1
|
Opitz A, Petasch MS, Klappauf R, Kirschgens J, Hinz J, Dittmann L, Dathe AS, Quednow BB, Beste C, Stock AK. Does chronic use of amphetamine-type stimulants impair interference control? - A meta-analysis. Neurosci Biobehav Rev 2023; 146:105020. [PMID: 36581170 DOI: 10.1016/j.neubiorev.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In substance use and addiction, inhibitory control is key to ignoring triggers, withstanding craving and maintaining abstinence. In amphetamine-type stimulant (ATS) users, most research focused on behavioral inhibition, but largely neglected the equally important subdomain of cognitive interference control. Given its crucial role in managing consumption, we investigated the relationship between interference control and chronic ATS use in adults. A database search (Pubmed & Web of Science) and relevant reviews were used to identify eligible studies. Effect sizes were estimated with random effects models. Subgroup, meta-regression, and sensitivity analyses explored heterogeneity in effect sizes. We identified 61 studies (53 datasets) assessing interference control in 1873 ATS users and 1905 controls. Findings revealed robust small effect sizes for ATS-related deficits in interference control, which were mainly seen in methamphetamine, as compared to MDMA users. The differential effects are likely due to tolerance-induced dopaminergic deficiencies (presumably most pronounced in methamphetamine users). Similarities between different ATS could be due to noradrenergic deficiencies; but elucidating their functional role in ATS users requires further/more research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Regine Klappauf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josephine Kirschgens
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Julian Hinz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Lena Dittmann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Anthea S Dathe
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Boris B Quednow
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.
| |
Collapse
|
2
|
Razavi Y, Keyhanfar F, Haghparast A, Shabani R, Mehdizadeh M. Cannabidiol promotes neurogenesis in the dentate gyrus during an abstinence period in rats following chronic exposure to methamphetamine. Metab Brain Dis 2021; 36:1381-1390. [PMID: 34143376 DOI: 10.1007/s11011-021-00774-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022]
Abstract
Chronic methamphetamine (meth) abuse can lead to certain deficits in the hippocampal function by affecting the hippocampal neurogenesis and plasticity. To determine whether cannabidiol (CBD) can promote proliferation and maturation of neuronal progenitor cells, this study investigated the CBD effect on neurogenesis in the hippocampal dentate gyrus (DG) following chronic exposure to meth in rats. The rats received 2 mg/kg of meth twice a day for ten days. Next, immunofluorescence was performed to evaluate the effect of intracerebroventricular (ICV) administration of CBD (50 μg/5 μL) over an abstinence period (ten days) on the expression levels of neurogenesis markers, such as Ki67, NeuN, and doublecortin (DCX). Moreover, neuronal degeneration in the hippocampus was assessed using Nissl staining. According to our findings, repeated ICV administration of CBD improved cell proliferation and neurogenesis and increased the number of Ki-67 and DCX-positive cells in the abstinence period. Meanwhile, meth treatment subjects caused a significant decrease in the number of neurogenesis makers, as compared to the control group. The neurogenesis markers (Ki-67 and DCX) could be somewhat reversed, while NeuN did not show any significant increase in the CBD group. Our findings demonstrated that CBD can induce neuroprotective effects by modulating neurogenesis. Therefore, it can provide a promising therapeutic approach to improve cognitive performance following chronic exposure to psychostimulant drugs, including meth.
Collapse
Affiliation(s)
- Yasaman Razavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fariborz Keyhanfar
- Department of Pharmacology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Avchalumov Y, Mandyam CD. Plasticity in the Hippocampus, Neurogenesis and Drugs of Abuse. Brain Sci 2021; 11:404. [PMID: 33810204 PMCID: PMC8004884 DOI: 10.3390/brainsci11030404] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity in the hippocampus assists with consolidation and storage of long-lasting memories. Decades of research has provided substantial information on the cellular and molecular mechanisms underlying synaptic plasticity in the hippocampus, and this review discusses these mechanisms in brief. Addiction is a chronic relapsing disorder with loss of control over drug taking and drug seeking that is caused by long-lasting memories of drug experience. Relapse to drug use is caused by exposure to context and cues associated with the drug experience, and is a major clinical problem that contributes to the persistence of addiction. This review also briefly discusses some evidence that drugs of abuse alter plasticity in the hippocampus, and that development of novel treatment strategies that reverse or prevent drug-induced synaptic alterations in the hippocampus may reduce relapse behaviors associated with addiction.
Collapse
Affiliation(s)
| | - Chitra D. Mandyam
- VA San Diego Healthcare System, San Diego, CA 92161, USA;
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| |
Collapse
|
4
|
Blanco-Gandia MC, Montagud-Romero S, Navarro-Zaragoza J, Martínez-Laorden E, Almela P, Nuñez C, Milanés MV, Laorden ML, Miñarro J, Rodríguez-Arias M. Pharmacological modulation of the behavioral effects of social defeat in memory and learning in male mice. Psychopharmacology (Berl) 2019; 236:2797-2810. [PMID: 31049607 DOI: 10.1007/s00213-019-05256-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 04/23/2019] [Indexed: 02/08/2023]
Abstract
RATIONALE Previous studies have demonstrated that repeated social defeat (RSD) stress only induces cognitive deficits when experienced during adulthood. However, RSD increases cocaine-rewarding effects in adult and adolescent mice, inducing different expressions of proBDNF in the ventral tegmental area. OBJECTIVE The aim of the present study was to evaluate the effect of cocaine administration in socially defeated adult or adolescent mice on learning, memory, and anxiety. Additionally, the role of BDNF was also studied. METHODS Adolescent and young adult mice were exposed to four episodes of social defeat or exploration (control), being treated with a daily injection of four doses of saline or 1 mg/kg of cocaine 3 weeks after the last social defeat. Other groups were treated with the TrkB receptor antagonist ANA-12 during this 21-day period. After this treatment, their cognitive and anxiogenic profiles were evaluated, along with the expression of BDNF, pCREB, and pERK1/2 in the dentate gyrus (DG) and basolateral amygdala (BLA). RESULTS Cocaine induced an increased expression of pCREB and BDNF in the DG and BLA only in defeated animals. Although RSD did not affect memory, the administration of cocaine induced memory impairments only in defeated animals. Defeated adult mice needed more time to complete the mazes, and this effect was counteracted by cocaine administration. RSD induced anxiogenic effects only when experienced during adulthood and cocaine induced a general anxiolytic effect. Blockade of Trkb decreased memory retention without affecting spatial learning and modified anxiety on non-stressed mice depending on their age. CONCLUSION Our results demonstrate that the long-lasting effects of social defeat on anxiety and cognition are modulated by cocaine administration. Our results highlight that the BDNF signaling pathway could be a target to counteract the effects of cocaine on socially stressed subjects.
Collapse
Affiliation(s)
- M Carmen Blanco-Gandia
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Sandra Montagud-Romero
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Javier Navarro-Zaragoza
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Elena Martínez-Laorden
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Pilar Almela
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Cristina Nuñez
- Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Maria-Victoria Milanés
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - María-Luisa Laorden
- Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Murcia Research Institute of Health Sciences (IMIB) and Faculty of Medicine, University of Murcia, Murcia, Spain
| | - José Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain. .,Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
5
|
Seyedhosseini Tamijani SM, Beirami E, Ahmadiani A, Dargahi L. Thyroid hormone treatment alleviates the impairments of neurogenesis, mitochondrial biogenesis and memory performance induced by methamphetamine. Neurotoxicology 2019; 74:7-18. [PMID: 31075280 DOI: 10.1016/j.neuro.2019.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022]
Abstract
Chronic use of methamphetamine (MA), a neurotoxic psychostimulant, leads to long-lasting cognitive dysfunctions in humans and animal models. Thyroid hormones (THs) have several physiological actions and are crucial for normal behavioral, intellectual and neurological development. Considering the importance of THs in the cognitive processes, the present study was designed to evaluate the therapeutic effects of THs on cognitive and neurological impairments induced by MA. Escalating doses of MA (1-10 mg/kg, IP) were injected twice daily for 10 consecutive days in rats and cognitive functions were evaluated using behavioral tests. The expression of factors involved in neurogenesis (NES and DCX), mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM), neuroinflammation (GFAP, Iba-1, and COX-2) as well as Reelin and NT-3 (synaptic plasticity and neurotrophic factor, respectively) was measured in the hippocampus of MA-treated animals. The effects of three different doses of T4 (20, 40 or 80 μg/kg; intraperitoneally) or T3 (20, 40 or 80 μg/rat; 2.5 μl/nostril; intranasal) treatment, once a day for one week after MA cessation, were assessed in MA-treated rats. After the last behavioral test, serum T4 and T3 levels were measured using radioimmunoassay. The results revealed that repeated escalating regimen of MA impaired cognitive functions concomitant with neurogenesis and synaptic plasticity impairments, mitochondrial dysfunction, and neuroinflammation. T4 or T3 treatment partially decreased the alterations induced by MA. These findings suggest that THs can be considered as potential candidates for the reduction of MA abuse related neurocognitive disturbances.
Collapse
Affiliation(s)
- Seyedeh Masoumeh Seyedhosseini Tamijani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elmira Beirami
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Methamphetamine binge administration during late adolescence induced enduring hippocampal cell damage following prolonged withdrawal in rats. Neurotoxicology 2018; 66:1-9. [PMID: 29501631 DOI: 10.1016/j.neuro.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 11/20/2022]
Abstract
A recent study from our laboratory demonstrated that binge methamphetamine induced hippocampal cell damage (i.e., impaired cell genesis) in rats when administered specifically during late adolescence (postnatal day, PND 54-57) and evaluated 24 h later (PND 58). The results also suggested a possible role for brain-derived neurotrophic factor (BDNF) regulating cell genesis and survival. This subsequent study evaluated whether these effects persisted in time as measured following prolonged withdrawal. Male Sprague-Dawley rats were treated (i.p.) with BrdU (2 × 50 mg/kg, 3 days, PND 48-50) followed by a binge paradigm (3 pulses/day, every 3 h, 4 days, PND 54-57) of methamphetamine (5 mg/kg, n = 14, M) or saline (0.9% NaCl, 1 ml/kg, n = 12, C). Following 34 days of forced withdrawal (PND 91), rats were killed 45 min after a challenge dose of saline (Sal: C-Sal, n = 6; M-Sal, n = 7) or methamphetamine (Meth: C-Meth, n = 6; M-Meth, n = 7). Neurogenesis markers (Ki-67: cell proliferation; NeuroD: early neuronal survival; BrdU: prolonged cell survival, 41-43 days old cells) were evaluated by immunohistochemistry while neuroplasticity markers (BDNF and Fos forms) were evaluated by Western blot. The main results showed that a history of methamphetamine administration (PND 54-57) induced enduring hippocampal cell damage (i.e., observed on PND 91) by decreasing cell survival (BrdU + cells) and mature-BDNF (m-BDNF) protein content, associated with neuronal survival, growth and differentiation. Interestingly, m-BDNF regulation paralleled hippocampal c-Fos protein content, indicating decreased neuronal activity, and thus reinforcing the persisting negative effects induced by methamphetamine in rat hippocampus following prolonged withdrawal.
Collapse
|
7
|
A synthetic small-molecule Isoxazole-9 protects against methamphetamine relapse. Mol Psychiatry 2018; 23:629-638. [PMID: 28348387 PMCID: PMC5617764 DOI: 10.1038/mp.2017.46] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 01/18/2023]
Abstract
Adult neurogenesis in the dentate gyrus (DG) is strongly influenced by drug-taking behavior and may have a role in the etiology of drug-seeking behavior. However, mechanistic studies on the relationship of neurogenesis on drug seeking are limited. Outbred Wistar rats experienced extended access methamphetamine self-administration and individual differences in drug taking defined animals with higher preferred and lower preferred levels of drug intake. Forced abstinence from higher preferred levels of drug taking enhanced neurogenesis and neuronal activation of granule cell neurons (GCNs) in the DG and produced compulsive-like drug reinstatement. Systemic treatment with the drug Isoxazole-9 (a synthetic small molecule known to modulate neurogenesis in the adult rodent brain) during abstinence blocked compulsive-like context-driven methamphetamine reinstatement. Isoxazole-9 modulated neurogenesis, neuronal activation and structural plasticity of GCNs, and expression of synaptic proteins associated with learning and memory in the DG. These findings identify a subset of newly born GCNs within the DG that could directly contribute to drug-seeking behavior. Taken together, these results support a direct role for the importance of adult neurogenesis during abstinence in compulsive-like drug reinstatement.
Collapse
|
8
|
García-Pardo MP, De la Rubia Ortí JE, Aguilar Calpe MA. Differential effects of MDMA and cocaine on inhibitory avoidance and object recognition tests in rodents. Neurobiol Learn Mem 2017; 146:1-11. [PMID: 29081371 DOI: 10.1016/j.nlm.2017.10.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Drug addiction continues being a major public problem faced by modern societies with different social, health and legal consequences for the consumers. Consumption of psychostimulants, like cocaine or MDMA (known as ecstasy) are highly prevalent and cognitive and memory impairments have been related with the abuse of these drugs. AIM The aim of this work was to review the most important data of the literature in the last 10 years about the effects of cocaine and MDMA on inhibitory avoidance and object recognition tests in rodents. DEVELOPMENT The object recognition and the inhibitory avoidance tests are popular procedures used to assess different types of memory. We compare the effects of cocaine and MDMA administration in these tests, taking in consideration different factors such as the period of life development of the animals (prenatal, adolescence and adult age), the presence of polydrug consumption or the role of environmental variables. Brain structures involved in the effects of cocaine and MDMA on memory are also described. CONCLUSIONS Cocaine and MDMA induced similar impairing effects on the object recognition test during critical periods of lifetime or after abstinence of prolonged consumption in adulthood. Deficits of inhibitory avoidance memory are observed only in adult rodents exposed to MDMA. Psychostimulant abuse is a potential factor to induce memory impairments and could facilitate the development of future neurodegenerative disorders.
Collapse
|
9
|
Loxton D, Canales JJ. Long-term cognitive, emotional and neurogenic alterations induced by alcohol and methamphetamine exposure in adolescent rats. Prog Neuropsychopharmacol Biol Psychiatry 2017; 74:1-8. [PMID: 27865801 DOI: 10.1016/j.pnpbp.2016.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/15/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
A high proportion of young methamphetamine (MA) users simultaneously consume alcohol. However, the potential neurological and behavioural alterations induced by such a drug combination have not been systematically examined. We studied in adolescent rats the long-term effects of alcohol, MA, and alcohol and MA combined on anxiety-like behaviour, memory, and neurogenesis in the adult hippocampus. Rats received saline, ethanol (ETOH, 1.5g/kg), MA (MA, 2mg/kg), or ethanol and MA combined (ETHOH-MA, 1.5g/kg ethanol plus 2mg/kg MA) via oral gavage, once daily for 5 consecutive days. Open field (OF), elevated plus maze (EPM) and radial arm maze (RAM) tests were conducted following a 15-day withdrawal period. The results showed alterations in exploratory behaviour in the OF in the MA and ETOH-MA groups, and anxiety-like effects in the EPM in all three drug treatment groups. All three drug groups exhibited reference memory deficits in the RAM, but only the combination treatment group displayed alterations in working memory. Both MA and ETOH-MA treatments increased the length of doublecortin (DCX)-void gaps in the dentate gyrus but only ETOH-MA treatment increased the number of such gaps. An increased number and length of DCX-void gaps correlated with decreased exploratory activity in the OF, and impaired working memory in the RAM was associated with an augmented number of gaps. These findings suggest that alterations in adult hippocampal neurogenesis are linked to the persistent cognitive and behavioural deficits produced by alcohol and MA exposure.
Collapse
Affiliation(s)
- David Loxton
- Department of Psychology, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Juan J Canales
- Department of Neuroscience, Psychology and Behaviour, Medical Science Building, University of Leicester, University Road, Leicester LE1 9HN, United Kingdom.
| |
Collapse
|
10
|
Yun S, Reynolds RP, Masiulis I, Eisch AJ. Re-evaluating the link between neuropsychiatric disorders and dysregulated adult neurogenesis. Nat Med 2016; 22:1239-1247. [PMID: 27783068 PMCID: PMC5791154 DOI: 10.1038/nm.4218] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
People diagnosed with neuropsychiatric disorders such as depression, anxiety, addiction or schizophrenia often have dysregulated memory, mood, pattern separation and/or reward processing. These symptoms are indicative of a disrupted function of the dentate gyrus (DG) subregion of the brain, and they improve with treatment and remission. The dysfunction of the DG is accompanied by structural maladaptations, including dysregulation of adult-generated neurons. An increasing number of studies using modern inducible approaches to manipulate new neurons show that the behavioral symptoms in animal models of neuropsychiatric disorders can be produced or exacerbated by the inhibition of DG neurogenesis. Thus, here we posit that the connection between neuropsychiatric disorders and dysregulated DG neurogenesis is beyond correlation or epiphenomenon, and that the regulation of adult-generated DG neurogenesis merits continued and focused attention in the ongoing effort to develop novel treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ryan P Reynolds
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Irene Masiulis
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience and Mahoney Institute of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Comparative effects of amphetamine-like psychostimulants on rat hippocampal cell genesis at different developmental ages. Neurotoxicology 2016; 56:29-39. [DOI: 10.1016/j.neuro.2016.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
|
12
|
Castilla-Ortega E, Serrano A, Blanco E, Araos P, Suárez J, Pavón FJ, Rodríguez de Fonseca F, Santín LJ. A place for the hippocampus in the cocaine addiction circuit: Potential roles for adult hippocampal neurogenesis. Neurosci Biobehav Rev 2016; 66:15-32. [PMID: 27118134 DOI: 10.1016/j.neubiorev.2016.03.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 02/07/2023]
Abstract
Cocaine addiction is a chronic brain disease in which the drug seeking habits and profound cognitive, emotional and motivational alterations emerge from drug-induced neuroadaptations on a vulnerable brain. Therefore, a 'cocaine addiction brain circuit' has been described to explain this disorder. Studies in both cocaine patients and rodents reveal the hippocampus as a main node in the cocaine addiction circuit. The contribution of the hippocampus to cocaine craving and the associated memories is essential to understand the chronic relapsing nature of addiction, which is the main obstacle for the recovery. Interestingly, the hippocampus holds a particular form of plasticity that is rare in the adult brain: the ability to generate new functional neurons. There is an active scientific debate on the contributions of these new neurons to the addicted brain. This review focuses on the potential role(s) of adult hippocampal neurogenesis (AHN) in cocaine addiction. Although the current evidence primarily originates from animal research, these preclinical studies support AHN as a relevant component for the hippocampal effects of cocaine.
Collapse
Affiliation(s)
- Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Eduardo Blanco
- Departament de Pedagogia i Psicologia, Facultat d'Educació, Psicologia i Treball Social, Universitat de Lleida, Spain
| | - Pedro Araos
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Spain
| | - Luis J Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Psicología, Universidad de Málaga, Spain.
| |
Collapse
|
13
|
Yao ZH, Kang X, Yang L, Niu Y, Lu Y, Nie L. PBA regulates neurogenesis and cognition dysfunction after repeated electroconvulsive shock in a rat model. Psychiatry Res 2015; 230:331-40. [PMID: 26381183 DOI: 10.1016/j.psychres.2015.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 09/01/2015] [Accepted: 09/07/2015] [Indexed: 12/23/2022]
Abstract
Electroconvulsive therapy (ECT) was widely used to treat the refractory depression. But ECT led to the cognitive deficits plaguing the depression patients. The underlying mechanisms of the cognitive deficits remain elusive. Repeated electroconvulsive shock (rECS) was used to simulate ECT and explore the mechanisms of ECT during the animal studies. Previous studies showed rECS could lead to neurogenesis and cognitive impairment. But it was well known that neurogenesis could improve the cognition. So these suggested that the mechanism of the cognitive deficit after rECS was very complex. In present study, we explored the probable mechanisms of the cognitive deficit after rECS from neurogenesis aspect. We found the cognitive deficit was reversible and neurogenesis could bring a long-term beneficial effect on cognition. Astrogliosis and NR1 down-regulation probably participated in the reversible cognitive deficits after rECS. Phenylbutyric acid (PBA), generally as an agent to investigate the roles of histone acetylation, could prevent the reversible cognitive dysfunction, but PBA could diminish the long-term effect of enhanced cognition by rECS. These suggested that ECT could possibly bring the long-term beneficial cognitive effect by regulating neurogenesis.
Collapse
Affiliation(s)
- Zhao-Hui Yao
- Department of Geriatrics, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan 430060, China; Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiang Kang
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Yang
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Niu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Lu
- Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Committee of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Nie
- Department of Geriatrics, Renmin Hospital of Wuhan University, #238 Jiefang Road, Wuhan 430060, China
| |
Collapse
|
14
|
Somkuwar SS, Staples MC, Fannon MJ, Ghofranian A, Mandyam CD. Evaluating Exercise as a Therapeutic Intervention for Methamphetamine Addiction-Like Behavior. Brain Plast 2015; 1:63-81. [PMID: 29765835 PMCID: PMC5928557 DOI: 10.3233/bpl-150007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The need for effective treatments for addiction and dependence to the illicit stimulant methamphetamine in primary care settings is increasing, yet no effective medications have been FDA approved to reduce dependence [1]. This is partially attributed to the complex and dynamic neurobiology underlying the various stages of addiction [2]. Therapeutic strategies to treat methamphetamine addiction, particularly the relapse stage of addiction, could revolutionize methamphetamine addiction treatment. In this context, preclinical studies demonstrate that voluntary exercise (sustained physical activity) could be used as an intervention to reduce methamphetamine addiction. Therefore, it appears that methamphetamine disrupts normal functioning in the brain and this disruption is prevented or reduced by engaging in exercise. This review discusses animal models of methamphetamine addiction and sustained physical activity and the interactions between exercise and methamphetamine behaviors. The review highlights how methamphetamine and exercise affect neuronal plasticity and neurotoxicity in the adult mammalian striatum, hippocampus, and prefrontal cortex, and presents the emerging mechanisms of exercise in attenuating intake and in preventing relapse to methamphetamine seeking in preclinical models of methamphetamine addiction.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Miranda C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - McKenzie J Fannon
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Atoosa Ghofranian
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
15
|
Prenatal stress and adult drug-seeking behavior: interactions with genes and relation to nondrug-related behavior. ADVANCES IN NEUROBIOLOGY 2015; 10:75-100. [PMID: 25287537 DOI: 10.1007/978-1-4939-1372-5_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Addiction inflicts large personal, social, and economic burdens, yet its etiology is poorly defined and effective treatments are lacking. As with other neuropsychiatric disorders, addiction is characterized by a core set of symptoms and behaviors that are believed to be influenced by complex gene-environment interactions. Our group focuses on the interaction between early stress and genetic background in determining addiction vulnerability. Prior work by our group and others has indicated that a history of prenatal stress (PNS) in rodents elevates adult drug seeking in a number of behavioral paradigms. The focus of the present chapter is to summarize work in the area of PNS and addiction models as well as our recent studies of PNS on drug seeking in different strains of mice as a strategy to dissect gene-environment interactions underlying cocaine addiction vulnerability. These studies indicate that ability of PNS to elevate adult cocaine seeking is strain dependent. Further, PNS also alters other nondrug behaviors in a fashion that is dependent on different strains and independent from the strain dependence of drug seeking. Thus, it appears that the ability of PNS to alter behavior related to different psychiatric conditions is orthogonal, with similar nonspecific susceptibility to prenatal stress across genetic backgrounds but with the genetic background determining the specific nature of the PNS effects. Finally, the advent of recombinant inbred mouse strains is allowing us to determine the genetic bases of these gene-environment interactions. Understanding these effects will have broad implications to determining the nature of vulnerability to addiction and perhaps other disorders.
Collapse
|
16
|
Somkuwar SS, Staples MC, Galinato MH, Fannon MJ, Mandyam CD. Role of NG2 expressing cells in addiction: a new approach for an old problem. Front Pharmacol 2014; 5:279. [PMID: 25566075 PMCID: PMC4271769 DOI: 10.3389/fphar.2014.00279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/30/2014] [Indexed: 12/17/2022] Open
Abstract
Neuron-glial antigen 2 (NG2) is a proteoglycan expressed predominantly in oligodendrocyte progenitor cells (OPCs). NG2-expressing OPCs (NG2-OPCs) are self-renewing cells that are widely distributed in the gray and white matter areas of the central nervous system. NG2-OPCs can mature into premyelinating oligodendrocytes and myelinating oligodendroglia which serve as the primary source of myelin in the brain. This review characterizes NG2-OPCs in brain structure and function, conceptualizes the role of NG2-OPCs in brain regions associated with negative reinforcement and relapse to drug seeking and discusses how NG2-OPCs are regulated by neuromodulators linked to motivational withdrawal. We hope to provide the readers with an overview of the role of NG2-OPCs in brain structure and function in the context of negative affect state in substance abuse disorders and to integrate our current understanding of the physiological significance of the NG2-OPCs in the adult brain.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Miranda C Staples
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Melissa H Galinato
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - McKenzie J Fannon
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
17
|
Nyberg F. Structural plasticity of the brain to psychostimulant use. Neuropharmacology 2014; 87:115-24. [DOI: 10.1016/j.neuropharm.2014.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/25/2014] [Accepted: 07/02/2014] [Indexed: 01/02/2023]
|
18
|
Huang YY, Levine A, Kandel DB, Yin D, Colnaghi L, Drisaldi B, Kandel ER. D1/D5 receptors and histone deacetylation mediate the Gateway Effect of LTP in hippocampal dentate gyrus. Learn Mem 2014; 21:153-60. [PMID: 24549570 PMCID: PMC3929850 DOI: 10.1101/lm.032292.113] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dentate gyrus (DG) of the hippocampus is critical for spatial memory and is also thought to be involved in the formation of drug-related associative memory. Here, we attempt to test an aspect of the Gateway Hypothesis, by studying the effect of consecutive exposure to nicotine and cocaine on long-term synaptic potentiation (LTP) in the DG. We find that a single injection of cocaine does not alter LTP. However, pretreatment with nicotine followed by a single injection of cocaine causes a substantial enhancement of LTP. This priming effect of nicotine is unidirectional: There is no enhancement of LTP if cocaine is administrated prior to nicotine. The facilitation induced by nicotine and cocaine can be blocked by oral administration of the dopamine D1/D5 receptor antagonist (SKF 83566) and enhanced by the D1/D5 agonist (SKF 38393). Application of the histone deacetylation inhibitor suberoylanilide hydroxamic acid (SAHA) simulates the priming effect of nicotine on cocaine. By contrast, the priming effect of nicotine on cocaine is blocked in genetically modified mice that are haploinsufficient for the CREB-binding protein (CBP) and possess only one functional CBP allele and therefore exhibit a reduction in histone acetylation. These results demonstrate that the DG of the hippocampus is an important brain region contributing to the priming effect of nicotine on cocaine. Moreover, both activation of dopamine-D1 receptor/PKA signaling pathway and histone deacetylation/CBP mediated transcription are required for the nicotine priming effect in the DG.
Collapse
Affiliation(s)
- Yan-You Huang
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Canales JJ, Ferrer-Donato A. Prenatal Exposure to Alcohol and 3,4-Methylenedioxymethamphetamine (Ecstasy) Alters Adult Hippocampal Neurogenesis and Causes Enduring Memory Deficits. Dev Neurosci 2014; 36:10-7. [DOI: 10.1159/000356820] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022] Open
|
20
|
Zhang L, Chow BKC. The central mechanisms of secretin in regulating multiple behaviors. Front Endocrinol (Lausanne) 2014; 5:77. [PMID: 24904528 PMCID: PMC4033102 DOI: 10.3389/fendo.2014.00077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/08/2014] [Indexed: 11/13/2022] Open
Abstract
Secretin (SCT) was firstly discovered as a gut peptide hormone in stimulating pancreatic secretion, while its novel neuropeptide role has drawn substantial research interests in recent years. SCT and its receptor (SCTR) are widely expressed in different brain regions, where they exert multiple cellular functions including neurotransmission, gene expression regulation, neurogenesis, and neural protection. As all these neural functions ultimately can affect behaviors, it is hypothesized that SCT controls multiple behavioral paradigms. Current findings support this hypothesis as SCT-SCTR axis participates in modulating social interaction, spatial learning, water and food intake, motor coordination, and motor learning behaviors. This mini-review focuses on various aspects of SCT and SCTR in hippocampus, hypothalamus, and cerebellum including distribution profiles, cellular functions, and behavioral phenotypes to elucidate the link between cellular mechanisms and behavioral control.
Collapse
Affiliation(s)
- Li Zhang
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - Billy K. C. Chow
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
- *Correspondence: Billy K. C. Chow, School of Biological Sciences, University of Hong Kong, Kardoorie Biological Science Building, Pokfulam Road 4N-12, Sai Ying Pun, Hong Kong, China e-mail:
| |
Collapse
|
21
|
Therapeutic potential of histaminergic compounds in the treatment of addiction and drug-related cognitive disorders. Behav Brain Res 2013; 237:357-68. [DOI: 10.1016/j.bbr.2012.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 12/21/2022]
|
22
|
Increases in doublecortin immunoreactivity in the dentate gyrus following extinction of heroin-seeking behavior. Neural Plast 2012; 2012:283829. [PMID: 23213573 PMCID: PMC3504456 DOI: 10.1155/2012/283829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 10/03/2012] [Accepted: 10/06/2012] [Indexed: 02/02/2023] Open
Abstract
Adult-generated neurons in the dentate gyrus (DG) of the hippocampus play a role in various forms of learning and memory. However, adult born neurons in the DG, while still at an immature stage, exhibit unique electrophysiological properties and are also functionally implicated in learning and memory processes. We investigated the effects of extinction of drug-seeking behavior on the formation of immature neurons in the DG as assessed by quantification of doublecortin (DCX) immunoreactivity. Rats were allowed to self-administer heroin (0.03 mg/kg/infusion) for 12 days and then subjected either to 10 days of extinction training or forced abstinence. We also examined extinction responding patterns following heroin self-administration in glial fibrillary acidic protein thymidine kinase (GFAP-tk) transgenic mice, which have been previously demonstrated to show reduced formation of immature and mature neurons in the DG following treatment with ganciclovir (GCV). We found that extinction training increased DCX immunoreactivity in the dorsal DG as compared with animals undergoing forced abstinence, and that GCV-treated GFAP-tk mice displayed impaired extinction learning as compared to saline-treated mice. Our results suggest that extinction of drug-seeking behavior increases the formation of immature neurons in the DG and that these neurons may play a functional role in extinction learning.
Collapse
|
23
|
Albein-Urios N, Martinez-González JM, Lozano O, Clark L, Verdejo-García A. Comparison of impulsivity and working memory in cocaine addiction and pathological gambling: Implications for cocaine-induced neurotoxicity. Drug Alcohol Depend 2012; 126:1-6. [PMID: 22475814 DOI: 10.1016/j.drugalcdep.2012.03.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/01/2012] [Accepted: 03/04/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND The aim of this study was to compare the cognitive performance of cocaine dependent individuals (CDI) with that of pathological gamblers (PG). Cocaine dependence and pathological gambling share neurobiological vulnerabilities related to addiction, but PG are relatively free of the toxic consequences, such that any additional deficits observed in CDI may be interpreted as pertaining to specific drug effects. METHODS We used a case-control observational design contrasting multiple measures of impulsivity (UPPS-P trait impulsivity, delay discounting) and executive measures of response inhibition (Stroop) and working memory performance (N-back) between groups of CDI (n=29), PG (n=23), and healthy controls (n=20). We conducted one-way ANOVAs, followed by planned pairwise tests and calculations of Cohen's d to estimate significant differences between the groups. RESULTS CDI, as compared to PG, had elevated scores on UPPS-P Negative Urgency and poorer performance on working memory (2-back). PG had steeper delay-discounting rates. Both groups had elevated Positive Urgency and poorer Stroop inhibition compared to controls. Peak amount of cocaine use was negatively correlated with working memory and response inhibition performance. CONCLUSION We found cocaine-related specific elevations in Negative Urgency and working memory deficits, putatively identified as cocaine neurotoxicity effects. Other aspects of impulsivity (Positive Urgency, Stroop inhibition) were increased across CDI and PG groups and may reflect vulnerability factors for addiction.
Collapse
|
24
|
Zhuang P, Zhang Y, Cui G, Bian Y, Zhang M, Zhang J, Liu Y, Yang X, Isaiah AO, Lin Y, Jiang Y. Direct stimulation of adult neural stem/progenitor cells in vitro and neurogenesis in vivo by salvianolic acid B. PLoS One 2012; 7:e35636. [PMID: 22545124 PMCID: PMC3335811 DOI: 10.1371/journal.pone.0035636] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/19/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Small molecules have been shown to modulate the neurogenesis processes. In search for new therapeutic drugs, the herbs used in traditional medicines for neurogenesis are promising candidates. METHODOLOGY AND PRINCIPAL FINDINGS We selected a total of 45 natural compounds from Traditional Chinese herbal medicines which are extensively used in China to treat stroke clinically, and tested their proliferation-inducing activities on neural stem/progenitor cells (NSPCs). The screening results showed that salvianolic acid B (Sal B) displayed marked effects on the induction of proliferation of NSPCs. We further demonstrated that Sal B promoted NSPCs proliferation in dose- and time-dependent manners. To explore the molecular mechanism, PI3K/Akt, MEK/ERK and Notch signaling pathways were investigated. Cell proliferation assay demonstrated that Ly294002 (PI3K/Akt inhibitor), but neither U0126 (ERK inhibitor) nor DAPT (Notch inhibitor) inhibited the Sal B-induced proliferation of cells. Western Blotting results showed that stimulation of NSPCs with Sal B enhanced the phosphorylation of Akt, and Ly294002 abolished this effect, confirming the role of Akt in Sal B mediated proliferation of NSPCs. Rats exposed to transient cerebral ischemia were treated for 4 weeks with Sal B from the 7th day after stroke. BrdU incorporation assay results showed that exposure Sal B could maintain the proliferation of NSPCs after cerebral ischemia. Morris water maze test showed that delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats. SIGNIFICANCE Sal B could maintain the NSPCs self-renew and promote proliferation, which was mediated by PI3K/Akt signal pathway. And delayed post-ischemic treatment with Sal B improved cognitive impairment after stroke in rats. These findings suggested that Sal B may act as a potential drug in treatment of brain injury or neurodegenerative diseases.
Collapse
Affiliation(s)
- Pengwei Zhuang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Pharmacology, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Pharmacology, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- * E-mail:
| | - Guangzhi Cui
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Pharmacology, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Bian
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mixia Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Pharmacology, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinbao Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Pharmacology, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Pharmacology, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinpeng Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Pharmacology, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Adejobi Oluwaniyi Isaiah
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Pharmacology, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingxue Lin
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Pharmacology, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongbo Jiang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Traditional Chinese Medicine Pharmacology, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
25
|
Recinto P, Samant ARH, Chavez G, Kim A, Yuan CJ, Soleiman M, Grant Y, Edwards S, Wee S, Koob GF, George O, Mandyam CD. Levels of neural progenitors in the hippocampus predict memory impairment and relapse to drug seeking as a function of excessive methamphetamine self-administration. Neuropsychopharmacology 2012; 37:1275-87. [PMID: 22205547 PMCID: PMC3306889 DOI: 10.1038/npp.2011.315] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 11/02/2011] [Accepted: 11/13/2011] [Indexed: 12/18/2022]
Abstract
Methamphetamine affects the hippocampus, a brain region crucial for learning and memory, as well as relapse to drug seeking. Rats self-administered methamphetamine for 1 h twice weekly (intermittent-short-I-ShA), 1 h daily (limited-short-ShA), or 6 h daily (extended-long-LgA) for 22 sessions. After 22 sessions, rats from each access group were withdrawn from self-administration and underwent spatial memory (Y-maze) and working memory (T-maze) tests followed by extinction and reinstatement to methamphetamine seeking or received one intraperitoneal injection of 5-bromo-2'-deoxyuridine (BrdU) to label progenitors in the hippocampal subgranular zone (SGZ) during the synthesis phase. Two-hour-old and 28-day-old surviving BrdU-immunoreactive cells were quantified. I-ShA rats performed better on the Y-maze and had a greater number of 2-h-old SGZ BrdU cells than nondrug controls. LgA rats, but not ShA rats, performed worse on the Y- and T-maze and had a fewer number of 2-h-old SGZ BrdU cells than nondrug and I-ShA rats, suggesting that new hippocampal progenitors, decreased by methamphetamine, were correlated with impairment in the acquisition of new spatial cues. Analyses of addiction-related behaviors after withdrawal and extinction training revealed methamphetamine-primed reinstatement of methamphetamine-seeking behavior in all three groups (I-ShA, ShA, and LgA), and this effect was enhanced in LgA rats compared with I-ShA and ShA rats. Protracted withdrawal from self-administration enhanced the survival of SGZ BrdU cells, and methamphetamine seeking during protracted withdrawal enhanced Fos expression in the dentate gyrus and medial prefrontal cortex in LgA rats to a greater extent than in ShA and I-ShA rats. These results indicate that changes in the levels of the proliferation and survival of hippocampal neural progenitors and neuronal activation of hippocampal granule cells predict the effects of methamphetamine self-administration (limited vs extended access) on cognitive performance and relapse to drug seeking and may contribute to the impairments that perpetuate the addiction cycle.
Collapse
Affiliation(s)
- Patrick Recinto
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego, La Jolla, CA, USA
| | - Anjali Rose H Samant
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Gustavo Chavez
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Airee Kim
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Clara J Yuan
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego, La Jolla, CA, USA
| | - Matthew Soleiman
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Yanabel Grant
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Scott Edwards
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Sunmee Wee
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - George F Koob
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego, La Jolla, CA, USA
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra D Mandyam
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego, La Jolla, CA, USA
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
26
|
Mandyam CD, Koob GF. The addicted brain craves new neurons: putative role for adult-born progenitors in promoting recovery. Trends Neurosci 2012; 35:250-60. [PMID: 22265158 DOI: 10.1016/j.tins.2011.12.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 08/30/2011] [Accepted: 12/13/2011] [Indexed: 02/08/2023]
Abstract
Addiction is a chronic relapsing disorder associated with compulsive drug taking, drug seeking and a loss of control in limiting intake, reflected in three stages of a recurrent cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation ("craving"). This review discusses the role of adult-born neural and glial progenitors in drug seeking associated with the different stages of the addiction cycle. A review of the current literature suggests that the loss of newly born progenitors, particularly in hippocampal and cortical regions, plays a role in determining vulnerability to relapse in rodent models of drug addiction. The normalization of drug-impaired neurogenesis or gliogenesis may help reverse neuroplasticity during abstinence and, thus, may help reduce the vulnerability to relapse and aid recovery.
Collapse
Affiliation(s)
- Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA.
| | | |
Collapse
|
27
|
Enoch MA, Zhou Z, Kimura M, Mash DC, Yuan Q, Goldman D. GABAergic gene expression in postmortem hippocampus from alcoholics and cocaine addicts; corresponding findings in alcohol-naïve P and NP rats. PLoS One 2012; 7:e29369. [PMID: 22253714 PMCID: PMC3258238 DOI: 10.1371/journal.pone.0029369] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/27/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND By performing identical studies in humans and rats, we attempted to distinguish vulnerability factors for addiction from neurobiological effects of chronic drug exposure. We focused on the GABAergic system within the hippocampus, a brain region that is a constituent of the memory/conditioning neuronal circuitry of addiction that is considered to be important in drug reinforcement behaviors in animals and craving and relapse in humans. METHODOLOGY Using RNA-Seq we quantified mRNA transcripts in postmortem total hippocampus from alcoholics, cocaine addicts and controls and also from alcohol-naïve, alcohol preferring (P) and non-preferring (NP) rats selectively bred for extremes of alcohol-seeking behavior that also show a general addictive tendency. A pathway-targeted analysis of 25 GABAergic genes encoding proteins implicated in GABA synthesis, metabolism, synaptic transmission and re-uptake was undertaken. PRINCIPAL FINDINGS Directionally consistent and biologically plausible overlapping and specific changes were detected: 14/25 of the human genes and 12/25 of the rat genes showed nominally significant differences in gene expression (global p values: 9×10⁻¹⁴, 7×10⁻¹¹ respectively). Principal FDR-corrected findings were that GABBR1 was down-regulated in alcoholics, cocaine addicts and P rats with congruent findings in NSF, implicated in GABAB signaling efficacy, potentially resulting in increased synaptic GABA. GABRG2, encoding the gamma2 subunit required for postsynaptic clustering of GABAA receptors together with GPHN, encoding the associated scaffolding protein gephryin, were both down-regulated in alcoholics and cocaine addicts but were both up-regulated in P rats. There were also expression changes specific to cocaine addicts (GAD1, GAD2), alcoholics (GABRA2) and P rats (ABAT, GABRG3). CONCLUSIONS/SIGNIFICANCE Our study confirms the involvement of the GABAergic system in alcoholism but also reveals a hippocampal GABA input in cocaine addiction. Congruent findings in human addicts and P rats provide clues to predisposing factors for alcohol and drug addiction. Finally, the results of this study have therapeutic implications.
Collapse
Affiliation(s)
- Mary-Anne Enoch
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | | | | | | | |
Collapse
|
28
|
Canales JJ. Deficient plasticity in the hippocampus and the spiral of addiction: focus on adult neurogenesis. Curr Top Behav Neurosci 2012; 15:293-312. [PMID: 22976276 DOI: 10.1007/7854_2012_230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Addiction is a complex neuropsychiatric disorder which causes disruption at multiple levels, including cognitive, emotional, and behavioral domains. Traditional biological theories of addiction have focused on the mesolimbic dopamine pathway and the nucleus accumbens as anatomical substrates mediating addictive-like behaviors. More recently, we have begun to recognize the engagement and dynamic influence of a much broader circuitry which encompasses the frontal cortex, the amygdala, and the hippocampus. In particular, neurogenesis in the adult hippocampus has become a major focus of attention due to its ability to influence memory, motivation, and affect, all of which are disrupted in addiction. First, I summarize toxicological data that reveal strongly suppressive effects of drug exposure on adult hippocampal neurogenesis. Then, I discuss the impact of deficient neurogenesis on learning and memory function, stress responsiveness and affective behavior, as they relate to addiction. Finally, I examine recent behavioral observations that implicate neurogenesis in the adult hippocampus in the emergence and maintenance of addictive behavior. The evidence reviewed here suggests that deficient neurogenesis is associated with several components of the downward spiraling loop that characterizes addiction, including elevated sensitivity to drug-induced reward and reinforcement, enhanced neurohormonal responsiveness, emergence of a negative affective state, memory impairment, and inflexible behavior.
Collapse
Affiliation(s)
- Juan J Canales
- Behavioural Neuroscience, Department of Psychology, The University of Canterbury, Private Bag 4800, 8140, Christchurch, New Zealand,
| |
Collapse
|
29
|
Yuan CJ, Quiocho JMD, Kim A, Wee S, Mandyam CD. Extended access methamphetamine decreases immature neurons in the hippocampus which results from loss and altered development of neural progenitors without altered dynamics of the S-phase of the cell cycle. Pharmacol Biochem Behav 2011; 100:98-108. [PMID: 21855565 DOI: 10.1016/j.pbb.2011.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/13/2011] [Accepted: 08/05/2011] [Indexed: 01/07/2023]
Abstract
Methamphetamine addicts demonstrate impaired hippocampal-dependent cognitive function that could result from methamphetamine-induced maladaptive plasticity in the hippocampus. Reduced adult hippocampal neurogenesis observed in a rodent model of compulsive methamphetamine self-administration partially contributes to the maladaptive plasticity in the hippocampus. The potential mechanisms underlying methamphetamine-induced inhibition of hippocampal neurogenesis were identified in the present study. Key aspects of the cell cycle dynamics of hippocampal progenitors, including proliferation and neuronal development, were studied in rats that intravenously self-administered methamphetamine in a limited access (1h/day: short access (ShA)-4 days and ShA-13 days) or extended access (6h/day: long access (LgA)-4 days and LgA-13 days) paradigm. Immunohistochemical analysis of Ki-67 cells with 5-chloro-2'-deoxyuridine (CldU) demonstrated that LgA methamphetamine inhibited hippocampal proliferation by decreasing the proliferating pool of progenitors that are in the synthesis (S)-phase of the cell cycle. Double S-phase labeling with CldU and 5-iodo-2'-deoxyuridine (IdU) revealed that reduced S-phase cells were not due to alterations in the length of the S-phase. Further systematic analysis of Ki-67 cells with GFAP, Sox2, and DCX revealed that LgA methamphetamine-induced inhibition of hippocampal neurogenesis was attributable to impairment in the development of neuronal progenitors from preneuronal progenitors to immature neurons. Methamphetamine concomitantly increased hippocampal apoptosis, changes that were evident during the earlier days of self-administration. These findings demonstrate that methamphetamine self-administration initiates allostatic changes in adult neuroplasticity maintained by the hippocampus, including increased apoptosis, and altered dynamics of hippocampal neural progenitors. These data suggest that altered hippocampal plasticity by methamphetamine could partially contribute to methamphetamine-induced impairments in hippocampal function.
Collapse
Affiliation(s)
- Clara J Yuan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
30
|
Expression, phosphorylation, and glycosylation of CNS proteins in aversive operant conditioning associated memory in Lymnaea stagnalis. Neuroscience 2011; 186:94-109. [DOI: 10.1016/j.neuroscience.2011.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 11/18/2022]
|
31
|
Capilla-Gonzalez V, Hernandez-Rabaza V. Cocaine and MDMA Induce Cellular and Molecular Changes in Adult Neurogenic Systems: Functional Implications. Pharmaceuticals (Basel) 2011. [PMCID: PMC4055961 DOI: 10.3390/ph4060915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The capacity of the brain to generate new adult neurons is a recent discovery that challenges the old theory of an immutable adult brain. A new and fascinating field of research now focuses on this regenerative process. The two brain systems that constantly produce new adult neurons, known as the adult neurogenic systems, are the dentate gyrus (DG) of the hippocampus and the lateral ventricules/olfactory bulb system. Both systems are involved in memory and learning processes. Different drugs of abuse, such as cocaine and MDMA, have been shown to produce cellular and molecular changes that affect adult neurogenesis. This review summarizes the effects that these drugs have on the adult neurogenic systems. The functional relevance of adult neurogenesis is obscured by the functions of the systems that integrate adult neurons. Therefore, we explore the effects that cocaine and MDMA produce not only on adult neurogenesis, but also on the DG and olfactory bulbs. Finally, we discuss the possible role of new adult neurons in cocaine- and MDMA-induced impairments. We conclude that, although harmful drug effects are produced at multiple physiological and anatomical levels, the specific consequences of reduced hippocampus neurogenesis are unclear and require further exploration.
Collapse
Affiliation(s)
- Vivian Capilla-Gonzalez
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Catedratico Jose Beltran 2, 46980, Paterna, Valencia, Spain
- Brain Tumor Stem Cell Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Vicente Hernandez-Rabaza
- Laboratory of Neurobiology, Centro de Investigacion Principe Felipe, Avda Autopista del Saler 16, 46012, Valencia, Spain
- Author to whom correspondence should be addressed; E-Mail: ; Tel: +34-96-328-9680; Fax: +34-96-328-9701
| |
Collapse
|
32
|
Delay discounting: trait variable? Behav Processes 2011; 87:1-9. [PMID: 21385637 DOI: 10.1016/j.beproc.2011.02.007] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 11/20/2022]
Abstract
Delay discounting refers to the tendency for outcomes that are remote in time to have less value than more immediate outcomes. Steep discounting of delayed outcomes is associated with a variety of social maladies. The degree of sensitivity to delayed outcomes may be a stable and pervasive individual characteristic. In analyses of archival data, the present study found positive correlations between the degree of delay discounting for one outcome (as measured by the Area Under the Curve), and the degree of discounting for other outcomes. Along with additional evidence reviewed, these data suggest that delay discounting may be considered a personality trait. Recent research in epigenetics, neuroscience, and behavior suggests delay discounting may prove to be a beneficial target for therapeutic attempts to produce global reductions in impulsivity related to delay discounting.
Collapse
|