1
|
Dynamic Evolution of Cardiac Function and Glucose and Lipid Metabolism in Ovariectomized Rats and the Intervention Effect of Erxian Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8090868. [PMID: 36573083 PMCID: PMC9789914 DOI: 10.1155/2022/8090868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/23/2022]
Abstract
Aims Abnormal changes in cardiac function have been reported in menopausal women, but there are few clinical studies on this topic. Erxian decoction (EXD) is a classic prescription that is widely used in the treatment of female menopausal diseases. The purpose of this study was to investigate the dynamic evolution of cardiac function and glucose and lipid metabolism in ovariectomized (OVX) rats and the intervention effect of EXD. Materials and Methods The OVX climacteric rat model was established by bilateral ovariectomy. After successful modeling, the rats were randomly divided into four groups: the sham operation (SHAM) group (equal volumes of purified water), OVX group (equal volumes of purified water), estradiol (E2) group (1.8 × 10-4 g/kg), and EXD group (9 g/kg). Each group of rats was treated for 16 weeks. At the 4th, 8th, 12th, and 16th weeks after treatment, the cardiac function of the rats in each group was evaluated by ultrasound. The coaxial method was used to measure blood pressure (BP). Serum endothelin-1 (ET-1) and angiotensin-2 (Ang II) levels were determined by the enzyme-linked immunosorbent assay (ELISA). The strip method was used to measure fasting blood glucose (FBG). The serum total cholesterol (TC) and triglyceride (TG) levels of rats were measured with the oxidase method. Direct methods were used to measure serum high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C) levels. At week 16 of dosing, serum E2 levels were determined by E2 radioimmunoassay. The myocardium and uterus of the rats in each group were stained with HE (hematoxylin-eosin). The ultrastructure of the rat myocardium was observed by electron microscopy. Results After the 16th week of treatment, the serum E2 level decreased (P < 0.05), and the uterus was atrophied in OVX rats. The cardiac ejection fraction (EF%) decreased at 4 weeks after treatment, and systolic and diastolic function decreased after 12 weeks. After the 16th week, the EF%, which reflects the "pump" function of the heart, decreased significantly (P < 0.05 or P < 0.01). At the 4th, 8th, 12th, and 16th weeks of treatment, the systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean pressure (MBP) of the rats in the OVX group increased with time (P < 0.05 or P < 0.01). The serum ET-1 and Ang II levels of rats in the OVX group increased (P < 0.05 or P < 0.01). In the OVX group, FBG was increased (P < 0.05 or P < 0.01), and blood lipids, especially LDL-C, were significantly increased (P < 0.05 or P < 0.01). After the 16th week of treatment, the myocardial tissue of OVX rats showed obvious pathological changes. EXD significantly increased serum E2 levels (P < 0.01), decreased ET-1 and Ang II levels (P < 0.01), reduced the cardiac function risk factors BP, FBG, and blood lipids, and significantly improved cardiac function and structural changes in OVX rats (P < 0.05 or P < 0.01). Conclusions EXD can improve abnormal cardiac structure and function in OVX rats.
Collapse
|
2
|
G-Protein–Coupled Estrogen Receptor Agonist G1 Improves Diastolic Function and Attenuates Cardiac Renin–Angiotensin System Activation in Estrogen-Deficient Hypertensive Rats. J Cardiovasc Pharmacol 2019; 74:443-452. [DOI: 10.1097/fjc.0000000000000721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
3
|
Medzikovic L, Aryan L, Eghbali M. Connecting sex differences, estrogen signaling, and microRNAs in cardiac fibrosis. J Mol Med (Berl) 2019; 97:1385-1398. [PMID: 31448389 DOI: 10.1007/s00109-019-01833-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
Abstract
Sex differences are evident in the pathophysiology of heart failure (HF). Progression of HF is promoted by cardiac fibrosis and no fibrosis-specific therapies are currently available. The fibrotic response is mediated by cardiac fibroblasts (CFs), and a central event is their phenotypic transition to pro-fibrotic myofibroblasts. These myofibroblasts may arise from various cellular origins including resident CFs and epicardial and endothelial cells. Both female subjects in clinical studies and female animals in experimental studies generally present less cardiac fibrosis compared with males. This difference is at least partially considered attributable to the ovarian hormone 17β-estradiol (E2). E2 signals via estrogen receptors to regulate genes are involved in the fibrotic response and myofibroblast transition. Besides protein-coding genes, E2 also regulates transcription of microRNA that modulate cardiac fibrosis. Sex dimorphism, E2, and miRNAs form multi-level regulatory networks in the pathophysiology of cardiac fibrosis, and the mechanism of these networks is not yet fully deciphered. Therefore, this review is aimed at summarizing current knowledge on sex differences, E2, and estrogen receptors in cardiac fibrosis, emphasizing on microRNAs and myofibroblast origins. KEY MESSAGES: • E2 and ERs regulate cardiac fibroblast function. • E2 and ERs may distinctly affect male and female cardiac fibrosis pathophysiology. • Sex, E2, and miRNAs form multi-level regulatory networks in cardiac fibrosis. • Sex-dimorphic and E2-regulated miRNAs affect mesenchymal transition.
Collapse
Affiliation(s)
- Lejla Medzikovic
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Laila Aryan
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, David Geffen School of Medicine at University of California, Los Angeles, BH-550 CHS, Los Angeles, CA, 90095-7115, USA.
| |
Collapse
|
4
|
Wang H, Sun X, Ahmad S, Su J, Ferrario CM, Groban L. Estrogen modulates the differential expression of cardiac myocyte chymase isoforms and diastolic function. Mol Cell Biochem 2019; 456:85-93. [PMID: 30712071 DOI: 10.1007/s11010-018-03492-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/22/2018] [Indexed: 01/21/2023]
Abstract
Chymases, a family of serine proteases with chymotryptic activity, play a significant role in cardiac angiotensin II (Ang II) formation from its substrate Ang-(1-12) in both human and rodent models. No studies, to date, have assessed the differences in enzymatic activity among these isoforms in Ang II formation, particularly in the cardiomyocyte (CM). Using PCR and DNA sequencing, we demonstrated that MCP-1, MCP-2, MCP-4, and MCP-5 mRNAs are expressed in the CM of both spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). While rMCP-1 and rMCP-5 gene transcripts were higher than that of other isoforms in both rat strains, WKY CM exhibits higher levels of rMCP-1 and rMCP-5 mRNAs compared to the SHR CM. Ovariectomy (OVX) increased the expression of rMCP-1 and rMCP-5 mRNAs in WKY. In SHR, OVX was associated with a blunted increase in rMCP-1 mRNA compared to OVX normotensive WKY. Chymase activity, measured as Ang II formation from Ang-(1-12), significantly correlated with rMCP-1 and rMCP-5 mRNA expression in both rat strains. Both rMCP-1 and rMCP-5 mRNA expressions were positively correlated with progressive diastolic dysfunction (increasing the ratio of early mitral inflow velocity-to-early mitral annular velocity, E/e') and expanding chamber dimensions or increasing left ventricular internal diameter end diastole. These data show rMCP-1 and rMCP-5 as the Ang II forming chymase isoforms participating in the loss of normal cardiac function due to OVX in rodents.
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA. .,Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Jing Su
- Division of Public Health Sciences, Department of Biostatistical Sciences, Wake Forest School of Medicine, Medical Center Blvd, 27157, Winston-Salem, NC, USA
| | - Carlos Maria Ferrario
- Department of Surgery, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.,Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.,Division of Public Health Sciences, Department of Social Sciences and Health Policy, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.,Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| |
Collapse
|
5
|
Groban L, Tran QK, Ferrario CM, Sun X, Cheng CP, Kitzman DW, Wang H, Lindsey SH. Female Heart Health: Is GPER the Missing Link? Front Endocrinol (Lausanne) 2019; 10:919. [PMID: 31993020 PMCID: PMC6970950 DOI: 10.3389/fendo.2019.00919] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
The G Protein-Coupled Estrogen Receptor (GPER) is a novel membrane-bound receptor that mediates non-genomic actions of the primary female sex hormone 17β-estradiol. Studies over the past two decades have elucidated the beneficial actions of this receptor in a number of cardiometabolic diseases. This review will focus specifically on the cardiac actions of GPER, since this receptor is expressed in cardiomyocytes as well as other cells within the heart and most likely contributes to estrogen-induced cardioprotection. Studies outlining the impact of GPER on diastolic function, mitochondrial function, left ventricular stiffness, calcium dynamics, cardiac inflammation, and aortic distensibility are discussed. In addition, recent data using genetic mouse models with global or cardiomyocyte-specific GPER gene deletion are highlighted. Since estrogen loss due to menopause in combination with chronological aging contributes to unique aspects of cardiac dysfunction in women, this receptor may provide novel therapeutic effects. While clinical studies are still required to fully understand the potential for pharmacological targeting of this receptor in postmenopausal women, this review will summarize the evidence gathered thus far on its likely beneficial effects.
Collapse
Affiliation(s)
- Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
- *Correspondence: Leanne Groban
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, United States
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Che Ping Cheng
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Dalane W. Kitzman
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
6
|
Michalson KT, Groban L, Howard TD, Shively CA, Sophonsritsuk A, Appt SE, Cline JM, Clarkson TB, Carr JJ, Kitzman DW, Register TC. Estradiol Treatment Initiated Early After Ovariectomy Regulates Myocardial Gene Expression and Inhibits Diastolic Dysfunction in Female Cynomolgus Monkeys: Potential Roles for Calcium Homeostasis and Extracellular Matrix Remodeling. J Am Heart Assoc 2018; 7:e009769. [PMID: 30571375 PMCID: PMC6404177 DOI: 10.1161/jaha.118.009769] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Background Left ventricular ( LV ) diastolic dysfunction often precedes heart failure with preserved ejection fraction, the dominant form of heart failure in postmenopausal women. The objective of this study was to determine the effect of oral estradiol treatment initiated early after ovariectomy on LV function and myocardial gene expression in female cynomolgus macaques. Methods and Results Monkeys were ovariectomized and randomized to receive placebo (control) or oral estradiol at a human-equivalent dose of 1 mg/day for 8 months. Monkeys then underwent conventional and tissue Doppler imaging to assess cardiac function, followed by transcriptomic and histomorphometric analyses of LV myocardium. Age, body weight, blood pressure, and heart rate were similar between groups. Echocardiographic mitral early and late inflow velocities, mitral annular velocities, and mitral E deceleration slope were higher in estradiol monkeys (all P<0.05), despite similar estimated LV filling pressure. MCP1 (monocyte chemoattractant protein 1) and LV collagen staining were lower in estradiol animals ( P<0.05). Microarray analysis revealed differential myocardial expression of 40 genes (>1.2-fold change; false discovery rate, P<0.05) in estradiol animals relative to controls, which implicated pathways associated with better calcium ion homeostasis and muscle contraction and lower extracellular matrix deposition ( P<0.05). Conclusions Estradiol treatment initiated soon after ovariectomy resulted in enhanced LV diastolic function, and altered myocardial gene expression towards decreased extracellular matrix deposition, improved myocardial contraction, and calcium homeostasis, suggesting that estradiol directly or indirectly modulates the myocardial transcriptome to preserve cardiovascular function.
Collapse
Affiliation(s)
- Kristofer T. Michalson
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Leanne Groban
- Department of AnesthesiologyWake Forest University School of MedicineWinston‐SalemNC
| | - Timothy D. Howard
- Department of BiochemistryWake Forest University School of MedicineWinston‐SalemNC
| | - Carol A. Shively
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Areepan Sophonsritsuk
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Susan E. Appt
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - J. Mark Cline
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - Thomas B. Clarkson
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| | - J. Jeffrey Carr
- Department of RadiologyVanderbilt University School of MedicineNashvilleTN
| | - Dalane W. Kitzman
- Section on CardiologyDepartment of Internal MedicineWake Forest University School of MedicineWinston‐SalemNC
| | - Thomas C. Register
- Section on Comparative MedicineDepartment of PathologyWake Forest University School of MedicineWinston‐SalemNC
| |
Collapse
|
7
|
The protective effect of Er-Xian decoction against myocardial injury in menopausal rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:245. [PMID: 30176849 PMCID: PMC6122672 DOI: 10.1186/s12906-018-2311-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/22/2018] [Indexed: 11/30/2022]
Abstract
Background Er-Xian decoction (EXD), a formula of Chinese medicine, is often used to treat menopausal syndrome in China. The aim of the present study was to explore the potential cardioprotective mechanism of EXD against myocardial injury in an ovariectomy-induced menopausal rat model. Methods We divided the female Wistar rats into ovariectomy group and sham operation group (SHAM group). The ovariectomized (OVX) rats received treatment of vehicle (OVX group), EXD (EXD group) or 17β-estradiol (E2 group). After 12-week of treatment, the level of estradiol in serum was detected using an electrochemiluminescence immunoassay, and electrophysiologic changes in myocardial action potentials (AP) were evaluated using intracellular microelectrode technique. Changes in the histopathology of the left ventricle and the ultrastructure of the cardiomyocytes were observed by hematoxylin and eosin (HE) staining and transmission electronmicroscopy to assess myocardial injury. Microarrays were applied for the evaluation of gene expression profiles in ventricular muscle of the OVX and EXD rats. Further pathway analyses of the differential expression genes were carried out using the Kyoto Encyclopedia of Genes and Genomes (KEGG). And real-time quantitative RT-PCR (qRT-PCR) was used for verification of the key findings. Results The results from electrophysiological and histomorphological observations demonstrated that EXD had a substantial myocardial protective effect. The EXD-treated rats, in comparison with the OVX rats, demonstrated up-regulated expression of 28 genes yet down-regulated expression of 157 genes in the ventricular muscle. The qRT-PCR assay validated all selected differential expression genes. The KEGG pathway analysis showed that the down-regulated genes were relevant to cardiomyopathy and myocardial contractility. EXD could decrease the mRNA expressions of cardiac myosin (Myh7, Myl2) and integrin (Itgb5) in the ventricular myocardium. Conclusion EXD had a protective effect against myocardial injury in OVX rats, and this cardioprotective effect may be associated with modulation of the expression of cardiac myosin or integrin at the mRNA level. Electronic supplementary material The online version of this article (10.1186/s12906-018-2311-9) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Wang H, Sun X, Lin MS, Ferrario CM, Van Remmen H, Groban L. G protein-coupled estrogen receptor (GPER) deficiency induces cardiac remodeling through oxidative stress. Transl Res 2018; 199:39-51. [PMID: 29758174 PMCID: PMC6151279 DOI: 10.1016/j.trsl.2018.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022]
Abstract
Oxidative stress has been implicated in the unfavorable changes in cardiac function and remodeling that occur after ovarian estrogen loss. Using ovariectomized rat models, we previously reported that the cardioprotective actions of estrogen are mediated by the G protein-coupled estrogen receptor (GPER). Here, in 9-month-old, female cardiomyocyte-specific GPER knockout (KO) mice vs sex- and age-matched wild-type (WT) mice, we found increased cardiac oxidative stress and oxidant damage, measured as a decreased ratio of reduced glutathione to oxidized glutathione, increased 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine (8-oxo-DG) staining, and increased expression of oxidative stress-related genes. GPER KO mice also displayed increased heart weight, cardiac collagen deposition, and Doppler-derived filling pressure, and decreased percent fractional shortening and early mitral annular velocity compared with WT controls. Treatment of GPER KO mice for 8 weeks with phosphonium [10-(4,5-dimethoxy-2-methyl 3,6-dioxo-1,4-cyclohexadien-1-yl)decyl] triphenyl-,mesylate (MitoQ), a mitochondria-targeted antioxidant, significantly attenuated these measures of cardiac dysfunction, and MitoQ decreased 8-oxo-DG intensity compared with treatment with an inactive comparator compound, (1-decyl)triphenylphosphonium bromide (P <0.05). A real-time polymerase chain reaction array analysis of 84 oxidative stress and antioxidant defense genes revealed that MitoQ attenuates the increase in NADPH oxidase 4 and prostaglandin-endoperoxide synthase 2 and the decrease in uncoupling protein 3 and glutathione S-transferase kappa 1 seen in GPER KO mice. Our findings suggest that the cardioprotective effects of GPER include an antioxidant role and that targeted strategies to limit oxidative stress after early noncancerous surgical extirpation of ovaries or menopause may help limit alterations in cardiac structure and function related to estrogen loss.
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Marina S Lin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma; Biomedical Research Service, Oklahoma City VA Healthcare System, Oklahoma City, Oklahoma
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina.
| |
Collapse
|
9
|
da Silva JS, Gabriel-Costa D, Wang H, Ahmad S, Sun X, Varagic J, Sudo RT, Ferrario CM, Dell Italia LJ, Sudo GZ, Groban L. Blunting of cardioprotective actions of estrogen in female rodent heart linked to altered expression of cardiac tissue chymase and ACE2. J Renin Angiotensin Aldosterone Syst 2018; 18:1470320317722270. [PMID: 28748720 PMCID: PMC5805468 DOI: 10.1177/1470320317722270] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Diastolic dysfunction develops in response to hypertension and estrogen (E2) loss and is a forerunner to heart failure (HF) in women. The cardiac renin–angiotensin system (RAS) contributes to diastolic dysfunction, but its role with respect to E2 and blood pressure remain unclear. Methods: We compared the effects of ovariectomy (OVX) or sham surgery on the cardiac RAS, left ventricular (LV) structure/function, and systemic/intracardiac pressures of spontaneously hypertensive rats (SHRs: n = 6 intact and 6 OVX) and age-matched Wistar-Kyoto (WKY: n = 5 intact and 4 OVX) controls. Results: WKY rats were more sensitive to OVX than SHRs with respect to worsening of diastolic function, as reflected by increases in Doppler-derived filling pressures (E/e′) and reductions in myocardial relaxation (e′). This pathobiologic response in WKY rats was directly linked to increases in cardiac gene expression and enzymatic activity of chymase and modest reductions in ACE2 activity. No overt changes in cardiac RAS genes or activities were observed in SHRs, but diastolic function was inversely related to ACE2 activity. Conclusion: Endogenous estrogens exert a more significant regulatory role upon biochemical components of the cardiac RAS of WKY versus SHRs, modulating the lusitropic and structural components of its normotensive phenotype.
Collapse
Affiliation(s)
- Jacqueline S da Silva
- 1 Research Program Development of Drugs, Institute of Biomedical Sciences Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniele Gabriel-Costa
- 1 Research Program Development of Drugs, Institute of Biomedical Sciences Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hao Wang
- 2 The Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA.,3 The Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Sarfaraz Ahmad
- 4 The Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Xuming Sun
- 2 The Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Jasmina Varagic
- 4 The Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Roberto T Sudo
- 1 Research Program Development of Drugs, Institute of Biomedical Sciences Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M Ferrario
- 4 The Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina, USA.,5 The Department of Internal Medicine-Nephrology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Louis J Dell Italia
- 6 Division of Cardiovascular Disease, University of Alabama at Birmingham and Department of Veterans Affairs, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama, USA
| | - Gisele-Zapata Sudo
- 1 Research Program Development of Drugs, Institute of Biomedical Sciences Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leanne Groban
- 2 The Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA.,3 The Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| |
Collapse
|
10
|
Wang H, da Silva J, Alencar A, Zapata-Sudo G, Lin MR, Sun X, Ahmad S, Ferrario CM, Groban L. Mast Cell Inhibition Attenuates Cardiac Remodeling and Diastolic Dysfunction in Middle-aged, Ovariectomized Fischer 344 × Brown Norway Rats. J Cardiovasc Pharmacol 2017; 68:49-57. [PMID: 26981683 DOI: 10.1097/fjc.0000000000000385] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The incidence of left ventricular diastolic dysfunction (LVDD) increases in women after menopause, yet the mechanisms are unclear. Because mast cells participate in the pathological processes of various cardiac diseases, we hypothesized that mast cell inhibition would protect against estrogen loss-induced LVDD. The mast cell stabilizer, cromolyn sodium (30 mg·kg·d), or vehicle was administered subcutaneously by osmotic minipump to ovariectomized (OVX) female Fischer 344 × Brown Norway (F344BN) rats starting at 4 weeks after surgery. Eight weeks after OVX, systolic blood pressure increased by 20% in OVX versus sham rats, and this effect was attenuated after 4 weeks of cromolyn treatment. Also, cromolyn mitigated the adverse reductions in myocardial relaxation (e') and increases in left ventricle (LV) filling pressures (E/e'), LV mass, wall thicknesses, and interstitial fibrosis from OVX. Although cardiac mast cell number was increased after OVX, cardiac chymase activity was not overtly altered by estrogen status and tended to decrease by cromolyn. Contrariwise, Ang II content was greater in hearts of OVX versus sham rats, and cromolyn attenuated this effect. Taken together, mast cell inhibition with cromolyn attenuates LV remodeling and LVDD in OVX-Fischer 344 × Brown Norway rats possibly through actions on the heart level and/or through vasodilatory effects at the vascular level.
Collapse
Affiliation(s)
- Hao Wang
- *Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC;†Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC;‡Institute of Biomedical Sciences, Drug Development Program, Federal University of Rio de Janeiro, Brazil;§Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC;¶Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, NC;‖Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC; and**Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, NC
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ahmad S, Sun X, Lin M, Varagic J, Zapata-Sudo G, Ferrario CM, Groban L, Wang H. Blunting of estrogen modulation of cardiac cellular chymase/RAS activity and function in SHR. J Cell Physiol 2017; 233:3330-3342. [PMID: 28888034 DOI: 10.1002/jcp.26179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Abstract
The relatively low efficacy of ACE-inhibitors in the treatment of heart failure in women after estrogen loss may be due to their inability to reach the intracellular sites at which angiotensin (Ang) II is generated and/or the existence of cell-specific mechanisms in which ACE is not the essential processing pathway for Ang II formation. We compared the metabolic pathway for Ang II formation in freshly isolated myocytes (CMs) and non-myocytes (NCMs) in cardiac membranes extracted from hearts of gonadal-intact and ovariectomized (OVX) adult WKY and SHR rats. Plasma Ang II levels were higher in WKY vs. SHR (strain effect: WKY: 62 ± 6 pg/ml vs. SHR: 42 ± 9 pg/ml; p < 0.01), independent of OVX. The enzymatic activities of chymase, ACE, and ACE2 were higher in NCMs versus CMs, irrespective of whether assays were performed in cardiac membranes from WKY or SHR or in the presence or absence of OVX. E2 depletion increased chymase activity, but not ACE activity, in both CMs and NCMs. Moreover, cardiac myocyte chymase activity associated with diastolic function in WKYs and cardiac structure in SHRs while no relevant functional and structural relationships between the classic enzymatic pathway of Ang II formation by ACE or the counter-regulatory Ang-(1-7) forming path from Ang II via ACE2 were apparent. The significance of these novel findings is that targeted cell-specific chymase rather than ACE inhibition may have a greater benefit in the management of HF in women after menopause.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Departments of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xuming Sun
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Marina Lin
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jasmina Varagic
- Departments of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Gisele Zapata-Sudo
- Division of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M Ferrario
- Departments of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Leanne Groban
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hao Wang
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
12
|
Alencar AK, da Silva JS, Lin M, Silva AM, Sun X, Ferrario CM, Cheng C, Sudo RT, Zapata-Sudo G, Wang H, Groban L. Effect of Age, Estrogen Status, and Late-Life GPER Activation on Cardiac Structure and Function in the Fischer344×Brown Norway Female Rat. J Gerontol A Biol Sci Med Sci 2016; 72:152-162. [PMID: 27006078 DOI: 10.1093/gerona/glw045] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/25/2016] [Indexed: 01/08/2023] Open
Abstract
Age-associated changes in cardiac structure and function, together with estrogen loss, contribute to the progression of heart failure with preserved ejection fraction in older women. To investigate the effects of aging and estrogen loss on the development of its precursor, asymptomatic left ventricular diastolic dysfunction, echocardiograms were performed in 10 middle-aged (20 months) and 30 old-aged (30 months) female Fischer344×Brown-Norway rats, 4 and 8 weeks after ovariectomy (OVX) and sham procedures (gonads left intact). The cardioprotective potential of administering chronic G1, the selective agonist to the new G-protein-coupled estrogen receptor (GPER), was further evaluated in old rats (Old-OVX+G1) versus age-matched, vehicle-treated OVX and gonadal intact rats. Advanced age and estrogen loss led to decreases in myocardial relaxation and elevations in filling pressure, in part, due to reductions in phosphorylated phospholamban and increases in cardiac collagen deposition. Eight weeks of G-protein-coupled estrogen receptor activation in Old-OVX+G1 rats reversed the adverse effects of age and estrogen loss on myocardial relaxation through increases in sarcoplasmic reticulum Ca2+ ATPase expression and reductions in interstitial fibrosis. These findings may explain the preponderance of heart failure with preserved ejection fraction in older postmenopausal women and provide a promising, late-life therapeutic target to reverse or halt the progression of left ventricular diastolic dysfunction.
Collapse
Affiliation(s)
- Allan K Alencar
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaqueline S da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina Lin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ananssa M Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carlos M Ferrario
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cheping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Roberto T Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina. .,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,The Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,The Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
13
|
Methanolic Extract of Ceplukan Leaf (Physalis minima L.) Attenuates Ventricular Fibrosis through Inhibition of TNF-α in Ovariectomized Rats. Adv Pharmacol Sci 2016; 2016:2428052. [PMID: 26941790 PMCID: PMC4752972 DOI: 10.1155/2016/2428052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/10/2016] [Indexed: 01/20/2023] Open
Abstract
The increase of heart failure prevalence on menopausal women was correlated with the decrease of estrogen level. The aim of this study is to investigate the effects of ceplukan leaf (Physalis minima L.), which contains phytoestrogen physalin and withanolides, on ventricular TNF-α level and fibrosis in ovariectomized rats. Wistar rats were divided into six groups (control (-); OVX 5: 5-week ovariectomy (OVX); OVX 9: 9-week ovariectomy; treatments I, II, and III: 9-weeks OVX + 4-week ceplukan leaf's methanolic extract doses 500, 1500, and 2500 mg/kgBW, resp.). TNF-α levels were measured with ELISA. Fibrosis was counted as blue colored tissues percentage using Masson's Trichrome staining. This study showed that prolonged hypoestrogen increases ventricular fibrosis (p < 0.05). Ceplukan leaf treatment also resulted in a decrease of ventricular fibrosis and TNF-α level in dose dependent manner compared to without treatment group (p < 0.05). Furthermore, the TNF-α level was normalized in 2500 mg/kgBW Physalis minima L. (p < 0.05) treatment. The reduction of fibrosis positively correlated with TNF-α level (p < 0.05, r = 0.873). Methanolic extract of ceplukan leaf decreases ventricular fibrosis through the inhibition of ventricular TNF-α level in ovariectomized rats.
Collapse
|
14
|
Sivasinprasasn S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Estrogenic Impact on Cardiac Ischemic/Reperfusion Injury. J Cardiovasc Transl Res 2016; 9:23-39. [PMID: 26786980 DOI: 10.1007/s12265-016-9675-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/07/2016] [Indexed: 11/29/2022]
Abstract
The increase in cardiovascular disease and metabolic syndrome incidence following the onset of menopause has highlighted the role of estrogen as a cardiometabolic protective agent. Specifically regarding the heart, estrogen induced an improvement in cardiac function, preserved calcium homeostasis, and inhibited the mitochondrial apoptotic pathway. The beneficial effects of estrogen in relation to cardiac ischemia/reperfusion (I/R) injury, such as reduced infarction and ameliorated post-ischemic recovery, have also been shown. Nevertheless, controversial findings exist and estrogen therapy is reported to be related to a higher rate of thromboembolic events and atrial fibrillation in post-menopausal women. Therefore, greater clarification is needed to evaluate the exact potential of estrogen use in cases of cardiac I/R injury. This article reviews the effects of estrogen, in both acute and chronic treatment, and collates the studies with regard to their in vivo, in vitro, or clinical trial settings in cases of cardiac I/R injury and myocardial infarction.
Collapse
Affiliation(s)
- Sivaporn Sivasinprasasn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
15
|
Zhao Z, Wang H, Lin M, Groban L. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number. Biochem Biophys Res Commun 2015; 459:131-6. [PMID: 25712524 DOI: 10.1016/j.bbrc.2015.02.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/14/2015] [Indexed: 10/24/2022]
Abstract
Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Zhuo Zhao
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009, USA; Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, 105 Jiefang Road, Jinan, 250013, China
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009, USA
| | - Marina Lin
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009, USA
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009, USA; Hypertension and Vascular Disease Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Office of Women in Medicine and Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
16
|
Influence of age and gender on Doppler index of diastolic function in Chinese hypertensive patients. Ir J Med Sci 2014; 184:791-7. [DOI: 10.1007/s11845-014-1173-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 07/05/2014] [Indexed: 10/24/2022]
|
17
|
Cohall DH, Scantlebury-Manning T, James S, Hall K, Ferrario CM. Renin-angiotensin-aldosterone system gender differences in an Afro-Caribbean population. J Renin Angiotensin Aldosterone Syst 2014; 16:539-46. [PMID: 24532825 DOI: 10.1177/1470320314523659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/10/2014] [Indexed: 11/17/2022] Open
Abstract
HYPOTHESIS / INTRODUCTION Prior studies have denoted gender differences in the expression and therapeutic benefits of hypertension treatment and clinical outcomes. This study documents for the first time gender differences in the expression of blood and urine angiotensin peptides in normotensive Afro-Caribbean Barbadians (25 males; 26 females). MATERIALS AND METHODS Participants provided clinical anthropometric measurements, 24h ambulatory blood pressure and urine collections, and a blood sample for measurements of angiotensin peptides. RESULTS Plasma renin activity ranged between 0.00 and 3.00 ng/ml/h. Plasma and urinary Ang II were comparable in both genders, while urinary Ang-(1-7) was greater in females (p<0.05). Urinary Ang-(1-7) and office systolic blood pressure correlated significantly in females only (p<0.01), while plasma Ang-(1-7) and Ang II correlated significantly in both genders (p>0.05). CONCLUSIONS A shift in the balance between Ang II and Ang-(1-7) and their respective pressor and depressor axes might be markers of the cardio-renal protective mechanisms that may be present in females of Afro-Caribbean descent.
Collapse
Affiliation(s)
- Damian H Cohall
- Faculty of Medical Sciences, University of the West Indies, Barbados
| | - Thea Scantlebury-Manning
- Department of Biological Sciences, Faculty of Science and Technology, University of the West Indies, Barbados
| | - Stephen James
- Faculty of Medical Sciences, University of the West Indies, Barbados
| | - Kiana Hall
- Faculty of Medical Sciences, University of the West Indies, Barbados
| | - Carlos M Ferrario
- Departments of Surgery, Internal Medicine-Nephrology, Physiology-Pharmacology, Wake Forest University School of Medicine, Winstoin Salem, NC, USA
| |
Collapse
|
18
|
Zhao Z, Wang H, Jessup JA, Lindsey SH, Chappell MC, Groban L. Role of estrogen in diastolic dysfunction. Am J Physiol Heart Circ Physiol 2014; 306:H628-40. [PMID: 24414072 DOI: 10.1152/ajpheart.00859.2013] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The prevalence of left ventricular diastolic dysfunction (LVDD) sharply increases in women after menopause and may lead to heart failure. While evidence suggests that estrogens protect the premenopausal heart from hypertension and ventricular remodeling, the specific mechanisms involved remain elusive. Moreover, whether there is a protective role of estrogens against cardiovascular disease, and specifically LVDD, continues to be controversial. Clinical and basic science have implicated activation of the renin-angiotensin-aldosterone system (RAAS), linked to the loss of ovarian estrogens, in the pathogenesis of postmenopausal diastolic dysfunction. As a consequence of increased tissue ANG II and low estrogen, a maladaptive nitric oxide synthase (NOS) system produces ROS that contribute to female sex-specific hypertensive heart disease. Recent insights from rodent models that mimic the cardiac phenotype of an estrogen-insufficient or -deficient woman (e.g., premature ovarian failure or postmenopausal), including the ovariectomized congenic mRen2.Lewis female rat, provide evidence showing that estrogen modulates the tissue RAAS and NOS system and related intracellular signaling pathways, in part via the membrane G protein-coupled receptor 30 (GPR30; also called G protein-coupled estrogen receptor 1). Complementing the cardiovascular research in this field, the echocardiographic correlates of LVDD as well as inherent limitations to its use in preclinical rodent studies will be briefly presented. Understanding the roles of estrogen and GPR30, their interactions with the local RAAS and NOS system, and the relationship of each of these to LVDD is necessary to identify new therapeutic targets and alternative treatments for diastolic heart failure that achieve the cardiovascular benefits of estrogen replacement without its side effects and contraindications.
Collapse
Affiliation(s)
- Zhuo Zhao
- Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
19
|
Whaley-Connell AT, Habibi J, Aroor A, Ma L, Hayden MR, Ferrario CM, Demarco VG, Sowers JR. Salt loading exacerbates diastolic dysfunction and cardiac remodeling in young female Ren2 rats. Metabolism 2013; 62:1761-71. [PMID: 24075738 PMCID: PMC3833978 DOI: 10.1016/j.metabol.2013.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Recent data would suggest pre-menopausal insulin resistant women are more prone to diastolic dysfunction than men, yet it is unclear why. We and others have reported that transgenic (mRen2)27 (Ren2) rats overexpressing the murine renin transgene are insulin resistant due to oxidative stress in insulin sensitive tissues. As increased salt intake promotes inflammation and oxidative stress, we hypothesized that excess dietary salt would promote diastolic dysfunction in transgenic females under conditions of excess tissue Ang II and circulating aldosterone levels. MATERIALS/METHODS For this purpose we evaluated cardiac function in young female Ren2 rats or age-matched Sprague-Dawley (SD) littermates exposed to a high (4%) salt or normal rat chow intake for three weeks. RESULTS Compared to SD littermates, at 10weeks of age, female Ren2 rats fed normal chow showed elevations in left ventricular (LV) systolic pressures, LV and cardiomyocyte hypertrophy, and displayed reductions in LV initial filling rate accompanied by increases in 3-nitrotyrosine content as a marker of oxidant stress. Following 3weeks of a salt diet, female Ren2 rats exhibited no further changes in LV systolic pressure, insulin resistance, or markers of hypertrophy but exaggerated increases in type 1 collagen, 3-nitrotryosine content, and diastolic dysfunction. These findings occurred in parallel with ultrastructural findings of pericapillary fibrosis, increased LV remodeling, and mitochondrial biogenesis. CONCLUSION These data suggest that a diet high in salt in hypertensive female Ren2 rats promotes greater oxidative stress, maladaptive LV remodeling, fibrosis, and associated diastolic dysfunction without further changes in LV systolic pressure or hypertrophy.
Collapse
MESH Headings
- Animals
- Collagen/metabolism
- Female
- Fibrosis/pathology
- Fluorescent Antibody Technique
- Heart Failure, Diastolic/chemically induced
- Heart Failure, Diastolic/pathology
- Hemodynamics/drug effects
- Hemodynamics/physiology
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/pathology
- Magnetic Resonance Imaging
- Microscopy, Electron, Transmission
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/physiology
- Myocardium/metabolism
- Myocardium/pathology
- Oxidative Stress/physiology
- Rats
- Rats, Sprague-Dawley
- Rats, Transgenic
- Sodium, Dietary/pharmacology
- Tyrosine/analogs & derivatives
- Tyrosine/metabolism
- Ventricular Function, Left/physiology
Collapse
Affiliation(s)
- Adam T Whaley-Connell
- Research Service Harry S Truman Memorial Veterans Hospital, Research Service, 800 Hospital Dr, Columbia, MO 65212, USA; University of Missouri School of Medicine, Departments of Internal Medicine, Divisions of Nephrology and Hypertension, Columbia, MO, USA; University of Missouri School of Medicine, Departments of Internal Medicine, Division of Endocrinology and Metabolism, Columbia, MO, USA; University of Missouri School of Medicine, Diabetes and Cardiovascular Center, Columbia, MO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang H, Jessup JA, Zhao Z, Da Silva J, Lin M, MacNamara LM, Ahmad S, Chappell MC, Ferrario CM, Groban L. Characterization of the cardiac renin angiotensin system in oophorectomized and estrogen-replete mRen2.Lewis rats. PLoS One 2013; 8:e76992. [PMID: 24204720 PMCID: PMC3808369 DOI: 10.1371/journal.pone.0076992] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/28/2013] [Indexed: 01/19/2023] Open
Abstract
The cardioprotective effects of estrogen are well recognized, but the mechanisms remain poorly understood. Accumulating evidence suggests that the local cardiac renin-angiotensin system (RAS) is involved in the development and progression of cardiac hypertrophy, remodeling, and heart failure. Estrogen attenuates the effects of an activated circulating RAS; however, its role in regulating the cardiac RAS is unclear. Bilateral oophorectomy (OVX; n = 17) or sham-operation (Sham; n = 13) was performed in 4-week-old, female mRen2.Lewis rats. At 11 weeks of age, the rats were randomized and received either 17 β-estradiol (E2, 36 µg/pellet, 60-day release, n = 8) or vehicle (OVX-V, n = 9) for 4 weeks. The rats were sacrificed, and blood and hearts were used to determine protein and/or gene expression of circulating and tissue RAS components. E2 treatment minimized the rise in circulating angiotensin (Ang) II and aldosterone produced by loss of ovarian estrogens. Chronic E2 also attenuated OVX-associated increases in cardiac Ang II, Ang-(1–7) content, chymase gene expression, and mast cell number. Neither OVX nor OVX+E2 altered cardiac expression or activity of renin, angiotensinogen, angiotensin-converting enzyme (ACE), and Ang II type 1 receptor (AT1R). E2 treatment in OVX rats significantly decreased gene expression of MMP-9, ACE2, and Ang-(1–7) mas receptor, in comparison to sham-operated and OVX littermates. E2 treatment appears to inhibit upsurges in cardiac Ang II expression in the OVX-mRen2 rat, possibly by reducing chymase-dependent Ang II formation. Further studies are warranted to determine whether an E2-mediated reduction in cardiac chymase directly contributes to this response in OVX rats.
Collapse
Affiliation(s)
- Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jewell A. Jessup
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Zhuo Zhao
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Jaqueline Da Silva
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Marina Lin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Lindsay M. MacNamara
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Sarfaraz Ahmad
- Department of Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Mark C. Chappell
- Department of Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Carlos M. Ferrario
- Department of Internal Medicine/Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Department of Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|