1
|
Bareiro FAQ, Carnicero JA, Acha AA, Artalejo CR, Jimenez MCG, Mañas LR, García García FJ. Carotid-femoral pulse wave velocity score, an estimator of cognitive performance in the elderly: results from the Toledo Study for Healthy Aging. GeroScience 2024; 46:5711-5723. [PMID: 38776043 PMCID: PMC11493915 DOI: 10.1007/s11357-024-01189-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/30/2024] [Indexed: 10/23/2024] Open
Abstract
Ageing-related changes in the vascular wall influence the function of different organs; for this reason, we assessed how arterial stiffness measured by carotid-femoral pulse wave velocity (cf-PWV) modulates: the basal cognitive performance and the change in cognitive performance over the follow-up time. We developed a prospective, population-based cohort study with 1581 participants aged > 65 years were obtained from the Toledo Study for Healthy Aging. Participants from the second wave (2011-2013) were selected for the cross-sectional analysis. Those who also performed the cognitive assessment in the third wave (2015-2017) were selected for the prospective analysis. Arterial stiffness was evaluated by cf-PWV. Multivariate segmented regression models were used to evaluate the association between cf-PWV scores and basal neuropsychological evaluation scores and change of neuropsychological evaluation scores along follow-up. Cross-sectional analysis showed that as cf-PWV grew within the cf-PWV (5- < 10) category an improvement was observed in 7-min test, free short-term memory, and hole peg test. Furthermore, in the cf-PWV (> 13-18) category a decrease was observed in total short-term memory, free long-term memory, and total long-term memory. Prospective analysis showed a progressive worsening of cognitive function as cf-PWV increases within the cf-PWV (> 13-18) category in 7-min test, object denomination, immediate and short-term memory, and hole peg test, while in the cf-PWV (5- < 10) category, there was observed a decrease in Cumulative Executive Dysfunction Index score and short-term memory. In conclusion, a higher cf-PWV score is associated with worse cognitive performance, and with a worse evolution, reinforcing the need to plan interventions to delay arterial stiffness and its consequences.
Collapse
Affiliation(s)
| | - José A Carnicero
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Madrid, Spain.
- Geriatric Research Group at Getafe University Hospital, Ctra. Toledo Km. 12.5, 28905, Getafe, Spain.
| | - Ana Alfaro Acha
- Servicio de Geriatría, Hospital Universitario de Toledo, Toledo, Spain
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
| | - Cristina Rosado Artalejo
- Servicio de Geriatría, Hospital Universitario de Toledo, Toledo, Spain
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Madrid, Spain
| | | | - Leocadio Rodriguez Mañas
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Madrid, Spain
- Geriatric Department, Hospital Universitario de Getafe, Getafe, Spain
| | - Francisco J García García
- Servicio de Geriatría, Hospital Universitario de Toledo, Toledo, Spain
- Centro de Investigación Biomédica en Red Sobre Fragilidad y Envejecimiento Saludable (CIBERFES), ISCIII, Madrid, Spain
- Instituto de Investigación Sanitaria de Castilla La Mancha (IDISCAM), Toledo, Spain
| |
Collapse
|
2
|
AlGhatrif M, Morrell CH, Fleg JL, Chantler PD, Najjar SS, Becker LC, Ferrucci L, Gerstenblith G, Lakatta EG. Longitudinal decline in peak V̇o 2 with aging in a healthy population is associated with a reduction in peripheral oxygen utilization but not in cardiac output. Am J Physiol Heart Circ Physiol 2024; 327:H509-H517. [PMID: 38874616 PMCID: PMC11442097 DOI: 10.1152/ajpheart.00665.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Aging is associated with a significant decline in aerobic capacity assessed by maximal exercise oxygen consumption (V̇o2max). The relative contributions of the specific V̇o2 components driving this decline, namely cardiac output (CO) and arteriovenous oxygen difference (A - V)O2, remain unclear. We examined this issue by analyzing data from 99 community-dwelling participants (baseline age: 21-96 yr old; average follow-up: 12.6 yr old) from the Baltimore Longitudinal Study of Aging, free of clinical cardiovascular disease. V̇o2peak, a surrogate of V̇o2max, was used to assess aerobic capacity during upright cycle ergometry. Peak exercise left ventricular volumes, heart rate, and CO were estimated using repeated gated cardiac blood pool scans. The Fick equation was used to calculate (A - V)O2diff,peak from COpeak and V̇o2peak. In unadjusted models, V̇o2peak, (A - V)O2diff,peak, and COpeak declined longitudinally over time at steady rates with advancing age. In multiple linear regression models adjusting for baseline values and peak workload, however, steeper declines in V̇o2peak and (A - V)O2diff,peak were observed with advanced entry age but not in COpeak. The association between the declines in V̇o2peak and (A - V)O2diff,peak was stronger among those ≥50 yr old compared with their younger counterparts, but the difference between the two age groups did not reach statistical significance. These findings suggest that age-associated impairment of peripheral oxygen utilization during maximal exercise poses a stronger limitation on peak V̇o2 than that of CO. Future studies examining interventions targeting the structure and function of peripheral muscles and their vasculature to mitigate age-associated declines in (A - V)O2diff are warranted.NEW & NOTEWORTHY The age-associated decline in aerobic exercise performance over an average of 13 yr in community-dwelling healthy individuals is more closely associated with decreased peripheral oxygen utilization rather than decreased cardiac output. This association was more evident in older than younger individuals. These findings suggest that future studies with larger samples examine whether these associations vary across the age range and whether the decline in cardiac output plays a greater role earlier in life. In addition, studies focused on determinants of peripheral oxygen uptake by exercising muscle may guide the selection of preventive strategies designed to maintain physical fitness with advancing age.
Collapse
Affiliation(s)
- Majd AlGhatrif
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States
- Longitudinal Study Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States
| | - Jerome L Fleg
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States
| | - Paul D Chantler
- Department of Exercise Physiology, West Virginia University, Morgantown, West Virginia, United States
| | - Samer S Najjar
- Department of Cardiology, MedStar Heart and Vascular Institute, MedStar Health, Baltimore, Maryland, United States
| | - Lewis C Becker
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Luigi Ferrucci
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States
| | - Gary Gerstenblith
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
3
|
Darvish S, Mahoney SA, Venkatasubramanian R, Rossman MJ, Clayton ZS, Murray KO. Socioeconomic status as a potential mediator of arterial aging in marginalized ethnic and racial groups: current understandings and future directions. J Appl Physiol (1985) 2024; 137:194-222. [PMID: 38813611 PMCID: PMC11389897 DOI: 10.1152/japplphysiol.00188.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the United States. However, disparities in CVD-related morbidity and mortality exist as marginalized racial and ethnic groups are generally at higher risk for CVDs (Black Americans, Indigenous People, South and Southeast Asians, Native Hawaiians, and Pacific Islanders) and/or development of traditional CVD risk factors (groups above plus Hispanics/Latinos) relative to non-Hispanic Whites (NHW). In this comprehensive review, we outline emerging evidence suggesting these groups experience accelerated arterial dysfunction, including vascular endothelial dysfunction and large elastic artery stiffening, a nontraditional CVD risk factor that may predict risk of CVDs in these groups with advancing age. Adverse exposures to social determinants of health (SDOH), specifically lower socioeconomic status (SES), are exacerbated in most of these groups (except South Asians-higher SES) and may be a potential mediator of accelerated arterial aging. SES negatively influences the ability of marginalized racial and ethnic groups to meet aerobic exercise guidelines, the first-line strategy to improve arterial function, due to increased barriers, such as time and financial constraints, lack of motivation, facility access, and health education, to performing conventional aerobic exercise. Thus, identifying alternative interventions to conventional aerobic exercise that 1) overcome these common barriers and 2) target the biological mechanisms of aging to improve arterial function may be an effective, alternative method to aerobic exercise to ameliorate accelerated arterial aging and reduce CVD risk. Importantly, dedicated efforts are needed to assess these strategies in randomized-controlled clinical trials in these marginalized racial and ethnic groups.
Collapse
Affiliation(s)
- Sanna Darvish
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | | | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
4
|
Jones R, Robinson AT, Beach LB, Lindsey ML, Kirabo A, Hinton A, Erlandson KM, Jenkins ND. Exercise to Prevent Accelerated Vascular Aging in People Living With HIV. Circ Res 2024; 134:1607-1635. [PMID: 38781293 PMCID: PMC11126195 DOI: 10.1161/circresaha.124.323975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.
Collapse
Affiliation(s)
- Raymond Jones
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Lauren B. Beach
- Department of Medical Social Sciences, Northwestern, Chicago, IL
- Department of Preventive Medicine, Northwestern, Chicago, IL
| | - Merry L. Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Vanderbilt Institute for Global Health, Nashville, TN
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | - Nathaniel D.M. Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
5
|
Wahl D, Clayton ZS. Peripheral vascular dysfunction and the aging brain. Aging (Albany NY) 2024; 16:9280-9302. [PMID: 38805248 PMCID: PMC11164523 DOI: 10.18632/aging.205877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
Aging is the greatest non-modifiable risk factor for most diseases, including cardiovascular diseases (CVD), which remain the leading cause of mortality worldwide. Robust evidence indicates that CVD are a strong determinant for reduced brain health and all-cause dementia with advancing age. CVD are also closely linked with peripheral and cerebral vascular dysfunction, common contributors to the development and progression of all types of dementia, that are largely driven by excessive levels of oxidative stress (e.g., reactive oxygen species [ROS]). Emerging evidence suggests that several fundamental aging mechanisms (e.g., "hallmarks" of aging), including chronic low-grade inflammation, mitochondrial dysfunction, cellular senescence and deregulated nutrient sensing contribute to excessive ROS production and are common to both peripheral and cerebral vascular dysfunction. Therefore, targeting these mechanisms to reduce ROS-related oxidative stress and improve peripheral and/or cerebral vascular function may be a promising strategy to reduce dementia risk with aging. Investigating how certain lifestyle strategies (e.g., aerobic exercise and diet modulation) and/or select pharmacological agents (natural and synthetic) intersect with aging "hallmarks" to promote peripheral and/or cerebral vascular health represent a viable option for reducing dementia risk with aging. Therefore, the primary purpose of this review is to explore mechanistic links among peripheral vascular dysfunction, cerebral vascular dysfunction, and reduced brain health with aging. Such insight and assessments of non-invasive measures of peripheral and cerebral vascular health with aging might provide a new approach for assessing dementia risk in older adults.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science and Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523, USA
| | - Zachary S. Clayton
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Geriatric Medicine, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Cheng L, Yue H, Zhang H, Liu Q, Du L, Liu X, Xie J, Shen Y. The influence of microenvironment stiffness on endothelial cell fate: Implication for occurrence and progression of atherosclerosis. Life Sci 2023; 334:122233. [PMID: 37918628 DOI: 10.1016/j.lfs.2023.122233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Atherosclerosis, the primary cause of cardiovascular diseases (CVDs), is characterized by phenotypic changes in fibrous proliferation, chronic inflammation and lipid accumulation mediated by vascular endothelial cells (ECs) and vascular smooth muscle cells (SMCs) which are correlated with the stiffening and ectopic remodeling of local extracellular matrix (ECM). The native residents, ECs and SMCs, are not only affected by various chemical factors including inflammatory mediators and chemokines, but also by a range of physical stimuli, such as shear stress and ECM stiffness, presented in the microenvironmental niche. Especially, ECs, as a semi-selective barrier, can sense mechanical forces, respond quickly to changes in mechanical loading and provide context-specific adaptive responses to restore homeostasis. However, blood arteries undergo stiffening and lose their elasticity with age. Reports have shown that the ECM stiffening could influence EC fate by changing the cell adhesion, spreading, proliferation, cell to cell contact, migration and even communication with SMCs. The cell behaviour changes mediated by ECM stiffening are dependent on the activation of a signaling cascade of mechanoperception and mechanotransduction. Although the substantial evidence directly indicates the importance of ECM stiffening on the native ECs, the understanding about this complex interplay is still largely limited. In this review, we systematically summarize the roles of ECM stiffening on the behaviours of endothelial cells and elucidate the underlying details in biological mechanism, aiming to provide the process of how ECs integrate ECM mechanics and the highlights for bioaffinity of tissue-specific engineered scaffolds.
Collapse
Affiliation(s)
- Lin Cheng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hongyan Yue
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Huaiyi Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Qiao Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Lingyu Du
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; JinFeng Laboratory, Chongqing 401329, China.
| |
Collapse
|
7
|
Coombs GB, Al-Khazraji BK, Suskin N, Shoemaker JK. Impact of ischemic heart disease and cardiac rehabilitation on cerebrovascular compliance. J Appl Physiol (1985) 2023; 135:753-762. [PMID: 37616337 DOI: 10.1152/japplphysiol.00654.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
We aimed to determine the influence of ischemic heart disease (IHD) and cardiac rehabilitation (CR) on cerebrovascular compliance index (Ci). Eleven (one female) patients with IHD (mean[SD]: 61[11] yr, 29[4] kg/m2) underwent 6 mo of CR, which consisted of ≥3 sessions/wk of aerobic and resistance training (20-60 min each). Ten (three female) similarly aged controls (CON) were tested at baseline as a comparator group. Middle cerebral artery velocity (MCAv) and mean arterial pressure were monitored continuously using transcranial Doppler ultrasound and finger photoplethysmography, respectively, during a rapid sit-to-stand maneuver. A Windkessel model was used to estimate cerebrovascular Ci every five cardiac cycles for a duration of 30 s. Cerebrovascular resistance was calculated as the quotient of MAP and MCAv. Two-way ANOVAs were used to determine whether cerebrovascular variables differ during postural transitions between groups and after CR. Baseline MCAv was higher in CON versus IHD (P = 0.014) and a time × group interaction was observed (P = 0.045) where MCAv decreased more in CON after standing. Compared with the precondition, CR had no effect on MCAv (condition P = 0.950) but a main effect of time indicated that MCAv decreased from the seated position in both conditions (time P = 0.013). Baseline cerebrovascular Ci was greater in IHD versus CON (P = 0.049) and the peak cerebrovascular Ci during the transition to standing was significantly higher in IHD compared with CON (interaction P = 0.047). CR did not affect cerebrovascular compliance (P = 0.452) and no time-by-condition interaction upon standing was present (P = 0.174). Baseline cerebrovascular Ci is higher in IHD at baseline compared with CON, but 6 mo of CR did not modify the transient increase in cerebrovascular Ci during sit-to-stand maneuvers.NEW & NOTEWORTHY Post-cardiac event cognitive impairment is common and exercise-based rehabilitation may be an effective intervention to mitigate cognitive decline. Microvascular damage due to high blood pressure pulsatility entering the brain is the putative mechanism of vascular dementia. Whether patients with ischemic heart disease exhibit lower cerebrovascular compliance, and if cardiac rehabilitation can improve cerebrovascular compliance is unknown. We observed that patients with ischemic heart disease have paradoxically higher cerebrovascular compliance, which is not affected by cardiac rehabilitation.
Collapse
Affiliation(s)
- Geoff B Coombs
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Baraa K Al-Khazraji
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Neville Suskin
- Division of Cardiology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Liu W, Huang J, He S, Du R, Shi W, Wang Y, Du D, Du Y, Liu Q, Wang Y, Wang G, Yin T. Senescent endothelial cells' response to the degradation of bioresorbable scaffold induces intimal dysfunction accelerating in-stent restenosis. Acta Biomater 2023; 166:266-277. [PMID: 37211308 DOI: 10.1016/j.actbio.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Atherosclerotic cardiovascular disease is a typical age-related disease accompanied by stiffening arteries. We aimed to elucidate the influence of aged arteries on in-stent restenosis (ISR) after the implantation of bioresorbable scaffolds (BRS). Histology and optical coherence tomography showed increased lumen loss and ISR in the aged abdominal aorta of Sprague-Dawley rats, with apparent scaffold degradation and deformation, which induce lower wall shear stress (WSS). This was also the case at the distal end of BRS, where the scaffolds degraded faster, and significant lumen loss was followed by a lower WSS. In addition, early thrombosis, inflammation, and delayed re-endothelialization were presented in the aged arteries. Degradation of BRS causes more senescent cells in the aged vasculature, increasing endothelial cell dysfunction and the risk of ISR. Thus, profoundly understanding the mechanism between BRS and senescent cells may give a meaningful guide for the age-related scaffold design. STATEMENT OF SIGNIFICANCE: The degradation of bioresorbable scaffolds aggravates senescent endothelial cells and a much lower wall shear stress areas in the aged vasculature, lead to intimal dysfunction and increasing in-stent restenosis risk. Early thrombosis and inflammation, as well as delayed re-endothelialization, are presented in the aged vasculature after bioresorbable scaffolds implantation. Age stratification during the clinical evaluation and senolytics in the design of new bioresorbable scaffolds should be considered, especially for old patients.
Collapse
Affiliation(s)
- Wanling Liu
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Junyang Huang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Shicheng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ruolin Du
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Wen Shi
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Yang Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Dingyuan Du
- Department of Traumatology, and Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Yan Du
- Ultrasonography Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400014, China
| | - Qing Liu
- Beijing Advanced Medical Technologies Inc., Beijing 102609, China
| | - Yazhou Wang
- School of Medicine, Chongqing University, Chongqing 400044, PR China.
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center, Bioengineering College of Chongqing University, Chongqing 400030, PR China.
| | - Tieying Yin
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Modern Life Science Experiment Teaching Center, Bioengineering College of Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
9
|
Longtine AG, Venkatasubramanian R, Zigler MC, Lindquist AJ, Mahoney SA, Greenberg NT, VanDongen NS, Ludwig KR, Moreau KL, Seals DR, Clayton ZS. Female C57BL/6N mice are a viable model of aortic aging in women. Am J Physiol Heart Circ Physiol 2023; 324:H893-H904. [PMID: 37115626 PMCID: PMC10202480 DOI: 10.1152/ajpheart.00120.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
The aorta stiffens with aging in both men and women, which predicts cardiovascular mortality. Aortic wall structural and extracellular matrix (ECM) remodeling, induced in part by chronic low-grade inflammation, contribute to aortic stiffening. Male mice are an established model of aortic aging. However, there is little information regarding whether female mice are an appropriate model of aortic aging in women, which we aimed to elucidate in the present study. We assessed two strains of mice and found that in C57BL/6N mice, in vivo aortic stiffness (pulse wave velocity, PWV) was higher with aging in both sexes, whereas in B6D2F1 mice, PWV was higher in old versus young male mice, but not in old versus young female mice. Because the age-related stiffening that occurs in men and women was reflected in male and female C57BL/6N mice, we examined the mechanisms of stiffening in this strain. In both sexes, aortic modulus of elasticity (pin myography) was lower in old mice, occurred in conjunction with and was related to higher plasma levels of the elastin-degrading enzyme matrix metalloproteinase-9 (MMP-9), and was accompanied by higher numbers of aortic elastin breaks and higher abundance of adventitial collagen-1. Plasma levels of the inflammatory cytokines interferon-γ, interleukin 6, and monocyte chemoattractant protein-1 were higher in both sexes of old mice. In conclusion, female C57BL/6N mice exhibit aortic stiffening, reduced modulus of elasticity and structural/ECM remodeling, and associated increases in MMP-9 and systemic inflammation with aging, and thus are an appropriate model of aortic aging in women.NEW & NOTEWORTHY Our study demonstrates that with aging, female C57BL/6N mice exhibit higher in vivo aortic stiffness, reduced modulus of elasticity, aortic wall structural and extracellular matrix remodeling, and elevations in systemic inflammation. These changes are largely reflective of those that occur with aging in women. Thus, female C57BL/6N mice are a viable model of human aortic aging and the utility of these animals should be considered in future biomedical investigations.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | | | - Melanie C Zigler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Alexandra J Lindquist
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nicholas S VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Kerrie L Moreau
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
10
|
Fleenor BS, Carlini NA, Martens CR. Nutraceuticals in the Prevention and Therapeutic Treatment of Cardiovascular and Cerebrovascular Disease. J Cardiopulm Rehabil Prev 2023; 43:162-169. [PMID: 36656154 DOI: 10.1097/hcr.0000000000000773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE This review overviews and highlights arterial stiffening as a key physiological process and target for the prevention and/or lowering of cardio- and cerebrovascular disease (collectively CVD) risk. METHODS We identified nutraceutical approaches from randomized controlled trials and discussed the associated mechanisms by which these compounds lower age-related arterial stiffness. Age-related CVD are the leading cause of mortality in modernized societies. Arterial dysfunction, specifically stiffening of the large elastic arteries during midlife, is a key physiological process resulting in increased CVD risk. Current pharmaceutical approaches for lowering age-related arterial stiffness have limited efficacy, thus highlighting the need to identify novel approaches for lowering arterial stiffness and thereby CVD risk. Lifestyle interventions are a historical first-line approach to prevent and/or lower the adverse arterial stiffening effects observed with aging. Nutraceutical interventions, defined as a food or part of a food providing health benefits, are a nonpharmacological, novel lifestyle approach to lower age-associated arterial stiffness. Therefore, identifying nutraceutical approaches to lower CVD risk is clinically significant. SUMMARY This review provides a basic, yet essential, understanding for emerging nutraceutical strategies for the prevention and therapeutic treatment of CVD.
Collapse
Affiliation(s)
- Bradley S Fleenor
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, Indiana (Dr Fleenor and Mr Carlini); and Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware (Dr Martens)
| | | | | |
Collapse
|
11
|
Murray KO, Mahoney SA, Venkatasubramanian R, Seals DR, Clayton ZS. Aging, aerobic exercise, and cardiovascular health: Barriers, alternative strategies and future directions. Exp Gerontol 2023; 173:112105. [PMID: 36731386 PMCID: PMC10068966 DOI: 10.1016/j.exger.2023.112105] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Age-associated cardiovascular (CV) dysfunction, namely arterial dysfunction, is a key antecedent to the development of CV disease (CVD). Arterial dysfunction with aging is characterized by impaired vascular endothelial function and stiffening of the large elastic arteries, each of which is an independent predictor of CVD. These processes are largely mediated by an excess production of reactive oxygen species (ROS) and an increase in chronic, low-grade inflammation that ultimately leads to a reduction in bioavailability of the vasodilatory molecule nitric oxide. Additionally, there are other fundamental aging mechanisms that may contribute to excessive ROS and inflammation termed the "hallmarks of aging"; these additional mechanisms of arterial dysfunction may represent therapeutic targets for improving CV health with aging. Aerobic exercise is the most well-known and effective intervention to prevent and treat the effects of aging on CV dysfunction. However, the majority of mid-life and older (ML/O) adults do not meet recommended exercise guidelines due to traditional barriers to aerobic exercise, such as reduced leisure time, motivation, or access to fitness facilities. Therefore, it is a biomedical research priority to develop and implement time- and resource-efficient alternative strategies to aerobic exercise to reduce the burden of CVD in ML/O adults. Alternative strategies that mimic or are inspired by aerobic exercise, that target pathways specific to the fundamental mechanisms of aging, represent a promising approach to accomplish this goal.
Collapse
Affiliation(s)
- Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | | | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States of America.
| |
Collapse
|
12
|
Brunt VE, Ikoba AP, Ziemba BP, Ballak DB, Hoischen A, Dinarello CA, Ehringer MA, Seals DR. Circulating interleukin-37 declines with aging in healthy humans: relations to healthspan indicators and IL37 gene SNPs. GeroScience 2023; 45:65-84. [PMID: 35622271 PMCID: PMC9137444 DOI: 10.1007/s11357-022-00587-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/06/2022] [Indexed: 02/03/2023] Open
Abstract
Aging is characterized by declines in physiological function that increase risk of age-associated diseases and limit healthspan, mediated in part by chronic low-grade inflammation. Interleukin (IL)-37 suppresses inflammation in pathophysiological states but has not been studied in the context of aging in otherwise healthy humans. Thus, we investigated associations between IL-37 and markers of healthspan in 271 young (18-39 years; n = 41), middle-aged (40-64 years; n = 162), and older (65 + years; n = 68) adults free of overt clinical disease. After conducting a thorough validation of AdipoGen's IL-37 ELISA, we found that plasma IL-37 is lower in older adults (young: 339 ± 240, middle-aged: 345 ± 234; older: 258 ± 175 pg/mL; P = 0.048), despite elevations in pro-inflammatory markers. As such, the ratios of circulating IL-37 to pro-inflammatory markers were considerably lower in older adults (e.g., IL-37 to C-reactive protein: young, 888 ± 918 vs. older, 337 ± 293; P = 0.02), indicating impaired IL-37 responsiveness to a pro-inflammatory state with aging and consistent with the notion of immunosenescence. These ratios were related to multiple indicators of healthspan, including positively to cardiorespiratory fitness (P < 0.01) and negatively to markers of adiposity, blood pressure, and blood glucose (all P < 0.05). Lastly, we correlated single-nucleotide polymorphisms (SNPs) in the IL37 and ILR8 (the co-receptor for IL-37) genes and found that variants in IL37 SNPs tended to be associated with blood pressure and adiposity (P = 0.08-0.09) but did not explain inter-individual variability in circulating IL-37 concentrations across age (P ≥ 0.23). Overall, our findings provide novel insights into a possible role of IL-37 in biological aging in humans.
Collapse
Affiliation(s)
- Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, CO, 80045, Aurora, USA.
| | - Akpevweoghene P Ikoba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Brian P Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Dov B Ballak
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, CO, 80045, Aurora, USA
| | - Alexander Hoischen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics & Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, CO, 80045, Aurora, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marissa A Ehringer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
13
|
Tyrrell DJ, Chen J, Li BY, Wood SC, Rosebury-Smith W, Remmer HA, Jiang L, Zhang M, Salmon M, Ailawadi G, Yang B, Goldstein DR. Aging Alters the Aortic Proteome in Health and Thoracic Aortic Aneurysm. Arterioscler Thromb Vasc Biol 2022; 42:1060-1076. [PMID: 35510553 PMCID: PMC9339483 DOI: 10.1161/atvbaha.122.317643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Aging enhances most chronic diseases but its impact on human aortic tissue in health and in thoracic aortic aneurysms (TAA) remains unclear. METHODS We employed a human aortic biorepository of healthy specimens (n=17) and those that underwent surgical repair for TAA (n=20). First, we performed proteomics comparing aortas of healthy donors to aneurysmal specimens, in young (ie, <60 years of age) and old (ie, ≥60 years of age) subjects. Second, we measured proteins, via immunoblotting, involved in mitophagy (ie, Parkin) and also mitochondrial-induced inflammatory pathways, specifically TLR (toll-like receptor) 9, STING (stimulator of interferon genes), and IFN (interferon)-β. RESULTS Proteomics revealed that aging transformed the aorta both quantitatively and qualitatively from health to TAA. Whereas young aortas exhibited an enrichment of immunologic processes, older aortas exhibited an enrichment of metabolic processes. Immunoblotting revealed that the expression of Parkin directly correlated to subject age in health but inversely to subject age in TAA. In TAA, but not in health, phosphorylation of STING and the expression of IFN-β was impacted by aging regardless of whether subjects had bicuspid or tricuspid valves. In subjects with bicuspid valves and TAAs, TLR9 expression positively correlated with subject age. Interestingly, whereas phosphorylation of STING was inversely correlated with subject age, IFN-β positively correlated with subject age. CONCLUSIONS Aging transforms the human aortic proteome from health to TAA, leading to a differential regulation of biological processes. Our results suggest that the development of therapies to mitigate vascular diseases including TAA may need to be modified depending on subject age.
Collapse
Affiliation(s)
| | - Judy Chen
- Department of Internal Medicine, University of Michigan, USA,Program on Immunology, University of Michigan, USA
| | - Benjamin Y. Li
- Department of Internal Medicine, University of Michigan, USA
| | - Sherri C. Wood
- Department of Internal Medicine, University of Michigan, USA
| | | | | | - Longtan Jiang
- Department of Cardiac Surgery, University of Michigan, USA
| | - Min Zhang
- Department of Biostatistics, University of Michigan, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, University of Michigan, USA
| | - Gorav Ailawadi
- Department of Cardiac Surgery, University of Michigan, USA
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, USA,Program on Immunology, University of Michigan, USA,Department of Microbiology and Immunology, University of Michigan, USA
| |
Collapse
|
14
|
Clayton ZS, Craighead DH, Darvish S, Coppock M, Ludwig KR, Brunt VE, Seals DR, Rossman MJ. Promoting healthy cardiovascular aging: emerging topics. THE JOURNAL OF CARDIOVASCULAR AGING 2022; 2:43. [PMID: 36337728 PMCID: PMC9632540 DOI: 10.20517/jca.2022.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of age-related cardiovascular (CV) dysfunction increases the risk of CV disease as well as other chronic age-associated disorders, including chronic kidney disease, and Alzheimer's disease and related dementias. Major manifestations of age-associated CV dysfunction that increase disease risk are vascular dysfunction, primarily vascular endothelial dysfunction and arterial stiffening, and elevated systolic blood pressure. Declines in nitric oxide bioavailability secondary to increased oxidative stress and inflammation are established mechanisms of CV dysfunction with aging. Moreover, fundamental mechanisms of aging, termed the "hallmarks of aging" extend to the CV system and, as such, may be considered "hallmarks of CV aging". These mechanisms represent viable therapeutic targets for treating CV dysfunction with aging. Healthy lifestyle behaviors, such as regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies to prevent and/or treat age-associated CV dysfunction. Despite the well-established benefits of these strategies, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related CV dysfunction. Targeting fundamental mechanisms of CV aging with interventions such as time-efficient exercise training, food-derived molecules, termed nutraceuticals, or select synthetic pharmacological agents represents a promising approach. In the present review, we will highlight emerging topics in the field of healthy CV aging with a specific focus on how exercise, nutrition/dietary patterns, nutraceuticals and select synthetic pharmacological compounds may promote healthy CV aging, in part, by targeting the hallmarks of CV aging.
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sanna Darvish
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - McKinley Coppock
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
15
|
Greaney JL, Saunders EFH, Alexander LM. Short-term salicylate treatment improves microvascular endothelium-dependent dilation in young adults with major depressive disorder. Am J Physiol Heart Circ Physiol 2022; 322:H880-H889. [PMID: 35363580 PMCID: PMC9018008 DOI: 10.1152/ajpheart.00643.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS)-mediated reductions in nitric oxide (NO)-dependent dilation are evident in adults with major depressive disorder (MDD); however, the upstream mechanisms remain unclear. Here, we hypothesized that nuclear factor-κB (NF-κB) activation-induced ROS production contributes to microvascular endothelial dysfunction in MDD. Thirteen treatment-naive adults with MDD (6 women; 19-23 yr) and 10 healthy nondepressed adults (HAs; 5 women; 20-25 yr) were tested before and after (open-label design) systemic NF-κB knockdown (nonacetylated salicylate; 3,000-4,500 mg/day × 4 days). Red cell flux (laser Doppler flowmetry) was measured during graded intradermal microdialysis perfusion of the endothelium-dependent agonist acetylcholine (ACh), alone and in combination with NO synthase inhibition [NG-nitro-l-arginine methyl ester (l-NAME)] or ROS scavenging (apocynin). Serum salicylate concentrations following treatment were not different between groups (22.8 ± 7.4 HAs vs. 20.8 ± 4.3 mg/dL MDD; P = 0.46). When compared with HAs, the NO-dependent component of ACh-induced dilation was blunted in adults with MDD before (P = 0.023), but not after (P = 0.27), salsalate treatment. In adults with MDD, the magnitude of improvement in endothelium-dependent dilation following salsalate treatment was inversely related to the degree of functional impairment at baseline (R2 = 0.43; P = 0.025). Localized ROS scavenging improved NO-dependent dilation before (P < 0.01), but not after (P > 0.05), salsalate treatment. Salsalate did not alter systemic concentrations of pro- or anti-inflammatory cytokines (all P > 0.05). These data suggest that NF-κB activation, via increased vascular ROS production, contributes to blunted NO-dependent dilation in young adults with MDD but otherwise free of clinical disease. These data provide the first direct evidence for a mechanistic role of vascular inflammation-associated endothelial dysfunction in human depression.NEW & NOTEWORTHY Our data indicate that short-term treatment with therapeutic doses of the nuclear factor-κB (NF-κB) inhibitor salsalate improved nitric oxide (NO)-mediated endothelium-dependent dilation in adults with major depressive disorder (MDD). In adults with MDD, acute localized scavenging of reactive oxygen species (ROS) with apocynin improved NO-dependent dilation before, but not after, salsalate administration. These data suggest that activation of NF-κB, in part via stimulation of vascular ROS production, contributes to blunted NO-mediated endothelium-dependent dilation in young adults with MDD.
Collapse
Affiliation(s)
- Jody L Greaney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas
| | - Erika F H Saunders
- Department of Psychiatry and Behavior Health, Penn State College of Medicine, Hershey, Pennsylvania
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
16
|
Pierce GL, Coutinho TA, DuBose LE, Donato AJ. Is It Good to Have a Stiff Aorta with Aging? Causes and Consequences. Physiology (Bethesda) 2022; 37:154-173. [PMID: 34779281 PMCID: PMC8977146 DOI: 10.1152/physiol.00035.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
Aortic stiffness increases with advancing age, more than doubling during the human life span, and is a robust predictor of cardiovascular disease (CVD) clinical events independent of traditional risk factors. The aorta increases in diameter and length to accommodate growing body size and cardiac output in youth, but in middle and older age the aorta continues to remodel to a larger diameter, thinning the pool of permanent elastin fibers, increasing intramural wall stress and resulting in the transfer of load bearing onto stiffer collagen fibers. Whereas aortic stiffening in early middle age may be a compensatory mechanism to normalize intramural wall stress and therefore theoretically "good" early in the life span, the negative clinical consequences of accelerated aortic stiffening beyond middle age far outweigh any earlier physiological benefit. Indeed, aortic stiffness and the loss of the "windkessel effect" with advancing age result in elevated pulsatile pressure and flow in downstream microvasculature that is associated with subclinical damage to high-flow, low-resistance organs such as brain, kidney, retina, and heart. The mechanisms of aortic stiffness include alterations in extracellular matrix proteins (collagen deposition, elastin fragmentation), increased arterial tone (oxidative stress and inflammation-related reduced vasodilators and augmented vasoconstrictors; enhanced sympathetic activity), arterial calcification, vascular smooth muscle cell stiffness, and extracellular matrix glycosaminoglycans. Given the rapidly aging population of the United States, aortic stiffening will likely contribute to substantial CVD burden over the next 2-3 decades unless new therapeutic targets and interventions are identified to prevent the potential avalanche of clinical sequelae related to age-related aortic stiffness.
Collapse
Affiliation(s)
- Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Thais A Coutinho
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Divisions of Cardiology and Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Lyndsey E DuBose
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
- Geriatric Research Education and Clinical Center, VA Salt Lake City, Salt Lake City, Utah
| |
Collapse
|
17
|
Stanhewicz AE, Dillon GA, Serviente C, Alexander LM. Acute systemic inhibition of inflammation augments endothelium-dependent dilation in women with a history of preeclamptic pregnancy. Pregnancy Hypertens 2022; 27:81-86. [PMID: 34973597 PMCID: PMC8858855 DOI: 10.1016/j.preghy.2021.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022]
Abstract
Women who have had preeclampsia demonstrate microvascular endothelial-dysfunction, mediated in part by reduced nitric oxide (NO)-dependent dilation. Preeclamptic pregnancies are associated with elevated inflammation, and inhibition of inflammation attenuates endothelial damage in animal models of preeclampsia. However, it is unclear if inhibition of vascular inflammation improves endothelial function in women after a preeclamptic pregnancy. Using the cutaneous microcirculation as a model, we hypothesized that acute systemic inhibition of vascular inflammation (oral salsalate; 1500 mg/twice daily, 4 days) would improve endothelium- and NO-dependent vasodilation in women with a history of preeclampsia (PE) but not in women with a history of uncomplicated pregnancy (HC). Twelve HC (30 ± 1yrs, 10 ± 2 months postpartum) and 10 PE (30 ± 2yrs, 8 ± 2 months postpartum) participated in a double-blind placebo-controlled study. Following each treatment, 2 intradermal microdialysis fibers were placed in the skin of the ventral forearm for graded infusion of acetylcholine (Ach, 10-7-102mM) or Ach + 15 mM L-NAME (NO synthase antagonist). Red blood cell flux was measured over each site by laser-Doppler flowmetry (LDF). Cutaneous vascular conductance was calculated (CVC = LDF/mean arterial pressure) and normalized to maximum (%CVCmax; 28 mM SNP + local heat 43 °C). ACh-induced (77 ± 3 vs. 92 ± 3%CVCmax; p = 0.01) and NO-dependent (20 ± 6 vs. 33 ± 4%; p = 0.02) vasodilation were attenuated in PE compared to HC. Salsalate augmented ACh-induced (95 ± 2%CVCmax; p = 0.002) and NO-dependent (39 ± 3%; p = 0.009) dilation in PE compared to placebo but had no effect in HC (all p > 0.05). Salsalate treatment augmented endothelium-dependent vasodilation via NO-mediated pathways in women who have had preeclampsia, suggesting that inflammatory signaling mediates persistent endothelial dysfunction following preeclampsia.
Collapse
Affiliation(s)
- Anna E. Stanhewicz
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA,Department of Kinesiology, Pennsylvania State University, University Park, PA
| | - Gabrielle A. Dillon
- Department of Kinesiology, Pennsylvania State University, University Park, PA,Center for Healthy Aging, Pennsylvania State University, University Park, PA
| | - Corinna Serviente
- Center for Healthy Aging, Pennsylvania State University, University Park, PA,Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA,Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA
| | - Lacy M. Alexander
- Department of Kinesiology, Pennsylvania State University, University Park, PA,Center for Healthy Aging, Pennsylvania State University, University Park, PA
| |
Collapse
|
18
|
Clayton ZS, Brunt VE, Hutton DA, Casso AG, Ziemba BP, Melov S, Campisi J, Seals DR. Tumor Necrosis Factor Alpha-Mediated Inflammation and Remodeling of the Extracellular Matrix Underlies Aortic Stiffening Induced by the Common Chemotherapeutic Agent Doxorubicin. Hypertension 2021; 77:1581-1590. [PMID: 33719511 DOI: 10.1161/hypertensionaha.120.16759] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Colorado (Z.S.C., V.E.B., D.A.H., A.G.C., B.P.Z., D.R.S.)
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Colorado (Z.S.C., V.E.B., D.A.H., A.G.C., B.P.Z., D.R.S.)
| | - David A Hutton
- Department of Integrative Physiology, University of Colorado Boulder, Colorado (Z.S.C., V.E.B., D.A.H., A.G.C., B.P.Z., D.R.S.)
| | - Abigail G Casso
- Department of Integrative Physiology, University of Colorado Boulder, Colorado (Z.S.C., V.E.B., D.A.H., A.G.C., B.P.Z., D.R.S.)
| | - Brian P Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Colorado (Z.S.C., V.E.B., D.A.H., A.G.C., B.P.Z., D.R.S.)
| | - Simon Melov
- Buck Institute for Research on Aging, Novato, CA (S.M., J.C.)
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA (S.M., J.C.).,Lawrence Berkeley National Laboratory, CA (J.C.)
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Colorado (Z.S.C., V.E.B., D.A.H., A.G.C., B.P.Z., D.R.S.)
| |
Collapse
|
19
|
Heinbockel TC, Craighead DH. Case studies in physiology: Impact of a long-distance hike on the Pacific Crest Trail on arterial function and body composition in a highly fit young male. Physiol Rep 2021; 9:e14767. [PMID: 33661563 PMCID: PMC7931801 DOI: 10.14814/phy2.14767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
The Pacific Crest Trail (PCT) is a 4265‐km hiking trail that extends from the US‐Mexican border to the US‐Canadian border through the mountain ranges of western North America. Individuals who hike the entire length of the trail in one season (4–6 months) perform long daily exercise durations while exposed to extreme environmental temperatures, high altitudes, intense solar radiation, and the consumption of calorie‐rich, nutrient‐poor diets. This case study reports changes in arterial function and body composition in a subject before and after a 112‐day long‐distance hike of the PCT. Brachial artery flow‐mediated dilation, a measure of vascular endothelial function, decreased from: 6.97% to 5.00%. Carotid‐femoral pulse wave velocity, a measure of aortic stiffness, increased from 5.39 to 5.76 m/s. Dual‐energy x‐ray absorptiometry scans detected no major changes in total‐body bone mineral density, fat mass, or lean mass, although there were minor, unfavorable changes in some subregions of the body. It is important for individuals completing a long‐distance hike to be aware of the potential deleterious changes associated with large volumes of exercise and consuming a high‐calorie, low‐quality diet.
Collapse
Affiliation(s)
- Thomas C Heinbockel
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
20
|
Abstract
BACKGROUND Healthy vascular aging (HVA) and cardiorespiratory fitness (CRF) are each independently associated with lower cardiovascular disease-related mortality. It is unknown, however, whether the CRF-related reductions in cardiovascular disease risk are related to HVA. We hypothesized that HVA would be associated with higher CRF in men and women from the Ball State Adult Fitness Longitudinal Lifestyle STudy (BALL ST). METHODS Apparently healthy men and women ≥50 yr of age from the BALL ST cohort (n = 101) who underwent a maximal cardiopulmonary exercise test to assess CRF (V˙O2peak) were included in the study. Participants were divided into either HVA, defined as brachial systolic blood pressure <140/90 mm Hg without taking medications and carotid-femoral pulse wave velocity <7.6 m/sec, or no HVA for subjects with SBP >140/90 mm Hg and/or PWV >7.6 m/sec. RESULTS Participants with HVA had a higher age- and sex-adjusted CRF percentile (62 ± 5 vs 47 ± 3, P < .05), with women having a greater prevalence of HVA than men (36% vs 15%, P < .05). Both carotid-femoral pulse wave velocity (r =-0.27, P < .05) and brachial systolic blood pressure (r =-0.23, P < .05) were independently and inversely associated with CRF for the entire cohort. Men and women with HVA were younger having a lower body fat percentage and higher low-density lipoprotein cholesterol (P < .05, all). CONCLUSIONS These data demonstrate that HVA is associated with higher CRF, which may partially explain the preventative cardioprotective effects of CRF.
Collapse
|
21
|
Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clin Sci (Lond) 2020; 134:1491-1519. [PMID: 32584404 DOI: 10.1042/cs20190559] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide and aging is the primary risk factor for CVD. The development of vascular dysfunction, including endothelial dysfunction and stiffening of the large elastic arteries (i.e., the aorta and carotid arteries), contribute importantly to the age-related increase in CVD risk. Vascular aging is driven in large part by oxidative stress, which reduces bioavailability of nitric oxide and promotes alterations in the extracellular matrix. A key upstream driver of vascular oxidative stress is age-associated mitochondrial dysfunction. This review will focus on vascular mitochondria, mitochondrial dysregulation and mitochondrial reactive oxygen species (ROS) production and discuss current evidence for prevention and treatment of vascular aging via lifestyle and pharmacological strategies that improve mitochondrial health. We will also identify promising areas and important considerations ('research gaps') for future investigation.
Collapse
|
22
|
Dipeptidyl peptidase-4 inhibition improves endothelial senescence by activating AMPK/SIRT1/Nrf2 signaling pathway. Biochem Pharmacol 2020; 177:113951. [PMID: 32251672 DOI: 10.1016/j.bcp.2020.113951] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Dipeptidyl peptidase-4 (DPP4) is elevated in numerous cardiovascular pathological processes and DPP4 inhibition is associated with reduced inflammation and oxidative stress. The aim of this study was to examine the role of DPP4 in endothelial senescence. Sprague-Dawley rats (24 months) were orally administrated saxagliptin (10 mg·kg-1·d-1), a DPP4 inhibitor, for 12 weeks in drinking water. Body weight, heart rate, blood glucose, and blood pressure were measured and vascular histological experiments were performed. In vitro studies were performed using H2O2-induced senescent human umbilical vein endothelial cells. Both in vivo and in vitro studies confirmed the elevation of DPP4 in senescent vascular endothelium, and inhibition or knockdown of DPP4 ameliorated endothelial senescence. In addition, DPP4 inhibition or silencing reduced endothelial oxidative stress levels in aging vasculature and senescent endothelial cells. Moreover, DPP4 inhibition or knockdown normalized the expression and phosphorylation of AMP-activated protein kinase-α (AMPKα) and sirtuin 1 (SIRT1) expression. Furthermore, the beneficial effects of DPP4 inhibition or knockdown on endothelial cell senescence were at least partly dependent on SIRT1 and Nrf2 activation. In conclusion, our study demonstrated that DPP4 inhibition or silencing ameliorated endothelial senescence both in vivo and in vitro by regulating AMPK/SIRT1/Nrf2. DPP4 may be a new therapeutic target to combat endothelial senescence.
Collapse
|
23
|
Sun P, Chen X, Zeng Z, Li S, Wang J, Yu F, Liu S, Li H, Fernhall B. Sex differences in lower-limb arterial stiffness following acute aerobic exercise. Sci Sports 2020. [DOI: 10.1016/j.scispo.2019.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Trott DW, Fadel PJ. Inflammation as a mediator of arterial ageing. Exp Physiol 2019; 104:1455-1471. [PMID: 31325339 DOI: 10.1113/ep087499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review summarizes and synthesizes what is known about the contribution of inflammation to age-related arterial dysfunction. What advances does it highlight? This review details observational evidence for the relationship of age-related inflammation and arterial dysfunction, insight from autoimmune inflammatory diseases and their effects on arterial function, interventional evidence linking inflammation and age-related arterial dysfunction, insight into age-related arterial inflammation from preclinical models and interventions to ameliorate age-related inflammation and arterial dysfunction. ABSTRACT Advanced age is a primary risk factor for cardiovascular disease, the leading cause of death in the industrialized world. Two major components of arterial ageing are stiffening of the large arteries and impaired endothelium-dependent dilatation in multiple vascular beds. These two alterations are major contributors to the development of overt cardiovascular disease. Increasing inflammation with advanced age is likely to play a role in this arterial dysfunction. The purpose of this review is to synthesize what is known about inflammation and its relationship to age-related arterial dysfunction. This review discusses both the initial observational evidence for the relationship of age-related inflammation and arterial dysfunction and the evidence that inflammatory autoimmune diseases are associated with a premature arterial ageing phenotype. We next discuss interventional and mechanistic evidence linking inflammation and age-related arterial dysfunction in older adults. We also attempt to summarize the relevant evidence from preclinical models. Lastly, we discuss interventions in both humans and animals that have been shown to ameliorate age-related arterial inflammation and dysfunction. The available evidence provides a strong basis for the role of inflammation in both large artery stiffening and impairment of endothelium-dependent dilatation; however, the specific inflammatory mediators, the initiating factors and the relative importance of the endothelium, smooth muscle cells, perivascular adipose tissue and immune cells in arterial inflammation are not well understood. With the expansion of the ageing population, ameliorating age-related arterial inflammation represents an important potential strategy for preserving vascular health in the elderly.
Collapse
Affiliation(s)
- Daniel W Trott
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
25
|
Ouyang A, Olver TD, Emter CA, Fleenor BS. Chronic exercise training prevents coronary artery stiffening in aortic-banded miniswine: role of perivascular adipose-derived advanced glycation end products. J Appl Physiol (1985) 2019; 127:816-827. [PMID: 31295062 DOI: 10.1152/japplphysiol.00146.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is associated with increased large conduit artery stiffness and afterload resulting in stiffening of the coronary arteries. Perivascular adipose tissue (PVAT) and advanced glycation end products (AGE) both promote arterial stiffness, yet the mechanisms by which coronary PVAT promotes arterial stiffness and the efficacy of exercise to prevent coronary stiffness are unknown. We hypothesized that both chronic continuous and interval exercise training would prevent coronary PVAT-mediated AGE secretion and arterial stiffness. Yucatan miniature swine were divided into four groups: control-sedentary (CON), aortic banded sedentary-heart failure (HF), aortic banded HF-continuous exercise trained (HF+CONT), and aortic banded HF-interval exercise trained (HF+IT). The left circumflex and right coronary arteries underwent ex vivo mechanical testing, and arterial AGE, elastin, and collagen were assessed. Coronary elastin elastic modulus (EEM) and elastin protein were lower and AGE was increased with HF compared with CON, which was prevented by both HF+CONT and HF+IT. Mouse aortic segments treated with swine coronary PVAT conditioned medium had lower EEM and elastin content and greater AGE secretion and arterial AGE accumulation in HF compared with CON, which was prevented by both HF+CONT and HF+IT. Aminoguanidine (AMG), an AGE inhibitor, prevented the reduction in EEM, arterial elastin content, and AGE accumulation in mouse aortic segments treated with PVAT conditioned medium in the HF group. Our data demonstrate efficacy for chronic continuous and interval exercise to prevent coronary artery stiffness via inhibition of PVAT-derived AGE secretion in a preclinical miniswine model of pressure overload-induced HF.NEW & NOTEWORTHY Our findings show that chronic continuous and interval exercise training regimens prevent coronary artery stiffness associated with inhibition of perivascular adipose tissue-derived advanced glycation end products in a translational pressure overload-induced heart failure model potentially providing an effective therapeutic option for heart failure patients.
Collapse
Affiliation(s)
- An Ouyang
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky
| | - T Dylan Olver
- Department of Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Craig A Emter
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri
| | - Bradley S Fleenor
- Human Performance Laboratory, School of Kinesiology, Ball State University, Muncie, Indiana
| |
Collapse
|
26
|
Rossman MJ, LaRocca TJ, Martens CR, Seals DR. Healthy lifestyle-based approaches for successful vascular aging. J Appl Physiol (1985) 2018; 125:1888-1900. [PMID: 30212305 PMCID: PMC6842891 DOI: 10.1152/japplphysiol.00521.2018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/23/2018] [Accepted: 09/09/2018] [Indexed: 12/19/2022] Open
Abstract
This review summarizes a presentation given at the 2016 Gerontological Society of America Annual Meeting as part of the Vascular Aging Workshop. The development of age-related vascular dysfunction increases the risk of cardiovascular disease as well as other chronic age-associated disorders, including chronic kidney disease and Alzheimer's disease. Healthy lifestyle behaviors, most notably regular aerobic exercise and certain dietary patterns, are considered "first-line" strategies for the prevention and/or treatment of vascular dysfunction with aging. Despite the well-established benefits of these strategies, however, many older adults do not meet the recommended guidelines for exercise or consume a healthy diet. Therefore, it is important to establish alternative and/or complementary evidence-based approaches to prevent or reverse age-related vascular dysfunction. Time-efficient forms of exercise training, hormetic exposure to mild environmental stress, fasting "mimicking" dietary paradigms, and nutraceutical/pharmaceutical approaches to favorably modulate cellular and molecular pathways activated by exercise and healthy dietary patterns may hold promise as such alternative approaches. Determining the efficacy of these novel strategies is important to provide alternatives for adults with low adherence to conventional healthy lifestyle practices for healthy vascular aging.
Collapse
Affiliation(s)
- Matthew J Rossman
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Christopher R Martens
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado-Boulder , Boulder, Colorado
| |
Collapse
|
27
|
Abstract
Advancing age promotes cardiovascular disease (CVD), the leading cause of death in the United States and many developed nations. Two major age-related arterial phenotypes, large elastic artery stiffening and endothelial dysfunction, are independent predictors of future CVD diagnosis and likely are responsible for the development of CVD in older adults. Not limited to traditional CVD, these age-related changes in the vasculature also contribute to other age-related diseases that influence mammalian health span and potential life span. This review explores mechanisms that influence age-related large elastic artery stiffening and endothelial dysfunction at the tissue level via inflammation and oxidative stress and at the cellular level via Klotho and energy-sensing pathways (AMPK [AMP-activated protein kinase], SIRT [sirtuins], and mTOR [mammalian target of rapamycin]). We also discuss how long-term calorie restriction-a health span- and life span-extending intervention-can prevent many of these age-related vascular phenotypes through the prevention of deleterious alterations in these mechanisms. Lastly, we discuss emerging novel mechanisms of vascular aging, including senescence and genomic instability within cells of the vasculature. As the population of older adults steadily expands, elucidating the cellular and molecular mechanisms of vascular dysfunction with age is critical to better direct appropriate and measured strategies that use pharmacological and lifestyle interventions to reduce risk of CVD within this population.
Collapse
Affiliation(s)
- Anthony J. Donato
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Daniel R. Machin
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Lisa A. Lesniewski
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| |
Collapse
|
28
|
Trott DW, Henson GD, Ho MHT, Allison SA, Lesniewski LA, Donato AJ. Age-related arterial immune cell infiltration in mice is attenuated by caloric restriction or voluntary exercise. Exp Gerontol 2018; 109:99-107. [PMID: 28012941 PMCID: PMC5481497 DOI: 10.1016/j.exger.2016.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
Abstract
Age-related arterial inflammation is associated with dysfunction of the arteries and increased risk for cardiovascular disease. To determine if aging increases arterial immune cell infiltration as well as the populations of immune cells principally involved, we tested the hypothesis that large elastic and resistance arteries in old mice would exhibit increased immune cell infiltration compared to young controls. Additionally, we hypothesized that vasoprotective lifestyle interventions such as lifelong caloric restriction or 8weeks of voluntary wheel running would attenuate age-related arterial immune cell infiltration. The aorta and mesenteric vasculature with surrounding perivascular adipose was excised from young normal chow (YNC, 4-6months, n=10), old normal chow (ONC, 28-29months, n=11), old caloric restricted (OCR, 28-29months, n=9), and old voluntary running (OVR, 28-29months, n=5) mice and digested to a single cell suspension. The cells were then labeled with antibodies against CD45 (total leukocytes), CD3 (pan T cells), CD4 (T helper cells), CD8 (cytotoxic T cells), CD19 (B cells), CD11b, and F4/80 (macrophages) and analyzed by flow cytometry. Total leukocytes, T cells (both CD4+ and CD8+ subsets), B cells, and macrophages in both aorta and mesentery were all 5- to 6-fold greater in ONC compared to YNC. Age-related increases in T cell (both CD4+ and CD8+), B cell, and macrophage infiltration in aorta were abolished in OCR mice. OVR mice exhibited 50% lower aortic T cell and normalized macrophage infiltration. B cell infiltration was not affected by VR. Age-related mesenteric CD8+ T cell and macrophage infiltration was normalized in OCR and OVR mice compared to young mice, whereas B cell infiltration was normalized by CR but not VR. Splenic CD4+ T cells from ONC mice exhibited a 3-fold increase in gene expression for the T helper (Th) 1 transcription factor, Tbet, and a 4-fold increase in FoxP3, a T regulatory cell transcription factor, compared to YNC. Splenic B cells and mesenteric macrophages from old mice exhibited decreased proinflammatory cytokine gene expression regardless of treatment group. These results demonstrate that aging is associated with infiltration of immune cells around both the large-elastic and resistance arteries and that the vasoprotective lifestyle interventions, CR and VR, can ameliorate age-related arterial immune cell infiltration.
Collapse
Affiliation(s)
- Daniel W Trott
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.
| | - Grant D Henson
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Mi H T Ho
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Sheilah A Allison
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center,Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Anthony J Donato
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center,Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Biochemistry,University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
29
|
Ogola BO, Zimmerman MA, Clark GL, Abshire CM, Gentry KM, Miller KS, Lindsey SH. New insights into arterial stiffening: does sex matter? Am J Physiol Heart Circ Physiol 2018; 315:H1073-H1087. [PMID: 30028199 DOI: 10.1152/ajpheart.00132.2018] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review discusses sexual dimorphism in arterial stiffening, disease pathology interactions, and the influence of sex on mechanisms and pathways. Arterial stiffness predicts cardiovascular mortality independent of blood pressure. Patients with increased arterial stiffness have a 48% higher risk for developing cardiovascular disease. Like other cardiovascular pathologies, arterial stiffness is sexually dimorphic. Young women have lower stiffness than aged-matched men, but this sex difference reverses during normal aging. Estrogen therapy does not attenuate progressive stiffening in postmenopausal women, indicating that currently prescribed drugs do not confer protection. Although remodeling of large arteries is a protective adaptation to higher wall stress, arterial stiffening increases afterload to the left ventricle and transmits higher pulsatile pressure to smaller arteries and target organs. Moreover, an increase in aortic stiffness may precede or exacerbate hypertension, particularly during aging. Additional studies are needed to elucidate the mechanisms by which females are protected from arterial stiffness to provide insight into its mechanisms and, ultimately, therapeutic targets for treating this pathology.
Collapse
Affiliation(s)
- Benard O Ogola
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | | | - Gabrielle L Clark
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Caleb M Abshire
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | - Kaylee M Gentry
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| | - Kristin S Miller
- Department of Biomedical Engineering, Tulane University , New Orleans, Louisiana
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University , New Orleans, Louisiana
| |
Collapse
|
30
|
Scalzo RL, Knaub LA, Hull SE, Keller AC, Hunter K, Walker LA, Reusch JEB. Glucagon-like peptide-1 receptor antagonism impairs basal exercise capacity and vascular adaptation to aerobic exercise training in rats. Physiol Rep 2018; 6:e13754. [PMID: 29984491 PMCID: PMC6036104 DOI: 10.14814/phy2.13754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/18/2022] Open
Abstract
Cardiorespiratory fitness (CRF) inversely predicts cardiovascular (CV) mortality and CRF is impaired in people with type 2 diabetes (T2D). Aerobic exercise training (ET) improves CRF and is associated with decreased risk of premature death in healthy and diseased populations. Understanding the mechanisms contributing to ET adaptation may identify targets for reducing CV mortality of relevance to people with T2D. The antihyperglycemic hormone glucagon-like peptide-1 (GLP-1) influences many of the same pathways as exercise and may contribute to CV adaptation to ET. We hypothesized that GLP-1 is necessary for adaptation to ET. Twelve-week-old male Wistar rats were randomized (n = 8-12/group) to receive PBS or GLP-1 receptor antagonist (exendin 9-39 (Ex(9-39)) via osmotic pump for 4 weeks ± ET. CRF was greater with ET (P < 0.01). Ex(9-39) treatment blunted CRF in both sedentary and ET rats (P < 0.001). Ex(9-39) attenuated acetylcholine-mediated vasodilation, while this response was maintained with Ex(9-39)+ET (P = 0.04). Aortic stiffness was greater with Ex(9-39) (P = 0.057) and was made worse when Ex(9-39) was combined with ET (P = 0.004). Ex vivo aortic vasoconstriction with potassium and phenylephrine was lower with Ex(9-39) (P < 0.0001). Carotid strain improved with PBS + ET but did not change in the Ex(9-39) rats with ET (P < 0.0001). Left ventricular mitochondrial respiration was elevated with Ex(9-39) (P < 0.02). GLP-1 receptor antagonism impairs CRF with and without ET, attenuates the vascular adaptation to ET, and elevates cardiac mitochondrial respiration. These data suggest that GLP-1 is integral to the adaptive vascular response to ET.
Collapse
Affiliation(s)
- Rebecca L. Scalzo
- Division of EndocrinologyUniversity of Colorado School of MedicineAuroraColorado
| | - Leslie A. Knaub
- Division of EndocrinologyUniversity of Colorado School of MedicineAuroraColorado
| | - Sara E. Hull
- Division of EndocrinologyUniversity of Colorado School of MedicineAuroraColorado
| | - Amy C. Keller
- Division of EndocrinologyUniversity of Colorado School of MedicineAuroraColorado
- Department of MedicineDenver VA Medical CenterUniversity of Colorado School of MedicineAuroraColorado
| | - Kendall Hunter
- Division of BioengineeringUniversity of Colorado School of MedicineAuroraColorado
| | - Lori A. Walker
- Division of CardiologyUniversity of Colorado School of MedicineAuroraColorado
| | - Jane E. B. Reusch
- Division of EndocrinologyUniversity of Colorado School of MedicineAuroraColorado
- Department of MedicineDenver VA Medical CenterUniversity of Colorado School of MedicineAuroraColorado
| |
Collapse
|
31
|
Fleenor BS, Ouyang A, Olver TD, Hiemstra JA, Cobb MS, Minervini G, Emter CA. Saxagliptin Prevents Increased Coronary Vascular Stiffness in Aortic-Banded Mini Swine. Hypertension 2018; 72:466-475. [PMID: 29891647 DOI: 10.1161/hypertensionaha.118.10993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/25/2018] [Accepted: 05/14/2018] [Indexed: 01/09/2023]
Abstract
Increased peripheral conduit artery stiffness has been shown in patients with heart failure (HF) with preserved ejection fraction. However, it is unknown whether this phenomenon extends to the coronary vasculature. HF with preserved ejection fraction may be driven, in part, by coronary inflammation, and inhibition of the enzyme DPP-4 (dipeptidyl-peptidase 4) reduces inflammation and oxidative stress. The purpose of this study was to determine the effect of saxagliptin-a DPP-4 inhibitor-on coronary stiffness in aortic-banded mini swine. We hypothesized saxagliptin would prevent increased coronary artery stiffness in a translational swine model with cardiac features of HF with preserved ejection fraction by inhibiting perivascular adipose tissue inflammation. Yucatan mini swine were divided into 3 groups: control, aortic-banded untreated HF, and aortic-banded saxagliptin-treated HF. Ex vivo mechanical testing was performed on the left circumflex and right coronary arteries, and advanced glycation end product, NF-κB (nuclear factor-κB), and nitrotyrosine levels were measured. An increase in the coronary elastic modulus of HF animals was associated with increased vascular advanced glycation end products, NF-κB, and nitrotyrosine levels compared with control and prevented by saxagliptin treatment. Aortas from healthy mice were treated with media from swine perivascular adipose tissue culture to assess its role on vascular stiffening. Conditioned media from HF and saxagliptin-treated HF animals increased mouse aortic stiffness; however, only perivascular adipose tissue from the HF group showed increased advanced glycation end products and NF-κB levels. In conclusion, our data show increased coronary conduit vascular stiffness was prevented by saxagliptin and associated with decreased advanced glycation end products, NF-κB, and nitrotyrosine levels in a swine model with potential relevance to HF with preserved ejection fraction.
Collapse
Affiliation(s)
- Bradley S Fleenor
- From the Human Performance Laboratory, School of Kinesiology, Ball State University, Muncie, IN (B.S.F.)
| | - An Ouyang
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington (A.O.)
| | - T Dylan Olver
- Department of Biomedical Science, University of Missouri, Columbia (T.D.O., J.A.H., M.S.C., C.A.E.)
| | - Jessica A Hiemstra
- Department of Biomedical Science, University of Missouri, Columbia (T.D.O., J.A.H., M.S.C., C.A.E.)
| | - Melissa S Cobb
- Department of Biomedical Science, University of Missouri, Columbia (T.D.O., J.A.H., M.S.C., C.A.E.)
| | | | - Craig A Emter
- Department of Biomedical Science, University of Missouri, Columbia (T.D.O., J.A.H., M.S.C., C.A.E.)
| |
Collapse
|
32
|
Perissiou M, Bailey TG, Windsor M, Nam MCY, Greaves K, Leicht AS, Golledge J, Askew CD. Effects of exercise intensity and cardiorespiratory fitness on the acute response of arterial stiffness to exercise in older adults. Eur J Appl Physiol 2018; 118:1673-1688. [PMID: 29850932 DOI: 10.1007/s00421-018-3900-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/23/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE Increased arterial stiffness is observed with ageing and in individuals with low cardiorespiratory fitness ([Formula: see text]O2peak), and associated with cardiovascular risk. Following an exercise bout, transient arterial stiffness reductions offer short-term benefit, but may depend on exercise intensity. This study assessed the effects of exercise intensity on post-exercise arterial stiffness in older adults with varying fitness levels. METHODS Fifty-one older adults (72 ± 5 years) were stratified into fitness tertiles ([Formula: see text]O2peak: low-, 22.3 ± 3.1; mid-, 27.5 ± 2.4 and high-fit 36.3 ± 6.5 mL kg-1 min-1). In a randomised order, participants underwent control (no-exercise), moderate-intensity continuous exercise (40% of peak power output; PPO), and higher-intensity interval exercise (70% of PPO) protocols. Pulse wave velocity (PWV), augmentation index (AIx75) and reflection magnitude (RM) were assessed at rest and during 90 min of recovery following each protocol. RESULTS After control, delta PWV increased over time (P < 0.001) and delta RM was unchanged. After higher-intensity interval exercise, delta PWV (P < 0.001) and delta RM (P < 0.001) were lower to control in all fitness groups. After moderate-intensity continuous exercise, delta PWV was not different from control in low-fit adults (P = 0.057), but was lower in the mid- and higher-fit older adults. Post-exercise AIx75 was higher to control in all fitness groups (P = 0.001). CONCLUSIONS In older adults, PWV increases during seated rest and this response is attenuated after higher-intensity interval exercise, regardless of fitness level. This attenuation was also observed after moderate-intensity continuous exercise in adults with higher, but not lower fitness levels. Submaximal exercise reveals differences in the arterial stiffness responses between older adults with higher and lower cardiorespiratory fitness.
Collapse
Affiliation(s)
- Maria Perissiou
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Locked bag 4, Maroochydore DC, Sunshine Coast, QLD, Australia
| | - Tom G Bailey
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Locked bag 4, Maroochydore DC, Sunshine Coast, QLD, Australia.,Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mark Windsor
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Locked bag 4, Maroochydore DC, Sunshine Coast, QLD, Australia
| | - Michael Chi Yuan Nam
- Sunshine Coast University Hospital, Sunshine Coast Hospital and Health Service, Birtinya, Sunshine Coast, Australia
| | - Kim Greaves
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Locked bag 4, Maroochydore DC, Sunshine Coast, QLD, Australia.,Sunshine Coast University Hospital, Sunshine Coast Hospital and Health Service, Birtinya, Sunshine Coast, Australia
| | - Anthony S Leicht
- Sport and Exercise Science, James Cook University, Townsville, QLD, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, QLD, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, Australia
| | - Christopher D Askew
- VasoActive Research Group, School of Health and Sport Sciences, University of the Sunshine Coast, Locked bag 4, Maroochydore DC, Sunshine Coast, QLD, Australia.
| |
Collapse
|
33
|
Gogulamudi VR, Cai J, Lesniewski LA. Reversing age-associated arterial dysfunction: insight from preclinical models. J Appl Physiol (1985) 2018; 125:1860-1870. [PMID: 29745797 DOI: 10.1152/japplphysiol.00086.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading causes of death in the United States, and advancing age is a primary risk factor. Impaired endothelium-dependent dilation and increased stiffening of the arteries with aging are independent predictors of CVD. Increased tissue and systemic oxidative stress and inflammation underlie this age-associated arterial dysfunction. Calorie restriction (CR) is the most powerful intervention known to increase life span and improve age-related phenotypes, including arterial dysfunction. However, the translatability of long-term CR to clinical populations is limited, stimulating interest in the pursuit of pharmacological CR mimetics to reproduce the beneficial effects of CR. The energy-sensing pathways, mammalian target of rapamycin, AMPK, and sirtuin-1 have all been implicated in the beneficial effects of CR on longevity and/or physiological function and, as such, have emerged as potential targets for therapeutic intervention as CR mimetics. Although manipulation of each of these pathways has CR-like benefits on arterial function, the magnitude and/or mechanisms can be disparate from that of CR. Nevertheless, targeting these pathways in older individuals may provide some benefits against arterial dysfunction and CVD. The goal of this review is to provide a brief discussion of the mechanisms and pathways underlying age-associated dysfunction in large arteries, explain how these are impacted by CR, and to present the available evidence, suggesting that targets for energy-sensing pathways may act as vascular CR mimetics.
Collapse
Affiliation(s)
| | - Jinjin Cai
- Department of Internal Medicine-Division of Geriatrics, University of Utah , Salt Lake City, Utah
| | - Lisa A Lesniewski
- Department of Internal Medicine-Division of Geriatrics, University of Utah , Salt Lake City, Utah.,Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
34
|
Nowak KL, Farmer H, Cadnapaphornchai MA, Gitomer B, Chonchol M. Vascular dysfunction in children and young adults with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 2018; 32:342-347. [PMID: 28186577 DOI: 10.1093/ndt/gfw013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Adults with autosomal dominant polycystic kidney disease (ADPKD) exhibit vascular dysfunction, as evidenced by impaired endothelium-dependent dilation (EDD) and stiffening of the large elastic arteries. However, it is unknown whether vascular dysfunction begins earlier in the course of ADPKD. The aim of the study was to assess EDD and arterial stiffness in children and young adults with ADPKD. Methods Fifteen children and young adults 6–22 years of age with ADPKD and normal renal function were prospectively recruited for participation in a cross-sectional study. Fifteen healthy controls were enrolled to match cases for age and sex. The primary outcomes were EDD, measured as brachial artery flow-mediated dilation (FMDBA), and arterial stiffness, measured as carotid-femoral pulse wave velocity (CFPWV). Results ADPKD cases were more likely to be taking an angiotensin-converting enzyme inhibitor, but otherwise did not differ from controls in clinical characteristics, including blood pressure. FMDBA was 25% lower in children and young adults with ADPKD (7.7 ± 0.9%, mean ± SE) when compared with matched controls (10.2 ± 0.8%) (P < 0.05). CFPWV was 14% higher in children and young adults with ADPKD (544 ± 23 cm/s) when compared with matched controls (478 ± 17 cm/s) (P < 0.05). Secondary measures of arterial stiffness, carotid augmentation index and carotid systolic blood pressure were also increased in cases when compared with controls (P < 0.05). Conclusions Impaired EDD and increased arterial stiffness, important independent predictors of future cardiovascular events and mortality, are evident very early in the course of ADPKD in the presence of normal kidney function. Novel interventions to reduce vascular dysfunction in children and young adults with ADPKD should be evaluated, as childhood and young adulthood may represent a critical therapeutic window to reduce future cardiovascular risk in patients with ADPKD.
Collapse
Affiliation(s)
- Kristen L Nowak
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Heather Farmer
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Melissa A Cadnapaphornchai
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Berenice Gitomer
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michel Chonchol
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
35
|
Sugawara J, Tomoto T, Noda N, Matsukura S, Tsukagoshi K, Hayashi K, Hieda M, Maeda S. Effects of endothelin-related gene polymorphisms and aerobic exercise habit on age-related arterial stiffening: a 10-yr longitudinal study. J Appl Physiol (1985) 2017; 124:312-320. [PMID: 29097630 DOI: 10.1152/japplphysiol.00697.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased arterial stiffness has emerged as a strong predictor of future cardiovascular events and all-cause mortality. The aim of this study was to elucidate influences of endothelin (ET)-related genetic polymorphisms and regular physical activity on age-related arterial stiffening through a 10-yr longitudinal study. A decadal change in brachial-ankle pulse wave velocity (baPWV), an index of arterial stiffness, was evaluated retrospectively among 92 volunteers (63 ± 14 yr, 51 men). The targeted single-nucleotide polymorphisms were ET-A receptor SNP rs5333 (ET-A) and ET-B receptor SNP rs5351 (ET-B). Subjects with either ET-A TC or CC genotypes exhibited significantly greater increases in baPWV (+15.3 ± 11.7 and +16.6 ± 15.7%/dec, respectively) than ET-A TT genotype holders (+9.2 ± 9.0%/dec), whereas subjects with the ET-B GG genotype showed a significantly greater increase in baPWV (+17.7 ± 14.1%/dec) than other ET-B genotype holders (AA: +9.5 ± 10.0%/dec; AG: +11.2 ± 9.6%/dec). The combination of these ET-related genetic risks was associated with a 2.4 times greater decadal increase in baPWV compared with no genetic risk (+8.1 ± 8.4 vs. 19.5 ± 16.0%/dec). In contrast, individuals engaging in >15 METs·h/wk of aerobic exercise showed substantially smaller increases in baPWV (+5.0 ± 9.7%/dec) compared with their physically inactive peers (approximately +13%/dec). These differences remained significant after adjusting for confounding factors, including baseline baPWV and ET-related genotype risk. Our current longitudinal study found that ET-related gene polymorphisms contribute to diverse age-related changes in arterial stiffness, and that regular sufficient aerobic exercise attenuates the age-related arterial stiffening independently of ET-related gene polymorphisms. NEW & NOTEWORTHY This 10-yr longitudinal study suggests that endothelin-related gene polymorphisms contribute to divergent increases in arterial stiffness with advancing age, whereas regular sufficient aerobic exercise attenuates age-related arterial stiffening independently of ET-related gene polymorphisms. This notion partly supports prevailing evidence that regular aerobic exercise contributes to a lower incidence of cardiovascular disease.
Collapse
Affiliation(s)
- Jun Sugawara
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| | - Tsubasa Tomoto
- Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| | - Naohiro Noda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| | - Satoko Matsukura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| | - Kazuya Tsukagoshi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba , Japan
| | | | - Mutsuko Hieda
- Toyohashi University of Technology, Toyohashi, Aichi , Japan
| | | |
Collapse
|
36
|
Pierce GL. Aortic Stiffness in Aging and Hypertension: Prevention and Treatment with Habitual Aerobic Exercise. Curr Hypertens Rep 2017; 19:90. [PMID: 29046980 PMCID: PMC10949831 DOI: 10.1007/s11906-017-0788-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Habitual aerobic exercise is associated with lower aortic stiffness, as measured by carotid-femoral pulse wave velocity (CFPWV), in middle-aged/older adults without hypertension, but beneficial effects of aerobic exercise on CFPWV in hypertension remain contraversial. Therefore, the focus of this review is to discuss the evidence for and against the beneficial effects of aerobic exercise on aortic stiffness in middle-aged and older adults with hypertension, possible limitations in these studies, and highlight novel directions for future research. RECENT FINDINGS Most randomized controlled intervention studies demonstrate that short-term aerobic exercise results in no reductions in CFPWV in middle-aged and/or older adults with treated or treatment-naïve hypertension. Higher aerobic fitness is not associated with lower aortic stiffness among older adults with treated hypertension. Aortic stiffness appears to be resistant to clinically relevant improvements in response to habitual aerobic exercise in the presence of hypertension among middle-aged and older adults.
Collapse
Affiliation(s)
- Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, 225 S. Grand Ave, 412 FH, Iowa City, IA, 52242, USA.
- UI Healthcare Center for Hypertension Research, University of Iowa, Iowa City, IA, 52242, USA.
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
37
|
Angosta AD, Serafica R. Assessing Physical Activity Levels in Filipino Americans With Hypertension Using the Rapid Assessment of Physical Activity Questionnaire. HOME HEALTH CARE MANAGEMENT AND PRACTICE 2017. [DOI: 10.1177/1084822316685517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regular physical activity decreases the risk of cardiovascular disease and premature death. Little research has been conducted among Filipino Americans about their level of physical activity. Using the validated Rapid Assessment of Physical Activity questionnaire, we examined the activity level of Filipino Americans ( N = 108) from the southwest region of the United States and compared the findings with national physical activity guidelines. The sample mean age was 65 years, 98% were born in the Philippines, 31% had some college education, 71% were married, and 40% had incomes less than $25,000. The mean blood pressure was 140/85 mmHg. The mean score for physical activity level was 5 (max. score 7) and for strength and flexibility 1 (max. score 3), which is less than the recommended guidelines. Lifestyle strategies to increase physical activity and reduce obesity and hypertension in this high-risk, understudied population are warranted.
Collapse
|
38
|
Campbell MS, Berrones AJ, Krishnakumar I, Charnigo RJ, Westgate PM, Fleenor BS. Responsiveness to curcumin intervention is associated with reduced aortic stiffness in young, obese men with higher initial stiffness. J Funct Foods 2017. [DOI: 10.1016/j.jff.2016.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
39
|
Dodson RB, Miller TA, Powers K, Yang Y, Yu B, Albertine KH, Zinkhan EK. Intrauterine growth restriction influences vascular remodeling and stiffening in the weanling rat more than sex or diet. Am J Physiol Heart Circ Physiol 2017; 312:H250-H264. [DOI: 10.1152/ajpheart.00610.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the incidence of adult cardiovascular disease (CVD). The sex-specific developmental mechanisms for IUGR-induced and Western high-fat diet (HFD) modification of CVD remain poorly understood. We hypothesized a maternal HFD in the Sprague-Dawley rat would augment IUGR-induced CVD in the offspring through decreased cardiac function and increased extracellular matrix (ECM) remodeling and stiffness in a sex-specific manner. HFD or regular diet (Reg) was given from 5 wk before mating through postnatal day (PND) 21. IUGR was induced by uterine artery ligation at embryonic day 19.5 (term = 21.5 days). At PND 21, echocardiographic assessments were made and carotid arteries tested for vascular compliance using pressure myography. Arterial samples were quantified for ECM constituents or fixed for histologic evaluation. The insult of IUGR (IUGR + Reg and IUGR + HFD) led to increased mechanical stiffness in both sexes ( P < 0.05). The combination of IUGR + HFD increased diastolic blood pressure 47% in males (M) and 35% in females (F) compared with the Con + Reg ( P < 0.05). ECM remodeling in IUGR + HFD caused fewer (M = −29%, F = −24%) but thicker elastin bands (M = 18%, F = 18%) and increased total collagen (M = 49%, F = 34%) compared with Con + Reg arteries. Remodeling in IUGR + HFD males increased medial collagen and soluble collagen ( P < 0.05). Remodeling in IUGR + HFD females increased adventitial collagen and wall thickness ( P < 0.05) and decreased matrix metalloproteinase 2 (MMP-2), advanced glycosylation end products (AGE), and receptor AGE (RAGE; P < 0.05). In summary, both IUGR + Reg and IUGR + HFD remodel ECM in PND 21 rats. While IUGR + HFD increases blood pressure, IUGR but not HFD increases vascular stiffness suggesting a specific mechanism of vascular remodeling that can be targeted to limit future disease. NEW & NOTEWORTHY We report intrauterine growth restriction (IUGR) increases vascular stiffening in both male and female rats through increased collagen content and altered elastin structure more than a high-fat diet (HFD) alone. Our study shows the importance of stiffness supporting the hypothesis that there are physiologic differences and potential windows for early intervention targeting vascular remodeling mechanisms.
Collapse
Affiliation(s)
- R. Blair Dodson
- Department of Surgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
- Department of Bioengineering, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
- The Pediatric Heart Lung Center, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
- The Laboratory for Fetal and Regenerative Biology, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
| | - Thomas A. Miller
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, Salt Lake City, Utah; and
| | - Kyle Powers
- Department of Surgery, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
- The Pediatric Heart Lung Center, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
- The Laboratory for Fetal and Regenerative Biology, University of Colorado at Denver Anschutz Medical Campus, Aurora, Colorado
| | - Yueqin Yang
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, Salt Lake City, Utah; and
| | - Baifeng Yu
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Kurt H. Albertine
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Erin K. Zinkhan
- Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah
| |
Collapse
|
40
|
Nowak KL, Chonchol M, Ikizler TA, Farmer-Bailey H, Salas N, Chaudhry R, Wang W, Smits G, Tengesdal I, Dinarello CA, Hung AM. IL-1 Inhibition and Vascular Function in CKD. J Am Soc Nephrol 2016; 28:971-980. [PMID: 27647856 DOI: 10.1681/asn.2016040453] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022] Open
Abstract
Vascular endothelial dysfunction and increased arterial stiffness contribute to increased cardiovascular risk in patients with CKD who exhibit chronic systemic inflammation. Because chronic inflammation contributes to vascular dysfunction, blocking inflammation may reduce cardiovascular risk in patients with CKD. In a two-site, double-blind trial, we randomized 42 adult patients with stage 3-4 CKD who were already receiving optimal background therapy to receive either IL-1 trap rilonacept or placebo for 12 weeks. Coprimary end points included change in brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV) after 4, 8, and 12 weeks. Exploratory end points included change in high-sensitivity C-reactive protein (hsCRP), FMDBA after acute ascorbic acid infusion, and vascular endothelial cell protein expression of NADPH oxidase. Participants were 63±11 (mean±SD) years of age and 24% were women; mean eGFR was 38±13 ml/min per 1.73 m2 Compared with placebo, rilonacept improved FMDBA (baseline: 3.36%±2.06% [mean±SD], 12 weeks: 2.45%±2.29% with placebo and baseline: 3.75%±3.12%, 12 weeks: 4.86%±3.20% with rilonacept; P<0.01), without changing aPWV (P=0.56). Rilonacept also reduced hsCRP levels (median [interquartile range]) (baseline: 4.60 [1.90-8.22] mg/L, 12 weeks: 2.16 [0.92-7.38] mg/L; P<0.01) and endothelial cell NADPH oxidase expression (P<0.05). Acute infusion of ascorbic acid to inhibit superoxide production associated with a nonsignificant trend toward increased FMDBA in the placebo group (P=0.07) but not the rilonacept group (P=0.56). Rilonacept was well tolerated (five adverse events versus two with placebo). In conclusion, treatment with an IL-1 trap improved FMDBA without changing aPWV and reduced systemic inflammation in patients with CKD.
Collapse
Affiliation(s)
- Kristen L Nowak
- Department of Medicine, University of Colorado Denver, Aurora, Colorado;
| | - Michel Chonchol
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Talat Alp Ikizler
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and.,Department of Medicine, Veterans Administration Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
| | | | - Natjalie Salas
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Rafia Chaudhry
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Wei Wang
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Gerard Smits
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Isak Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | | | - Adriana M Hung
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and .,Department of Medicine, Veterans Administration Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
41
|
Kaplon RE, Hill SD, Bispham NZ, Santos-Parker JR, Nowlan MJ, Snyder LL, Chonchol M, LaRocca TJ, McQueen MB, Seals DR. Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults. Aging (Albany NY) 2016; 8:1167-83. [PMID: 27208415 PMCID: PMC4931825 DOI: 10.18632/aging.100962] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/30/2016] [Indexed: 02/06/2023]
Abstract
We hypothesized that supplementation with trehalose, a disaccharide that reverses arterial aging in mice, would improve vascular function in middle-aged and older (MA/O) men and women. Thirty-two healthy adults aged 50-77 years consumed 100 g/day of trehalose (n=15) or maltose (n=17, isocaloric control) for 12 weeks (randomized, double-blind). In subjects with Δbody mass less than 2.3kg (5 lb.), resistance artery endothelial function, assessed by forearm blood flow to brachial artery infusion of acetylcholine (FBFACh), increased ~30% with trehalose (13.3±1.0 vs. 10.5±1.1 AUC, P=0.02), but not maltose (P=0.40). This improvement in FBFACh was abolished when endothelial nitric oxide (NO) production was inhibited. Endothelium-independent dilation, assessed by FBF to sodium nitroprusside (FBFSNP), also increased ~30% with trehalose (155±13 vs. 116±12 AUC, P=0.03) but not maltose (P=0.92). Changes in FBFACh and FBFSNP with trehalose were not significant when subjects with Δbody mass ≥ 2.3kg were included. Trehalose supplementation had no effect on conduit artery endothelial function, large elastic artery stiffness or circulating markers of oxidative stress or inflammation (all P>0.1) independent of changes in body weight. Our findings demonstrate that oral trehalose improves resistance artery (microvascular) function, a major risk factor for cardiovascular diseases, in MA/O adults, possibly through increasing NO bioavailability and smooth muscle sensitivity to NO.
Collapse
Affiliation(s)
- Rachelle E. Kaplon
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sierra D. Hill
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Nina Z. Bispham
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Molly J. Nowlan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laura L. Snyder
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Michel Chonchol
- Division of Renal Diseases & Hypertension, University of Colorado Denver, Aurora, CO 80045, USA
| | - Thomas J. LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew B. McQueen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|