1
|
Creanga-Murariu I, Filipiuc LE, Gogu MR, Ciorpac M, Cumpat CM, Tamba BI, Alexa-Stratulat T. The potential neuroprotective effects of cannabinoids against paclitaxel-induced peripheral neuropathy: in vitro study on neurite outgrowth. Front Pharmacol 2024; 15:1395951. [PMID: 38933665 PMCID: PMC11199736 DOI: 10.3389/fphar.2024.1395951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction: Chemotherapy-induced peripheral neuropathy (CIPN) is a shared burden for 68.1% of oncological patients undergoing chemotherapy with Paclitaxel (PTX). The symptoms are intense and troublesome, patients reporting paresthesia, loss of sensation, and dysesthetic pain. While current medications focus on decreasing the symptom intensity, often ineffective, no medication is yet recommended by the guidelines for the prevention of CIPN. Cannabinoids are an attractive option, as their neuroprotective features have already been demonstrated in neuropathies with other etiologies, by offering the peripheral neurons protection against toxic effects, which promotes analgesia. Methods: We aim to screen several new cannabinoids for their potential use as neuroprotective agents for CIPN by investigating the cellular toxicity profile and by assessing the potential neuroprotective features against PTX using a primary dorsal root ganglion neuronal culture. Results: Our study showed that synthetic cannabinoids JWH-007, AM-694 and MAB-CHMINACA and phytocannabinoids Cannabixir® Medium dried flowers (NC1) and Cannabixir® THC full extract (NC2) preserve the viability of fibroblasts and primary cultured neurons, in most of the tested dosages and time-points. The combination between the cannabinoids and PTX conducted to a cell viability of 70%-89% compared to 40% when PTX was administered alone for 48 h. When assessing the efficacy for neuroprotection, the combination between cannabinoids and PTX led to better preservation of neurite length at all tested time-points compared to controls, highly drug and exposure-time dependent. By comparison, the combination of the cannabinoids and PTX administered for 24 h conducted to axonal shortening between 23% and 44%, as opposed to PTX only, which shortened the axons by 63% compared to their baseline values. Discussion and Conclusion: Cannabinoids could be potential new candidates for the treatment of paclitaxel-induced peripheral neuropathy; however, our findings need to be followed by additional tests to understand the exact mechanism of action, which would support the translation of the cannabinoids in the oncological clinical practice.
Collapse
Affiliation(s)
- Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| | - Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Maria-Raluca Gogu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Mitica Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
| | - Carmen Marinela Cumpat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular and Respiratory Rehabilitation Clinic, Iasi, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Iasi, Romania
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Teodora Alexa-Stratulat
- Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Oncology Department, Regional Institute of Oncology, Iasi, Romania
| |
Collapse
|
2
|
Dagher M, Alayoubi M, Sigal GH, Cahill CM. Unveiling the link between chronic pain and misuse of opioids and cannabis. J Neural Transm (Vienna) 2024; 131:563-580. [PMID: 38570361 DOI: 10.1007/s00702-024-02765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Over 50 million Americans endure chronic pain where many do not receive adequate treatment and self-medicate to manage their pain by taking substances like opioids and cannabis. Research has shown high comorbidity between chronic pain and substance use disorders (SUD) and these disorders share many common neurobiological underpinnings, including hypodopaminergic transmission. Drugs commonly used for self-medication such as opioids and cannabis relieve emotional, bothersome components of pain as well as negative emotional affect that perpetuates misuse and increases the risk of progressing towards drug abuse. However, the causal effect between chronic pain and the development of SUDs has not been clearly established. In this review, we discuss evidence that affirms the proposition that chronic pain is a risk factor for the development of opioid and cannabis use disorders by outlining the clinical evidence and detailing neurobiological mechanisms that link pain and drug misuse. Central to the link between chronic pain and opioid and cannabis misuse is hypodopaminergic transmission and the modulation of dopamine signaling in the mesolimbic pathway by opioids and cannabis. Moreover, we discuss the role of kappa opioid receptor activation and neuroinflammation in the context of dopamine transmission, their contribution to opioid and cannabis withdrawal, along with potential new treatments.
Collapse
Affiliation(s)
- Merel Dagher
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA
| | - Myra Alayoubi
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gabriella H Sigal
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Catherine M Cahill
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA.
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Karimi SA, Zahra FT, Martin LJ. IUPHAR review: Navigating the role of preclinical models in pain research. Pharmacol Res 2024; 200:107073. [PMID: 38232910 DOI: 10.1016/j.phrs.2024.107073] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Chronic pain is a complex and challenging medical condition that affects millions of people worldwide. Understanding the underlying mechanisms of chronic pain is a key goal of preclinical pain research so that more effective treatment strategies can be developed. In this review, we explore nociception, pain, and the multifaceted factors that lead to chronic pain by focusing on preclinical models. We provide a detailed look into inflammatory and neuropathic pain models and discuss the most used animal models for studying the mechanisms behind these conditions. Additionally, we emphasize the vital role of these preclinical models in developing new pain-relief drugs, focusing on biologics and the therapeutic potential of NMDA and cannabinoid receptor antagonists. We also discuss the challenges of TRPV1 modulation for pain treatment, the clinical failures of neurokinin (NK)- 1 receptor antagonists, and the partial success story of Ziconotide to provide valuable lessons for preclinical pain models. Finally, we highlight the overall success and limitations of current treatments for chronic pain while providing critical insights into the development of more effective therapies to alleviate the burden of chronic pain.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Fatama Tuz Zahra
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
4
|
Creanga-Murariu I, Filipiuc LE, Cuciureanu M, Tamba BI, Alexa-Stratulat T. Should oncologists trust cannabinoids? Front Pharmacol 2023; 14:1211506. [PMID: 37521486 PMCID: PMC10373070 DOI: 10.3389/fphar.2023.1211506] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Cannabis enjoyed a "golden age" as a medicinal product in the late 19th, early 20th century, but the increased risk of overdose and abuse led to its criminalization. However, the 21st century have witnessed a resurgence of interest and a large body of literature regarding the benefits of cannabinoids have emerged. As legalization and decriminalization have spread around the world, cancer patients are increasingly interested in the potential utility of cannabinoids. Although eager to discuss cannabis use with their oncologist, patients often find them to be reluctant, mainly because clinicians are still not convinced by the existing evidence-based data to guide their treatment plans. Physicians should prescribe cannabis only if a careful explanation can be provided and follow up response evaluation ensured, making it mandatory for them to be up to date with the positive and also negative aspects of the cannabis in the case of cancer patients. Consequently, this article aims to bring some clarifications to clinicians regarding the sometimes-confusing various nomenclature under which this plant is mentioned, current legislation and the existing evidence (both preclinical and clinical) for the utility of cannabinoids in cancer patients, for either palliation of the associated symptoms or even the potential antitumor effects that cannabinoids may have.
Collapse
Affiliation(s)
- Ioana Creanga-Murariu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Leontina Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Magda Cuciureanu
- Pharmacology Department, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | - Bogdan-Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
- Pharmacology Department, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, Iași, Romania
| | | |
Collapse
|
5
|
Cherkasova V, Wang B, Gerasymchuk M, Fiselier A, Kovalchuk O, Kovalchuk I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers (Basel) 2022; 14:5142. [PMID: 36291926 PMCID: PMC9600568 DOI: 10.3390/cancers14205142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/03/2022] [Accepted: 10/17/2022] [Indexed: 07/26/2023] Open
Abstract
The endocannabinoid system (ECS) is an ancient homeostasis mechanism operating from embryonic stages to adulthood. It controls the growth and development of many cells and cell lineages. Dysregulation of the components of the ECS may result in uncontrolled proliferation, adhesion, invasion, inhibition of apoptosis and increased vascularization, leading to the development of various malignancies. Cancer is the disease of uncontrolled cell division. In this review, we will discuss whether the changes to the ECS are a cause or a consequence of malignization and whether different tissues react differently to changes in the ECS. We will discuss the potential use of cannabinoids for treatment of cancer, focusing on primary outcome/care-tumor shrinkage and eradication, as well as secondary outcome/palliative care-improvement of life quality, including pain, appetite, sleep, and many more factors. Finally, we will complete this review with the chapter on sex- and gender-specific differences in ECS and response to cannabinoids, and equality of the access to treatments with cannabinoids.
Collapse
Affiliation(s)
- Viktoriia Cherkasova
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Marta Gerasymchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Anna Fiselier
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
6
|
Khunluck T, Lertsuwan K, Chutoe C, Sooksawanwit S, Inson I, Teerapornpuntakit J, Tohtong R, Charoenphandhu N. Activation of cannabinoid receptors in breast cancer cells improves osteoblast viability in cancer-bone interaction model while reducing breast cancer cell survival and migration. Sci Rep 2022; 12:7398. [PMID: 35513484 PMCID: PMC9072415 DOI: 10.1038/s41598-022-11116-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid system has been postulated to help restrict cancer progression and maintain osteoblastic function during bone metastasis. Herein, the effects of cannabinoid receptor (CB) type 1 and 2 activation on breast cancer cell and osteoblast interaction were investigated by using ACEA and GW405833 as CB1 and CB2 agonists, respectively. Our results showed that breast cancer cell (MDA-MB-231)-derived conditioned media markedly decreased osteoblast-like UMR-106 cell viability. In contrast, media from MDA-MB-231 cells pre-treated with GW405833 improved UMR-106 cell viability. MDA-MB-231 cells were apparently more susceptible to both CB agonists than UMR-106 cells. Thereafter, we sought to answer the question as to how CB agonists reduced MDA-MB-231 cell virulence. Present data showed that co-activation of CB1 and CB2 exerted cytotoxic effects on MDA-MB-231 cells by increasing apoptotic cell death through suppression of the NF-κB signaling pathway in an ROS-independent mechanism. ACEA or GW405833 alone or in combination also inhibited MDA-MB-231 cell migration. Thus, it can be concluded that the endocannabinoid system is able to provide protection during breast cancer bone metastasis by interfering cancer and bone cell interaction as well as by the direct suppression of cancer cell growth and migration.
Collapse
Affiliation(s)
- Tueanjai Khunluck
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Chartinun Chutoe
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Supagarn Sooksawanwit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ingon Inson
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
7
|
Cabañero D, Martín-García E, Maldonado R. The CB2 cannabinoid receptor as a therapeutic target in the central nervous system. Expert Opin Ther Targets 2021; 25:659-676. [PMID: 34424117 DOI: 10.1080/14728222.2021.1971196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Targeting CB2 cannabinoid receptor (CB2r) represents a promising approach for the treatment of central nervous system disorders. These receptors were identified in peripheral tissues, but also in neurons in the central nervous system. New findings have highlighted the interest to target these central receptors to obtain therapeutic effects devoid of the classical cannabinoid side-effects. AREAS COVERED In this review, we searched PubMed (January 1991-May 2021), ClinicalTrials.gov and Cochrane Library databases for articles, reviews and clinical trials. We first introduce the relevance of CB2r as a key component of the endocannabinoid system. We discuss CB2r interest as a possible novel target in the treatment of pain. This receptor has raised interest as a potential target for neurodegenerative disorders treatment, as we then discussed. Finally, we underline studies revealing a novel potential CB2r interest in mental disorders treatment. EXPERT OPINION In spite of the interest of targeting CB2r for pain, clinical trials evaluating CB2r agonist analgesic efficacy have currently failed. The preferential involvement of CB2r in preventing the development of chronic pain could influence the failure of clinical trials designed for the treatment of already established pain syndromes. Specific trials should be designed to target the prevention of chronic pain development.
Collapse
Affiliation(s)
- David Cabañero
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Universidad Miguel Hernández. Elche, Alicante, Spain
| | - Elena Martín-García
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Rafael Maldonado
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
8
|
Abstract
Attraction to feces in wild mammalian species is extremely rare. Here we introduce the horse manure rolling (HMR) behavior of wild giant pandas (Ailuropoda melanoleuca). Pandas not only frequently sniffed and wallowed in fresh horse manure, but also actively rubbed the fecal matter all over their bodies. The frequency of HMR events was highly correlated with an ambient temperature lower than 15 °C. BCP/BCPO (beta-caryophyllene/caryophyllene oxide) in fresh horse manure was found to drive HMR behavior and attenuated the cold sensitivity of mice by directly targeting and inhibiting transient receptor potential melastatin 8 (TRPM8), an archetypical cold-activated ion channel of mammals. Therefore, horse manure containing BCP/BCPO likely bestows the wild giant pandas with cold tolerance at low ambient temperatures. Together, our study described an unusual behavior, identified BCP/BCPO as chemical inhibitors of TRPM8 ion channel, and provided a plausible chemistry-auxiliary mechanism, in which animals might actively seek and utilize potential chemical resources from their habitat for temperature acclimatization.
Collapse
|
9
|
Khasabova IA, Golovko MY, Golovko SA, Simone DA, Khasabov SG. Intrathecal administration of Resolvin D1 and E1 decreases hyperalgesia in mice with bone cancer pain: Involvement of endocannabinoid signaling. Prostaglandins Other Lipid Mediat 2020; 151:106479. [PMID: 32745525 PMCID: PMC7669692 DOI: 10.1016/j.prostaglandins.2020.106479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Pain produced by bone cancer is often severe and difficult to treat. Here we examined effects of Resolvin D1 (RvD1) or E1 (RvE1), antinociceptive products of ω-3 polyunsaturated fatty acids, on cancer-induced mechanical allodynia and heat hyperalgesia. Experiments were performed using a mouse model of bone cancer produced by implantation of osteolytic ficrosarcoma into and around the calcaneus bone. Mechanical allodynia and heat hyperalgesia in the tumor-bearing paw were assessed by measuring withdrawal responses to a von Frey monofilament and to radiant heat applied on the plantar hind paw. RvD1, RvE1, and cannabinoid receptor antagonists were injected intrathecally. Spinal content of endocannabinoids was evaluated using UPLC-MS/MS analysis. RvD1 and RvE1 had similar antinociceptive potencies. ED50s for RvD1 and RvE1 in reducing mechanical allodynia were 0.2 pg (0.53 fmol) and 0.6 pg (1.71 fmol), respectively, and were 0.3 pg (0.8 fmol) and 0.2 pg (0.57 fmol) for reducing heat hyperalgesia. Comparisons of dose-response relationships showed equal efficacy for reducing mechanical allodynia, however, efficacy for reducing heat hyperalgesia was greater for of RvD1. Using UPLC-MS/MS we determined that RvD1, but not RvE1, increased levels of the endocannabinoids Anandamide and 2-Arachidonoylglycerol in the spinal cord. Importantly, Resolvins did not alter acute nociception or motor function in naïve mice. Our data indicate, that RvD1 and RvE1 produce potent antiallodynia and antihyperalgesia in a model of bone cancer pain. RvD1 also triggers spinal upregulation of endocannabinoids that produce additional antinociception predominantly through CB2 receptors.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA
| | - Sergey G Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Aviram J, Lewitus GM, Vysotski Y, Uribayev A, Procaccia S, Cohen I, Leibovici A, Abo-Amna M, Akria L, Goncharov D, Mativ N, Kauffman A, Shai A, Hazan O, Bar-Sela G, Meiri D. Short-Term Medical Cannabis Treatment Regimens Produced Beneficial Effects among Palliative Cancer Patients. Pharmaceuticals (Basel) 2020; 13:ph13120435. [PMID: 33265945 PMCID: PMC7761379 DOI: 10.3390/ph13120435] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
In the last decade the use of medical cannabis (MC) for palliative cancer treatment has risen. However, the choice between products is arbitrary and most patients are using Tetrahydrocannabinol (THC)-dominant cannabis products. In this study, we aimed to assess the short-term outcomes of MC treatment prescribed by oncologists in relation to the type of cannabis they receive. A comparative analysis was used to assess the differences in treatment effectiveness and safety between THC-dominant (n = 56, 52%), cannabidiol (CBD)-dominant (n = 19, 18%), and mixed (n = 33, 30%) MC treatments. Oncology patients (n = 108) reported on multiple symptoms in baseline questionnaires, initiated MC treatment, and completed a one-month follow-up. Most parameters improved significantly from baseline, including pain intensity, affective and sensory pain, sleep quality and duration, cancer distress, and both physical and psychological symptom burden. There was no significant difference between the three MC treatments in the MC-related safety profile. Generally, there were no differences between the three MC treatments in pain intensity and in most secondary outcomes. Unexpectedly, CBD-dominant oil treatments were similar to THC-dominant treatments in their beneficial effects for most secondary outcomes. THC-dominant treatments showed significant superiority in their beneficial effect only in sleep duration compared to CBD-dominant treatments. This work provides evidence that, though patients usually consume THC-dominant products, caregivers should also consider CBD-dominant products as a useful treatment for cancer-related symptoms.
Collapse
Affiliation(s)
- Joshua Aviram
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; (J.A.); (G.M.L.); (Y.V.); (S.P.); (O.H.)
| | - Gil M. Lewitus
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; (J.A.); (G.M.L.); (Y.V.); (S.P.); (O.H.)
| | - Yelena Vysotski
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; (J.A.); (G.M.L.); (Y.V.); (S.P.); (O.H.)
| | - Anton Uribayev
- Department of Oncology, Galilee Medical Center, Nahariya 22100, Israel; (A.U.); (A.L.); (L.A.); (D.G.); (N.M.); (A.K.); (A.S.)
| | - Shiri Procaccia
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; (J.A.); (G.M.L.); (Y.V.); (S.P.); (O.H.)
| | - Idan Cohen
- Cancer Center, Emek Medical Center, Afula 18101, Israel; (I.C.); (M.A.-A.)
| | - Anca Leibovici
- Department of Oncology, Galilee Medical Center, Nahariya 22100, Israel; (A.U.); (A.L.); (L.A.); (D.G.); (N.M.); (A.K.); (A.S.)
| | - Mahmud Abo-Amna
- Cancer Center, Emek Medical Center, Afula 18101, Israel; (I.C.); (M.A.-A.)
| | - Luiza Akria
- Department of Oncology, Galilee Medical Center, Nahariya 22100, Israel; (A.U.); (A.L.); (L.A.); (D.G.); (N.M.); (A.K.); (A.S.)
| | - Dmitry Goncharov
- Department of Oncology, Galilee Medical Center, Nahariya 22100, Israel; (A.U.); (A.L.); (L.A.); (D.G.); (N.M.); (A.K.); (A.S.)
| | - Neomi Mativ
- Department of Oncology, Galilee Medical Center, Nahariya 22100, Israel; (A.U.); (A.L.); (L.A.); (D.G.); (N.M.); (A.K.); (A.S.)
| | - Avia Kauffman
- Department of Oncology, Galilee Medical Center, Nahariya 22100, Israel; (A.U.); (A.L.); (L.A.); (D.G.); (N.M.); (A.K.); (A.S.)
| | - Ayelet Shai
- Department of Oncology, Galilee Medical Center, Nahariya 22100, Israel; (A.U.); (A.L.); (L.A.); (D.G.); (N.M.); (A.K.); (A.S.)
| | - Or Hazan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; (J.A.); (G.M.L.); (Y.V.); (S.P.); (O.H.)
| | - Gil Bar-Sela
- Cancer Center, Emek Medical Center, Afula 18101, Israel; (I.C.); (M.A.-A.)
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Correspondence: (G.B.-S.); (D.M.); Tel.: +972-4-6495723 (G.B.-S.); +972-77-8871680 or +972-525330031 (D.M.)
| | - David Meiri
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel; (J.A.); (G.M.L.); (Y.V.); (S.P.); (O.H.)
- Correspondence: (G.B.-S.); (D.M.); Tel.: +972-4-6495723 (G.B.-S.); +972-77-8871680 or +972-525330031 (D.M.)
| |
Collapse
|
11
|
Lal S, Shekher A, Puneet, Narula AS, Abrahamse H, Gupta SC. Cannabis and its constituents for cancer: History, biogenesis, chemistry and pharmacological activities. Pharmacol Res 2020; 163:105302. [PMID: 33246167 DOI: 10.1016/j.phrs.2020.105302] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/03/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Cannabis has long been used for healing and recreation in several regions of the world. Over 400 bioactive constituents, including more than 100 phytocannabinoids, have been isolated from this plant. The non-psychoactive cannabidiol (CBD) and the psychoactive Δ9-tetrahydrocannabinol (Δ9-THC) are the major and widely studied constituents from this plant. Cannabinoids exert their effects through the endocannabinoid system (ECS) that comprises cannabinoid receptors (CB1, CB2), endogenous ligands, and metabolizing enzymes. Several preclinical studies have demonstrated the potential of cannabinoids against leukemia, lymphoma, glioblastoma, and cancers of the breast, colorectum, pancreas, cervix and prostate. Cannabis and its constituents can modulate multiple cancer related pathways such as PKB, AMPK, CAMKK-β, mTOR, PDHK, HIF-1α, and PPAR-γ. Cannabinoids can block cell growth, progression of cell cycle and induce apoptosis selectively in tumour cells. Cannabinoids can also enhance the efficacy of cancer therapeutics. These compounds have been used for the management of anorexia, queasiness, and pain in cancer patients. Cannabinoid based products such as dronabinol, nabilone, nabiximols, and epidyolex are now approved for medical use in cancer patients. Cannabinoids are reported to produce a favourable safety profile. However, psychoactive properties and poor bioavailability limit the use of some cannabinoids. The Academic Institutions across the globe are offering training courses on cannabis. How cannabis and its constituents exert anticancer activities is discussed in this article. We also discuss areas that require attention and more extensive research.
Collapse
Affiliation(s)
- Samridhi Lal
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, 122413, India
| | - Anusmita Shekher
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Puneet
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | | | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The prevalence of cancer pain will continue to rise as pain is common among the survivorship and general cancer population. As interest in cannabis and cannabinoids for medicinal use including pain management continues to rise, there is growing need to update and review the current state of evidence for their use. The literature was searched for articles in English with key words cannabis, cannabinoids, and cancer pain. The sources of articles were PubMed, Embase, and open Google search. RECENT FINDINGS In a double-blind randomized placebo-controlled trial including a 3-week treatment period of nabiximol for advanced cancer patients with pain refractory to optimized opiate therapy, improvements in average pain were seen in the intention to treat population (P = 0.0854) and per- protocol population (P = 0.0378). SUMMARY To date, preclinical data has demonstrated evidence to suggest promising potential for cancer pain and the urgent need to translate this into clinical practice. Unfortunately, due to limited data, for adults with advanced cancer being treated with opiate therapy, the addition of cannabis or cannabinoids is not currently supported to address cancer pain effectively.
Collapse
|
13
|
Javid H, Rezayof A, Ghasemzadeh Z, Sardari M. The involvement of ventral hippocampal microglial cells, but not cannabinoid CB1 receptors, in morphine-induced analgesia in rats. Acta Neurol Belg 2020; 120:1077-1084. [PMID: 31006075 DOI: 10.1007/s13760-019-01144-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/12/2019] [Indexed: 12/12/2022]
Abstract
It is well known that glial cells are involved in pain processing. The purpose of the present study was to investigate the possible involvement of the ventral hippocampal (VH) glial cells in morphine-induced analgesia. A tail-flick apparatus was used to measure pain sensitivity in male Wistar rats that were bilaterally cannulated in the VH by stereotaxic surgery. The results showed that intraperitoneal (i.p.) administration of morphine (2.5-7.5 mg/kg) induced analgesia in a time-dependent manner. The blockade of the VH glial cell activation by bilateral microinjection of a glial inhibitor, minocycline (5-15 µg/rat) into the VH with an ineffective dose of morphine (2.5 mg/kg, i.p) significantly increased morphine analgesia. Considering that the endocannabinoid system via CB1 receptors play a crucial role in pain modulation, we also assessed the possible role of the VH cannabinoid CB1 receptors in the functional interaction between minocycline and morphine in acute pain. Our results indicated that intra-VH injection of the cannabinoid CB1 receptor agonist, arachidonylcyclopropylamide (ACPA; 4-12 ng/rat) had no effect on minocycline-induced potentiation of morphine analgesia. It should be considered that intra-VH microinjection of minocycline or ACPA by itself had no effect on tail-flick latency. Our findings suggest that the activation of the VH microglial cells may be involved in mediating pain sensation, because the inhibition of these cells by intra-VH injection of minocycline could potentiate morphine-induced analgesia. Although endocannabinoids have a regulatory role in glia function, the activation of CB1 receptors could not affect the potentiative effect of minocycline on morphine analgesia.
Collapse
Affiliation(s)
- Hanieh Javid
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran
| | - Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, 4155-6455, Tehran, Iran
| |
Collapse
|
14
|
Regulation of Innate Lymphoid Cells in Acute Kidney Injury: Crosstalk between Cannabidiol and GILZ. J Immunol Res 2020; 2020:6056373. [PMID: 32185239 PMCID: PMC7060850 DOI: 10.1155/2020/6056373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022] Open
Abstract
Innate lymphoid cells (ILCs) have emerged as largely tissue-resident archetypal cells of the immune system. We tested the hypotheses that renal ischemia-reperfusion injury (IRI) is a contributing factor to polarization of ILCs and that glucocorticoid-induced leucine zipper (GILZ) and cannabidiol regulate them in this condition. Mice subjected to unilateral renal IRI were treated with the following agents before restoration of renal blood flow: cannabidiol, DMSO, transactivator of transcription- (TAT-) GILZ, or the TAT peptide. Thereafter, kidney cells were prepared for flow cytometry analyses. Sham kidneys treated with either cannabidiol or TAT-GILZ displayed similar frequencies of each subset of ILCs compared to DMSO or TAT, respectively. Renal IRI increased ILC1s and ILC3s but reduced ILC2s compared to the sham group. Cannabidiol or TAT-GILZ treatment of IRI kidneys reversed this pattern as evidenced by reduced ILC1s and ILC3s but increased ILC2s compared to their DMSO- or TAT-treated counterparts. While TAT-GILZ treatment did not significantly affect cells positive for cannabinoid receptors subtype 2 (CB2+), cannabidiol treatment increased frequency of both CB2+ and GILZ-positive (GILZ+) cells of IRI kidneys. Subsequent studies showed that IRI reduced GILZ+ subsets of ILCs, an effect less marked for ILC2s. Treatment with cannabidiol increased frequencies of each subset of GILZ+ ILCs, but the effect was more marked for ILC2s. Indeed, cannabidiol treatment increased CB2+ GILZ+ ILC2s. Collectively, the results indicate that both cannabidiol and GILZ regulate ILC frequency and phenotype, in acute kidney injury, and that the effects of cannabidiol likely relate to modulation of endogenous GILZ.
Collapse
|
15
|
Dichotomic effects of clinically used drugs on tumor growth, bone remodeling and pain management. Sci Rep 2019; 9:20155. [PMID: 31882872 PMCID: PMC6934511 DOI: 10.1038/s41598-019-56622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 12/12/2019] [Indexed: 11/08/2022] Open
Abstract
Improvements in the survival of breast cancer patients have led to the emergence of bone health and pain management as key aspects of patient’s quality of life. Here, we used a female rat MRMT-1 model of breast cancer-induced bone pain to compare the effects of three drugs used clinically morphine, nabilone and zoledronate on tumor progression, bone remodeling and pain relief. We found that chronic morphine reduced the mechanical hypersensitivity induced by the proliferation of the luminal B aggressive breast cancer cells in the tumor-bearing femur and prevented spinal neuronal and astrocyte activation. Using MTT cell viability assay and MRI coupled to 18FDG PET imaging followed by ex vivo 3D µCT, we further demonstrated that morphine did not directly exert tumor growth promoting or inhibiting effects on MRMT-1 cancer cells but induced detrimental effects on bone healing by disturbing the balance between bone formation and breakdown. In sharp contrast, both the FDA-approved bisphosphonate zoledronate and the synthetic cannabinoid nabilone prescribed as antiemetics to patients receiving chemotherapy were effective in limiting the osteolytic bone destruction, thus preserving the bone architecture. The protective effect of nabilone on bone metabolism was further accompanied by a direct inhibition of tumor growth. As opposed to zoledronate, nabilone was however not able to manage bone tumor-induced pain and reactive gliosis. Altogether, our results revealed that morphine, nabilone and zoledronate exert disparate effects on tumor growth, bone metabolism and pain control. These findings also support the use of nabilone as an adjuvant therapy for bone metastases.
Collapse
|
16
|
Chen X, Cowan A, Inan S, Geller EB, Meissler JJ, Rawls SM, Tallarida RJ, Tallarida CS, Watson MN, Adler MW, Eisenstein TK. Opioid-sparing effects of cannabinoids on morphine analgesia: participation of CB 1 and CB 2 receptors. Br J Pharmacol 2019; 176:3378-3389. [PMID: 31218677 PMCID: PMC6692585 DOI: 10.1111/bph.14769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Much of the opioid epidemic arose from abuse of prescription opioid drugs. This study sought to determine if the combination of a cannabinoid with an opioid could produce additive or synergistic effects on pain, allowing reduction in the opioid dose needed for maximal analgesia. EXPERIMENTAL APPROACH Pain was assayed using the formalin test in mice and the carrageenan assay in rats. Morphine and two synthetic cannabinoids were tested: WIN55,212-2 (WIN), which binds to both CB1 and CB2 receptors, and possibly TRPV1 channels; and GP1a, which has activity at CB2 receptors and is reported to inhibit fatty acid amide hydrolase, thus raising levels of endogenous cannabinoids. KEY RESULTS Morphine in combination with WIN in the formalin test gave synergistic analgesia. Studies with selective antagonists showed that WIN was acting through CB1 receptors. Morphine in combination with GP1a in the formalin test was sub-additive. In the carrageenan test, WIN had no added effect when combined with morphine, but GP1a with morphine showed enhanced analgesia. Both WIN and Gp1a used alone had analgesic activity in the formalin pain test, but not in the carrageenan pain test. CONCLUSIONS AND IMPLICATIONS The ability of a cannabinoid to produce an additive or synergistic effect on analgesia when combined with morphine varies with the pain assay and may be mediated by CB1 or CB2 receptors. These results hold the promise of using cannabinoids to reduce the dose of opioids for analgesia in certain pain conditions.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Pharmacology, Center for Substance Abuse ResearchLewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Alan Cowan
- Department of Pharmacology, Center for Substance Abuse ResearchLewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Saadet Inan
- Department of Pharmacology, Center for Substance Abuse ResearchLewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Ellen B. Geller
- Department of Pharmacology, Center for Substance Abuse ResearchLewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Joseph J. Meissler
- Department of Pharmacology, Center for Substance Abuse ResearchLewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Scott M. Rawls
- Department of Pharmacology, Center for Substance Abuse ResearchLewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Ronald J. Tallarida
- Department of Pharmacology, Center for Substance Abuse ResearchLewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Christopher S. Tallarida
- Department of Pharmacology, Center for Substance Abuse ResearchLewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Mia N. Watson
- Department of Pharmacology, Center for Substance Abuse ResearchLewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Martin W. Adler
- Department of Pharmacology, Center for Substance Abuse ResearchLewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| | - Toby K. Eisenstein
- Department of Microbiology and Immunology, Center for Substance Abuse ResearchLewis Katz School of Medicine at Temple UniversityPhiladelphiaPAUSA
| |
Collapse
|
17
|
Peripherally restricted cannabinoid 1 receptor agonist as a novel analgesic in cancer-induced bone pain. Pain 2019; 159:1814-1823. [PMID: 29781960 DOI: 10.1097/j.pain.0000000000001278] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many malignant cancers, including breast cancer, have a propensity to invade bones, leading to excruciating bone pain. Opioids are the primary analgesics used to alleviate this cancer-induced bone pain (CIBP) but are associated with numerous severe side effects, including enhanced bone degradation, which significantly impairs patients' quality of life. By contrast, agonists activating only peripheral CB1 receptors (CB1Rs) have been shown to effectively alleviate multiple chronic pain conditions with limited side effects, yet no studies have evaluated their role(s) in CIBP. Here, we demonstrate for the first time that a peripherally selective CB1R agonist can effectively suppress CIBP. Our studies using a syngeneic murine model of CIBP show that both acute and sustained administration of a peripherally restricted CB1R agonist, 4-{2-[-(1E)-1[(4-propylnaphthalen-1-yl)methylidene]-1H-inden-3-yl]ethyl}morpholine (PrNMI), significantly alleviated spontaneous pain behaviors in the animals. This analgesic effect by PrNMI can be reversed by a systemic administration but not spinal injection of SR141716, a selective CB1R antagonist. In addition, the cancer-induced bone loss in the animals was not exacerbated by a repeated administration of PrNMI. Furthermore, catalepsy and hypothermia, the common side effects induced by cannabinoids, were measured at the supratherapeutic doses of PrNMI tested. PrNMI induced mild sedation, yet no anxiety or a decrease in limb movements was detected. Overall, our studies demonstrate that CIBP can be effectively managed by using a peripherally restricted CB1R agonist, PrNMI, without inducing dose-limiting central side effects. Thus, targeting peripheral CB1Rs could be an alternative therapeutic strategy for the treatment of CIBP.
Collapse
|
18
|
Vučković S, Srebro D, Vujović KS, Vučetić Č, Prostran M. Cannabinoids and Pain: New Insights From Old Molecules. Front Pharmacol 2018; 9:1259. [PMID: 30542280 PMCID: PMC6277878 DOI: 10.3389/fphar.2018.01259] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 01/11/2023] Open
Abstract
Cannabis has been used for medicinal purposes for thousands of years. The prohibition of cannabis in the middle of the 20th century has arrested cannabis research. In recent years there is a growing debate about the use of cannabis for medical purposes. The term ‘medical cannabis’ refers to physician-recommended use of the cannabis plant and its components, called cannabinoids, to treat disease or improve symptoms. Chronic pain is the most commonly cited reason for using medical cannabis. Cannabinoids act via cannabinoid receptors, but they also affect the activities of many other receptors, ion channels and enzymes. Preclinical studies in animals using both pharmacological and genetic approaches have increased our understanding of the mechanisms of cannabinoid-induced analgesia and provided therapeutical strategies for treating pain in humans. The mechanisms of the analgesic effect of cannabinoids include inhibition of the release of neurotransmitters and neuropeptides from presynaptic nerve endings, modulation of postsynaptic neuron excitability, activation of descending inhibitory pain pathways, and reduction of neural inflammation. Recent meta-analyses of clinical trials that have examined the use of medical cannabis in chronic pain present a moderate amount of evidence that cannabis/cannabinoids exhibit analgesic activity, especially in neuropathic pain. The main limitations of these studies are short treatment duration, small numbers of patients, heterogeneous patient populations, examination of different cannabinoids, different doses, the use of different efficacy endpoints, as well as modest observable effects. Adverse effects in the short-term medical use of cannabis are generally mild to moderate, well tolerated and transient. However, there are scant data regarding the long-term safety of medical cannabis use. Larger well-designed studies of longer duration are mandatory to determine the long-term efficacy and long-term safety of cannabis/cannabinoids and to provide definitive answers to physicians and patients regarding the risk and benefits of its use in the treatment of pain. In conclusion, the evidence from current research supports the use of medical cannabis in the treatment of chronic pain in adults. Careful follow-up and monitoring of patients using cannabis/cannabinoids are mandatory.
Collapse
Affiliation(s)
- Sonja Vučković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dragana Srebro
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Savić Vujović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Čedomir Vučetić
- Clinic of Orthopaedic Surgery and Traumatology, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Pascual D, Sánchez-Robles E, García M, Goicoechea C. Chronic pain and cannabinoids. Great expectations or a christmas carol. Biochem Pharmacol 2018; 157:33-42. [DOI: 10.1016/j.bcp.2018.07.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
|
20
|
Sensitization of C-fiber nociceptors in mice with sickle cell disease is decreased by local inhibition of anandamide hydrolysis. Pain 2018; 158:1711-1722. [PMID: 28570479 DOI: 10.1097/j.pain.0000000000000966] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic pain and hyperalgesia, as well as pain resulting from episodes of vaso-occlusion, are characteristic features of sickle cell disease (SCD) and are difficult to treat. Since there is growing evidence that increasing local levels of endocannabinoids can decrease hyperalgesia, we examined the effects of URB597, a fatty acid amide hydrolase (FAAH) inhibitor, which blocks the hydrolysis of the endogenous cannabinoid anandamide, on hyperalgesia and sensitization of cutaneous nociceptors in a humanized mouse model of SCD. Using homozygous HbSS-BERK sickle mice, we determined the effects of URB597 on mechanical hyperalgesia and on sensitization of C-fiber nociceptors in vivo. Intraplantar administration of URB597 (10 μg in 10 μL) decreased the frequency of withdrawal responses evoked by a von Frey monofilament (3.9 mN bending force) applied to the plantar hind paw. This was blocked by the CB1 receptor antagonist AM281 but not by the CB2 receptor antagonist AM630. Also, URB597 decreased hyperalgesia in HbSS-BERK/CB2R sickle mice, further confirming the role of CB1 receptors in the effects produced by URB597. Electrophysiological recordings were made from primary afferent fibers of the tibial nerve in anesthetized mice. The proportion of Aδ- and C-fiber nociceptors that exhibited spontaneous activity and responses of C-fibers to mechanical and thermal stimuli were greater in HbSS-BERK sickle mice as compared to control HbAA-BERK mice. Spontaneous activity and evoked responses of nociceptors were decreased by URB597 via CB1 receptors. It is suggested that enhanced endocannabinoid activity in the periphery may be beneficial in alleviating chronic pain associated with SCD.
Collapse
|
21
|
Brown MRD, Farquhar-Smith WP. Cannabinoids and cancer pain: A new hope or a false dawn? Eur J Intern Med 2018; 49:30-36. [PMID: 29482740 DOI: 10.1016/j.ejim.2018.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system is involved in many areas of physiological function and homeostasis. Cannabinoid receptors are expressed in the peripheral and central nervous system and on immune cells, all areas ideally suited to modulation of pain processing. There are a wealth of preclinical data in a number of acute, chronic, neuropathic and cancer pain models that have demonstrated a potent analgesic potential for cannabinoids, especially in patients with cancer. However, although there are some positive results in pain of cancer patients, the clinical evidence for cannabinoids as analgesics has not been convincing and their use can only be weakly recommended. The efficacy of cannabinoids seems to have been 'lost in translation' which may in part be related to using extracts of herbal cannabis rather than targeted selective full agonists at the cannabinoid CB1 and CB2 receptors.
Collapse
Affiliation(s)
- Matthew R D Brown
- Department of Anaesthetics, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, United Kingdom.
| | - W Paul Farquhar-Smith
- Department of Anaesthetics, The Royal Marsden NHS Foundation Trust, Fulham Road, London SW3 6JJ, United Kingdom.
| |
Collapse
|
22
|
Lichtman AH, Lux EA, McQuade R, Rossetti S, Sanchez R, Sun W, Wright S, Kornyeyeva E, Fallon MT. Results of a Double-Blind, Randomized, Placebo-Controlled Study of Nabiximols Oromucosal Spray as an Adjunctive Therapy in Advanced Cancer Patients with Chronic Uncontrolled Pain. J Pain Symptom Manage 2018; 55:179-188.e1. [PMID: 28923526 DOI: 10.1016/j.jpainsymman.2017.09.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 11/23/2022]
Abstract
CONTEXT Prior Phase 2/3 studies found that cannabinoids might provide adjunctive analgesia in advanced cancer patients with uncontrolled pain. OBJECTIVES To assess adjunctive nabiximols (Sativex®), an extract of Cannabis sativa containing two potentially therapeutic cannabinoids (Δ9-tetrahydrocannabinol [27 mg/mL] and cannabidiol [25 mg/mL]), in advanced cancer patients with chronic pain unalleviated by optimized opioid therapy. METHODS Phase 3, double-blind, randomized, placebo-controlled trial in patients with advanced cancer and average pain Numerical Rating Scale scores ≥4 and ≤8 despite optimized opioid therapy. Patients randomized to nabiximols (n = 199) or placebo (n = 198) self-titrated study medications over a two-week period, followed by a three-week treatment period at the titrated dose. RESULTS Median percent improvements in average pain Numerical Rating Scale score from baseline to end of treatment in the nabiximols and placebo groups were 10.7% vs. 4.5% (P = 0.0854) in the intention-to-treat population (primary variable) and 15.5% vs. 6.3% (P = 0.0378) in the per-protocol population. Nabiximols was statistically superior to placebo on two of three quality-of-life instruments at Week 3 and on all three at Week 5. In exploratory post hoc analyses, U.S. patients, but not patients from the rest of the world, experienced significant benefits from nabiximols on multiple secondary endpoints. Possible contributing factors to differences in nabiximols efficacy include: 1) the U.S. participants received lower doses of opioids at baseline than the rest of the world and 2) the subgroups had different distribution of cancer pain types, which may have been related to differences in pathophysiology of pain. The safety profile of nabiximols was consistent with earlier studies. CONCLUSIONS Although not superior to placebo on the primary efficacy endpoint, nabiximols had benefits on multiple secondary endpoints, particularly in the U.S. PATIENTS Nabiximols might have utility in patients with advanced cancer who receive a lower opioid dose, such as individuals with early intolerance to opioid therapy.
Collapse
Affiliation(s)
- Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - Eberhard Albert Lux
- Faculty of Medicine, Witten/Herdecke University, Witten, Germany; Clinic for Pain and Palliative Care Medicine, St.-Marien-Hospital, Luenen, Germany
| | - Robert McQuade
- Otsuka Pharmaceutical Development & Commercialization, Inc, Princeton, New Jersey, USA
| | - Sandro Rossetti
- Otsuka Pharmaceutical Development & Commercialization, Inc, Princeton, New Jersey, USA
| | - Raymond Sanchez
- Otsuka Pharmaceutical Development & Commercialization, Inc, Princeton, New Jersey, USA
| | - Wei Sun
- Otsuka Pharmaceutical Development & Commercialization, Inc, Princeton, New Jersey, USA
| | | | - Elena Kornyeyeva
- Otsuka Pharmaceutical Development & Commercialization, Inc, Princeton, New Jersey, USA
| | - Marie T Fallon
- Edinburgh Cancer Research Centre, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Soderstrom K, Soliman E, Van Dross R. Cannabinoids Modulate Neuronal Activity and Cancer by CB1 and CB2 Receptor-Independent Mechanisms. Front Pharmacol 2017; 8:720. [PMID: 29066974 PMCID: PMC5641363 DOI: 10.3389/fphar.2017.00720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
Cannabinoids include the active constituents of Cannabis or are molecules that mimic the structure and/or function of these Cannabis-derived molecules. Cannabinoids produce many of their cellular and organ system effects by interacting with the well-characterized CB1 and CB2 receptors. However, it has become clear that not all effects of cannabinoid drugs are attributable to their interaction with CB1 and CB2 receptors. Evidence now demonstrates that cannabinoid agents produce effects by modulating activity of the entire array of cellular macromolecules targeted by other drug classes, including: other receptor types; ion channels; transporters; enzymes, and protein- and non-protein cellular structures. This review summarizes evidence for these interactions in the CNS and in cancer, and is organized according to the cellular targets involved. The CNS represents a well-studied area and cancer is emerging in terms of understanding mechanisms by which cannabinoids modulate their activity. Considering the CNS and cancer together allow identification of non-cannabinoid receptor targets that are shared and divergent in both systems. This comparative approach allows the identified targets to be compared and contrasted, suggesting potential new areas of investigation. It also provides insight into the diverse sources of efficacy employed by this interesting class of drugs. Obtaining a comprehensive understanding of the diverse mechanisms of cannabinoid action may lead to the design and development of therapeutic agents with greater efficacy and specificity for their cellular targets.
Collapse
Affiliation(s)
- Ken Soderstrom
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Zagazig University, Zagazig, Egypt
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
24
|
Synergistic combinations of the dual enkephalinase inhibitor PL265 given orally with various analgesic compounds acting on different targets, in a murine model of cancer-induced bone pain. Scand J Pain 2016; 14:25-38. [PMID: 28850427 DOI: 10.1016/j.sjpain.2016.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/14/2016] [Accepted: 09/30/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The first line pharmacological treatment of cancer pain is morphine and surrogates but a significant pain relief and a reduction of the side-effects of these compounds makes it necessary to combine them with other drugs acting on different targets. The aim of this study was to measure the antinociceptive effect on cancer-induced bone pain resulting from the association of the endogenous opioids enkephalin and non-opioid analgesic drugs. For this purpose, PL265 a new orally active single dual inhibitor of the two degrading enkephalins enzymes, neprilysin (NEP) and aminopeptidase N (APN) was used. It strictly increased the levels of enkephalin at their sites of releases. The selected non-opioid compounds are: gabapentin, A-317491 (P2X3 receptor antagonist), ACEA (CB1 receptor antagonist), AM1241 (CB2 receptor antagonist), JWH-133 (CB2 receptor antagonist), URB937 (FAAH inhibitor), and NAV26 (Nav1.7 channel blocker). METHODS Experiments. Experiments were performed in 5-6 weeks old (26-33g weight) C57BL/6 mice. Cell culture and cell inoculation. B16-F10 melanoma cells were cultured and when preconfluent, treated and detached. Finally related cells were resuspended to obtain a concentration of 2×106 cells/100μL. Then 105 cells were injected into the right tibial medullar cavity. Control mice were treated by killed cells by freezing. Behavioural studies. Thermal withdrawal latencies were measured on a unilatered hot plate (UHP) maintained at 49±0.2°C. Mechanical threshold values were obtained by performing the von Frey test using the "up and down" method. To evaluate the nature (additive or synergistic) of the interactions between PL265 and different drugs, an isobolographic analysis following the method described by Tallarida was performed. RESULTS The results demonstrate the ability of PL265, a DENKI that prevents the degradation of endogenous ENKs, to counteract cancer-induced bone thermal hyperalgesia in mice, by exclusively stimulating peripheral opioid receptors as demonstrated by used of an opioid antagonist unable to enter the brain. The development of such DENKIs, endowed with druggable pharmacokinetic characteristics, such as good absorption by oral route, can be considered as an important step in the development of much needed novel antihyperalgesic drugs. Furthermore, all the tested combinations resulted in synergistic antihyperalgesic effects. As shown here, the greatest synergistic antinociceptive effect (doses could be lowered by 70%) was produced by the combination of PL265 with the P2X3 receptor antagonist (A-317491), cannabinoid CB1 receptor agonist (exogenous, ACEA and endogenous URB937-protected-AEA) and Nav1.7 blocker (NAV26) whose mechanism of action involves the direct activation of the enkephalinergic system. CONCLUSIONS These multi-target-based antinociceptive strategies using combinations of non-opioid drugs with dual inhibitors of enkephalin degrading enzymes may bring therapeutic advantages in terms of efficacy and safety by allowing the reduction of doses of one of the compounds or of both, which is of the utmost interest in the chronic treatment of cancer pain. IMPLICATIONS This article presents synergistic antinociceptive effect produced by the combination of PL265 with non-opioid analgesic drugs acting via unrelated mechanisms. These multi-target-based antinociceptive strategies may bring therapeutic advantages by allowing the reduction of doses, which is of great interest in the chronic treatment of cancer pain.
Collapse
|
25
|
Influence of muscarinic receptor modulators on interacerebroventricular injection of arachydonylcyclopropylamide induced antinociception in mice. Physiol Behav 2015; 138:273-8. [DOI: 10.1016/j.physbeh.2014.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 05/29/2014] [Accepted: 10/09/2014] [Indexed: 11/15/2022]
|
26
|
Khasabova IA, Yao X, Paz J, Lewandowski CT, Lindberg AE, Coicou L, Burlakova N, Simone DA, Seybold VS. JZL184 is anti-hyperalgesic in a murine model of cisplatin-induced peripheral neuropathy. Pharmacol Res 2014; 90:67-75. [PMID: 25304184 DOI: 10.1016/j.phrs.2014.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 12/28/2022]
Abstract
Cisplatin has been used effectively to treat a variety of cancers but its use is limited by the development of painful peripheral neuropathy. Because the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) is anti-hyperalgesic in several preclinical models of chronic pain, the anti-hyperalgesic effect of JZL184, an inhibitor of 2-AG hydrolysis, was tested in a murine model of cisplatin-induced hyperalgesia. Systemic injection of cisplatin (1mg/kg) produced mechanical hyperalgesia when administered daily for 7 days. Daily peripheral administration of a low dose of JZL184 in conjunction with cisplatin blocked the expression of mechanical hyperalgesia. Acute injection of a cannabinoid (CB)-1 but not a CB2 receptor antagonist reversed the anti-hyperalgesic effect of JZL184 indicating that downstream activation of CB1 receptors suppressed the expression of mechanical hyperalgesia. Components of endocannabinoid signaling in plantar hind paw skin and lumbar dorsal root ganglia (DRGs) were altered by treatments with cisplatin and JZL184. Treatment with cisplatin alone reduced levels of 2-AG and AEA in skin and DRGs as well as CB2 receptor protein in skin. Combining treatment of JZL184 with cisplatin increased 2-AG in DRGs compared to cisplatin alone but had no effect on the amount of 2-AG in skin. Evidence that JZL184 decreased the uptake of [(3)H]AEA into primary cultures of DRGs at a concentration that also inhibited the enzyme fatty acid amide hydrolase, in conjunction with data that 2-AG mimicked the effect of JZL184 on [(3)H]AEA uptake support the conclusion that AEA most likely mediates the anti-hyperalgesic effect of JZL184 in this model.
Collapse
MESH Headings
- Amides
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Animals
- Antineoplastic Agents
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacology
- Benzodioxoles/pharmacology
- Benzodioxoles/therapeutic use
- Cells, Cultured
- Cisplatin
- Disease Models, Animal
- Endocannabinoids/metabolism
- Endocannabinoids/pharmacology
- Ethanolamines/metabolism
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Glycerides/metabolism
- Glycerides/pharmacology
- Hyperalgesia/drug therapy
- Hyperalgesia/metabolism
- Indoles/pharmacology
- Male
- Mesencephalon/drug effects
- Mesencephalon/metabolism
- Mice
- Mice, Inbred C3H
- Monoacylglycerol Lipases/antagonists & inhibitors
- Morpholines/pharmacology
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/metabolism
- Palmitic Acids/metabolism
- Piperidines/pharmacology
- Piperidines/therapeutic use
- Polyunsaturated Alkamides/metabolism
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Skin/drug effects
- Skin/metabolism
- Spinal Cord/drug effects
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Xu Yao
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Justin Paz
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | | | - Amy E Lindberg
- Pharmacology Graduate Program, University of Minnesota, USA
| | - Lia Coicou
- Department of Neuroscience, Medical School, University of Minnesota, USA
| | - Natasha Burlakova
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Don A Simone
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, USA
| | - Virginia S Seybold
- Department of Neuroscience, Medical School, University of Minnesota, USA.
| |
Collapse
|
27
|
Davis MP. Cannabinoids in pain management: CB1, CB2 and non-classic receptor ligands. Expert Opin Investig Drugs 2014; 23:1123-40. [PMID: 24836296 DOI: 10.1517/13543784.2014.918603] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Commercially available cannabinoids are subject to psychotomimetic and addiction (cannabinomimetic) adverse effects largely through activation of the cannabinoid 1 receptor (CB1r). The available commercial cannabinoids have a narrow therapeutic index. Recently developed peripherally restricted cannabinoids, regionally administered cannabinoids, bifunctional cannabinoid ligands and cannabinoid enzyme inhibitors, endocannabinoids, which do not interact with classic cannabinoid receptors (CB1r and CB2r), cannabinoid receptor antagonists and selective CB1r agonists hold promise as analgesics. AREAS COVERED This author provides a review of the current investigational cannabinoids currently in development for pain management. The author also provides their perspective on the future of the field. EXPERT OPINION Regional and peripherally restricted cannabinoids will reduce cannabinomimetic side effects. Spinal cannabinoids may increase the therapeutic index by limiting the dose necessary for response and minimize drugs exposure to supraspinal sites where cannabinomimetic side effects originate. Cannabinoid bifunctional ligands should be further explored. The combination of a CB2r agonist with a transient receptor potential vanilloid (TRPV-1) antagonist may improve the therapeutic index of the CB2r agonist. Enzyme inhibitors plus TRPV-1 blockers should be further explored. The development of analgesic tolerance with enzyme inhibitors and the pronociceptive effects of prostamides limit the benefits to cannabinoid hydrolyzing enzyme inhibitors. Most clinically productive development of cannabinoids over the next 5 years will be in the area of selective CB2r agonists. These agents will be tested in various inflammatory, osteoarthritis and neuropathic pains.
Collapse
Affiliation(s)
- Mellar P Davis
- The Cleveland Clinic Taussig Cancer Institute, The Harry R. Horvitz Center for Palliative Medicine, Department of Solid Tumor Oncology , 9500 Euclid Avenue R35, Cleveland, OH 44195 , USA +1 216 445 4622 ; +1 216 636 3179 ;
| |
Collapse
|
28
|
Abstract
The global burden of cancer pain is enormous and opioids, despite their side effects, remain the primary therapeutic approach. The cause of cancer pain is unknown. Mechanisms driving cancer pain differ from those mechanisms responsible for inflammatory and neuropathic pain. The prevailing hypothesis put forward to explain cancer pain posits that cancers generate and secrete mediators which sensitize and activate primary afferent nociceptors in the cancer microenvironment. Moreover, cancers induce neurochemical reorganization of the spinal cord, which contributes to spontaneous activity and enhanced responsiveness. The purpose of this review, which covers clinical and preclinical studies, is to highlight those peripheral and central mechanisms responsible for cancer pain. The challenges facing neuroscientists and clinicians studying and ultimately treating cancer pain are discussed.
Collapse
Affiliation(s)
- Brian L Schmidt
- Department of Oral Maxillofacial Surgery, New York University College of Dentistry, New York, NY, USA Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA Bluestone Center for Clinical Research, New York University, NY, USA
| |
Collapse
|
29
|
Pertwee RG. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos Trans R Soc Lond B Biol Sci 2013; 367:3353-63. [PMID: 23108552 DOI: 10.1098/rstb.2011.0381] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released 'endocannabinoids' or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive 'multi-targeting'.
Collapse
Affiliation(s)
- Roger G Pertwee
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK.
| |
Collapse
|
30
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
31
|
Kraft B. Is there any clinically relevant cannabinoid-induced analgesia? Pharmacology 2012; 89:237-46. [PMID: 22507873 DOI: 10.1159/000337376] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 02/04/2023]
Affiliation(s)
- Birgit Kraft
- Department of Special Anesthesia and Pain Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Gamaleddin I, Zvonok A, Makriyannis A, Goldberg SR, Le Foll B. Effects of a selective cannabinoid CB2 agonist and antagonist on intravenous nicotine self administration and reinstatement of nicotine seeking. PLoS One 2012; 7:e29900. [PMID: 22291896 PMCID: PMC3266883 DOI: 10.1371/journal.pone.0029900] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 12/08/2011] [Indexed: 11/18/2022] Open
Abstract
Over the last decade there have been significant advances in the discovery and understanding of the cannabinoid system along with the development of pharmacologic tools that modulate its function. Characterization of the crosstalk between nicotine addiction and the cannabinoid system may have significant implications on our understanding of the neurobiological mechanisms underlying nicotine dependence. Two types of cannabinoid receptors (CB1 and CB2) have been identified. CB1 receptors are expressed in the brain and modulate drug taking and drug seeking for various drugs of abuse, including nicotine. CB2 receptors have been recently identified in the brain and have been proposed to play a functional role in mental disorders and drug addiction. Our objective was to explore the role of CB2 receptors on intravenous nicotine self administration under two schedules of reinforcement (fixed and progressive ratio) and on nicotine seeking induced by nicotine priming or by nicotine associated cues. For this, we evaluated the effects of various doses of the selective CB2 antagonist AM630 (1.25 to 5 mg/kg) and CB2 agonist AM1241 (1 to 10 mg/kg) on these behavioral responses in rats. Different groups of male Long Evans rats were trained to lever press for nicotine at a unit dose of 30 µg/kg/infusion. Subsequently, animals were randomized using a Latin-square design and injected with either AM1241 or AM630 using a counterbalanced within subject design. Administration of the CB2 ligands did not affect either nicotine-taking nicotine-seeking behavior. Our results do not support the involvement of CB2 receptors in nicotine-taking or nicotine-seeking behavior.
Collapse
Affiliation(s)
- Islam Gamaleddin
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
- Addictions Program, Centre for Addiction and Mental Health, Toronto, Canada
| | - Alexander Zvonok
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, United States of America
| | - Alexandros Makriyannis
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, United States of America
| | - Steven R. Goldberg
- Department of Health and Human Services, Intramural Research Program, National Institute of Health, National Institute of Drug Abuse; Baltimore, Maryland, United States of America
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
- Departments of Family and Community Medicine, Psychiatry, Pharmacology and Toxicology, Institute of Medical Science; University of Toronto, Toronto, Canada
- Addictions Program, Centre for Addiction and Mental Health, Toronto, Canada
- * E-mail: .
| |
Collapse
|
33
|
Khasabova IA, Chandiramani A, Harding-Rose C, Simone DA, Seybold VS. Increasing 2-arachidonoyl glycerol signaling in the periphery attenuates mechanical hyperalgesia in a model of bone cancer pain. Pharmacol Res 2011; 64:60-7. [PMID: 21440630 DOI: 10.1016/j.phrs.2011.03.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 01/01/2023]
Abstract
Metastatic and primary bone cancers are usually accompanied by severe pain that is difficult to manage. In light of the adverse side effects of opioids, manipulation of the endocannabinoid system may provide an effective alternative for the treatment of cancer pain. The present study determined that a local, peripheral increase in the endocannabinoid 2-arachidonoyl glycerol (2-AG) reduced mechanical hyperalgesia evoked by the growth of a fibrosarcoma tumor in and around the calcaneous bone. Intraplantar (ipl) injection of 2-AG attenuated hyperalgesia (ED(50) of 8.2 μg) by activation of peripheral CB2 but not CB1 receptors and had an efficacy comparable to that of morphine. JZL184 (10 μg, ipl), an inhibitor of 2-AG degradation, increased the local level of 2-AG and mimicked the anti-hyperalgesic effect of 2-AG, also through a CB2 receptor-dependent mechanism. These effects were accompanied by an increase in CB2 receptor protein in plantar skin of the tumor-bearing paw as well as an increase in the level of 2-AG. In naïve mice, intraplantar administration of the CB2 receptor antagonist AM630 did not alter responses to mechanical stimuli demonstrating that peripheral CB2 receptor tone does not modulate mechanical sensitivity. These data extend our previous findings with anandamide in the same model and suggest that the peripheral endocannabinoid system is a promising target for the management of cancer pain.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, Dental School, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | | | | | |
Collapse
|