1
|
Carvalho TD, Freitas OGAD, Chalela WA, Hossri CAC, Milani M, Buglia S, Precoma DB, Falcão AMGM, Mastrocola LE, Castro I, Albuquerque PFD, Coutinho RQ, Brito FSD, Alves JDC, Serra SM, Santos MAD, Colombo CSSDS, Stein R, Herdy AH, Silveira ADD, Castro CLBD, Silva MMFD, Meneghello RS, Ritt LEF, Malafaia FL, Marinucci LFB, Pena JLB, Almeida AEMD, Vieira MLC, Stier Júnior AL. Brazilian Guideline for Exercise Test in the Adult Population - 2024. Arq Bras Cardiol 2024; 121:e20240110. [PMID: 38896581 DOI: 10.36660/abc.20240110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Affiliation(s)
- Tales de Carvalho
- Clínica de Prevenção e Reabilitação Cardiosport, Florianópolis, SC - Brasil
- Universidade do Estado de Santa Catarina, Florianópolis, SC - Brasil
| | | | - William Azem Chalela
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brasil
| | | | - Mauricio Milani
- Universidade de Brasília (UnB), Brasília, DF, Brasil
- Hasselt University, Hasselt - Bélgica
- Jessa Ziekenhuis, Hasselt - Bélgica
| | - Susimeire Buglia
- Instituto Dante Pazzanese de Cardiologia, São Paulo, SP - Brasil
| | | | - Andréa Maria Gomes Marinho Falcão
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brasil
| | | | - Iran Castro
- Instituto de Cardiologia do Rio Grande do Sul, Porto Alegre, RS - Brasil
| | | | | | | | | | - Salvador Manoel Serra
- Instituto Estadual de Cardiologia Aloysio de Castro (IECAC), Rio de Janeiro, RJ - Brasil
| | - Mauro Augusto Dos Santos
- Instituto Nacional de Cardiologia do Rio de Janeiro, Rio de Janeiro, RJ - Brasil
- Linkcare Saúde, Rio de Janeiro, RJ - Brasil
| | | | - Ricardo Stein
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | - Artur Haddad Herdy
- Clínica de Prevenção e Reabilitação Cardiosport, Florianópolis, SC - Brasil
| | - Anderson Donelli da Silveira
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS - Brasil
- Hospital Moinhos de Vento, Porto Alegre, RS - Brasil
| | - Claudia Lucia Barros de Castro
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brasil
- CLINIMEX - Clínica de Medicina de Exercício, Rio de Janeiro, RJ - Brasil
| | | | | | - Luiz Eduardo Fonteles Ritt
- Escola Bahiana de Medicina e Saúde Pública, Salvador, BA - Brasil
- Instituto D'Or de Pesquisa e Ensino, Salvador, BA - Brasil
- Hospital Cárdio Pulmonar, Salvador, BA - Brasil
| | - Felipe Lopes Malafaia
- Hospital Samaritano Paulista, São Paulo, SP - Brasil
- UnitedHealth Group Brasil, São Paulo, SP - Brasil
| | - Leonardo Filipe Benedeti Marinucci
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brasil
| | - José Luiz Barros Pena
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG - Brasil
- Hospital Felício Rocho, Belo Horizonte, MG - Brasil
| | | | - Marcelo Luiz Campos Vieira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (InCor-HCFMUSP), São Paulo, SP - Brasil
- Hospital Israelita Albert Einstein, São Paulo, SP - Brasil
| | - Arnaldo Laffitte Stier Júnior
- Universidade Federal do Paraná (UFPR), Curitiba, PR - Brasil
- Secretaria Municipal de Saúde Curitiba, Curitiba, PR - Brasil
| |
Collapse
|
2
|
Watso JC, Cuba JN, Boutwell SL, Moss JE, Bowerfind AK, Fernandez IM, Cassette JM, May AM, Kirk KF. Acute nasal breathing lowers diastolic blood pressure and increases parasympathetic contributions to heart rate variability in young adults. Am J Physiol Regul Integr Comp Physiol 2023; 325:R797-R808. [PMID: 37867476 PMCID: PMC11178300 DOI: 10.1152/ajpregu.00148.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
There is growing interest in how breathing pace, pattern, and training (e.g., device-guided or -resisted breathing) affect cardiovascular health. It is unknown whether the route of breathing (nasal vs. oral) affects prognostic cardiovascular variables. Because nasal breathing can improve other physiological variables (e.g., airway dilation), we hypothesized that nasal compared with oral breathing would acutely lower blood pressure (BP) and improve heart rate variability (HRV) metrics. We tested 20 adults in this study [13 females/7 males; age: 18(1) years, median (IQR); body mass index: 23 ± 2 kg·m-2, means ± SD]. We compared variables between nasal- and oral-only breathing (random order, five min each) using paired, two-tailed t tests or Wilcoxon signed-rank paired tests with significance set to P < 0.05. We report the median (interquartile range) for diastolic BP and means ± SD for all other variables. We found that nasal breathing was associated with a lower mean BP (nasal: 84 ± 7 vs. oral: 86 ± 5 mmHg, P = 0.006, Cohen's d = 0.70) and diastolic BP [nasal: 68(8) vs. oral: 72(5) mmHg, P < 0.001, Rank-biserial correlation = 0.89] but not systolic BP (nasal: 116 ± 11 vs. oral: 117 ± 9 mmHg, P = 0.48, Cohen's d = 0.16) or heart rate (HR; nasal: 74 ± 10 vs. oral: 75 ± 8 beats·min-1, P = 0.90, Cohen's d = 0.03). We also found that nasal breathing was associated with a higher high-frequency (HF) contribution to HRV (nasal: 59 ± 19 vs. oral: 52 ± 21%, P = 0.04, Cohen's d = 0.50) and a lower low frequency-to-HF ratio at rest (nasal: 0.9 ± 0.8 vs. oral: 1.2 ± 0.9, P = 0.04, Cohen's d = 0.49). These data suggest that nasal compared with oral breathing acutely 1) lowers mean and diastolic BP, 2) does not affect systolic BP or heart rate, and 3) increases parasympathetic contributions to HRV.NEW & NOTEWORTHY There is growing interest in how breathing pace, pattern, and training (e.g., device-guided or -resisted breathing) affect prognostic cardiovascular variables. However, the potential effects of the breathing route on prognostic cardiovascular variables are unclear. These data suggest that nasal compared with oral breathing 1) lowers mean and diastolic blood pressure (BP), 2) does not affect systolic BP or heart rate (HR), and 3) increases parasympathetic contributions to heart rate variability (HRV). These data suggest that acute nasal breathing improves several prognostic cardiovascular variables.
Collapse
Affiliation(s)
- Joseph C Watso
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Jens N Cuba
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Savannah L Boutwell
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Justine E Moss
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Allison K Bowerfind
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Isabela M Fernandez
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Jessica M Cassette
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Allyson M May
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| | - Katherine F Kirk
- Cardiovascular and Applied Physiology Laboratory, Department of Health, Nutrition, & Food Sciences, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
3
|
Moore MN, Blizzard CL, Dwyer T, Magnussen CG, Sharman JE, Venn AJ, Schultz MG. Exploring the direct and indirect effects of cardiovascular disease risk factors on exercise blood pressure. Scand J Med Sci Sports 2023; 33:2509-2515. [PMID: 37750022 DOI: 10.1111/sms.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE Exaggerated exercise blood pressure (BP) is independently associated with cardiovascular disease (CVD) outcomes. However, it is unknown how individual CVD risk factors may interact with one another to influence exercise BP. The aim of this study was to quantify direct and indirect associations between CVD risk factors and exercise BP, to determine what CVD risk factor/s most-strongly relate to exercise BP. METHODS In a cross-sectional design, 660 participants (44 ± 2.6 years, 54% male) from the population-based Childhood Determinants of Adult Health Study had BP measured during low-intensity fixed-workload cycling. CVD risk factors were measured, including body composition, clinic (rest) BP, blood biomarkers, and cardiorespiratory fitness. Associations between CVD risk factors and exercise BP were assessed using linear regression, with direct and indirect pathways of association assessed via structural equation model. RESULTS Sex, waist-to-hip ratio, fitness, and clinic BP were independently associated with exercise systolic BP (SBP), and along with age, had direct associations with exercise SBP (p < 0.05 all). Most CVD risk factors were indirectly associated with exercise SBP via a relation with clinic BP (p < 0.05 all). Clinic BP, waist-to-hip ratio, and fitness were most-strongly associated (direct and indirect association) with exercise SBP (β[95% CI]: 9.35 [8.04, 10.67], 4.91 [2.56, 7.26], and -2.88 [-4.25, -1.51] mm Hg/SD, respectively). CONCLUSION Many CVD risk factors are associated with exercise BP, mostly with indirect effects via clinic BP. Clinic BP, body composition, and fitness were most-strongly associated with exercise BP. These results may elucidate how lifestyle modification could be a primary strategy to decrease exaggerated exercise BP-related CVD risk.
Collapse
Affiliation(s)
- Myles N Moore
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Christopher L Blizzard
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Terence Dwyer
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
- George Institute for Global Health, Oxford Martin School and Nuffield Department of Obstetrics & Gynaecology, Oxford University, Oxford, UK
- Murdoch Children's Research Institute, Melbourne, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Costan G Magnussen
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - James E Sharman
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Alison J Venn
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Martin G Schultz
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| |
Collapse
|
4
|
Schultz MG, Otahal P, Kovacevic AM, Roberts-Thomson P, Stanton T, Hamilton-Craig C, Wahi S, La Gerche A, Hare JL, Selvanayagam J, Maiorana A, Venn AJ, Marwick TH, Sharman JE. Type-2 Diabetes and the Clinical Importance of Exaggerated Exercise Blood Pressure. Hypertension 2022; 79:2346-2354. [PMID: 35938406 DOI: 10.1161/hypertensionaha.122.19420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Exaggerated exercise blood pressure (EEBP) during clinical exercise testing is associated with poor blood pressure (BP) control and cardiovascular disease (CVD). Type-2 diabetes (T2DM) is thought to be associated with increased prevalence of EEBP, but this has never been definitively determined and was the aim of this study. METHODS Clinical exercise test records were analyzed from 13 268 people (aged 53±13 years, 59% male) who completed the Bruce treadmill protocol (stages 1-4, and peak) at 4 Australian public hospitals. Records (including BP) were linked to administrative health datasets (hospital and emergency admissions) to define clinical characteristics and classify T2DM (n=1199) versus no T2DM (n=12 069). EEBP was defined as systolic BP ≥90th percentile at each test stage. Exercise BP was regressed on T2DM history and adjusted for CVD and risk factors. RESULTS Prevalence of EEBP (age, sex, preexercise BP, hypertension history, CVD history and aerobic capacity adjusted) was 12% to 51% greater in T2DM versus no T2DM (prevalence ratio [95% CI], stage 1, 1.12 [1.02-1.24]; stage 2, 1.51 [1.41-1.61]; stage 3, 1.25 [1.10-1.42]; peak, 1.18 [1.09-1.29]). At stages 1 to 3, 8.6% to 15.8% (4.8%-9.7% T2DM versus 3.5% to 6.1% no-T2DM) of people with 'normal' preexercise BP (<140/90 mm Hg) were identified with EEBP. Exercise systolic BP relative to aerobic capacity (stages 1-4 and peak) was higher in T2DM with adjustment for all CVD risk factors. CONCLUSIONS People with T2DM have higher prevalence of EEBP and exercise systolic BP independent of CVD and many of its known risk factors. Clinicians supervising exercise testing should be alerted to increased likelihood of EEBP and thus poor BP control warranting follow-up care in people with T2DM.
Collapse
Affiliation(s)
- Martin G Schultz
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (M.G.S., P.O., A.M.K., A.J.V., J.E.S.)
| | - Petr Otahal
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (M.G.S., P.O., A.M.K., A.J.V., J.E.S.)
| | - Ann-Marie Kovacevic
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (M.G.S., P.O., A.M.K., A.J.V., J.E.S.)
| | | | - Tony Stanton
- Sunshine Coast University Hospital, Birtinya, Australia (T.S.)
| | | | - Sudhir Wahi
- Princess Alexandra Hospital, Brisbane, Australia (S.W.)
| | - Andre La Gerche
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.G., J.L.H., T.H.M.)
| | - James L Hare
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.G., J.L.H., T.H.M.).,Department of Cardiology, The Alfred Hospital, Melbourne, Australia (J.L.H.)
| | - Joseph Selvanayagam
- Cardiac Imaging Research, Flinders University, Adelaide, Australia (J.S.).,South Australian Health and Medical Research Institute, Adelaide, Australia (J.S.)
| | - Andrew Maiorana
- Curtin School of Allied Health, Curtin University, Perth, Australia (A.M.).,Allied Health Department, Fiona Stanley Hospital, Perth, Australia (A.M.)
| | - Alison J Venn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (M.G.S., P.O., A.M.K., A.J.V., J.E.S.)
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.G., J.L.H., T.H.M.)
| | - James E Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (M.G.S., P.O., A.M.K., A.J.V., J.E.S.)
| | | |
Collapse
|
5
|
Watso JC, Romero SA, Moralez G, Huang M, Cramer MN, Johnson E, Crandall CG. Six months of unsupervised exercise training lowers blood pressure during moderate, but not vigorous, aerobic exercise in adults with well-healed burn injuries. J Appl Physiol (1985) 2022; 133:742-754. [PMID: 35952345 PMCID: PMC9484988 DOI: 10.1152/japplphysiol.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Exercise training reduces cardiovascular disease risk, partly due to arterial blood pressure (BP) lowering at rest and during fixed-load exercise. However, it is unclear whether exercise training can reduce BP at rest and during exercise in adults with well-healed burn injuries. Therefore, the purpose of this investigation was to test the hypothesis that 6 mo of unsupervised exercise training reduces BP at rest and during lower-body cycle ergometry in adults with well-healed burn injuries. Thirty-nine adults (28 with well-healed burn injuries and 11 controls) completed 6 mo of unsupervised, progressive exercise training including endurance, resistance, and high-intensity interval components. Before and after exercise training, we measured BP at rest, during fixed-load submaximal exercise (50 and 75 W), during fixed-intensity submaximal exercise (40% and 70% of V̇o2peak), and during maximal exercise on a lower-body cycle ergometer. We compared cardiovascular variables using two-way ANOVA (group × pre/postexercise training [repeated factor]). Adults with well-healed burn injuries had higher diastolic BP at rest (P = 0.04), which was unchanged by exercise training (P = 0.26). Exercise training reduced systolic, mean, and diastolic BP during fixed-load cycling exercise at 75 W in adults with well-healed burn injuries (P ≤ 0.03 for all), but not controls (P ≥ 0.67 for all). Exercise training also reduced mean and diastolic BP during exercise at 40% (P ≤ 0.02 for both), but not at 70% (P ≥ 0.18 for both), of V̇o2peak. These data suggest that a 6-mo unsupervised exercise training program lowers BP during moderate, but not vigorous, aerobic exercise in adults with well-healed burn injuries.NEW & NOTEWORTHY Adults with well-healed burn injuries have greater cardiovascular disease morbidity and all-cause mortality compared with nonburn-injured adults. We found that exercise training reduced blood pressure (BP) during fixed-load cycling at 75 W and during moderate, but not vigorous, intensity cycling exercise in adults with well-healed burn injuries. These data suggest that 6 mo of unsupervised exercise training provides some degree of cardioprotection by reducing BP responses during submaximal exercise in well-healed burn-injured adults.
Collapse
Affiliation(s)
- Joseph C Watso
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, Florida
| | - Steven A Romero
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Gilbert Moralez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mu Huang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas
- Office of Science, Medicine, and Health, American Heart Association, Dallas, Texas
| | - Matthew N Cramer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Elias Johnson
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
| | - Craig G Crandall
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Applied Clinical Research, School of Health Professions, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|