1
|
Lamothe J, Khurana S, Tharmalingam S, Williamson C, Byrne CJ, Lees SJ, Khaper N, Kumar A, Tai T. Oxidative Stress Mediates the Fetal Programming of Hypertension by Glucocorticoids. Antioxidants (Basel) 2021; 10:antiox10040531. [PMID: 33805403 PMCID: PMC8066984 DOI: 10.3390/antiox10040531] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
The field of cardiovascular fetal programming has emphasized the importance of the uterine environment on postnatal cardiovascular health. Studies have linked increased fetal glucocorticoid exposure, either from exogenous sources (such as dexamethasone (Dex) injections), or from maternal stress, to the development of adult cardiovascular pathologies. Although the mechanisms are not fully understood, alterations in gene expression driven by altered oxidative stress and epigenetic pathways are implicated in glucocorticoid-mediated cardiovascular programming. Antioxidants, such as the naturally occurring polyphenol epigallocatechin gallate (EGCG), or the superoxide dismutase (SOD) 4-hydroxy-TEMPO (TEMPOL), have shown promise in the prevention of cardiovascular dysfunction and programming. This study investigated maternal antioxidant administration with EGCG or TEMPOL and their ability to attenuate the fetal programming of hypertension via Dex injections in WKY rats. Results from this study indicate that, while Dex-programming increased blood pressure in male and female adult offspring, administration of EGCG or TEMPOL via maternal drinking water attenuated Dex-programmed increases in blood pressure, as well as changes in adrenal mRNA and protein levels of catecholamine biosynthetic enzymes phenylalanine hydroxylase (PAH), tyrosine hydroxylase (TH), dopamine beta hydroxylase (DBH), and phenylethanolamine N-methyltransferase (PNMT), in a sex-specific manner. Furthermore, programmed male offspring displayed reduced antioxidant glutathione peroxidase 1 (Gpx1) expression, increased superoxide dismutase 1 (SOD1) and catalase (CAT) expression, and increased pro-oxidant NADPH oxidase activator 1 (Noxa1) expression in the adrenal glands. In addition, prenatal Dex exposure alters expression of epigenetic regulators histone deacetylase (HDAC) 1, 5, 6, 7, 11, in male and HDAC7 in female offspring. These results suggest that glucocorticoids may mediate the fetal programming of hypertension via alteration of epigenetic machinery and oxidative stress pathways.
Collapse
Affiliation(s)
- Jeremy Lamothe
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (J.L.); (S.T.); (N.K.); (A.K.)
| | - Sandhya Khurana
- Medical Science Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada;
| | - Sujeenthar Tharmalingam
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (J.L.); (S.T.); (N.K.); (A.K.)
- Medical Science Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada;
- Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada; (C.W.); (C.J.B.)
| | - Chad Williamson
- Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada; (C.W.); (C.J.B.)
| | - Collin J. Byrne
- Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada; (C.W.); (C.J.B.)
| | - Simon J. Lees
- Biology, Lakehead University, Thunder Bay, ON P3E 2C6, Canada;
- Medical Science Division, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| | - Neelam Khaper
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (J.L.); (S.T.); (N.K.); (A.K.)
- Biology, Lakehead University, Thunder Bay, ON P3E 2C6, Canada;
- Medical Science Division, Northern Ontario School of Medicine, Thunder Bay, ON P7B 5E1, Canada
| | - Aseem Kumar
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (J.L.); (S.T.); (N.K.); (A.K.)
- Medical Science Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada;
- Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada; (C.W.); (C.J.B.)
| | - T.C. Tai
- Biomolecular Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada; (J.L.); (S.T.); (N.K.); (A.K.)
- Medical Science Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada;
- Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada; (C.W.); (C.J.B.)
- Correspondence:
| |
Collapse
|
2
|
Chatree S, Sitticharoon C, Maikaew P, Pongwattanapakin K, Keadkraichaiwat I, Churintaraphan M, Sripong C, Sririwichitchai R, Tapechum S. Epigallocatechin gallate decreases plasma triglyceride, blood pressure, and serum kisspeptin in obese human subjects. Exp Biol Med (Maywood) 2021; 246:163-176. [PMID: 33045853 PMCID: PMC7871112 DOI: 10.1177/1535370220962708] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
Obesity is one of major risk factors increasing chronic diseases including type II diabetes, cardiovascular diseases, and hypertension. The effects of epigallocatechin gallate (EGCG), the major active compound in green tea, on reduced obesity and improved metabolic profiles are still controversial. Furthermore, the effects of EGCG on human adipocyte lipolysis and browning of white adipocytes have not been elucidated. This study aimed to investigate the effects of EGCG on obesity, lipolysis, and browning of human white adipocytes. The results showed that, when compared to the baseline values, EGCG significantly decreased fasting plasma triglyceride levels (P < 0.05), systolic blood pressure (P < 0.05), diastolic blood pressure (P < 0.05), and serum kisspeptin levels (P < 0.05) after 8 weeks of supplement. On the other hand, supplement of EGCG in obese human subjects for 4 or 8 weeks did not decrease body weight, body mass index, waist and hip circumferences, nor total body fat mass or percentage when compared to their baseline values. The study in human adipocytes showed that EGCG did not increase the glycerol release when compared to vehicle, suggesting that it had no lipolytic effect. Furthermore, treatment of EGCG did not enhance uncoupling protein 1 (UCP1) mRNA expression in human white adipocytes when compared with treatment of pioglitazone, the peroxisome proliferator-activated receptor γ (PPAR-γ) agonist, suggesting that EGCG did not augment the browning effect of PPAR-γ on white adipocytes. This study revealed that EGCG reduced 2 metabolic risk factors which are triglyceride and blood pressure in the human experiment. We also showed a novel evidence that EGCG decreased kisspeptin levels. However, EGCG had no effects on obesity reduction in humans, lipolysis, nor browning of human white adipocytes.
Collapse
Affiliation(s)
- Saimai Chatree
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chantacha Sitticharoon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pailin Maikaew
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kitchaya Pongwattanapakin
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Issarawan Keadkraichaiwat
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Malika Churintaraphan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanakarn Sripong
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Rungnapa Sririwichitchai
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sompol Tapechum
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
3
|
Martin BR. Complementary Medicine Therapies That May Assist With Weight Loss: A Narrative Review. J Chiropr Med 2019; 18:115-126. [PMID: 31367198 DOI: 10.1016/j.jcm.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/03/2018] [Accepted: 10/28/2018] [Indexed: 10/26/2022] Open
Abstract
Objective The purpose of this study was to review the potential effects of traditional Chinese medicine-which includes acupuncture; electroacupuncture; plum blossom needle hammer; auricular acupuncture; herbs that balance hormones, regulate neurotransmitters, induce sedative effects, and increase thermogenesis; and functional foods that can suppress the appetite-as an adjunct therapy for weight loss. Methods A narrative review of the current literature was performed using searches of MEDLINE and 4 scholarly texts. The inclusion criteria for the review consisted of studies that were performed from 2005 to 2016. Results In general, some traditional Chinese medicine modalities claim to promote weight loss. Acupuncture, electroacupuncture, and herbs aim to reduce stress-related food cravings. These therapeutic approaches aim to downregulate dopamine and leptin levels, suppressing the appetite. Other attributes of these therapies are increasing uncoupling protein-1 activity promoting thermogenesis, which contributes to weight loss. In addition, acupuncture, electroacupuncture, and Cimicifuga racemosa may regulate estrogen, which could attenuate the appetite, assisting in weight-loss programs. Conclusion The literature reviewed includes information that describes how traditional Chinese medicine, herbal medicine, or functional foods as adjunct therapies may be beneficial for weight-loss programs.
Collapse
Affiliation(s)
- Brett R Martin
- Basic Science Department, National University of Health Sciences, Pinellas Park, Florida
| |
Collapse
|
4
|
Li D, Wang R, Huang J, Cai Q, Yang CS, Wan X, Xie Z. Effects and Mechanisms of Tea Regulating Blood Pressure: Evidences and Promises. Nutrients 2019; 11:E1115. [PMID: 31109113 PMCID: PMC6567086 DOI: 10.3390/nu11051115] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases have overtaken cancers as the number one cause of death. Hypertension is the most dangerous factor linked to deaths caused by cardiovascular diseases. Many researchers have reported that tea has anti-hypertensive effects in animals and humans. The aim of this review is to update the information on the anti-hypertensive effects of tea in human interventions and animal studies, and to summarize the underlying mechanisms, based on ex-vivo tissue and cell culture data. During recent years, an increasing number of human population studies have confirmed the beneficial effects of tea on hypertension. However, the optimal dose has not yet been established owing to differences in the extent of hypertension, and complicated social and genetic backgrounds of populations. Therefore, further large-scale investigations with longer terms of observation and tighter controls are needed to define optimal doses in subjects with varying degrees of hypertensive risk factors, and to determine differences in beneficial effects amongst diverse populations. Moreover, data from laboratory studies have shown that tea and its secondary metabolites have important roles in relaxing smooth muscle contraction, enhancing endothelial nitric oxide synthase activity, reducing vascular inflammation, inhibiting rennin activity, and anti-vascular oxidative stress. However, the exact molecular mechanisms of these activities remain to be elucidated.
Collapse
Affiliation(s)
- Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China.
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Ruru Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China.
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Jinbao Huang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China.
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Qingshuang Cai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China.
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Chung S Yang
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China.
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei 230036, China.
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Nejad KH, Dianat M, Sarkaki A, Naseri MKG, Badavi M, Farbood Y. Ellagic acid improves electrocardiogram waves and blood pressure against global cerebral ischemia rat experimental models. Electron Physician 2015; 7:1153-62. [PMID: 26396728 PMCID: PMC4578534 DOI: 10.14661/2015.1153-1162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/25/2015] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Global cerebral ischemia (GCIR) arises in patients that are shown a variety of clinical difficulty including cardiac arrest, asphyxia, and shock. In spite of advances in understanding of the brain, ischemia and protective effects to improve ischemic injury still remain unknown. The aim of our study was to investigate the effect of ellagic acid (EA) pretreatment in the rat models of global cerebral ischemia reperfusion. METHODS This experimental study was conducted in 2014 at the Physiology Research Center of the Ahvaz Jundishapur University of Medical Sciences in Ahvaz, Iran. Adult male Wistar rats (250-300 g) were used in this study. GCIR was induced by bilateral vertebral and common carotid arteries occlusion (4-VO). 32 rats were divided randomly to four groups: 1) So (Sham) received normal saline as vehicle of EA, 2) EA, 3) normal saline + GCIR, and 4) EA + GCIR. After anesthesia (a mix of xylazine and ketamine), animal subjected to 20 minutes of ischemia followed by 30 minutes of reperfusion in related groups. EA (100 mg/kg, dissolved in normal saline) or 1.5 ml/kg normal saline was administered (gavage, 10 days) to the related groups. EEG was recorded from NTS in GCIR treated groups. RESULTS Present data showed that: 1) EEG in GCIR treated groups was flattened; 2) Blood pressure, voltage of QRS and P-R interval were reduced significantly in the ischemic groups compared to before ischemia, and pretreatment with EA prevented this reduction; and 3) MDA level and heart rate was increased by GCIR and pretreatment with EA reduced MDA level and restored the HR to normal level. CONCLUSION Results indicate that global cerebral ischemia-reperfusion impairs certain heart functions and ellagic acid as an antioxidant can restore these parameters. The results of this study suggest the possible utility of ellagic acid in patients with brain stroke.
Collapse
Affiliation(s)
- Khojasteh Hoseiny Nejad
- Ph.D. Student, Abadan Arvand International Division, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahin Dianat
- Faculty Member, Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Faculty Member, Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Kazem Gharib Naseri
- Faculty Member, Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Badavi
- Faculty Member, Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yaghoub Farbood
- Faculty Member, Physiology Research Center and Department of Physiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Layher JW, Poling JS, Ishihara M, Azadi P, Alvarez-Manilla G, Puett D. A Possible Effect of Concentrated Oolong Tea Causing Transient Ischemic Attack-Like Symptoms. ACTA ACUST UNITED AC 2013; 3:2157-2172. [PMID: 24900951 PMCID: PMC4041283 DOI: 10.9734/bjmmr/2013/4703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aims Tea (green, oolong, and black) is the second most widely consumed beverage worldwide, second only to water. Aside from a few reported adverse effects, tea, particularly green tea, appears to be beneficial for human health. In the case described herein, a male experienced several transient ischemic attack-like symptoms immediately following the consumption of a cup of high quality oolong tea. A thorough medical evaluation uncovered no evidence of such an attack and leads to the suggestion of a heretofore unreported response to oolong tea. Presentation of Case A 72-year old male with hypertension and atrial fibrillation, who takes valsartan/hydrochlorothiazide to control hypertension and warfarin to reduce the risk of thrombosis and thromboembolism, presented at the emergency room of a local hospital describing several transient ischemic attack-like symptoms immediately after consuming a cup of oolong tea. His symptoms included presyncope, disequilibrium, bilateral hand parathesias, mild dysphasia, and visual problems (but apparently not presbyopia or amaurosis fugax), all of which had disappeared in approximately two hours after drinking the tea. (Mild presyncope was previously noted by the patient when ingesting a strong green tea.) No unusual features emerged from his physical examination, and his blood work was unremarkable except for elevation of his partial thromboplastin time (39 sec) and prothrombin time (22.5 sec), giving an international reference of 2.0, all consistent with the effects of warfarin. A battery of tests by the emergency room physician, a cardiologist, and a neurologist, e.g. electrocardiogram, brain computerized tomography, 2-dimensional transthoracic echocardiogram, brain magnetic resonance imaging, with and without 20 ml Gadolinium, and a magnetic resonance angiogram, confirmed the earlier diagnosis of atrial fibrillation but disclosed no additional malfunction in his heart. His brain showed no evidence of a prior hemorrhage, and his carotid arteries were clear. Methodology and Results Analysis of the oolong tea by high performance liquid chromatography and mass spectrometry identified the major catechins and two methylxanthines, caffeine and theophylline, as well as other constituents, but there was no evidence of any extraneous chemicals that could lead to the symptoms. Conclusion In view of the rapid onset of symptoms after the consumption of oolong tea, bilateral as opposed to unilateral parathesis, and the absence of any evidence of a hemorrhage or the presence of impurities in the tea, we suggest that the transient ischemic attack-like symptoms could possibly be attributable to one or more components of the oolong tea and was not an atypical magnetic resonance imaging-negative transient ischemic attack.
Collapse
Affiliation(s)
- John W Layher
- Oconee Heart and Vascular Center, St. Mary's Health Care System, Inc., Athens, GA 30606, USA
| | - Jon S Poling
- Athens Neurological Associates, Athens, GA 30606, USA
| | - Mayumi Ishihara
- Division of Analytical Services, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Parastoo Azadi
- Division of Analytical Services, Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - David Puett
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA ; Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|