cycle data point to significant differences in the incidence and course of schizophrenia between men and women, suggesting a protective role of oestrogen. In-vitro and in-vivo preclinical research has confirmed oestradiol's interactions with central neurotransmitter systems implicated in the pathogenesis of schizophrenia, whereas results from randomized controlled trials investigating the antipsychotic potential of oestrogen have been promising. Research into other neuroactive hormones with possible effects on mental state is a field still in its infancy but is evolving rapidly. SUMMARY Schizophrenia and related psychoses are pervasive and debilitating conditions, for which currently available treatments are often only partially effective and entail a high risk of serious side effects. Thus, new therapeutic strategies are needed, and the literature reviewed here suggests that hormones such as oestrogen could be a viable option. It is hoped that, with further research and larger trials, the oestrogen hypothesis can be translated into effective clinical practice.
Collapse
|
31
|
Lebron-Milad K, Milad MR. Sex differences, gonadal hormones and the fear extinction network: implications for anxiety disorders. BIOLOGY OF MOOD & ANXIETY DISORDERS 2012; 2:3. [PMID: 22738383 PMCID: PMC3384233 DOI: 10.1186/2045-5380-2-3] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/07/2012] [Indexed: 01/11/2023]
Abstract
Convergent data from rodents and human studies have led to the development of models describing the neural mechanisms of fear extinction. Key components of the now well-characterized fear extinction network include the amygdala, hippocampus, and medial prefrontal cortical regions. These models are fueling novel hypotheses that are currently being tested with much refined experimental tools to examine the interactions within this network. Lagging far behind, however, is the examination of sex differences in this network and how sex hormones influence the functional activity and reactivity of these brain regions in the context of fear inhibition. Indeed, there is a large body of literature suggesting that sex hormones, such as estrogen, do modulate neural plasticity within the fear extinction network, especially in the hippocampus.After a brief overview of the fear extinction network, we summarize what is currently known about sex differences in fear extinction and the influence of gonadal hormones on the fear extinction network. We then go on to propose possible mechanisms by which sex hormones, such as estrogen, may influence neural plasticity within the fear extinction network. We end with a discussion of how knowledge to be gained from developing this line of research may have significant ramifications towards the etiology, epidemiology and treatment of anxiety disorders.
Collapse
Affiliation(s)
- Kelimer Lebron-Milad
- Department of Psychiatry, Harvard Medical School & Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
32
|
Lu Y, Li Z, Li HJ, Du D, Wang LP, Yu LH, Burnstock G, Chen A, Ma B. A comparative study of the effect of 17β-estradiol and estriol on peripheral pain behavior in rats. Steroids 2012; 77:241-9. [PMID: 22198527 DOI: 10.1016/j.steroids.2011.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 11/07/2011] [Accepted: 11/24/2011] [Indexed: 12/26/2022]
Abstract
Although estradiol has been reported to influence pain sensitivity, the role of estriol (an estradiol metabolite and another widely used female sex hormone) remains unclear. In this study, pain behavior tests, whole-cell patch clamp recording and Western blotting were used to determine whether estriol plays a role in pain signal transduction and transmission. Either systemic or local administration of 17β-estradiol produced a significant rise of mechanical pain threshold, while estriol lacked this effect in normal and ovariectomized (OVX) rats following estriol replacement. Local administration of 17β-estradiol or estriol significantly decreased ATP-induced spontaneous hind-paw withdrawal duration (PWD), which was blocked by an estrogen receptor antagonist, ICI 182, 780. However, systemic application of estriol in normal or OVX rats lacked this similar effect. In cultured dorsal root ganglion neurons, estriol attenuated α,β-methylene ATP-induced transient currents which were blocked by ICI 182, 780. In complete Freund's adjuvant treated (CFA) rats, systemic application of 17β-estradiol or estriol decreased the mechanical pain threshold significantly, but did not change the inflammatory process. Similar effects were observed after estriol replacement in OVX rats. The expression of c-fos in lumbosacral spinal cord dorsal horn (SCDH) was increased significantly by administration of 17β-estradiol but not estriol, and not by estriol replacement in OVX rats. These results suggest that 17β-estradiol but not estriol plays an anti-hyperalgesic role in physiological pain. However, both peripheral 17β-estradiol and estriol play anti-hyperalgesic roles in ATP-induced inflammatory pain. Systemic application of estriol as well as 17β-estradiol plays hyperalgesic roles in CFA-induced chronic pain.
Collapse
Affiliation(s)
- Yi Lu
- Department of Physiology and Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The role of oestrogen and other hormones in the pathophysiology and treatment of schizophrenia. SCHIZOPHRENIA RESEARCH AND TREATMENT 2012; 2012:540273. [PMID: 22966438 PMCID: PMC3420457 DOI: 10.1155/2012/540273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/07/2011] [Indexed: 01/16/2023]
Abstract
The theory that many serious mental illnesses, in particular psychoses such as schizophrenia, may have a significant hormonal aetiological component is fast gaining popularity and the support of scientific evidence. Oestrogen in particular has been substantially investigated as a potential mediator of brain function in schizophrenia. Epidemiological and life-cycle data point to significant differences in the incidence and course of schizophrenia between men and women suggests a protective role of oestrogen. In vitro and in vivo preclinical research confirms oestradiol's interactions with central neurotransmitter systems implicated in the pathogenesis of schizophrenia, while results from randomised controlled trials investigating the antipsychotic potential of oestrogen have been positive. Research into other neuroactive hormones with possible effects on mental state is a rapidly evolving field that may hold new promise. Given that schizophrenia and related psychoses are pervasive and debilitating conditions for which currently available treatments are often only partially effective and entail a high risk of serious side-effects, novel therapeutic strategies are needed. The literature reviewed in this paper suggests that hormones such as oestrogen could be a viable option, and it is hoped that with further research and larger trials, the oestrogen hypothesis can be translated into effective clinical practice.
Collapse
|
34
|
Miller VM, Kaplan JR, Schork NJ, Ouyang P, Berga SL, Wenger NK, Shaw LJ, Webb RC, Mallampalli M, Steiner M, Taylor DA, Merz CNB, Reckelhoff JF. Strategies and methods to study sex differences in cardiovascular structure and function: a guide for basic scientists. Biol Sex Differ 2011; 2:14. [PMID: 22152231 PMCID: PMC3292512 DOI: 10.1186/2042-6410-2-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 12/12/2011] [Indexed: 02/02/2023] Open
Abstract
Background Cardiovascular disease remains the primary cause of death worldwide. In the US, deaths due to cardiovascular disease for women exceed those of men. While cultural and psychosocial factors such as education, economic status, marital status and access to healthcare contribute to sex differences in adverse outcomes, physiological and molecular bases of differences between women and men that contribute to development of cardiovascular disease and response to therapy remain underexplored. Methods This article describes concepts, methods and procedures to assist in the design of animal and tissue/cell based studies of sex differences in cardiovascular structure, function and models of disease. Results To address knowledge gaps, study designs must incorporate appropriate experimental material including species/strain characteristics, sex and hormonal status. Determining whether a sex difference exists in a trait must take into account the reproductive status and history of the animal including those used for tissue (cell) harvest, such as the presence of gonadal steroids at the time of testing, during development or number of pregnancies. When selecting the type of experimental animal, additional consideration should be given to diet requirements (soy or plant based influencing consumption of phytoestrogen), lifespan, frequency of estrous cycle in females, and ability to investigate developmental or environmental components of disease modulation. Stress imposed by disruption of sleep/wake cycles, patterns of social interaction (or degree of social isolation), or handling may influence adrenal hormones that interact with pathways activated by the sex steroid hormones. Care must be given to selection of hormonal treatment and route of administration. Conclusions Accounting for sex in the design and interpretation of studies including pharmacological effects of drugs is essential to increase the foundation of basic knowledge upon which to build translational approaches to prevent, diagnose and treat cardiovascular diseases in humans.
Collapse
Affiliation(s)
- Virginia M Miller
- Departments of Surgery, Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The comorbidity of cardiovascular disease (CVD) and depression/anxiety disorders is well established, but the mechanisms are not well understood. This paper will review the epidemiological and biological evidence for the role of depression in CVD, as well as the pathophysiological process underlying both depression and CVD. The focus will be on the roles of serotonin, platelets, and the immune system, with an emphasis on the relevance of sex differences in both depression/anxiety and CVD as they pertain to women.
Collapse
Affiliation(s)
- M Steiner
- Women's Health Concerns Clinic, St. Joseph's Healthcare, Hamilton, ON, Canada.
| |
Collapse
|
36
|
Abstract
There is little doubt that women experience a heightened psychiatric morbidity compared to men. A growing body of evidence suggests that, for some women, the menopausal transition and early postmenopausal years may represent a period of vulnerability associated with an increased risk of experiencing symptoms of depression, or for the development of an episode of major depressive disorder. Recent research has begun to shed some light on potential mechanisms that influence this vulnerability. At the same time, a number of studies and clinical trials conducted over the past decade have provided important data regarding efficacy and safety of preventative measures and treatment strategies for midlife women; some of these studies have caused a shift in the current thinking of how menopausal symptoms should be appropriately managed.Essentially, most women will progress from premenopausal into postmenopausal years without developing significant depressive symptoms. However, those with prior history of depression may face a re-emergence of depression during this transition while others may experience a first episode of depression in their lives. Here I provide an overview of what is known about risk factors for depression and the risk posed by the menopausal transition, its associated symptoms, and the underlying changes in the reproductive hormonal milieu, discussing the evidence for the occurrence of mood symptoms in midlife women and the challenges that face clinicians and health professionals who care for this population.
Collapse
Affiliation(s)
- Claudio N Soares
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
37
|
Frye CA, Walf AA, Paris JJ. Conjugated equine estrogen, with medroxyprogesterone acetate, enhances formation of 5alpha-reduced progestogens and reduces anxiety-like behavior of middle-aged rats. Behav Pharmacol 2010; 21:530-9. [PMID: 20679892 DOI: 10.1097/fbp.0b013e32833e0a23] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The mechanisms by which progestogens influence affective behaviors in females are poorly understood despite clear changes in mood/affect that are associated with their decline during menopause. Conjugated equine estrogens (CEE), with or without medroxyprogesterone acetate (MPA), are commonly prescribed hormone-replacement, but there is heterogeneity in responses to these pharmacotherapies. One way in which these compounds differ is in their capacity to potentiate metabolism of progesterone to its 5alpha-reduced products, dihydroprogesterone and 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP). This study investigated whether responses to CEE and MPA may be related to the capacity to metabolize progesterone. Middle-aged female rats that had maintained reproductive status, or those that had a decline, were administered vehicle, CEE and/or MPA. Effects on anxiety-like (open field, elevated plus maze) and social behaviors (social interaction test), and plasma and hippocampus steroid levels were determined. We hypothesized that CEE, but not MPA, would decrease anxiety-like behavior coincident with increased hippocampal metabolism of progesterone. CEE, or CEE+MPA, increased central entries in the open field and time spent on the open arms of the plus maze, but did not alter social interaction of rats that had maintained reproductive status. CEE and/or CEE+MPA increased E2 and 3alpha,5alpha-THP in plasma and/or hippocampus of rats, but MPA increased levels of dihydroprogesterone in the hippocampus of rats with declining reproductive status. Simple regressions showed that hippocampus 3alpha,5alpha-THP levels accounted for a significant proportion of the variance in anxiety-like behavior. Therefore, effects of CEE to reduce anxiety-like behavior of middle-aged rats may be owing, in part, to its capacity to enhance levels of 3alpha,5alpha-THP in the hippocampus.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-SUNY, Albany, New York 12222, USA.
| | | | | |
Collapse
|
38
|
Affiliation(s)
- Claudio N Soares
- Mood Disorders Division, Women's Health Concerns Clinic, McMaster University, Hamilton, ON
| | | |
Collapse
|