1
|
De Ciuceis C, Rosei CA, Malerba P, Rossini C, Nardin M, Chiarini G, Famà F, Lemoli M, Baresi M, Petelca A, Bortoluzzi C, Porteri E, Salvetti M, Muiesan ML, Rosei EA, Rizzoni D. Prognostic significance of the wall to lumen ratio of retinal arterioles evaluated by adaptive optics. Eur J Intern Med 2024; 122:86-92. [PMID: 37914655 DOI: 10.1016/j.ejim.2023.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE Microvascular structural alterations may be considered an important form of hypertension-mediated organ damage. An increased media-to-lumen ratio of subcutaneous small arteries evaluated with locally invasive techniques (micromyography) predicts the development of cardiovascular (CV) events. However, it is not known whether retinal arteriole structural alterations evaluated with a noninvasive approach (Adaptive Optics) may have a prognostic significance. DESIGN AND METHODS Two-hundred and thirty-seven subjects (mean age 58.7 ± 16.1 years, age range 13-89 years; 116 males) were included in the study: 65 normotensive subjects (27.4 %) and 172 patients with essential hypertension or primary aldosteronism (72.6 %). All subjects underwent a non-invasive evaluation of retinal arteriolar wall-to-lumen ratio (WLR) by Adaptive Optics. Subjects were re-evaluated after an average follow-up time of 4.55 years in order to assess the occurrence of clinical events (non CV and/or CV death or events). RESULTS Fifty-four events occurred in the study population:26 were cardio-cerebrovascular events (ischemic or hemorragic stroke, atrial fibrillation, heart failure, coronary artery disease, peripheral artery disease, cardiac valvular disease) while the remaining were deaths for any cause, or neoplastic diseases. Subjects with events were older and had a WLR of retinal arterioles significantly greater than those without events. The event-free survival was significantly worse in those with a baseline WLR above the median value of the population (0.28) according to Kaplan-Mayer survival curves and multivariate analysis (Cox's proportional hazard model). The evidence was confirmed after restricting the analysis to CV events. CONCLUSIONS Structural alterations of retinal arterioles evaluated by Adaptive Optics may predict total and CV events.
Collapse
Affiliation(s)
- Carolina De Ciuceis
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy.
| | - Claudia Agabiti Rosei
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Paolo Malerba
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Claudia Rossini
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Matteo Nardin
- Third Division of Medicine, ASST Spedali Civili di Brescia, Italy
| | - Giulia Chiarini
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Francesca Famà
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Matteo Lemoli
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Mattia Baresi
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Alina Petelca
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Chiara Bortoluzzi
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Enzo Porteri
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Massimo Salvetti
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Maria Lorenza Muiesan
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Enrico Agabiti Rosei
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy
| | - Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia 25123, Italy; Division of Medicine, ASST Spedali Civili di Brescia, Montichiari, Brescia, Italy
| |
Collapse
|
2
|
Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Sitting leg vasculopathy: potential adaptations beyond the endothelium. Am J Physiol Heart Circ Physiol 2024; 326:H760-H771. [PMID: 38241008 PMCID: PMC11221807 DOI: 10.1152/ajpheart.00489.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
Increased sitting time, the most common form of sedentary behavior, is an independent risk factor for all-cause and cardiovascular disease mortality; however, the mechanisms linking sitting to cardiovascular risk remain largely elusive. Studies over the last decade have led to the concept that excessive time spent in the sitting position and the ensuing reduction in leg blood flow-induced shear stress cause endothelial dysfunction. This conclusion has been mainly supported by studies using flow-mediated dilation in the lower extremities as the measured outcome. In this review, we summarize evidence from classic studies and more recent ones that collectively support the notion that prolonged sitting-induced leg vascular dysfunction is likely also attributable to changes occurring in vascular smooth muscle cells (VSMCs). Indeed, we provide evidence that prolonged constriction of resistance arteries can lead to modifications in the structural characteristics of the vascular wall, including polymerization of actin filaments in VSMCs and inward remodeling, and that these changes manifest in a time frame that is consistent with the vascular changes observed with prolonged sitting. We expect this review will stimulate future studies with a focus on VSMC cytoskeletal remodeling as a potential target to prevent the detrimental vascular ramifications of too much sitting.
Collapse
Affiliation(s)
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
3
|
Coste B, Delmas P. PIEZO Ion Channels in Cardiovascular Functions and Diseases. Circ Res 2024; 134:572-591. [PMID: 38422173 DOI: 10.1161/circresaha.123.322798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The cardiovascular system provides blood supply throughout the body and as such is perpetually applying mechanical forces to cells and tissues. Thus, this system is primed with mechanosensory structures that respond and adapt to changes in mechanical stimuli. Since their discovery in 2010, PIEZO ion channels have dominated the field of mechanobiology. These have been proposed as the long-sought-after mechanosensitive excitatory channels involved in touch and proprioception in mammals. However, more and more pieces of evidence point to the importance of PIEZO channels in cardiovascular activities and disease development. PIEZO channel-related cardiac functions include transducing hemodynamic forces in endothelial and vascular cells, red blood cell homeostasis, platelet aggregation, and arterial blood pressure regulation, among others. PIEZO channels contribute to pathological conditions including cardiac hypertrophy and pulmonary hypertension and congenital syndromes such as generalized lymphatic dysplasia and xerocytosis. In this review, we highlight recent advances in understanding the role of PIEZO channels in cardiovascular functions and diseases. Achievements in this quickly expanding field should open a new road for efficient control of PIEZO-related diseases in cardiovascular functions.
Collapse
Affiliation(s)
- Bertrand Coste
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| | - Patrick Delmas
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université - INSERM 1263 - INRAE 1260, Marseille, France
| |
Collapse
|
4
|
Rizzoni D, Agabiti-Rosei C, Boari GEM, Muiesan ML, De Ciuceis C. Microcirculation in Hypertension: A Therapeutic Target to Prevent Cardiovascular Disease? J Clin Med 2023; 12:4892. [PMID: 37568294 PMCID: PMC10419740 DOI: 10.3390/jcm12154892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Arterial hypertension is a common condition worldwide and an important risk factor for cardio- and cerebrovascular events, renal diseases, as well as microvascular eye diseases. Established hypertension leads to the chronic vasoconstriction of small arteries as well as to a decreased lumen diameter and the thickening of the arterial media or wall with a consequent increased media-to-lumen ratio (MLR) or wall-to-lumen ratio (WLR). This process, defined as vascular remodeling, was firstly demonstrated in small resistance arteries isolated from subcutaneous biopsies and measured by micromyography, and this is still considered the gold-standard method for the assessment of structural alterations in small resistance arteries; however, microvascular remodeling seems to represent a generalized phenomenon. An increased MLR may impair the organ flow reserve, playing a crucial role in the maintenance and, probably, also in the progressive worsening of hypertensive disease, as well as in the development of hypertension-mediated organ damage and related cardiovascular events, thus possessing a relevant prognostic relevance. New non-invasive techniques, such as scanning laser Doppler flowmetry or adaptive optics, are presently under development, focusing mainly on the evaluation of WLR in retinal arterioles; recently, also retinal microvascular WLR was demonstrated to have a prognostic impact in terms of cardio- and cerebrovascular events. A rarefaction of the capillary network has also been reported in hypertension, which may contribute to flow reduction in and impairment of oxygen delivery to different tissues. These microvascular alterations seem to represent an early step in hypertension-mediated organ damage since they might contribute to microvascular angina, stroke, and renal dysfunction. In addition, they can be markers useful in monitoring the beneficial effects of antihypertensive treatment. Additionally, conductance arteries may be affected by a remodeling process in hypertension, and an interrelationship is present in the structural changes in small and large conductance arteries. The review addresses the possible relations between structural microvascular alterations and hypertension-mediated organ damage, and their potential improvement with antihypertensive treatment.
Collapse
Affiliation(s)
- Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (C.A.-R.); (M.L.M.); (C.D.C.)
| | - Claudia Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (C.A.-R.); (M.L.M.); (C.D.C.)
- Second Division of Medicine, Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Gianluca E. M. Boari
- Division of Medicine, Spedali Civili di Brescia, Montichiari, 25123 Brescia, Italy;
| | - Maria Lorenza Muiesan
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (C.A.-R.); (M.L.M.); (C.D.C.)
- Second Division of Medicine, Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Carolina De Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy; (C.A.-R.); (M.L.M.); (C.D.C.)
- Second Division of Medicine, Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
5
|
Moriconi D, Mengozzi A, Duranti E, Cappelli F, Taddei S, Nannipieri M, Bruno RM, Virdis A. The renal resistive index is associated with microvascular remodeling in patients with severe obesity. J Hypertens 2023; 41:1092-1099. [PMID: 37071436 PMCID: PMC10242520 DOI: 10.1097/hjh.0000000000003434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/03/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Renal hemodynamics is impaired since the early stage of cardiometabolic disease. However, in obesity, its noninvasive ultrasound assessment still fails to provide pathophysiologic and clinical meaningfulness. We aimed to explore the relationship between peripheral microcirculation and renal hemodynamics in severe obesity. METHODS We enrolled fifty severely obese patients with an indication for bariatric referring to our outpatient clinic. Patients underwent an extensive reno-metabolic examination, paired with Doppler ultrasound and measurement of the renal resistive index (RRI). On the day of the surgery, visceral fat biopsies were collected to perform an ex-vivo complete microcirculatory assessment. Media-to-lumen ratio (M/L) and vascular response to acetylcholine (ACh), alone or co-incubated with N G -nitro arginine methyl ester (L-NAME), were measured. RESULTS Patients were stratified according to their normotensive (NT) or hypertensive (HT) status. HT had lower estimated glomerular filtration rate and higher RRI compared to NT, while the presence and extent of albuminuria were similar between the two groups. Concerning microcirculatory assessment, there were no differences between groups as regards the microvascular structure, while the vasorelaxation to ACh was lower in HT ( P = 0.042). Multivariable analysis showed a relationship between M/L and RRI ( P = 0.016, St. β 0.37) and between albuminuria and the inhibitory response of L-NAME to Ach vasodilation ( P = 0.036, St. β = -0.34). Notably, all these correlations were consistent also after adjustment for confounding factors. CONCLUSIONS The RRI and albuminuria relationship with microvascular remodeling in patients affected by severe obesity supports the clinical implementation of RRI to improve risk stratification in obesity and suggests a tight pathophysiologic connection between renal haemodynamics and microcirculatory disruption.
Collapse
Affiliation(s)
- Diego Moriconi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Mengozzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Emiliano Duranti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federica Cappelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
7
|
Moriconi D, Nannipieri M, Armenia S, Boutouryie P, Taddei S, Bruno RM. Morbid obesity is associated with hypertrophic outward remodeling and increased stiffness of small conduit arteries: An ultra-high frequency ultrasound study. Nutr Metab Cardiovasc Dis 2023; 33:408-415. [PMID: 36604263 DOI: 10.1016/j.numecd.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/24/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND AIMS Although many studies have been published on the effect of obesity on large and small arteries, there are no data in the literature regarding the effect of obesity on medium-sized arteries, and in particular of small conduit arteries. The aim of the present study was to investigate whether patients with severe obesity presented structural or functional alterations in different arterial segments. METHODS AND RESULTS 34 patients with severe obesity (BMI≥35 kg/m2) and 34 age-and sex-matched normal weight patients were recruited as controls. Aortic stiffness (carotid-femoral pulse wave velocity) and wave reflection (augmentation index) were recorded. Ultrasound images of common carotid, radial and interdigital arteries were acquired for the assessment of wall-to-lumen ratio, wall cross-sectional area (WCSA), compliance, distensibility coefficient (DC) and Young's elastic modulus (Einc). Insulin sensitivity was calculated by oral glucose sensitivity index (OGIS). No differences between groups in carotid artery remodeling were found, while WCSA of the radial and interdigital arteries were higher in obese group than in controls. As regard the parameters of vascular elasticity, the DC of radial and interdigital arteries were lower (p = 0.025 and p = 0.001, respectively), as well as the Einc of radial arteries was higher (p = 0.021), in subject with obesity compared to controls. All these correlations were consistent after adjustment for the main covariates. Finally, in a multiple regression analysis OGIS was and independent determinant of interdigital artery DC (R2 = 0.29, p = 0.001). CONCLUSIONS For the first time, we describe an outward remodeling and increased stiffness in small conduit arteries in severe obesity.
Collapse
Affiliation(s)
- Diego Moriconi
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Italy.
| | - Monica Nannipieri
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Pierre Boutouryie
- Service de Pharmacologie, AP-HP, Hôpital Europeen Georges Pompidou, France; Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Rosa Maria Bruno
- Service de Pharmacologie, AP-HP, Hôpital Europeen Georges Pompidou, France; Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| |
Collapse
|
8
|
Rizzoni D, Agabiti-Rosei C, De Ciuceis C. State of the Art Review: Vascular Remodeling in Hypertension. Am J Hypertens 2023; 36:1-13. [PMID: 35961002 DOI: 10.1093/ajh/hpac093] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 01/05/2023] Open
Abstract
Although the gold-standard method for the assessment of structural alteration in small resistance arteries is the evaluation of the MLR by micromyography in bioptic tissues, new, noninvasive techniques are presently under development, focusing mainly on the evaluation of WLR in retinal arterioles. These approaches represent a promising and interesting future perspective. Appropriate antihypertensive treatment is able to prevent the development of microvascular alterations or to induce their regression. Also, conductance arteries may be affected by a remodeling process in hypertension, and a cross-talk may exist between structural changes in the small and large arteries. In conclusion, the evaluation of microvascular structure is ready for clinical prime time, and it could, in the future, represent an evaluation to be performed in the majority of hypertensive patients, to better stratify cardiovascular risk and better evaluate the effects of antihypertensive therapy. However, for this purpose, we need a clear demonstration of the prognostic relevance of noninvasive measures of microvascular structure, in basal conditions and during treatment. Vascular remodeling may be frequently observed in hypertension, as well as in obesity and diabetes mellitus. An increased media to lumen ratio (MLR) or wall to lumen ratio (WLR) in microvessels is the hallmark of hypertension, and may impair organ flow reserve, being relevant in the maintenance and, probably, also in the progressive worsening of hypertensive disease, as well as in the development of hypertension-mediated organ damage/cardiovascular events. The molecular mechanisms underlying the development of vascular remodeling are only partly understood.
Collapse
Affiliation(s)
- Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Division of Medicine, Spedali Civili di Brescia, Montichiari (Brescia), Italy
| | - Claudia Agabiti-Rosei
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Second Division of Medicine, Spedali Civili di Brescia, Brescia, Italy
| | - Carolina De Ciuceis
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Second Division of Medicine, Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
9
|
Daniele A, Lucas SJE, Rendeiro C. Detrimental effects of physical inactivity on peripheral and brain vasculature in humans: Insights into mechanisms, long-term health consequences and protective strategies. Front Physiol 2022; 13:998380. [PMID: 36237532 PMCID: PMC9553009 DOI: 10.3389/fphys.2022.998380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
The growing prevalence of physical inactivity in the population highlights the urgent need for a more comprehensive understanding of how sedentary behaviour affects health, the mechanisms involved and what strategies are effective in counteracting its negative effects. Physical inactivity is an independent risk factor for different pathologies including atherosclerosis, hypertension and cardiovascular disease. It is known to progressively lead to reduced life expectancy and quality of life, and it is the fourth leading risk factor for mortality worldwide. Recent evidence indicates that uninterrupted prolonged sitting and short-term inactivity periods impair endothelial function (measured by flow-mediated dilation) and induce arterial structural alterations, predominantly in the lower body vasculature. Similar effects may occur in the cerebral vasculature, with recent evidence showing impairments in cerebral blood flow following prolonged sitting. The precise molecular and physiological mechanisms underlying inactivity-induced vascular dysfunction in humans are yet to be fully established, although evidence to date indicates that it may involve modulation of shear stress, inflammatory and vascular biomarkers. Despite the steady increase in sedentarism in our societies, only a few intervention strategies have been investigated for their efficacy in counteracting the associated vascular impairments. The current review provides a comprehensive overview of the evidence linking acute and short-term physical inactivity to detrimental effects on peripheral, central and cerebral vascular health in humans. We further examine the underlying molecular and physiological mechanisms and attempt to link these to long-term consequences for cardiovascular health. Finally, we summarize and discuss the efficacy of lifestyle interventions in offsetting the negative consequences of physical inactivity.
Collapse
Affiliation(s)
- Alessio Daniele
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Catarina Rendeiro
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Catarina Rendeiro,
| |
Collapse
|
10
|
Jia M, Su X, Qin Q, Li Y, Wang S, Chen Y. Tetrahydroxystilbene glucoside attenuated homocysteine-upregulated endothelin receptors in vascular smooth muscle cells via the ERK 1 /2 /NF-κB signaling pathway. Phytother Res 2022; 36:3352-3361. [PMID: 35648450 DOI: 10.1002/ptr.7519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022]
Abstract
2,3,5,4'-Tetrahydrostilbene-2-o-β-d-glucoside (TSG) is the main active component of Polygonum multiflorum Thunb. It has effects on hypertension. However, the mechanism is unclear. Current research is devoted to exploring the mechanism of TSG improving HHcy-induced hypertension. The mice received a subcutaneous injection of Hcy in the presence or absence of TSG for 4 weeks. Blood pressure (BP) was measured using a noninvasive tail-cuff plethysmography method. Levels of plasma Hcy and endothelin-1 were measured using ELISA. Rat SMA without endothelium was cultured in a serum-free medium in the presence or absence of TSG with or without Hcy. The contractile response to sarafotoxin 6c or endothein-1 was studied using a sensitive myography. The levels of protein were detected using Western blotting. The results showed that TSG lowered HHcy-elevated BP and decreased levels of plasma Hcy and endothelin-1 in mice. Furthermore, the results showed that TSG inhibited Hcy-upregulated ET receptor expression and ET receptor-mediated contractile responses as well as the levels of p-ERK1/2 and p-p65 in SMA. In vivo results further validate the in vitro results. In conclusion, TSG can decrease the levels of plasma Hcy and ET-1 and downregulate Hcy-upregulated ET receptors in VSMCs by inhibiting the ERK1/2 /NF-κB/ETB2 pathway to lower the BP.
Collapse
Affiliation(s)
- Min Jia
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xingli Su
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Qiaohong Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yajuan Li
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Siwang Wang
- Shaanxi Key Laboratory of Biomedicine, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China.,Institute of Materia Medic, Department of Natural Medicine School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yulong Chen
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Wang M, Yin X, Li S, Zhang X, Yi M, He C, Li X, Wang W, Zhang S, Liu H. Large‐Conductance Calcium‐Activated Potassium Channel Opener, NS1619, Protects Against Mesenteric Artery Remodeling Induced by Agonistic Autoantibodies Against the Angiotensin II Type 1 Receptor. J Am Heart Assoc 2022; 11:e024046. [PMID: 35156422 PMCID: PMC9245824 DOI: 10.1161/jaha.121.024046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Agonistic autoantibodies against the angiotensin II type 1 receptor (AT1‐AAs) extensively exist in patients with hypertensive diseases and have been demonstrated to play crucial roles in the pathophysiological process of vascular remodeling. However, the treatment options are limited. The large‐conductance calcium‐activated potassium (BK) channel is a critical regulator and potential therapeutic target of vascular tone and architecture. We have previously observed that AT1‐AAs have an inhibitory effect on BK channels. However, whether BK channel dysfunction is involved in AT1‐AAs‐induced vascular remodeling and the therapeutic effect of BK channel opener is unclear. Methods and Results In our study, mesenteric arteries from AT1‐AAs‐positive rats exhibited increased wall thickness, narrowing of the arteriolar lumen, and increased collagen accumulation. Patch clamp test results showed that the voltage sensitivity of BK channel declined in mesenteric arteriolar smooth muscle cells from AT1‐AAs‐positive rats. Experiments with freshly isolated mesenteric arteriolar smooth muscle cells showed that AT1‐AAs reduced the opening probability, open levels, open dwell time, and calcium sensitivity of BK channel. Experiments with HEK293T cells transfected with GFP‐ZERO‐BK α‐subunit plasmids suggested a BK channel α‐subunit‐dependent mechanism. BK channel α‐subunit deficient, namely KCNMA1−/− rats showed a phenotype of mesenteric artery remodeling. The administration of NS1619, a specific BK channel opener targeting the α‐subunit, reversed the phenotypic transition and migration induced by AT1‐AAs in cultured mesenteric arteriolar smooth muscle cells. Finally, perfusion of NS1619 significantly relieved the pathological effects induced by AT1‐AAs in vivo. Conclusions In summary, we provide compelling evidence that BK channel α‐subunit dysfunction mediates AT1‐AAs‐induced mesenteric artery remodeling. Preservation of BK channel activity may serve as a potential strategy for the treatment of AT1‐AAs‐induced maladaptive resistance artery remodeling.
Collapse
Affiliation(s)
- Meili Wang
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular DiseaseCapital Medical University Beijing China
| | - Xiaochen Yin
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Shuanglei Li
- Division of Adult Cardiac Surgery Department of Cardiology The Sixth Medical CenterChinese PLA General Hospital Beijing China
| | - Xi Zhang
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Ming Yi
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Chunyu He
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Xiaoyue Li
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
| | - Wei Wang
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular DiseaseCapital Medical University Beijing China
| | - Suli Zhang
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular DiseaseCapital Medical University Beijing China
| | - Huirong Liu
- Department of Physiology and Pathophysiology School of Basic Medical Sciences Capital Medical University Beijing China
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular DiseaseCapital Medical University Beijing China
| |
Collapse
|
12
|
Vieira-Rocha MS, Rodriguez-Rodriguez P, Ferreira-Duarte M, Faria M, Sousa JB, Morato M, Arribas SM, Diniz C. Fetal Undernutrition Modifies Vascular RAS Balance Enhancing Oxidative Damage and Contributing to Remodeling. Int J Mol Sci 2022; 23:1233. [PMID: 35163158 PMCID: PMC8835999 DOI: 10.3390/ijms23031233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 12/21/2022] Open
Abstract
Fetal stress is known to increase susceptibility to cardiometabolic diseases and hypertension in adult age in a process known as fetal programming. This study investigated the relationship between vascular RAS, oxidative damage and remodeling in fetal programming. Six-month old Sprague-Dawley offspring from mothers that were fed ad libitum (CONTROL) or with 50% intake during the second half of gestation (maternal undernutrition, MUN) were used. qPCR or immunohistochemistry were used to obtain the expression of receptors and enzymes. Plasma levels of carbonyls were measured by spectrophotometry. In mesenteric arteries from MUN rats we detected an upregulation of ACE, ACE2, AT1 receptors and NADPH oxidase, and lower expression of AT2, Mas and MrgD receptors compared to CONTROL. Systolic and diastolic blood pressure and plasma levels of carbonyls were higher in MUN than in CONTROL. Vascular morphology evidenced an increased media/lumen ratio and adventitia/lumen ratio, and more connective tissue in MUN compared to CONTROL. In conclusion, fetal undernutrition indices RAS alterations and oxidative damage which may contribute to the remodeling of mesenteric arteries, and increase the risk of adverse cardiovascular events and hypertension.
Collapse
Affiliation(s)
- Maria Sofia Vieira-Rocha
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Pilar Rodriguez-Rodriguez
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, 28049 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Mariana Ferreira-Duarte
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Miguel Faria
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
- Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal
| | - Joana Beatriz Sousa
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Manuela Morato
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| | - Silvia Magdalena Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, 28049 Madrid, Spain; (P.R.-R.); (S.M.A.)
| | - Carmen Diniz
- Laboratory of Pharmacology, Department of Drug Science, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.F.-D.); (J.B.S.); (M.M.)
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, 4099-002 Porto, Portugal;
| |
Collapse
|
13
|
Masi S, Rizzoni D, Taddei S, Widmer RJ, Montezano AC, Lüscher TF, Schiffrin EL, Touyz RM, Paneni F, Lerman A, Lanza GA, Virdis A. Assessment and pathophysiology of microvascular disease: recent progress and clinical implications. Eur Heart J 2021; 42:2590-2604. [PMID: 33257973 PMCID: PMC8266605 DOI: 10.1093/eurheartj/ehaa857] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/23/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The development of novel, non-invasive techniques and standardization of protocols to assess microvascular dysfunction have elucidated the key role of microvascular changes in the evolution of cardiovascular (CV) damage, and their capacity to predict an increased risk of adverse events. These technical advances parallel with the development of novel biological assays that enabled the ex vivo identification of pathways promoting microvascular dysfunction, providing novel potential treatment targets for preventing cerebral-CV disease. In this article, we provide an update of diagnostic testing strategies to detect and characterize microvascular dysfunction and suggestions on how to standardize and maximize the information obtained from each microvascular assay. We examine emerging data highlighting the significance of microvascular dysfunction in the development CV disease manifestations. Finally, we summarize the pathophysiology of microvascular dysfunction emphasizing the role of oxidative stress and its regulation by epigenetic mechanisms, which might represent potential targets for novel interventions beyond conventional approaches, representing a new frontier in CV disease reduction.
Collapse
Affiliation(s)
- Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Institute of Cardiovascular Science, University College London, London, UK
| | - Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.,Division of Medicine, Istituto Clinico Città di Brescia, Brescia, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Robert Jay Widmer
- Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Augusto C Montezano
- Institute of Cardiovascular & Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Thomas F Lüscher
- Heart Division, Royal Brompton and Harefield Hospital and Imperial College, London, UK.,Center for Molecular Cardiology, University of Zürich, Zürich, Switzerland
| | - Ernesto L Schiffrin
- Department of Medicine and Lady Davis Institute, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Rhian M Touyz
- Institute of Cardiovascular & Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Zürich, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| | - Amir Lerman
- Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Gaetano A Lanza
- Department of Cardiovascular and Thoracic Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Rodrigues-Diez RR, Tejera-Muñoz A, Orejudo M, Marquez-Exposito L, Santos-Sanchez L, Rayego-Mateos S, Cantero-Navarro E, Tejedor-Santamaria L, Marchant V, Ortiz A, Egido J, Mezzano S, Selgas R, Navarro-González JF, Valdivielso JM, Lavoz C, Ruiz-Ortega M. Interleukin-17A: Potential mediator and therapeutic target in hypertension. Nefrologia 2021; 41:244-257. [PMID: 36166242 DOI: 10.1016/j.nefroe.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 06/16/2023] Open
Abstract
Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and in target organ damage. Preclinical studies in mice have shown that systemic adminstration of IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Many studies in hypertensive mice models have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, the blockade of IL-17A by genetic strategies or using neutralizing antibodies, disminished blood pressure, probablyby acting on the small mesenteric arteries as well as in the regulation of tubule sodium transport. Moreover, IL-17A inhibition reduces end-organs damage. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target of hypertension-related pathologies in the future.
Collapse
Affiliation(s)
- Raúl R Rodrigues-Diez
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marquez-Exposito
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Elena Cantero-Navarro
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Selgas
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación La Paz (IdiPAZ), Hospital Universitario La Paz, Universidad Autónoma, IRSIN, Madrid, Spain
| | - Juan F Navarro-González
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Spain
| | - Jose M Valdivielso
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
15
|
Rodrigues-Diez RR, Tejera-Muñoz A, Orejudo M, Marquez-Exposito L, Santos L, Rayego-Mateos S, Cantero-Navarro E, Tejedor-Santamaria L, Marchant V, Ortiz A, Egido J, Mezzano S, Selgas R, Navarro-González JF, Valdivielso JM, Lavoz C, Ruiz-Ortega M. [Interleukin-17A: Possible mediator and therapeutic target in hypertension]. Nefrologia 2021; 41:244-257. [PMID: 33775443 DOI: 10.1016/j.nefro.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022] Open
Abstract
Interleukin-17A (IL-17A) is a proinflammatory cytokine produced by cells of the immune system, predominantly Th17 lymphocytes and γδ lymphocytes. In this paper, we review the role of IL-17A in the pathogenesis of hypertension and target organ damage. Studies in mice have shown that IL-17A increases blood pressure, probably by acting on multiple levels. Furthermore, IL-17A plasma concentrations are already elevated in patients with mild or moderate hypertension. Preclinical studies on arterial hypertension have detected IL-17A-producing cells in target organs such as the heart, vessels and kidneys. Patients with hypertensive nephrosclerosis show kidney infiltration by Th17 lymphocytes and γδ lymphocytes that express IL-17A. In addition, in experimental models of hypertension, blocking IL-17A by genetic strategies, or using neutralising antibodies, lowers blood pressure by acting on the vascular wall and tubule sodium transport and reduces damage to target organs. As a whole, the data presented in this review suggest that IL-17A participates in the regulation of blood pressure and in the genesis and maintenance of arterial hypertension, and may constitute a therapeutic target in the future.
Collapse
Affiliation(s)
- Raúl R Rodrigues-Diez
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Antonio Tejera-Muñoz
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, España
| | - Laura Marquez-Exposito
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Laura Santos
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, España
| | - Elena Cantero-Navarro
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Lucia Tejedor-Santamaria
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Vanessa Marchant
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España; Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, Madrid, España
| | - Sergio Mezzano
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Selgas
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España; Instituto de Investigación La Paz (IdiPAZ), Hospital Universitario La Paz, Universidad Autónoma, IRSIN, Madrid, España
| | - Juan F Navarro-González
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España; Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, España; Instituto de Tecnologías Biomédicas, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, España
| | - Jose M Valdivielso
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España; Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, España
| | - Carolina Lavoz
- Laboratorio de Nefrología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Marta Ruiz-Ortega
- Laboratorio de Patología Renal y Vascular, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, España; Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, España.
| |
Collapse
|
16
|
Loewenstein D, Rabbat M. Neurological complications of systemic hypertension. HANDBOOK OF CLINICAL NEUROLOGY 2021; 177:253-259. [PMID: 33632444 DOI: 10.1016/b978-0-12-819814-8.00018-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic hypertension is the most common, most easily diagnosed, and one of the most reversible risk factors for neurologic pathology. Acute severe hypertension above a mean arterial pressure of approximately 150mmHg exceeds the brain's autoregulatory capacity and results in increased cerebral blood flow leading to hypertensive encephalopathy. Chronic hypertension predisposes to cerebral vasculature atherosclerosis, medial hypertrophy, luminal narrowing, endothelial dysfunction, impaired arterial relaxation, and decreased ability to augment cerebral blood flow at low blood pressures. The pathologic effects of hypertension increase stroke risk by three- to fivefold. With three-fourths of strokes incident events, primary prevention is essential. Multiple studies have demonstrated the benefit of blood pressure lowering in reducing incident and recurrent strokes. Even more, hypertension is a risk factor for cognitive impairment and dementia through multifactorial mechanisms including vascular compromise, cerebral small vessel disease, white matter disease (leukoaraiosis), cerebral microbleeds, cerebral atrophy, amyloid plaque deposition, and neurofibrillary tangles. In patients without hypotension, treatment with antihypertensives slows progression and assuages the degree of cognitive decline. While the choice of antihypertensive did not make a significant difference in most cognitive outcome studies, some large meta-analyses have pointed to angiotensin receptor blockers as the favored agent. Because of the well-documented morbidity and mortality associated with unchecked hypertension, treating and preventing hypertension are universally critical pillars in healthcare.
Collapse
Affiliation(s)
- Devin Loewenstein
- (1)Department of Medicine, Division of Cardiology, Rush University Medical Center, Chicago, IL, United States
| | - Mark Rabbat
- Department of Medicine, Division of Cardiology, Loyola University Medical Center, Maywood, IL, United States.
| |
Collapse
|
17
|
Cífková R, Harazny JM, Bruthans J, Wohlfahrt P, Krajčoviechová A, Lánská V, Gelžinský J, Mateřánková M, Mareš Š, Filipovský J, Mayer O, Schmieder RE. Reference values of retinal microcirculation parameters derived from a population random sample. Microvasc Res 2020; 134:104117. [PMID: 33245956 DOI: 10.1016/j.mvr.2020.104117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/21/2020] [Accepted: 11/21/2020] [Indexed: 11/17/2022]
Abstract
Retinal microcirculation reflects retinal perfusion abnormalities and retinal arterial structural changes at relatively early stages of various cardiovascular diseases. Our objective has been to establish reference values for major functional and structural parameters of retinal microcirculation in a randomly selected urban population sample. A total of 398 randomly selected individuals from an urban population aged 25 to 65 years, resident in Pilsen, Czech Republic, were screened for major cardiovascular risk factors. Retinal microcirculation was assessed using scanning laser Doppler flowmetry (SLDF), with data evaluable in 343 patients. Of this number, complete data were available for 256 individuals free from manifest cardiovascular disease, diabetes and drug treatment for hypertension and/or dyslipidemia, constituting the reference value population. Juxtapapillary retinal capillary blood flow has increased significantly with age whereas vessel and luminal diameters have decreased. No sex differences in retinal microcirculation parameters have been found. Therefore, reference values for retinal microcirculation parameters have been established by age groups. Unattended automated office systolic BP, after adjusting for age, correlated significantly with wall-to-lumen ratio (WLR) and wall thickness (WT). Moreover, after adjusting for age and mean BP, a positive relationship has been found between carotid femoral pulse wave velocity and WT, WLR and wall cross-sectional area, indicating the interaction between micro- and macro-vasculature. In conclusion, our study is the first to provide reference values of retinal microcirculation parameters in a random Caucasian population sample. Our results have shown that, at the population level, the first structural changes in retinal microcirculation are those in lumen diameters. Of note, a close relationship between BP and vascular remodeling of retinal arterioles and between aortic stiffness and WLR of retinal arterioles suggests an interaction between micro- and macro-vasculature.
Collapse
Affiliation(s)
- Renata Cífková
- Center for Cardiovascular Prevention, Charles University in Prague, First Faculty of Medicine and Thomayer Hospital, Prague, Czech Republic; Department of Medicine II, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic.
| | - Joanna M Harazny
- Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany; Department of Human Physiology and Pathophysiology, University of Warmia and Mazury, Olsztyn, Poland
| | - Jan Bruthans
- Center for Cardiovascular Prevention, Charles University in Prague, First Faculty of Medicine and Thomayer Hospital, Prague, Czech Republic; 2nd Department of Internal Medicine, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Peter Wohlfahrt
- Center for Cardiovascular Prevention, Charles University in Prague, First Faculty of Medicine and Thomayer Hospital, Prague, Czech Republic
| | - Alena Krajčoviechová
- Center for Cardiovascular Prevention, Charles University in Prague, First Faculty of Medicine and Thomayer Hospital, Prague, Czech Republic
| | - Věra Lánská
- Medical Statistics Unit, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Július Gelžinský
- 2nd Department of Internal Medicine, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Markéta Mateřánková
- 2nd Department of Internal Medicine, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Štěpán Mareš
- 2nd Department of Internal Medicine, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Jan Filipovský
- 2nd Department of Internal Medicine, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Otto Mayer
- 2nd Department of Internal Medicine, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - Roland E Schmieder
- Department of Nephrology and Hypertension, Friedrich-Alexander-University, Erlangen-Nürnberg, Germany
| |
Collapse
|
18
|
Gutiérrez-Arzapalo PY, Rodríguez-Rodríguez P, Ramiro-Cortijo D, Gil-Ortega M, Somoza B, de Pablo ÁLL, González MDC, Arribas SM. Fetal Undernutrition Induces Resistance Artery Remodeling and Stiffness in Male and Female Rats Independent of Hypertension. Biomedicines 2020; 8:biomedicines8100424. [PMID: 33081182 PMCID: PMC7602844 DOI: 10.3390/biomedicines8100424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
Fetal undernutrition programs hypertension and cardiovascular diseases, and resistance artery remodeling may be a contributing factor. We aimed to assess if fetal undernutrition induces resistance artery remodeling and the relationship with hypertension. Sprague–Dawley dams were fed ad libitum (Control) or with 50% of control intake between days 11 and 21 of gestation (maternal undernutrition, MUN). In six-month-old male and female offspring we assessed blood pressure (anesthetized and tail-cuff); mesenteric resistance artery (MRA) structure and mechanics (pressure myography), cellular and internal elastic lamina (IEL) organization (confocal microscopy) and plasma MMP-2 and MMP-9 activity (zymography). Systolic blood pressure (SBP, tail-cuff) and plasma MMP activity were assessed in 18-month-old rats. At the age of six months MUN males exhibited significantly higher blood pressure (anesthetized or tail-cuff) and plasma MMP-9 activity, while MUN females did not exhibit significant differences, compared to sex-matched controls. MRA from 6-month-old MUN males and females showed a smaller diameter, reduced adventitial, smooth muscle cell density and IEL fenestra area, and a leftward shift of stress-strain curves. At the age of eighteen months SBP and MMP-9 activity were higher in both MUN males and females, compared to sex-matched controls. These data suggest that fetal undernutrition induces MRA inward eutrophic remodeling and stiffness in both sexes, independent of blood pressure level. Resistance artery structural and mechanical alterations can participate in the development of hypertension in aged females and may contribute to adverse cardiovascular events associated with low birth weight in both sexes.
Collapse
Affiliation(s)
- Perla Y. Gutiérrez-Arzapalo
- Center of Research and Teaching in Health Sciences (CIDOCS), Universidad Autonoma de Sinaloa, Av. Cedros y calle Sauces s/n, Culiacán 80010, Sinaloa, Mexico;
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
| | - David Ramiro-Cortijo
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA
| | - Marta Gil-Ortega
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad CEU-San Pablo, C/Julián Romea, 23, 28003 Madrid, Spain; (M.G.-O.); (B.S.)
| | - Beatriz Somoza
- Department of Pharmaceutical and Health Sciences, Faculty of Pharmacy, Universidad CEU-San Pablo, C/Julián Romea, 23, 28003 Madrid, Spain; (M.G.-O.); (B.S.)
| | - Ángel Luis López de Pablo
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
| | - Maria del Carmen González
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autonoma de Madrid, C/Arzobispo Morcillo 2, 28029 Madrid, Spain; (P.R.-R.); (D.R.-C.); (Á.L.L.d.P.); (M.d.C.G.)
- Correspondence:
| |
Collapse
|
19
|
Masi S, Georgiopoulos G, Chiriacò M, Grassi G, Seravalle G, Savoia C, Volpe M, Taddei S, Rizzoni D, Virdis A. The importance of endothelial dysfunction in resistance artery remodelling and cardiovascular risk. Cardiovasc Res 2020; 116:429-437. [PMID: 31220219 DOI: 10.1093/cvr/cvz096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/20/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
AIMS The relationship between resistance artery remodelling and endothelial function remains unknown. In this study, we assessed (i) the capacity of endothelial function and nitric oxide (NO) availability to provide more information on the severity of resistance artery remodelling than common cardiovascular risk factors in subjects at low or high cardiovascular risk; and (ii) differences between patterns of resistance artery remodelling associated with deficit of NO availability and with exposure to cardiovascular risk factors. METHODS AND RESULTS All analyses were conducted on the microvascular data set of the Italian Society for Arterial Hypertension (SIIA) that includes 356 patients with measures of small resistance arteries remodelling acquired with pressure or wire myography. Information on endothelial function and NO availability were also available in 116 patients. The European Heart Score (HS) was used to define the total cardiovascular risk of each patient. Endothelial function was inversely related with the severity of the resistance artery remodelling, and this association remained significant after adjustment for the HS. By contrast, the HS lost its significant association with the media-to-lumen (M/L) ratio and the media cross-sectional area after adjustment for endothelial function. The strength of these associations was similar in subjects at high and low cardiovascular risk. The addition of endothelial function and NO availability to the HS significantly improved the identification of subjects at more and less severe resistance artery remodelling. A severe deficit of NO availability was associated with hypertrophic remodelling, while a higher HS was more clearly associated with eutrophic remodelling. CONCLUSION Resistance artery endothelial function and NO availability might represent important factors involved in resistance artery remodelling, independently from cardiovascular risk factor exposure.
Collapse
Affiliation(s)
- Stefano Masi
- Department of Clinical and Experimental Medicine, Università degli Studi di Pisa, Via Roma 67, 56126 Pisa, Italy.,National Centre for Cardiovascular Prevention and Outcomes, Institute of Cardiovascular Science, University College London, London, UK.,Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Georgios Georgiopoulos
- First Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Martina Chiriacò
- Department of Clinical and Experimental Medicine, Università degli Studi di Pisa, Via Roma 67, 56126 Pisa, Italy.,Scuola Superiore Sant'Anna, Pisa, Italy
| | - Guido Grassi
- Department of Medicine and Surgery, Clinica Medica, University of Milano-Bicocca, Italy.,Unit of Cardiology and Cardiovascular Science, IRCCS Multimedica, Sesto san Giovanni, Milan, Italy
| | - Gino Seravalle
- Cardiology Unit, Fondazione Istituto Auxologico Italiano, Ospedale S. Luca, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Carmine Savoia
- Cardiology Division, Clinical and Molecular Medicine Department, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Massimo Volpe
- Cardiology Division, Clinical and Molecular Medicine Department, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed - Mediterranean Neurological Institute, Pozzilli, Italy
| | - Stefano Taddei
- Department of Clinical and Experimental Medicine, Università degli Studi di Pisa, Via Roma 67, 56126 Pisa, Italy
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, Clinica Medica, University of Brescia, Brescia, Italy.,Division of Medicine, Istituto Clinico Città di Brescia, Brescia, Italy
| | - Agostino Virdis
- Department of Clinical and Experimental Medicine, Università degli Studi di Pisa, Via Roma 67, 56126 Pisa, Italy
| |
Collapse
|
20
|
Interleukin-17A induces vascular remodeling of small arteries and blood pressure elevation. Clin Sci (Lond) 2020; 134:513-527. [PMID: 32104886 DOI: 10.1042/cs20190682] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 01/20/2023]
Abstract
An important link exists between hypertension and inflammation. Hypertensive patients present elevated circulating levels of proinflammatory cytokines, including interleukin-17A (IL-17A). This cytokine participates in host defense, autoimmune and chronic inflammatory pathologies, and cardiovascular diseases, mainly through the regulation of proinflammatory factors. Emerging evidence also suggests that IL-17A could play a role in regulating blood pressure and end-organ damage. Here, our preclinical studies in a murine model of systemic IL-17A administration showed that increased levels of circulating IL-17A raised blood pressure induced inward remodeling of small mesenteric arteries (SMAs) and arterial stiffness. In IL-17A-infused mice, treatment with hydralazine and hydrochlorothiazide diminished blood pressure elevation, without modifying mechanical and structural properties of SMA, suggesting a direct vascular effect of IL-17A. The mechanisms of IL-17A seem to involve an induction of vascular smooth muscle cell (VSMC) hypertrophy and phenotype changes, in the absence of extracellular matrix (ECM) proteins accumulation. Accordingly, treatment with an IL-17A neutralizing antibody diminished SMA remodeling in a model of angiotensin II (Ang II) infusion. Moreover, in vitro studies in VSMCs reported here, provide further evidence of the direct effects of IL-17A on cell growth responses. Our experimental data suggest that IL-17A is a key mediator of vascular remodeling of the small arteries, which might contribute, at least in part, to blood pressure elevation.
Collapse
|
21
|
The Complex Relationship Between Serum Uric Acid, Endothelial Function and Small Vessel Remodeling in Humans. J Clin Med 2020; 9:jcm9072027. [PMID: 32605201 PMCID: PMC7409082 DOI: 10.3390/jcm9072027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Aims: The relationship between serum uric acid (SUA) and microvascular remodeling in humans remains largely unexplored. We assessed whether SUA provides additional information on the severity of microvascular remodeling than that obtained from the European Heart Score (HS), the patterns of microvascular remodeling associated with changes in SUA levels and the mediation by endothelial function and nitric oxide (NO) availability on this relationship. Methods: A total of 162 patients included in the microvascular dataset of the Italian Society of Hypertension with available information on SUA, media-to-lumen (M/L) ratio, media cross-sectional area (MCSA), endothelial function, NO availability and HS were included in the analysis. The top tertile of M/L ratio and MCSA were used to define severe microvascular remodeling. Results: A U-shaped association was observed between SUA and both M/L ratio and MCSA. Adjustment for HS did not affect these associations. SUA was able to reclassify a significant number of subjects without, and with, severe M/L ratio and MCSA remodeling over the HS alone. The microvascular remodeling associated with SUA levels presented a predominant hypertrophic pattern. SUA was inversely associated with endothelial function and NO availability. Structural equation modeling analysis controlling for the HS suggested that the association of SUA with M/L ratio and MCSA was mediated through changes in endothelial function and NO availability. Conclusions: The addition of SUA to the HS improves the identification of subjects with greater microvascular remodeling. The relationship between SUA and microvascular remodeling is mediated by endothelial function and NO availability.
Collapse
|
22
|
Buus NH, Carlsen RK, Hughes AD, Skov K. Influence of Renal Transplantation and Living Kidney Donation on Large Artery Stiffness and Peripheral Vascular Resistance. Am J Hypertens 2020; 33:234-242. [PMID: 31678997 DOI: 10.1093/ajh/hpz175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/04/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Vascular status following renal transplantation (RT) may improve while living kidney donation (LKD) is possibly associated with an increased cardiovascular risk. METHODS We prospectively assessed glomerular filtration rate (mGFR, 51Chrome EDTA clearance) and intermediate vascular risk factors in terms of blood pressure (BP), pulse wave velocity (PWV), central augmentation index (AIx), excess pressure (Pexcess), and forearm vascular resistance in donors (n = 58, 45 ± 13 years) and recipients (n = 51, 50 ± 12 years) before and one year following LKD or RT. RESULTS After kidney donation, mGFR decreased by 33% to 65 ± 11 ml/min/1.73m2, while recipients obtained a mGFR of 55 ± 9 ml/min/1.73m.2 Ambulatory 24-hour mean arterial BP (MAP) remained unchanged in donors but decreased by 5 mm Hg in recipients (P < 0.05). Carotid-femoral PWV increased by 0.3 m/s in donors (P < 0.05) but remained unchanged in recipients. AIx was unaltered after LKD but decreased following RT (P < 0.01), and Pexcess did not change in either group. Resting forearm resistance (Rrest), measured by venous occlusion plethysmography, increased after LKD (P < 0.05) but was unaffected by RT, while no changes were seen in minimum resistance (Rmin). ΔPWV showed a positive linear association to Δ24-hour MAP in both groups. Multiple linear regression analysis (adjusting for age, gender, and the baseline value of the studied parameter) did not detect independent effects of graft function on 24-hour MAP, PWV, AIx, vascular resistance, or Pexcess, whereas low post-donation GFR was related to higher AIx and Rrest. CONCLUSIONS RT reduced BP and AIx without affecting PWV, whereas LKD resulted in increased PWV and Rrest, despite unchanged BP.
Collapse
Affiliation(s)
- Niels H Buus
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Institute of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rasmus K Carlsen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Alun D Hughes
- Institute of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Population Science and Experimental Medicine, Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, London, UK
| | - Karin Skov
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
23
|
Effects of additional vasodilatory or nonvasodilatory treatment on renal function, vascular resistance and oxygenation in chronic kidney disease: a randomized clinical trial. J Hypertens 2020; 37:116-124. [PMID: 29995697 DOI: 10.1097/hjh.0000000000001835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Progression of chronic kidney disease (CKD) may be accelerated by tissue hypoxia due to impaired blood supply. This could be induced by small artery narrowing resulting in abnormally high intrarenal vascular resistance (RVR). We investigated whether a reduction in RVR achieved by adding vasodilating medical therapy (AVT) is superior to adding nonvasodilating medical therapy (AnonVT) regarding tissue oxygenation and preservation of kidney function. METHODS Eighty-three grade 3 and 4 CKD patients [estimated glomerular filtration rate (GFR) 34.6 ml/min per 1.73 m] were randomized to either AVT with amlodipine and/or renin angiotensin blockade or AnonVT with the nonvasodilating beta-blocker metoprolol. Investigations were performed at baseline and after 18 months of therapy. Systemic vasodilation was documented in the forearm vasculature using resting venous occlusion plethysmography. GFR was measured as Chrome-EDTA plasma clearance. Using MRI, renal artery blood flow was measured for calculation of RVR and for estimating renal oxygenation (R2*). RESULTS AVT and AnonVT achieved as planned similar blood pressure levels throughout the study. At follow-up, resistance had decreased by 7% (P < 0.05) and RVR by 12% (P < 0.05) in the AVT group, whereas in the AnonVT group, resistance increased by 39% (P < 0.01), whereas RVR remained unchanged. At follow-up, no significant differences in cortical or medullary R2* values between AVT and AnonVT were observed, and the GFR decline was similar in the two groups (3.0 vs. 3.3 ml/min per 1.73 m). CONCLUSION Long-term intensified vasodilation treatment reduced peripheral and RVR, but this was not associated with improvement of R2* or protection against loss of kidney function in CKD patients.
Collapse
|
24
|
Arterial stiffness and peripheral vascular resistance in offspring of hypertensive parents: influence of sex and other confounders. J Hypertens 2019; 36:815-823. [PMID: 29303831 DOI: 10.1097/hjh.0000000000001645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM Established essential hypertension is associated with increased arterial stiffness and peripheral resistance, but the extent of vascular changes in persons genetically predisposed for essential hypertension is uncertain. METHODS Participants from the Danish Hypertension Prevention Project (DHyPP) (both parents hypertensive) (n = 95, 41 ± 1 years, 53% men) were compared with available spouses (n = 45, 41 ± 1 years) using measurements of ambulatory blood pressure (BP), left ventricular mass index (LVMI), pulse wave velocity, central BP and augmentation index (AIx) in addition to forearm resting and minimal resistance [forearm resting vascular resistance (Rrest) and forearm minimal vascular resistance (Rmin)]. RESULTS DHyPP patients with participating spouses had higher 24-h mean BP (94 ± 1 vs. 88 ± 1 mmHg, P < 0.01), LVMI (94 ± 3 vs. 80 ± 2 g/m, P < 0.01), central SBP (121 ± 2 vs. 111 ± 2 mmHg, P < 0.01) and AIx (16.0 ± 1.2 vs. 10.5 ± 1.7%, P < 0.01), but similar carotid-femoral pulse wave velocity (7.5 ± 0.2 vs. 7.1 ± 0.2 m/s), Rrest (53 ± 3 vs. 51 ± 3 mmHg/ml/min/100 ml) and log Rmin (0.58 ± 0.02 vs. 0.55 ± 0.02 mmHg/ml/min/100 ml) when compared with spouses. Using multiple linear regression analysis (adjusting for sex, age, BMI, creatinine clearance and 24-h BP, heart rate and sodium excretion) AIx and LVMI remained elevated in DHyPP patients [4.2% (0.7; 7.7), P = 0.02 and 6.3 g/m (0.7; 11.9), P = 0.03]. For the entire DHyPP cohort AIx, Rrest and Rmin were higher in women than men (P < 0.01), and the same was true for AIx and Rmin among spouses (P < 0.05). Furthermore, AIx was linearly associated with Rrest and Rmin. CONCLUSION Young to middle-aged individuals genetically predisposed for essential hypertension display increased AIx and LVMI, although vascular stiffness and peripheral resistance are still normal.
Collapse
|
25
|
Henrion D. Keeping the Extracellular Matrix Well Structured to Keep Healthy Vessels. Arterioscler Thromb Vasc Biol 2018; 38:2281-2282. [PMID: 30354223 DOI: 10.1161/atvbaha.118.311733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Daniel Henrion
- From the MitoVasc Institute, UMR CNRS 6015-INSERM U1083, University of Angers, France
| |
Collapse
|
26
|
Nunes DO, Marques VB, Almenara CCP, Marcarini WD, Ribeiro Júnior RF, Padilha AS. Linoleic acid reduces vascular reactivity and improves the vascular dysfunction of the small mesentery in hypertension. J Nutr Biochem 2018; 62:18-27. [PMID: 30218979 DOI: 10.1016/j.jnutbio.2018.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
We aimed to investigate the effect of linoleic acid (LA) treatment on the blood pressure and function of mesenteric resistance arteries (MRA) in spontaneous hypertensive rats (SHR). Male SHR were treated daily with LA (15 mg/kg) or vehicle (control) for 15 days. Compared with controls, LA treatment decreased blood pressure and showed the following in MRA: (1) increased lumen and external diameter, (2) decreased wall:lumen ratio and wall thickness, (3) decreased stiffness and (4) less collagen deposition. LA treatment reduced the contractile response to phenylephrine, although there were no changes observed in MRA in regard to the acetylcholine or sodium nitroprusside responses. Incubation with L-NAME left-shifted the reactivity to phenylephrine only in the MRA treated group, suggesting that LA treatment can improve NO bioavailability. This result was accompanied by an increase "in situ" NO production. Incubation with tiron decreased vascular reactivity to phenylephrine in MRA in LA rats, which was accompanied by decreased superoxide anion production. Moreover, incubation with indomethacin (non-selective COX inhibitor, 10 μM), NS 398 (COX-2 specific inhibitor, 1 μM), furegrelate (TXA2 synthase inhibitor, 1 μM), SQ 29.548 (TP receptor antagonist, 1 μM) and SC 19220 (EP1 receptor antagonist, 10 μM) reduced the vasoconstrictor responses to phenylephrine in MRA in the treated group. These results were accompanied by a reduction in COX-2 protein expression. In conclusion, these findings show that LA treatment decreases blood pressure. In addition, the improvement of endothelial dysfunction and structural changes in this hypertension model may be responsible for the reduction in blood pressure.
Collapse
Affiliation(s)
- Dieli Oliveira Nunes
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | | - Wena Dantas Marcarini
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | | |
Collapse
|
27
|
Pan Q, Wang R, Reglin B, Fang L, Yan J, Cai G, Kuebler WM, Pries AR, Ning G. Pulse wave velocity in the microcirculation reflects both vascular compliance and resistance: Insights from computational approaches. Microcirculation 2018; 25:e12458. [PMID: 29729094 DOI: 10.1111/micc.12458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 04/26/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE PWV is the speed of pulse wave propagation through the circulatory system. mPWV emerges as a novel indicator of hypertension, yet it remains unclear how different vascular properties affect mPWV. We aim to identify the biomechanical determinants of mPWV. METHODS A 1D model was used to simulate PWV in a rat mesenteric microvascular network and, for comparison, in a human macrovascular arterial network. Sensitivity analysis was performed to assess the relationship between PWV and vascular compliance and resistance. RESULTS The 1D model enabled adequate simulation of PWV in both micro- and macrovascular networks. Simulated arterial PWV changed as a function of vascular compliance but not resistance, in that arterial PWV varied at a rate of 0.30 m/s and -6.18 × 10-3 m/s per 10% increase in vascular compliance and resistance, respectively. In contrast, mPWV depended on both vascular compliance and resistance, as it varied at a rate of 2.79 and -2.64 cm/s per 10% increase in the respective parameters. CONCLUSIONS The present study identifies vascular compliance and resistance in microvascular networks as critical determinants of mPWV. We anticipate that mPWV can be utilized as an effective indicator for the assessment of microvascular biomechanical properties.
Collapse
Affiliation(s)
- Qing Pan
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruofan Wang
- Key Laboratory of Biomedical Engineering of MOE, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Bettina Reglin
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Luping Fang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jing Yan
- Department of ICU, Zhejiang Hospital, Hangzhou, China
| | - Guolong Cai
- Department of ICU, Zhejiang Hospital, Hangzhou, China
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Axel R Pries
- Institute of Physiology, Charité Universitätsmedizin Berlin, Berlin, Germany.,Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Gangmin Ning
- Key Laboratory of Biomedical Engineering of MOE, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Affiliation(s)
- Sarah B Withers
- From the Biomedical Research Centre, Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.).,Vascular Research Group, Salford Royal Foundation Trust, United Kingdom (S.B.W.)
| | - Sophie N Saxton
- and Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (S.N.S., A.M.H.)
| | - Anthony M Heagerty
- and Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (S.N.S., A.M.H.).
| |
Collapse
|
29
|
Bruno RM, Grassi G, Seravalle G, Savoia C, Rizzoni D, Virdis A. Age- and Sex-Specific Reference Values for Media/Lumen Ratio in Small Arteries and Relationship With Risk Factors. Hypertension 2018; 71:1193-1200. [PMID: 29686004 DOI: 10.1161/hypertensionaha.117.10634] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 11/29/2017] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Small-artery remodeling is an early feature of target organ damage in hypertension and retains a negative prognostic value. The aim of the study is to establish age- and sex-specific reference values for media/lumen in small arteries obtained in humans by biopsy. Data from 91 healthy individuals and 200 individuals with cardiovascular risk factors in primary prevention from 4 Italian centers were pooled. Sex-specific equations for media/lumen in the healthy subpopulation, with age as dependent variable, were calculated. These equations were used to calculate predicted media/lumen values in individuals with risk factors and Z scores. The association between classical risk factors and Z scores was then explored by multiple regression analysis. A second-degree polynomial equation model was chosen to obtain sex-specific equations for media/lumen, with age as dependent variable. In the population with risk factors (111 men, age 50.5±14.0 years, hypertension 80.5%), media/lumen Z scores were independently associated with body mass index (standardized β=0.293, P=0.0001), total cholesterol (β=0.191, P=0.031), current smoking (β=0.238, P=0.0005), fasting blood glucose (β=0.204, P=0.003), systolic blood pressure (β=0.233, P=0.023), and female sex (β=0.799, P=0.038). A significant interaction between female sex and total cholesterol was found (β=-0.979, P=0.014). Results were substantially similar in the hypertensive subgroup. A method to calculate individual values of remodeling and growth index based on reference values was also presented. Age- and sex-specific percentiles of media/lumen in a healthy population were estimated. In a predominantly hypertensive population, media/lumen Z scores were associated with major cardiovascular risk factors, including body mass index, cholesterol, smoking, glucose, and systolic blood pressure. Significant sex differences were observed.
Collapse
Affiliation(s)
- Rosa Maria Bruno
- From the Department of Clinical and Experimental Medicine, University of Pisa, Italy (R.M.B., A.V.)
| | - Guido Grassi
- Clinica Medica, Department of Medicine and Surgery, University of Milano-Bicocca, Italy (G.G.)
| | - Gino Seravalle
- Cardiologia, Ospedale S. Luca, IRCCS Istituto Auxologico Italiano, Milano (G.S.)
| | - Carmine Savoia
- Cardiology Division, Clinical and Molecular Medicine Department, Sant'Andrea Hospital, Sapienza University of Rome, Italy (C.S.)
| | - Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Italy (D.R.).,and Istituto Clinico Città di Brescia, Division of Medicine, Italy (D.R.)
| | - Agostino Virdis
- From the Department of Clinical and Experimental Medicine, University of Pisa, Italy (R.M.B., A.V.)
| | | |
Collapse
|
30
|
Rizzoni D, Agabiti Rosei C, De Ciuceis C, Semeraro F, Rizzoni M, Docchio F. New Methods to Study the Microcirculation. Am J Hypertens 2018; 31:265-273. [PMID: 29228086 DOI: 10.1093/ajh/hpx211] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Essential hypertension is associated with structural alterations in the microvessels; in particular, an increase in the media thickness to internal lumen ratio of small resistance arteries (MLR) and a reduction in capillary density have been observed. The evaluation of the morphological characteristics of small resistance arteries in humans is challenging. The gold-standard method is generally considered to be the measurement by wire or pressure micromyography of MLR of subcutaneous small vessels obtained by local biopsies. However, noninvasive techniques for the evaluation of retinal arterioles were recently proposed; in particular, 2 approaches, scanning laser Doppler flowmetry (SLDF) and adaptive optics (AO), seem to provide useful information. Both of them provide an estimation of the wall to lumen ratio (WLR) of retinal arterioles. Moreover, a noninvasive measurement of basal and total capillary density may be obtained by videomicroscopy/capillaroscopy. It has been recently demonstrated that AO has a substantial advantage over SLDF in terms of evaluation of microvascular morphology, since WLR measured with AO is more closely correlated with the M/L of subcutaneous small arteries. The possibility to noninvasively assess in a reliable way, microvascular morphology in a clinical setting may represent a major advancement, since micromyography has substantial limitations in its application due to the local invasiveness of the procedure.
Collapse
Affiliation(s)
- Damiano Rizzoni
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Istituto Clinico Città di Brescia, Division of Medicine, Brescia, Italy
| | - Claudia Agabiti Rosei
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carolina De Ciuceis
- Clinica Medica, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marco Rizzoni
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Franco Docchio
- Department of Mechanical and Industrial Engineering, University of Brescia, Brescia, Italy
| |
Collapse
|
31
|
Little R, Zi M, Hammad SK, Nguyen L, Njegic A, Kurusamy S, Prehar S, Armesilla AL, Neyses L, Austin C, Cartwright EJ. Reduced expression of PMCA1 is associated with increased blood pressure with age which is preceded by remodelling of resistance arteries. Aging Cell 2017; 16:1104-1113. [PMID: 28795531 PMCID: PMC5595685 DOI: 10.1111/acel.12637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 01/11/2023] Open
Abstract
Hypertension is a well‐established risk factor for adverse cardiovascular events, and older age is a risk factor for the development of hypertension. Genomewide association studies have linked ATP2B1, the gene for the plasma membrane calcium ATPase 1 (PMCA1), to blood pressure (BP) and hypertension. Here, we present the effects of reduction in the expression of PMCA1 on BP and small artery structure and function when combined with advancing age. Heterozygous PMCA1 null mice (PMCA1Ht) were generated and conscious BP was measured at 6 to 18 months of age. Passive and active properties of isolated small mesenteric arteries were examined by pressure myography. PMCA1Ht mice exhibited normal BP at 6 and 9 months of age but developed significantly elevated BP when compared to age‐matched wild‐type controls at ≥12 months of age. Decreased lumen diameter, increased wall thickness and increased wall:lumen ratio were observed in small mesenteric arteries from animals 9 months of age and older, indicative of eutrophic remodelling. Increases in mesenteric artery intrinsic tone and global intracellular calcium were evident in animals at both 6 and 18 months of age. Thus, decreased expression of PMCA1 is associated with increased BP when combined with advancing age. Changes in arterial structure precede the elevation of BP. Pathways involving PMCA1 may be a novel target for BP regulation in the elderly.
Collapse
Affiliation(s)
- Robert Little
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- School of Food Science and Nutrition; The University of Leeds; Leeds LS2 9JT UK
| | - Min Zi
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Sally K. Hammad
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- Department of Biochemistry; Faculty of Pharmacy; Zagazig University; Zagazig 44519 Egypt
| | - Loan Nguyen
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Alexandra Njegic
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Sathishkumar Kurusamy
- Research Institute in Healthcare Science; School of Pharmacy; University of Wolverhampton; Wolverhampton WV1 1LY UK
| | - Sukhpal Prehar
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| | - Angel L. Armesilla
- Research Institute in Healthcare Science; School of Pharmacy; University of Wolverhampton; Wolverhampton WV1 1LY UK
| | - Ludwig Neyses
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- University of Luxembourg; Avenue de l'Universite Esch-sur-Alzette L-4365 Luxembourg
| | - Clare Austin
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
- Faculty of Health and Social Care; Edge Hill University; Lancashire L39 4QP UK
| | - Elizabeth J. Cartwright
- Division of Cardiovascular Sciences; Manchester Academic Health Science Centre; The University of Manchester; AV Hill Building Manchester M13 9PT UK
| |
Collapse
|
32
|
Effects of renal denervation on coronary flow reserve and forearm dilation capacity in patients with treatment-resistant hypertension. A randomized, double-blinded, sham-controlled clinical trial. Int J Cardiol 2017; 250:29-34. [PMID: 29042091 DOI: 10.1016/j.ijcard.2017.09.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/24/2017] [Accepted: 09/26/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND Microvascular impairment is well documented in hypertension. We investigated the effect of renal sympathetic denervation (RDN) on cardiac and peripheral microvasculature in patients with treatment-resistant essential hypertension (TRH). METHODS A randomized, single centre, double-blinded, sham-controlled clinical trial. Fifty-eight patients with TRH (ambulatory systolic BP (ASBP) ≥ 145mmHg) despite stable treatment were randomized to RDN or SHAM. RDN was performed with the unipolar Medtronic Flex catheter. Coronary flow reserve (CFR) and coronary- and forearm minimum vascular resistance (C-Rmin and F-Rmin) were determined using transthoracic Doppler echocardiography and F-Rmin with venous occlusion plethysmography at baseline and at six-months follow-up. RESULTS RDN was performed with 5.3±0.2 lesions in the right renal artery and 5.4±0.2 lesions in the left. Baseline ASBP was 152±2mmHg (RDN, n=29) and 154±2mmHg (SHAM, n=29). Similar reductions in MAP were seen at follow up (-3.5±2.0 vs. -3.2±1.8, P=0.92). Baseline CFR was 2.9±0.1 (RDN) and 2.4±0.1 (SHAM), with no significant change at follow-up (0.2±0.2 vs. -0.1±0.2, P=0.57). C-Rmin was 1.9±0.3 (RDN) and 2.7±0.6 (SHAM) (mmHgmin/ml pr. 100g) and did not change significantly (0.3±0.5 vs. -0.4±0.8, P=0.48). F-Rmin was 3.6±0.2 (RDN) and 3.6±0.3 (SHAM) (mmHgmin/ml pr. 100ml tissue) and unchanged at follow-up (4.2±0.4 vs. 3.8±0.2, P=0.17). Left ventricular mass index was unchanged following RDN (-4±7 (RDN) vs. 3±5 (SHAM) (g/m2) P=0.38). CONCLUSION The current study does not support positive effects of RDN on microvascular impairment in TRH.
Collapse
|
33
|
Abstract
Remodelling of subcutaneous small resistance arteries, as indicated by an increased media-to-lumen ratio, is frequently present in hypertensive, obese, or diabetic patients. The increased media-to-lumen ratio may impair organ flow reserve. This may be important in the maintenance and, probably, also in the progressive worsening of hypertensive disease. The presence of structural alterations represents a prognostically relevant factor, in terms of development of target organ damage or cardiovascular events, thus allowing us a prediction of complications in hypertension. In fact, media-to-lumen ratio of small arteries at baseline, and possibly their changes during treatment may have a strong prognostic significance. However, new, non-invasive techniques are needed before suggesting extensive application of the evaluation of remodelling of small arteries for the cardiovascular risk stratification in hypertensive patients. Some new techniques for the evaluation of microvascular morphology in the retina, currently under clinical investigation, seem to represent a promising and interesting future perspective. The evaluation of microvascular structure is progressively moving from bench to bedside, and it could represent, in the near future, an evaluation to be performed in all hypertensive patients, to obtain a better stratification of cardiovascular risk, and, possibly, it might be considered as an intermediate endpoint in the evaluation of the effects of antihypertensive therapy, provided that a demonstration of a prognostic value of non-invasive measures of microvascular structure is made available.
Collapse
|
34
|
Bloksgaard M, Leurgans TM, Spronck B, Heusinkveld MHG, Thorsted B, Rosenstand K, Nissen I, Hansen UM, Brewer JR, Bagatolli LA, Rasmussen LM, Irmukhamedov A, Reesink KD, De Mey JGR. Imaging and modeling of acute pressure-induced changes of collagen and elastin microarchitectures in pig and human resistance arteries. Am J Physiol Heart Circ Physiol 2017; 313:H164-H178. [DOI: 10.1152/ajpheart.00110.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/30/2017] [Accepted: 04/14/2017] [Indexed: 01/15/2023]
Abstract
The impact of disease-related changes in the extracellular matrix (ECM) on the mechanical properties of human resistance arteries largely remains to be established. Resistance arteries from both pig and human parietal pericardium (PRA) display a different ECM microarchitecture compared with frequently used rodent mesenteric arteries. We hypothesized that the biaxial mechanics of PRA mirror pressure-induced changes in the ECM microarchitecture. This was tested using isolated pig PRA as a model system, integrating vital imaging, pressure myography, and mathematical modeling. Collagenase and elastase digestions were applied to evaluate the load-bearing roles of collagen and elastin, respectively. The incremental elastic modulus linearly related to the straightness of adventitial collagen fibers circumferentially and longitudinally (both R2 ≥ 0.99), whereas there was a nonlinear relationship to the internal elastic lamina elastin fiber branching angles. Mathematical modeling suggested a collagen recruitment strain (means ± SE) of 1.1 ± 0.2 circumferentially and 0.20 ± 0.01 longitudinally, corresponding to a pressure of ~40 mmHg, a finding supported by the vital imaging. The integrated method was tested on human PRA to confirm its validity. These showed limited circumferential distensibility and elongation and a collagen recruitment strain of 0.8 ± 0.1 circumferentially and 0.06 ± 0.02 longitudinally, reached at a distending pressure below 20 mmHg. This was confirmed by vital imaging showing negligible microarchitectural changes of elastin and collagen upon pressurization. In conclusion, we show here, for the first time in resistance arteries, a quantitative relationship between pressure-induced changes in the extracellular matrix and the arterial wall mechanics. The strength of the integrated methods invites for future detailed studies of microvascular pathologies. NEW & NOTEWORTHY This is the first study to quantitatively relate pressure-induced microstructural changes in resistance arteries to the mechanics of their wall. Principal findings using a pig model system were confirmed in human arteries. The combined methods provide a strong tool for future hypothesis-driven studies of microvascular pathologies.
Collapse
Affiliation(s)
- Maria Bloksgaard
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Thomas M. Leurgans
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bart Spronck
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Maarten H. G. Heusinkveld
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Bjarne Thorsted
- MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Kristoffer Rosenstand
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Inger Nissen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Ulla M. Hansen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jonathan R. Brewer
- MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Luis A. Bagatolli
- MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Lars M. Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark; and
| | - Akhmadjon Irmukhamedov
- Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Koen D. Reesink
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Jo G. R. De Mey
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Cardiac, Thoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| |
Collapse
|
35
|
Seravalle G, Grassi G. Obesity and hypertension. Pharmacol Res 2017; 122:1-7. [PMID: 28532816 DOI: 10.1016/j.phrs.2017.05.013] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022]
Abstract
Obesity and in particular the excessive visceral fat distribution is accompanied by several alterations at hormonal, inflammatory and endothelial level. These alterations induce a stimulation of several other mechanisms that contribute to the hypertensive state and on the other side to increase the cardiovascular morbidity. In these chapter we will examine the main mechanisms of obesity and obesity-related hypertension and in particular the role of sympathetic nervous system, the alterations of the renal function and at the microvascular level. We will also depict the role of insulin resistance as factor stimulating and potentiating the other mechanisms. The second part will be focalized on the major target organ damage linked with obesity and obesity-related hypertension. We will finally describe the management and treatment of obesity and the antihypertensive drug therapies more effective in hypertensive obeses.
Collapse
Affiliation(s)
- Gino Seravalle
- Cardiology Department, S. Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy.
| | - Guido Grassi
- Medical Clinic, S. Gerardo Hospital, University Milano-Bicocca, Monza, Italy
| |
Collapse
|
36
|
Peripheral and Cerebral Resistance Arteries in the Spontaneously Hypertensive Heart Failure Rat: Effects of Stilbenoid Polyphenols. Molecules 2017; 22:molecules22030380. [PMID: 28264510 PMCID: PMC6155253 DOI: 10.3390/molecules22030380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/08/2017] [Accepted: 02/24/2017] [Indexed: 02/07/2023] Open
Abstract
Hypertension is associated with aberrant structure and mechanical properties of resistance arteries. We determined the effects of resveratrol, a non-flavonoid polyphenol found in foods such as red grapes, and structurally-similar analogues (pterostilbene and gnetol) on systolic blood pressure (SBP) and resistance arteries from the spontaneously hypertensive heart failure (SHHF) rat. SBP was elevated in 17-week-old SHHF vs. Sprague-Dawley rats (normotensive control; 194 ± 3 vs. 142 ± 6 mmHg, p < 0.01) and was unaffected by resveratrol, pterostilbene, or gnetol (2.5 mg/kg/d). Geometry and mechanical properties of pressurized mesenteric resistance arteries and middle cerebral arteries were calculated from media and lumen dimensions measured at incremental intraluminal pressures. SHHF arteries exhibited remodeling which consisted of augmented media-to-lumen ratios, and this was attenuated by stilbenoid treatment. Compliance was significantly reduced in SHHF middle cerebral arteries but not mesenteric arteries vis-à-vis increased wall component stiffness; stilbenoid treatment failed to normalize compliance and wall component stiffness. Our data suggest that neither AMPK nor ERK mediate stilbenoid effects. In conclusion, we observed arterial bed-specific abnormalities, where mesenteric resistance arteries exhibited remodeling and cerebral arteries exhibited remodeling and stiffening. Resveratrol, pterostilbene, and gnetol exhibited similar abilities to attenuate vascular alterations.
Collapse
|
37
|
García-Redondo AB, Aguado A, Briones AM, Salaices M. NADPH oxidases and vascular remodeling in cardiovascular diseases. Pharmacol Res 2016; 114:110-120. [PMID: 27773825 DOI: 10.1016/j.phrs.2016.10.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are key signaling molecules that regulate vascular function and structure in physiological conditions. A misbalance between the production and detoxification of ROS increases oxidative stress that is involved in the vascular remodeling associated with cardiovascular diseases such as hypertension by affecting inflammation, hypertrophy, migration, growth/apoptosis and extracellular matrix protein turnover. The major and more specific source of ROS in the cardiovascular system is the NADPH oxidase (NOX) family of enzymes composed of seven members (NOX1-5, DUOX 1/2). Vascular cells express several NOXs being NOX-1 and NOX-4 the most abundant NOXs present in vascular smooth muscle cells. This review focuses on specific aspects of NOX-1 and NOX-4 isoforms including information on regulation, function and their role in vascular remodeling. In order to obtain a more integrated view about the role of the different NOX isoforms in different types of vascular remodeling, we discuss the available literature not only on hypertension but also in atherosclerosis, restenosis and aortic dilation.
Collapse
Affiliation(s)
- Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain
| | - Andrea Aguado
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain.
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28029, Madrid, Spain.
| |
Collapse
|
38
|
Chen Y, Xu C, Wei Y, Zhang Y, Cao A. Endothelium-dependent and-independent relaxation induced by resveratrol in rat superior mesenteric arteries. Exp Ther Med 2016; 12:2241-2246. [PMID: 27698719 DOI: 10.3892/etm.2016.3605] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/02/2016] [Indexed: 02/05/2023] Open
Abstract
Resveratrol (Res) is a specific agonist of sirtuin 1, and has many cardioprotective effects. Although Res is able to relax various vascular beds, its pharmacological properties in rat superior mesenteric arteries and the underlying mechanism are not well clarified. The aim of present study was to investigate the vasorelaxant effects of Res on rat superior mesenteric arteries and the mechanisms involved. The isometric tension of rat superior mesenteric arterial rings was recorded in vitro using myography. It was found that Res concentration-dependently relaxed endothelium-intact superior mesenteric artery rings pre-contracted by phenylephrine hydrochloride (Emax, 97.66±0.79%; pD2, 4.30±0.14) or KCl (Emax, 101.3±0.6%; pD2, 4.12±0.03). The vasorelaxant effect of Res on the superior mesenteric artery rings was partially endothelium-dependent. NG-nitro-L-arginine methyl ester (100 µM) significantly inhibited the Res-induced vasorelaxant effect. However, 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one (10 µM) and indomethacin (5 µM) each had no effect on the Res-induced vasorelaxation. In artery rings without endothelium, the vasorelaxation induced by Res was attenuated by 4-aminopyridine (100 µM) and glibenclamide (10 µM). However, barium chloride dehydrate (10 µM) and tetraethylammonium chloride (1 mM) did not affect the vasorelaxation induced by Res. Moreover, Res also inhibited the contraction induced by an increase in external calcium concentration in Ca2+-free medium plus KCl (60 mM). These results suggest that Res induces relaxation in superior mesenteric arterial rings through an endothelium-dependent pathway, involving nitric oxide release, and also through an endothelium-independent pathway, with opening of voltage-dependent K+ channels and ATP-sensitive K+ channels and blockade of extracellular Ca2+ influx.
Collapse
Affiliation(s)
- Yulong Chen
- Shaanxi Pharmaceutical Development Center, Shaanxi Pharmaceutical Holding Group Co., Ltd., Xi'an, Shaanxi 710075, P.R. China; Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Cangbao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China; Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, S-22184 Lund, Sweden
| | - Yahui Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yaping Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Ailan Cao
- Shaanxi Pharmaceutical Development Center, Shaanxi Pharmaceutical Holding Group Co., Ltd., Xi'an, Shaanxi 710075, P.R. China; Preparation Research Room, Shaanxi Chinese Medicine Institute, Xianyang, Shaanxi 712000, P.R. China
| |
Collapse
|
39
|
Freeman BM, Univers J, Fisher RK, Kirkpatrick SS, Klein FA, Freeman MB, Mountain DJH, Grandas OH. Testosterone replacement attenuates intimal hyperplasia development in an androgen deficient model of vascular injury. J Surg Res 2016; 207:53-62. [PMID: 27979488 DOI: 10.1016/j.jss.2016.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 07/04/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Androgen deficiency (AD) is associated with increased risk of vascular disease. Dysfunctional remodeling of the vessel wall and atypical proliferative potential of vascular smooth muscle cells (VSMCs) are fundamental processes in the development of intimal hyperplasia (IH). We have demonstrated an inverse relationship between dihydrotestosterone (DHT) levels, matrix metalloproteinase activity, and VSMC migration and proliferation in vitro. Here, we investigated the role of AD and testosterone (TST) replacement in IH development in an animal model of vascular injury to elucidate mechanisms modulated by AD that could be playing a role in the development of vascular pathogenesis. METHODS Aged orchiectomized male rats underwent TST supplementation via controlled release pellet (0.5-35 mg). Young adult and middle-age adult intact (MI) and orchiectomized placebo (Plac) groups served as controls. All groups underwent balloon angioplasty of the left common carotid at a 14-d post-TST. Carotid tissue was collected at a 14-d post-balloon angioplasty and subjected to morphologic and immunohistochemical analyses. Human male VSMCs were treated with DHT (0-3000 nM) for 24 h then subjected to quantitative PCR for gene expression analyses and costained for F-actin and G-actin for visualization of cytoskeletal organization. RESULTS I:M ratio was increased in Plac, subphysiological, low-physiological, and high pharmacologic level TST animals compared with MI controls but was decreased with high-physiological TST supplementation. Injury-induced expression of previously defined matrix metalloproteinase remodeling enzymes was not significantly affected by TST status. Urotensin (UTS) receptor (UTSR) staining was low in injured vessels of all young adult intact, MI, and Plac controls but was significantly upregulated in all groups receiving exogenous TST supplementation, irrespective of dose. In vitro DHT exposure increased the expression of UTSR in VSMCs in a dose-dependent manner. However, this did not correlate with any change in proliferative markers. F:G actin staining revealed that DHT-induced cytoskeletal organization in a dose-dependent manner. CONCLUSIONS AD increased IH development in response to vascular injury, whereas physiological TST replacement attenuated this effect. AD-induced IH occurs independent of matrix remodeling mechanisms known to be heavily involved in vascular dysfunction, and AD alone does not affect the UTS and/or UTSR mechanism. Exogenous TST and/or DHT increases UTSR pathway signaling in vitro and in vivo. This modulation correlates to a shift in cytoskeletal organization and may exacerbate vasoconstrictive pathogenesis. While physiological TST replacement attenuates AD-modulated IH development, its UTS-mediated effect on vasotone may prove deleterious to overall vascular function.
Collapse
Affiliation(s)
- Brian M Freeman
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Junior Univers
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Richard K Fisher
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Stacy S Kirkpatrick
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Frederick A Klein
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Michael B Freeman
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Deidra J H Mountain
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee
| | - Oscar H Grandas
- Department of Surgery, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee.
| |
Collapse
|
40
|
|
41
|
Candela J, Velmurugan GV, White C. Hydrogen sulfide depletion contributes to microvascular remodeling in obesity. Am J Physiol Heart Circ Physiol 2016; 310:H1071-80. [DOI: 10.1152/ajpheart.00062.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/10/2016] [Indexed: 12/22/2022]
Abstract
Structural remodeling of the microvasculature occurs during obesity. Based on observations that impaired H2S signaling is associated with cardiovascular pathologies, the current study was designed to test the hypothesis that altered H2S homeostasis is involved in driving the remodeling process in a diet-induced mouse model of obesity. The structural and passive mechanical properties of mesenteric resistance arterioles isolated from 30-wk-old lean and obese mice were assessed using pressure myography, and vessel H2S levels were quantified using the H2S indicator sulfidefluor 7-AM. Remodeling gene expression was assessed using quantitative RT-PCR, and histological staining was used to quantify vessel collagen and elastin. Obesity was found to be associated with decreased vessel H2S concentration, inward hypertrophic remodeling, altered collagen-to-elastin ratio, and reduced vessel stiffness. In addition, mRNA levels of fibronectin, collagen types I and III, matrix metalloproteinases 2 and 9, and tissue inhibitor of metalloproteinase 1 were increased and elastin was decreased by obesity. Evidence that decreased H2S was responsible for the genetic changes was provided by experiments in which H2S levels were manipulated, either by inhibition of the H2S-generating enzyme cystathionine γ-lyase with dl-propargylglycine or by incubation with the H2S donor GYY4137. These data suggest that, during obesity, depletion of H2S is involved in orchestrating the genetic changes underpinning inward hypertrophic remodeling in the microvasculature.
Collapse
Affiliation(s)
- Joseph Candela
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Gopal V. Velmurugan
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Carl White
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
42
|
Positive effects of aggressive vasodilator treatment of well-treated essential hypertensive patients. J Hum Hypertens 2016; 30:690-696. [PMID: 26961172 DOI: 10.1038/jhh.2016.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 01/11/2016] [Accepted: 02/01/2016] [Indexed: 12/16/2022]
Abstract
Increased systemic vascular resistance and coronary microvascular dysfunction are well-documented in essential hypertension (EH). We investigated the effect of additional vasodilating treatment on coronary and peripheral resistance circulation in EH patients with high systemic vascular resistance index (SVRI) despite well-treated blood pressure (BP). We enroled patients on stable antihypertensive treatment that were given intensified vasodilating therapy (ACE inhibitor, angiotensin II receptor blocker or calcium channel blocker). Before and following 6 months of intensified therapy, coronary resting and maximal artery flow were measured by transthoracic Doppler echocardiography to calculate coronary flow reserve (CFR) and minimum vascular resistance (C-Rmin). Cardiac output was estimated by inert gas rebreathing to calculate SVRI. Maximal forearm blood flow was determined by venous occlusion plethysmography to calculate minimum vascular resistance (F-Rmin). Patients were assigned into two groups: high-SVRI and low-SVRI subgroups, based on a median split at baseline. Following additional treatment SVRI decreased more in the high-SVRI group than in the low-SVRI group (14.4 vs -2.2%: P=0.003), despite similar baseline ambulatory BP (132/81 mm Hg) and BP reduction (6.5 and 4.6%: P=0.19). F-Rmin remained unchanged (6.5 vs -2.0%: P=0.30), while C-Rmin decreased by 22 and 24% (P=0.80) and CFR increased by 23 and 17% (P=0.16). Thus, intensified vasodilating therapy improved SVRI more in patients with high SVRI than in those with low SVRI. Regardless of SVRI status, the treatment improved cardiac but not forearm dilatation capacity. The substantial improvement of the hypertensive cardiac microvascular dysfunction was not related to the reduction in SVRI.
Collapse
|
43
|
Eftekhari A, Wiggers SN, Mathiassen ON, Christensen KL. Residual small artery impairment in hypertensive patients with normal albumin–creatinine ratio. SCAND CARDIOVASC J 2016; 50:167-71. [DOI: 10.3109/14017431.2016.1152397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ashkan Eftekhari
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | |
Collapse
|
44
|
First experience in analysing pulsatile retinal capillary flow and arteriolar structural parameters measured noninvasively in hypertensive patients. J Hypertens 2016; 32:2246-52; discussion 2252. [PMID: 25101652 DOI: 10.1097/hjh.0000000000000308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Increased pulsatile pressure induces as well as aggravates microvascular damage. Scanning laser Doppler flowmetry allows the noninvasive assessment of both retinal capillary flow (RCF) and arteriolar structural parameters of the retinal circulation. Moreover, pulsatile characteristics of the retinal arterioles can be assessed. METHODS In study 1, reliability of pulsatile RCF and structural parameters were examined in randomly selected patients. In study 2, pulsatile RCF as well as the structural parameters of retinal arterioles were assessed in hypertension grade 1-2 (HT1-2; n = 20) and treatment-resistant hypertension (TRH; n = 19). RESULTS In study 1, test-retest, interobserver and intraobserver reliability of all parameters showed coefficients of variation of less than 10%. In study 2, it was shown that patients with TRH had higher pulse pressure (P = 0.003) and pulsed RCF values (P < 0.001) as patients with HT1-2. Patients with HT1-2 had no change in the vessel diameter, but a significant difference in lumen diameter, resulting in an altered wall thickness (P = 0.001) between systole and diastole. In contrast, patients with TRH showed differences in vessel diameter (P = 0.005) as well as lumen diameter (P = 0.001), resulting in an unaltered wall thickness between systole and diastole. Hence, wall thickness change as a result of pulsed flow regulation observed in HT1-2 was missing in TRH. CONCLUSION We suggest a new reliable tool for evaluating the pulsatility in the retinal circulation in humans, and found significant differences in pulsatile RCF and structural parameters between patients with HT1-2 and those with TRH.
Collapse
|
45
|
Little R, Cartwright EJ, Neyses L, Austin C. Plasma membrane calcium ATPases (PMCAs) as potential targets for the treatment of essential hypertension. Pharmacol Ther 2016; 159:23-34. [PMID: 26820758 DOI: 10.1016/j.pharmthera.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The incidence of hypertension, the major modifiable risk factor for cardiovascular disease, is increasing. Thus, there is a pressing need for the development of new and more effective strategies to prevent and treat hypertension. Development of these relies on a continued evolution of our understanding of the mechanisms which control blood pressure (BP). Resistance arteries are important in the regulation of total peripheral resistance and BP; changes in their structure and function are strongly associated with hypertension. Anti-hypertensives which both reduce BP and reverse changes in resistance arterial structure reduce cardiovascular risk more than therapies which reduce BP alone. Hence, identification of novel potential vascular targets which modify BP is important. Hypertension is a multifactorial disorder which may include a genetic component. Genome wide association studies have identified ATP2B1, encoding the calcium pump plasma membrane calcium ATPase 1 (PMCA1), as having a strong association with BP and hypertension. Knockdown or reduced PMCA1 expression in mice has confirmed a physiological role for PMCA1 in BP and resistance arterial regulation. Altered expression or inhibition of PMCA4 has also been shown to modulate these parameters. The mechanisms whereby PMCA1 and 4 can modulate vascular function remain to be fully elucidated but may involve regulation of intracellular calcium homeostasis and/or comprise a structural role. However, clear physiological links between PMCA and BP, coupled with experimental studies directly linking PMCA1 and 4 to changes in BP and arterial function, suggest that they may be important targets for the development of new pharmacological modulators of BP.
Collapse
Affiliation(s)
- Robert Little
- The Institute of Cardiovascular Sciences, The University of Manchester, UK
| | | | - Ludwig Neyses
- The Institute of Cardiovascular Sciences, The University of Manchester, UK
| | - Clare Austin
- Faculty of Health and Social Care, Edge Hill University, UK.
| |
Collapse
|
46
|
|
47
|
Foote CA, Castorena-Gonzalez JA, Staiculescu MC, Clifford PS, Hill MA, Meininger GA, Martinez-Lemus LA. Brief serotonin exposure initiates arteriolar inward remodeling processes in vivo that involve transglutaminase activation and actin cytoskeleton reorganization. Am J Physiol Heart Circ Physiol 2015; 310:H188-98. [PMID: 26566730 DOI: 10.1152/ajpheart.00666.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022]
Abstract
Inward remodeling of the resistance vasculature is strongly associated with life-threatening cardiovascular events. Previous studies have demonstrated that both actin polymerization and the activation of transglutaminases mediate early stages of the transition from a structurally normal vessel to an inwardly remodeled one. Ex vivo studies further suggest that a few hours of exposure to vasoconstrictor agonists induces inward remodeling in the absence of changes in intraluminal pressure. Here we report that a short, 10-min, topical exposure to serotonin (5-HT) + N(ω)-nitro-l-arginine methyl ester hydrochloride (l-NAME) was sufficient to initiate inward remodeling processes in rat cremasteric feed arterioles (100-200 μm lumen diameter), in vivo. Addition of the transglutaminase inhibitor, cystamine, blocked the in vivo remodeling. We further demonstrate that, in isolated arterioles, 5-HT + l-NAME activates transglutaminases and modulates the phosphorylation state of cofilin, a regulator of actin depolymerization. The 5-HT + l-NAME-induced remodeling process in isolated arterioles was also inhibited by an inhibitor of Lim Kinase, the kinase that phosphorylates and inactivates cofilin. Therefore, our results indicate that a brief vasoconstriction induced by 5-HT + l-NAME is able to reduce the passive structural diameter of arterioles through processes that are dependent on the activation of transglutaminases and Lim kinase, and the subsequent phosphorylation of cofilin.
Collapse
Affiliation(s)
- Christopher A Foote
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Jorge A Castorena-Gonzalez
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri; Department of Biological Engineering, University of Missouri-Columbia, Columbia, Missouri; and
| | - Marius C Staiculescu
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Philip S Clifford
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Michael A Hill
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Gerald A Meininger
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, and Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, Missouri; Department of Biological Engineering, University of Missouri-Columbia, Columbia, Missouri; and
| |
Collapse
|
48
|
Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, Jodar M, Moro C, Offermanns S, Feng Y, Demolombe S, Patel A, Honoré E. Piezo1 in Smooth Muscle Cells Is Involved in Hypertension-Dependent Arterial Remodeling. Cell Rep 2015; 13:1161-1171. [PMID: 26526998 DOI: 10.1016/j.celrep.2015.09.072] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/28/2015] [Accepted: 09/24/2015] [Indexed: 10/22/2022] Open
Abstract
The mechanically activated non-selective cation channel Piezo1 is a determinant of vascular architecture during early development. Piezo1-deficient embryos die at midgestation with disorganized blood vessels. However, the role of stretch-activated ion channels (SACs) in arterial smooth muscle cells in the adult remains unknown. Here, we show that Piezo1 is highly expressed in myocytes of small-diameter arteries and that smooth-muscle-specific Piezo1 deletion fully impairs SAC activity. While Piezo1 is dispensable for the arterial myogenic tone, it is involved in the structural remodeling of small arteries. Increased Piezo1 opening has a trophic effect on resistance arteries, influencing both diameter and wall thickness in hypertension. Piezo1 mediates a rise in cytosolic calcium and stimulates activity of transglutaminases, cross-linking enzymes required for the remodeling of small arteries. In conclusion, we have established the connection between an early mechanosensitive process, involving Piezo1 in smooth muscle cells, and a clinically relevant arterial remodeling.
Collapse
Affiliation(s)
- Kevin Retailleau
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Fabrice Duprat
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Malika Arhatte
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Sanjeev Sumant Ranade
- Department of Molecular and Cellular Neuroscience, Howard Hughes Medical Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rémi Peyronnet
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Joana Raquel Martins
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Martine Jodar
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Céline Moro
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Yuanyi Feng
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Sophie Demolombe
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France
| | - Amanda Patel
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France.
| | - Eric Honoré
- Institut de Pharmacologie Moléculaire et Cellulaire, LabEx ICST, UMR 7275 CNRS, Université de Nice Sophia Antipolis, 06560 Valbonne, France.
| |
Collapse
|
49
|
Carver KA, Smith TL, Gallagher PE, Tallant EA. Angiotensin-(1-7) prevents angiotensin II-induced fibrosis in cremaster microvessels. Microcirculation 2015; 22:19-27. [PMID: 25079175 DOI: 10.1111/micc.12159] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/29/2014] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The effect of the heptapeptide hormone Ang-(1-7) on microvascular fibrosis in rats with Ang II-induced hypertension was investigated, since vascular fibrosis/remodeling plays a prominent role in hypertension-induced end-organ damage and Ang-(1-7) inhibits vascular growth and fibrosis. METHODS Fibrosis of cremaster microvessels was studied in male Lewis rats infused with Ang II and/or Ang-(1-7). RESULTS Ang II elevated systolic blood pressure by approximately 40 mmHg, while blood pressure was not changed by Ang-(1-7). Ang II increased perivascular fibrosis surrounding 20-50 μm arterioles as well as interstitial fibrosis; coadministration of Ang-(1-7) prevented the increases in fibrosis. The fibrotic factor CTGF and phospho-Smad 2/3, which upregulates CTGF, were increased by Ang II; this effect was prevented by coadministration of Ang-(1-7). Although TGF-β phosphorylates Smad 2/3, TGF-β was no different among treatment groups. In contrast, Ang II increased the MAP kinase phospho-ERK1/2, which also phosphorylates Smad; p-ERK was reduced by Ang-(1-7). Ang-(1-7), in the presence or absence of Ang II, upregulated the MAP kinase phosphatase DUSP1. CONCLUSIONS These results suggest that Ang-(1-7) increases DUSP1 to reduce MAP kinase/Smad/CTGF signaling and decrease fibrosis in resistance arterioles, to attenuate end-organ damage associated with chronic hypertension.
Collapse
Affiliation(s)
- Kyle A Carver
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | | |
Collapse
|
50
|
Castorena-Gonzalez JA, Staiculescu MC, Foote C, Martinez-Lemus LA. Mechanisms of the inward remodeling process in resistance vessels: is the actin cytoskeleton involved? Microcirculation 2015; 21:219-29. [PMID: 24635509 DOI: 10.1111/micc.12105] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/04/2013] [Indexed: 12/22/2022]
Abstract
The resistance arteries and arterioles are the vascular components of the circulatory system where the greatest drop in blood pressure takes place. Consequently, these vessels play a preponderant role in the regulation of blood flow and the modulation of blood pressure. For this reason, the inward remodeling process of the resistance vasculature, as it occurs in hypertension, has profound consequences on the incidence of life-threatening cardiovascular events. In this manuscript, we review some of the most prominent characteristics of inwardly remodeled resistance arteries including their changes in vascular passive diameter, wall thickness, and elastic properties. Then, we explore the known contribution of the different components of the vascular wall to the characteristics of inwardly remodeled vessels, and pay particular attention to the role the vascular smooth muscle actin cytoskeleton may play on the initial stages of the remodeling process. We end by proposing potential ways by which many of the factors and mechanisms known to participate in the inward remodeling process may be associated with cytoskeletal modifications and participate in reducing the passive diameter of resistance vessels.
Collapse
Affiliation(s)
- Jorge A Castorena-Gonzalez
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA; Department of Biological Engineering, University of Missouri, Columbia, Missouri, USA
| | | | | | | |
Collapse
|