1
|
Guo ZL, Tjen-A-Looi SC, Nguyen AT, Fu LW, Su HF, Gong YD, Malik S. Adenosine A 2A receptors in the rostral ventrolateral medulla participate in blood pressure decrease with electroacupuncture in hypertensive rats. Front Cardiovasc Med 2023; 10:1275952. [PMID: 37928764 PMCID: PMC10620741 DOI: 10.3389/fcvm.2023.1275952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Acupuncture is increasingly used to manage high blood pressure (BP) as a complementary therapy. However, the mechanisms underlying its hypotensive effects remain unclear. Our previous studies have shown that electroacupuncture (EA) at the ST36-37 acupoints, overlying the deep peroneal nerve, attenuates pressor responses through adenosine A2A receptors (A2AR) in the rostral ventrolateral medulla (rVLM). However, it is uncertain whether rVLM A2AR contributes to EA's BP-lowering effect in sustained hypertension. We hypothesized that a course of EA treatment lowers BP, in part, through the activation of adenosine A2AR in the rVLM in hypertensive rats. To mimic essential hypertension in the clinic, we performed EA in conscious Dahl salt-sensitive hypertensive rats (DSHRs). EA (0.1-0.4 mA, 2 Hz) was applied at ST36-37 for 30 min twice weekly for four weeks, while sham-EA was conducted in a similar manner but without electrical input. In hypertensive rats, BP was reduced by EA (n = 14) but neither by sham-EA (n = 14) nor in the absence of needling (n = 8). Following four weeks of eight treatments and then under anesthesia, EA's modulatory effect on elevated BP was reversed by unilateral rVLM microinjection of SCH 58261 (1 mM in 50 nl; an A2AR antagonist; n = 7; P < 0.05) but not the vehicle (n = 5) in EA-treated DSHRs. Activation of rVLM A2AR in DSHRs treated with sham-EA by an A2AR agonist, CGS-21680 (0.4 mM in 50 nl; n = 8), decreased BP. Unilateral administration of SCH 58261 or CGS-21680 into the rVLM did not alter basal BP in Dahl salt-sensitive rats fed a regular diet with normal BP. The A2AR level in the rVLM after EA was increased compared to the sham-EA and untreated DSHRs (n = 5 in each group; all P < 0.05). These data suggest that a 4-week twice weekly EA treatment reduced BP in salt-sensitive hypertensive rats likely through adenosine-mediated A2AR in the rVLM.
Collapse
Affiliation(s)
- Zhi-Ling Guo
- Susan-Samueli Integrative Health Institute and Department of Medicine, College of Health Sciences, University of California, Irvine, CA, United States
| | | | | | | | | | | | | |
Collapse
|
2
|
Ashikawa S, Komatsu Y, Kawai Y, Aoyama K, Nakano S, Cui X, Hayakawa M, Sakabe N, Furukawa N, Ikeda K, Murohara T, Nagata K. Pharmacological inhibition of the lipid phosphatase PTEN ameliorates heart damage and adipose tissue inflammation in stressed rats with metabolic syndrome. Physiol Rep 2022; 10:e15165. [PMID: 35005845 PMCID: PMC8744130 DOI: 10.14814/phy2.15165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K) signaling promotes the differentiation and proliferation of regulatory B (Breg) cells, and the lipid phosphatase phosphatase and tensin homolog deleted on chromosome 10 (PTEN) antagonizes the PI3K-Akt signaling pathway. We previously demonstrated that cardiac Akt activity is increased and that restraint stress exacerbates hypertension and both heart and adipose tissue (AT) inflammation in DS/obese rats, an animal model of metabolic syndrome (MetS). We here examined the effects of restraint stress and pharmacological inhibition of PTEN on heart and AT pathology in such rats. Nine-week-old animals were treated with the PTEN inhibitor bisperoxovanadium-pic [bpV(pic)] or vehicle in the absence or presence of restraint stress for 4 weeks. BpV(pic) treatment had no effect on body weight or fat mass but attenuated hypertension in DS/obese rats subjected to restraint stress. BpV(pic) ameliorated left ventricular (LV) inflammation, fibrosis, and diastolic dysfunction as well as AT inflammation in the stressed rats. Restraint stress reduced myocardial capillary density, and this effect was prevented by bpV(pic). In addition, bpV(pic) increased the proportions of Breg and B-1 cells as well as reduced those of CD8+ T and B-2 cells in AT of stressed rats. Our results indicate that inhibition of PTEN by bpV(pic) alleviated heart and AT inflammation in stressed rats with MetS. These positive effects of bpV(pic) are likely due, at least in part, to a reduction in blood pressure, an increase in myocardial capillary formation, and an altered distribution of immune cells in fat tissue that result from the activation of PI3K-Akt signaling.
Collapse
Affiliation(s)
- Sao Ashikawa
- Pathophysiology SciencesDepartment of Integrated Health SciencesNagoyaJapan
| | - Yuki Komatsu
- Pathophysiology SciencesDepartment of Integrated Health SciencesNagoyaJapan
| | - Yumeno Kawai
- Pathophysiology SciencesDepartment of Integrated Health SciencesNagoyaJapan
| | - Kiyoshi Aoyama
- Pathophysiology SciencesDepartment of Integrated Health SciencesNagoyaJapan
| | - Shiho Nakano
- Pathophysiology SciencesDepartment of Integrated Health SciencesNagoyaJapan
| | - Xixi Cui
- Pathophysiology SciencesDepartment of Integrated Health SciencesNagoyaJapan
| | - Misaki Hayakawa
- Pathophysiology SciencesDepartment of Integrated Health SciencesNagoyaJapan
| | - Nanako Sakabe
- Pathophysiology SciencesDepartment of Integrated Health SciencesNagoyaJapan
| | - Nozomi Furukawa
- Pathophysiology SciencesDepartment of Integrated Health SciencesNagoyaJapan
| | - Katsuhide Ikeda
- Pathophysiology SciencesDepartment of Integrated Health SciencesNagoyaJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kohzo Nagata
- Pathophysiology SciencesDepartment of Integrated Health SciencesNagoyaJapan
| |
Collapse
|
3
|
Harada E, Sugino K, Aimoto M, Takahara A. Effects of the L/N-Type Ca 2+ Channel Blocker Cilnidipine on the Cardiac Histological Remodelling and Inducibility of Atrial Fibrillation in High-Salt-Fed Rats. Biol Pharm Bull 2021; 44:707-713. [PMID: 33642455 DOI: 10.1248/bpb.b21-00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High salt intake has been shown to induce hypertrophy and fibrosis in the atria and ventricles, which could result in the development of atrial fibrillation (AF). Whereas the development of AF is suggested to be prevented by renin-angiotensin system (RAS) inhibitors, recent findings have indicated that this prevention is closely associated with their antihypertensive effects. In this study, we investigated whether the L/N-type Ca2+ channel blocker cilnidipine counteracts salt-induced atrial and ventricular remodelling and the inducibility of AF. Cilnidipine was orally administered to Dahl salt-sensitive rats fed with an 8% NaCl diet at 10 mg/kg for 5 weeks, and then electrophysiological evaluation and histological analyses were performed. The effects were compared with those of the L-type Ca2+ channel blocker amlodipine at 3 mg/kg. Following the intake of the 8% NaCl diet, the blood pressure (BP) increased, and fibrosis was induced in the atria and ventricles. Cilnidipine decreased BP, and the extent of the decrease in the cilnidipine group was similar to those in the amlodipine group. Cilnidipine produced a greater decrease in the fibrotic area in the atria and ventricles than amlodipine. The cilnidipine group shortened the AF duration from 7.43 ± 3.16 to 2.95 ± 1.73 s, which had been increased by NaCl intake. Plasma noradrenaline levels in the cilnidipine group were lower than those in the amlodipine group. Thus, the suppressive effects of cilnidipine on the salt-induced atrial and ventricular remodelling, fibrosis, and AF sustainability might be closely associated with its N-type Ca2+ channel-blocking actions.
Collapse
Affiliation(s)
- Eri Harada
- Ajinomoto Pharmaceuticals Co., Ltd
- Ajinomoto Co., Inc
| | - Kazumi Sugino
- Ajinomoto Pharmaceuticals Co., Ltd
- Ajinomoto Co., Inc
| | - Megumi Aimoto
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University
| | - Akira Takahara
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Toho University
| |
Collapse
|
4
|
Komatsu Y, Aoyama K, Yoneda M, Ashikawa S, Nakano S, Kawai Y, Cui X, Furukawa N, Ikeda K, Nagata K. The prebiotic fiber inulin ameliorates cardiac, adipose tissue, and hepatic pathology, but exacerbates hypertriglyceridemia in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol 2021; 320:H281-H295. [PMID: 33216624 DOI: 10.1152/ajpheart.00657.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023]
Abstract
Prebiotics ameliorate dysbiosis and influence metabolism and the immune system, but their effects on cardiovascular complications in metabolic disorders remain largely unknown. We here investigated the effects of the soluble fiber inulin on cardiac, adipose tissue, and hepatic pathology as well as on metabolic disorders in DahlS.Z-Leprfa/Leprfa (DS/obese) rats, an animal model of metabolic syndrome (MetS). DS/obese rats and their homozygous lean (DahlS.Z-Lepr+/Lepr+, or DS/lean) littermate controls were fed a purified diet containing 5% or 20% inulin from 9 to 13 wk of age. The high-fiber diet ameliorated hypertension, left ventricular inflammation, fibrosis and diastolic dysfunction; attenuated adipose tissue inflammation and fibrosis; and alleviated the elevation of interleukin-6 levels, without affecting insulin resistance, in DS/obese rats. In addition, high fiber intake ameliorated lipid accumulation, inflammation, and fibrosis; attenuated the reduction in AMPK activity; upregulated sterol regulatory element-binding protein-1c gene expression; and increased the expression of microsomal triglyceride transfer protein gene in the liver of DS/obese rats. It also mitigated increases in total and non-high-density lipoprotein cholesterol levels but increased the triglyceride concentration in serum in these rats. None of these parameters were affected by high dietary fiber in DS/lean rats. The proportion of regulatory T cells in adipose tissue was influenced by dietary fiber but not by genotype. Our results indicate that inulin exacerbates hypertriglyceridemia but alleviates hypertension and cardiac injury as well as adipose tissue and hepatic pathology in MetS rats.NEW & NOTEWORTHY Prebiotics ameliorate dysbiosis and influence metabolism and the immune system, but their effects on cardiovascular complications in metabolic disorders remain largely unknown. Inulin ameliorated hypertension, cardiac injury, and diastolic dysfunction without affecting obesity or insulin resistance in a rat model of metabolic syndrome. The favorable cardiac effects of inulin may be related to inhibition of systemic inflammation associated with a reduction in circulating interleukin-6 levels. Additionally, inulin exacerbated hypertriglyceridemia but alleviates adipose tissue and hepatic pathology in these animals, as well as increased the number of regulatory T cells in adipose tissue.
Collapse
Affiliation(s)
- Yuki Komatsu
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Aoyama
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mamoru Yoneda
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sao Ashikawa
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiho Nakano
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumeno Kawai
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xixi Cui
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nozomi Furukawa
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhide Ikeda
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohzo Nagata
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
5
|
Komatsu Y, Aoyama K, Yoneda M, Ito S, Sano Y, Kawai Y, Cui X, Yamada Y, Furukawa N, Ikeda K, Nagata K. Surgical ablation of whitened interscapular brown fat ameliorates cardiac pathology in salt-loaded metabolic syndrome rats. Ann N Y Acad Sci 2020; 1492:11-26. [PMID: 33340110 DOI: 10.1111/nyas.14546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Abstract
Brown adipose tissue (BAT) is an endocrine organ that contributes to thermogenesis and energy consumption. We investigated the effects of salt loading and surgical removal of whitened interscapular BAT (iBAT) on cardiac and adipose tissue pathology in DahlS.Z-Leprfa /Leprfa (DS/obese) rats, an animal model of metabolic syndrome (MetS). DS/obese rats were subjected to surgical removal of iBAT or sham surgery at 8 weeks of age and were provided with drinking water containing or not containing 0.3% NaCl for 4 weeks beginning at 9 weeks of age. Removal of iBAT suppressed the salt-induced exacerbation of left ventricular inflammation, fibrosis, and diastolic dysfunction, but not that of hypertension development, in DS/obese rats. Salt loading attenuated adipocyte hypertrophy but enhanced inflammation in both visceral white adipose tissue (WAT) and iBAT. Although iBAT removal did not affect visceral WAT pathology in salt-loaded DS/obese rats, it attenuated the elevation of circulating interleukin-6 levels in these animals. Downregulation of uncoupling protein-1 expression in iBAT of DS/obese rats was not affected by salt loading. Our results suggest that the conversion of iBAT to WAT-like tissue contributes to a salt-induced elevation of circulating proinflammatory cytokine levels that leads to exacerbation of cardiac pathology in this model of MetS.
Collapse
Affiliation(s)
- Yuki Komatsu
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Aoyama
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mamoru Yoneda
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shogo Ito
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Sano
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yumeno Kawai
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xixi Cui
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Yamada
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nozomi Furukawa
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhide Ikeda
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohzo Nagata
- Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Li J, Gao Q, Wang S, Kang Z, Li Z, Lei S, Sun X, Zhao M, Chen X, Jiao G, Hu H, Hao L. Sustained increased CaMKII phosphorylation is involved in the impaired regression of isoproterenol-induced cardiac hypertrophy in rats. J Pharmacol Sci 2020; 144:30-42. [DOI: 10.1016/j.jphs.2020.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022] Open
|
7
|
Morphometric, Hemodynamic, and Multi-Omics Analyses in Heart Failure Rats with Preserved Ejection Fraction. Int J Mol Sci 2020; 21:ijms21093362. [PMID: 32397533 PMCID: PMC7247709 DOI: 10.3390/ijms21093362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: There are no successive treatments for heart failure with preserved ejection fraction (HFpEF) because of complex interactions between environmental, histological, and genetic risk factors. The objective of the study is to investigate changes in cardiomyocytes and molecular networks associated with HFpEF. (2) Methods: Dahl salt-sensitive (DSS) rats developed HFpEF when fed with a high-salt (HS) diet for 7 weeks, which was confirmed by in vivo and ex vivo measurements. Shotgun proteomics, microarray, Western blot, and quantitative RT-PCR analyses were further carried out to investigate cellular and molecular mechanisms. (3) Results: Rats with HFpEF showed diastolic dysfunction, impaired systolic function, and prolonged repolarization of myocytes, owing to an increase in cell size and apoptosis of myocytes. Heatmap of multi-omics further showed significant differences between rats with HFpEF and controls. Gene Set Enrichment Analysis (GSEA) of multi-omics revealed genetic risk factors involved in cardiac muscle contraction, proteasome, B cell receptor signaling, and p53 signaling pathway. Gene Ontology (GO) analysis of multi-omics showed the inflammatory response and mitochondrial fission as top biological processes that may deteriorate myocyte stiffening. GO analysis of protein-to-protein network indicated cytoskeleton protein, cell fraction, enzyme binding, and ATP binding as the top enriched molecular functions. Western blot validated upregulated Mff and Itga9 and downregulated Map1lc3a in the HS group, which likely contributed to accumulation of aberrant mitochondria to increase ROS and elevation of myocyte stiffness, and subsequent contractile dysfunction and myocardial apoptosis. (4) Conclusions: Multi-omics analysis revealed multiple pathways associated with HFpEF. This study shows insight into molecular mechanisms for the development of HFpEF and may provide potential targets for the treatment of HFpEF.
Collapse
|
8
|
Naseratun N, Kobara M, Watanabe Y, Toba H, Nakata T. Comparison of effects of L/N-type and L-type calcium channel blockers on post-infarct cardiac remodelling in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 2020; 47:1545-1553. [PMID: 32323339 DOI: 10.1111/1440-1681.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Hypertension and coronary events are becoming more prevalent in aging societies, and myocardial infarction usually occurs in calcium channel blocker (CCB)-treated hypertensive patients. We herein compared the effects of cilnidipine, an L/N-type CCB and amlodipine, an L-type CCB, on post-infarct left ventricular (LV) remodelling in spontaneously hypertensive rats (SHRs). Male SHRs were subjected to 30 minutes of left coronary artery occlusion followed by reperfusion (MI group). The administration of cilnidipine (10 mg/kg/d; MI + Cil group) or amlodipine (10 mg/kg/d; MI + Aml group) was initiated one week before surgery and continued for five weeks. Both CCBs decreased blood pressure. Four weeks after surgery, cilnidipine, but not amlodipine, attenuated LV dilatation, fractional shortening impairments, end-diastolic pressure elevations, and tau elongation. In the non-infarct region, myocyte hypertrophy and brain natriuretic peptide (BNP) mRNA levels were similarly attenuated by both CCBs. On the other hand, interstitial fibrosis, the mRNA expression of collagen type III and transforming growth factor (TGF) β and immunohistological TGF β protein expression in the non-infarct region were reduced more in the MI + Cil group than in the MI + Aml group. Additionally, elevated angiotensin-converting enzyme activity and interstitial noradrenaline concentrations in the non-infarct region were reduced by cilnidipine. These results suggest that cilnidipine reduced cardiac noradrenaline concentrations and inhibited the renin-angiotensin system, which attenuated post-infarct remodelling more than amlodipine in hypertensive rats.
Collapse
Affiliation(s)
- Nessa Naseratun
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Miyuki Kobara
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Yusuke Watanabe
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroe Toba
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Tetsuo Nakata
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Kyoto, Japan
| |
Collapse
|
9
|
Uchinaka A, Azuma N, Mizumoto H, Nakano S, Minamiya M, Yoneda M, Aoyama K, Komatsu Y, Yamada Y, Murohara T, Nagata K. Anti-inflammatory effects of heat-killed Lactobacillus plantarum L-137 on cardiac and adipose tissue in rats with metabolic syndrome. Sci Rep 2018; 8:8156. [PMID: 29802339 PMCID: PMC5970162 DOI: 10.1038/s41598-018-26588-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/15/2018] [Indexed: 12/17/2022] Open
Abstract
The effects of heat-killed Lactobacillus plantarum L-137 (HK L-137) on chronic inflammation associated with metabolic disorders have remained unknown. We examined the effects of HK L-137 on cardiac and adipose tissue pathophysiology in DahlS.Z-Leprfa/Leprfa (DS/obese) rats as a model of metabolic syndrome. DS/obese rats were treated orally with HK L-137 (2 or 75 mg kg−1 day−1) from 9 to 13 weeks of age. HK L-137 attenuated left ventricular (LV) inflammation and fibrosis as well as adipocyte hypertrophy, inflammation, and up-regulation of sterol regulatory element–binding protein–1c (SREBP-1c) gene expression in visceral and subcutaneous adipose tissue, without affecting body weight gain or hypertension. The low dose of HK L-137 also ameliorated LV diastolic dysfunction, the increase in subcutaneous fat mass, and insulin resistance as well as attenuated the down-regulation of Akt phosphorylation in visceral and subcutaneous adipose tissue, and the elevation of the circulating interleukin-6 concentration. Furthermore, the proportion of regulatory T (Treg) cells among CD4+ T cells in the spleen was increased by HK L-137. These results suggest that the anti-inflammatory effects of HK L-137 on the heart and adipose tissue are related, at least partly, to suppression of systemic inflammation associated with an increase in splenic Treg cell.
Collapse
Affiliation(s)
- Ayako Uchinaka
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naoki Azuma
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - Hisashi Mizumoto
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - Shiho Nakano
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - Moeko Minamiya
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - Mamoru Yoneda
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kiyoshi Aoyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Komatsu
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Yamada
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kohzo Nagata
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
10
|
Uchinaka A, Kawashima Y, Sano Y, Ito S, Sano Y, Nagasawa K, Matsuura N, Yoneda M, Yamada Y, Murohara T, Nagata K. Effects of ramelteon on cardiac injury and adipose tissue pathology in rats with metabolic syndrome. Ann N Y Acad Sci 2018. [DOI: 10.1111/nyas.13578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ayako Uchinaka
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yuri Kawashima
- Department of Medical Technology; Nagoya University School of Health Sciences; Nagoya Japan
| | - Yuki Sano
- Department of Medical Technology; Nagoya University School of Health Sciences; Nagoya Japan
| | - Shogo Ito
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yusuke Sano
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kai Nagasawa
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Natsumi Matsuura
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mamoru Yoneda
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Yuichiro Yamada
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Toyoaki Murohara
- Department of Cardiology; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Kohzo Nagata
- Department of Pathophysiological Laboratory Sciences; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
11
|
Ito S, Sano Y, Nagasawa K, Matsuura N, Yamada Y, Uchinaka A, Murohara T, Nagata K. Highly purified eicosapentaenoic acid ameliorates cardiac injury and adipose tissue inflammation in a rat model of metabolic syndrome. Obes Sci Pract 2016; 2:318-329. [PMID: 27708849 PMCID: PMC5043479 DOI: 10.1002/osp4.50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION n-3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z-Leprfa/Leprfa (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. MATERIALS AND METHODS DS/obese rats were administered EPA (300 or 1,000 mg kg-1 d-1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z-Lepr+/Lepr+, or DS/lean) littermates were studied as controls. RESULTS Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down-regulation of AMP-activated protein kinase phosphorylation and the up-regulation of phosphorylation of the p65 subunit of nuclear factor-kB in the heart of DS/obese rats. CONCLUSIONS Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP-activated protein kinase activation and inactivation of nuclear factor-kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome.
Collapse
Affiliation(s)
- S Ito
- Department of Pathophysiological Laboratory Sciences Nagoya University Graduate School of Medicine Nagoya Japan
| | - Y Sano
- Department of Pathophysiological Laboratory Sciences Nagoya University Graduate School of Medicine Nagoya Japan
| | - K Nagasawa
- Department of Pathophysiological Laboratory Sciences Nagoya University Graduate School of Medicine Nagoya Japan
| | - N Matsuura
- Department of Pathophysiological Laboratory Sciences Nagoya University Graduate School of Medicine Nagoya Japan
| | - Y Yamada
- Department of Pathophysiological Laboratory Sciences Nagoya University Graduate School of Medicine Nagoya Japan
| | - A Uchinaka
- Department of Pathophysiological Laboratory Sciences Nagoya University Graduate School of Medicine Nagoya Japan
| | - T Murohara
- Department of Cardiology Nagoya University Graduate School of Medicine Nagoya Japan
| | - K Nagata
- Department of Pathophysiological Laboratory Sciences Nagoya University Graduate School of Medicine Nagoya Japan
| |
Collapse
|
12
|
Nagasawa K, Matsuura N, Takeshita Y, Ito S, Sano Y, Yamada Y, Uchinaka A, Murohara T, Nagata K. Attenuation of cold stress-induced exacerbation of cardiac and adipose tissue pathology and metabolic disorders in a rat model of metabolic syndrome by the glucocorticoid receptor antagonist RU486. Nutr Diabetes 2016; 6:e207. [PMID: 27110688 PMCID: PMC4855259 DOI: 10.1038/nutd.2016.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 03/07/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Chronic stress affects the central nervous system as well as endocrine, metabolic and immune systems. However, the effects of cold stress on cardiovascular and metabolic disorders in metabolic syndrome (MetS) have remained unclear. We recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of MetS. We have now investigated the effects of chronic cold stress and glucocorticoid receptor (GR) blockade on cardiac and adipose tissue pathology as well as on metabolic parameters in this model. METHODS DS/obese rats were exposed to cold stress (immersion in ice-cold water to a depth of 1-2 cm for 2 h per day) with or without subcutaneous injection of the GR antagonist RU486 (2 mg kg(-1)day(-1)) for 4 weeks beginning at 9 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+)) littermates served as a control. RESULTS Chronic cold stress exacerbated hypertension as well as left ventricular (LV) hypertrophy, fibrosis and diastolic dysfunction in DS/obese rats in a manner sensitive to RU486 treatment. Cold stress with or without RU486 did not affect body weight or fat mass. In contrast, cold stress further increased cardiac oxidative stress as well as macrophage infiltration and proinflammatory gene expression in LV and visceral fat tissue, with all of these effects being attenuated by RU486. Cold stress also further increased GR and 11β-hydroxysteroid dehydrogenase type 1 mRNA and protein abundance in LV and visceral adipose tissue, and these effects were again inhibited by RU486. In addition, RU486 ameliorated the stress-induced aggravation of dyslipidemia, glucose intolerance and insulin resistance in DS/obese rats. CONCLUSIONS Our results implicate GR signaling in cold stress-induced exacerbation of cardiac and adipose tissue pathology as well as of abnormal glucose and lipid metabolism in a rat model of MetS.
Collapse
Affiliation(s)
- K Nagasawa
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - N Matsuura
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - Y Takeshita
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - S Ito
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - Y Sano
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - Y Yamada
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - A Uchinaka
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| | - T Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - K Nagata
- Department of Pathophysiological Laboratory Sciences, Nagoya, Japan
| |
Collapse
|
13
|
Masaki M, Mano T, Eguchi A, Fujiwara S, Sugahara M, Hirotani S, Tsujino T, Komamura K, Koshiba M, Masuyama T. Long-term effects of L- and N-type calcium channel blocker on uric acid levels and left atrial volume in hypertensive patients. Heart Vessels 2016; 31:1826-1833. [DOI: 10.1007/s00380-016-0796-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/15/2016] [Indexed: 02/04/2023]
|
14
|
Aritomi S, Harada E, Sugino K, Nishimura M, Nakamura T, Takahara A. Comparison of the cardioprotective and renoprotective effects of the L/N-type calcium channel blocker, cilnidipine, in adriamycin-treated spontaneously-hypertensive rats. Clin Exp Pharmacol Physiol 2015; 42:344-52. [PMID: 25582553 PMCID: PMC4409849 DOI: 10.1111/1440-1681.12360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 12/31/2014] [Accepted: 01/04/2015] [Indexed: 01/03/2023]
Abstract
Cilnidipine is an L/N-type calcium channel blocker (CCB). The effects of cilnidipine on N-type channels give it unique organ-protective properties via the suppression of hyperactivity in the sympathetic nervous system (SNS) and renin-angiotensin-aldosterone system (RAAS). In the present study, we compared the effects of cilnidipine and amlodipine (an L-type CCB) on cardiac and renal functions in spontaneously-hypertensive rats injected with adriamycin (ADR). After the weekly administration of ADR for 3 weeks, spontaneously-hypertensive rats were orally administered cilnidipine (20 mg/kg per day), amlodipine (3 mg/kg per day), or vehicle once daily for 4 weeks. A control group received saline rather than ADR, followed by vehicle for 4 weeks. Cilnidipine and amlodipine produced similar reductions in blood pressure after 4 weeks. Cilnidipine ameliorated ADR-induced heart and kidney damage, whereas amlodipine slightly improved cardiac echocardiographic parameters, but did not protect against ADR-induced renal damage. Cilnidipine (but not amlodipine) suppressed the reflex SNS and RAAS hyperactivity caused by their antihypertensive effects. Furthermore, cilnidipine and amlodipine treatment decreased the urinary levels of adrenocortical hormones. The protective effects of cilnidipine against ADR-induced renal and cardiac dysfunction might be associated with its blockade of N-type calcium channels, in addition to its pleiotropic actions, which include the inhibition of the RAAS.
Collapse
Affiliation(s)
- Shizuka Aritomi
- Research Institute, Ajinomoto Pharmaceuticals, Kanagawa, Japan; Department of Pharmacology and Therapeutics, Toho University, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Janssen LJ, Mukherjee S, Ask K. Calcium Homeostasis and Ionic Mechanisms in Pulmonary Fibroblasts. Am J Respir Cell Mol Biol 2015; 53:135-48. [PMID: 25785898 DOI: 10.1165/rcmb.2014-0269tr] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fibroblasts are key cellular mediators of many chronic interstitial lung diseases, including idiopathic pulmonary fibrosis, scleroderma, sarcoidosis, drug-induced interstitial lung disease, and interstitial lung disease in connective tissue disease. A great deal of effort has been expended to understand the signaling mechanisms underlying the various cellular functions of fibroblasts. Recently, it has been shown that Ca(2+) oscillations play a central role in the regulation of gene expression in human pulmonary fibroblasts. However, the mechanisms whereby cytosolic [Ca(2+)] are regulated and [Ca(2+)] oscillations transduced are both poorly understood. In this review, we present the general concepts of [Ca(2+)] homeostasis, of ionic mechanisms responsible for various Ca(2+) fluxes, and of regulation of gene expression by [Ca(2+)]. In each case, we then also summarize the original findings that pertain specifically to pulmonary fibroblasts. From these data, we propose an overall signaling cascade by which excitation of the fibroblasts triggers pulsatile release of internally sequestered Ca(2+), which, in turn, activates membrane conductances, including voltage-dependent Ca(2+) influx pathways. Collectively, these events produce recurring Ca(2+) oscillations, the frequency of which is transduced by Ca(2+)-dependent transcription factors, which, in turn, orchestrate a variety of cellular events, including proliferation, synthesis/secretion of extracellular matrix proteins, autoactivation (production of transforming growth factor-β), and transformation into myofibroblasts. That unifying hypothesis, in turn, allows us to highlight several specific cellular targets and therapeutic intervention strategies aimed at controlling unwanted pulmonary fibrosis. The relationships between Ca(2+) signaling events and the unfolded protein response and apoptosis are also explored.
Collapse
Affiliation(s)
- Luke J Janssen
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Subhendu Mukherjee
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Dai P, Wang J, Lin L, Zhang Y, Wang Z. Renoprotective effects of berberine as adjuvant therapy for hypertensive patients with type 2 diabetes mellitus: Evaluation via biochemical markers and color Doppler ultrasonography. Exp Ther Med 2015; 10:869-876. [PMID: 26622407 DOI: 10.3892/etm.2015.2585] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 05/13/2015] [Indexed: 01/26/2023] Open
Abstract
Diabetes and hypertension are complex and serious diseases that may ultimately lead to renal complications. Adequate control of blood glucose and blood pressure contributes to decreased renal risks, but may not be sufficient for certain patients. The current study was undertaken to investigate the renoprotective effects of berberine as an adjuvant therapy to standard hypotensive and hypoglycemic treatment in hypertensive patients with type 2 diabetes mellitus (T2DM). In this 2-year clinical study, 69 hypertensive patients with T2DM, whose blood pressure and fasting plasma glucose (FPG) were adequately controlled by hypotensive and oral hypoglycemic agents prior to the study, were enrolled and randomly assigned into control (33 cases) and add-on (36 cases) groups. Berberine was orally administrated to the patients in the add-on group concomitantly with standard hypotensive and hypoglycemic treatment. Baseline characteristics, including the levels of FPG, glycated hemoglobin, systolic blood pressure, diastolic blood pressure, serum creatinine, urinary albumin-to-creatine ratio (UACR), urinary osteopontin and kidney injury molecule-1 (KIM-1) were determined. Furthermore, the oxidative stress markers malondialdehyde, urinary 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, glutathione peroxidase and total-antioxidant capacity, and the inflammatory parameters vascular adhesion molecule-1, C-reactive protein and high molecular weight-adiponectin were evaluated. In addition, ultrasonographic parameters, including peak systolic velocity, end diastolic velocity and renal arterial resistance index were determined. After treatment, it was observed that the control and add-on treatments were able to adequately control blood pressure and blood glucose. Patients in the add-on group exhibited significant reductions in renal damage biochemical markers (UACR, urinary osteopontin and KIM-1) and improved renal hemodynamics, in addition to reduced inflammation and oxidative stress. The present results suggest that berberine is beneficial for hypertensive patients with T2DM as add-on therapy to standard hypotensive and hypoglycemic agents.
Collapse
Affiliation(s)
- Peifeng Dai
- Department of Ultrasound, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Junhua Wang
- Department of Ultrasound, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Lin Lin
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Yanyan Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, P.R. China
| | - Zhengping Wang
- Department of Ultrasound, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
17
|
Midtbø H, Gerdts E, Kvien TK, Olsen IC, Hirth A, Davidsen ES, Semb AG. Disease activity and left ventricular structure in patients with rheumatoid arthritis. Rheumatology (Oxford) 2014; 54:511-9. [PMID: 25224414 DOI: 10.1093/rheumatology/keu368] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Increased left ventricular (LV) wall thickness/internal diameter ratio (relative wall thickness) was recently reported in RA patients. The aim of this study was to assess the association between LV relative wall thickness and RA disease activity. METHODS Clinical and echocardiographic data from 129 RA patients without established cardiovascular disease and 102 controls were used. RA disease activity was assessed by different composite scores and active RA defined by the Simplified Disease Activity Index (SDAI) level exceeding the cut-off for remission (SDAI >3.3). RESULTS The RA patients were on average 61.3 years old, 77% were women and 67% had active RA (SDAI >3.3). Patients with active RA had greater LV relative wall thickness and included more patients with treated hypertension (all P < 0.05), but had LV mass index and blood pressure comparable to patients in remission. Having active RA by the SDAI score (β = 0.20, P = 0.008) was also independently associated with greater LV relative wall thickness after adjusting for systolic blood pressure, wall stress, age and sex in a multivariate model. This association was robust also in secondary models including other disease activity composite scores such as the Clinical Disease Activity Index and 28-joint DAS. CONCLUSION Among RA patients, higher disease activity was independently associated with greater LV relative wall thickness, reflecting subclinical heart disease. The findings point to the importance of disease activity control in RA patients to prevent progression to clinical heart disease.
Collapse
Affiliation(s)
- Helga Midtbø
- Department of Heart Disease, Haukeland University Hospital, Department of Clinical Science, University of Bergen, Bergen, Department of Rheumatology, Diakonhjemmet Hospital, Oslo and Childrens Department, Haukeland University Hospital, Bergen, Norway. Department of Heart Disease, Haukeland University Hospital, Department of Clinical Science, University of Bergen, Bergen, Department of Rheumatology, Diakonhjemmet Hospital, Oslo and Childrens Department, Haukeland University Hospital, Bergen, Norway.
| | - Eva Gerdts
- Department of Heart Disease, Haukeland University Hospital, Department of Clinical Science, University of Bergen, Bergen, Department of Rheumatology, Diakonhjemmet Hospital, Oslo and Childrens Department, Haukeland University Hospital, Bergen, Norway
| | - Tore K Kvien
- Department of Heart Disease, Haukeland University Hospital, Department of Clinical Science, University of Bergen, Bergen, Department of Rheumatology, Diakonhjemmet Hospital, Oslo and Childrens Department, Haukeland University Hospital, Bergen, Norway
| | - Inge C Olsen
- Department of Heart Disease, Haukeland University Hospital, Department of Clinical Science, University of Bergen, Bergen, Department of Rheumatology, Diakonhjemmet Hospital, Oslo and Childrens Department, Haukeland University Hospital, Bergen, Norway
| | - Asle Hirth
- Department of Heart Disease, Haukeland University Hospital, Department of Clinical Science, University of Bergen, Bergen, Department of Rheumatology, Diakonhjemmet Hospital, Oslo and Childrens Department, Haukeland University Hospital, Bergen, Norway
| | - Einar Skulstad Davidsen
- Department of Heart Disease, Haukeland University Hospital, Department of Clinical Science, University of Bergen, Bergen, Department of Rheumatology, Diakonhjemmet Hospital, Oslo and Childrens Department, Haukeland University Hospital, Bergen, Norway
| | - Anne Grete Semb
- Department of Heart Disease, Haukeland University Hospital, Department of Clinical Science, University of Bergen, Bergen, Department of Rheumatology, Diakonhjemmet Hospital, Oslo and Childrens Department, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
18
|
Nagasawa K, Takahashi K, Matsuura N, Takatsu M, Hattori T, Watanabe S, Harada E, Niinuma K, Murohara T, Nagata K. Comparative effects of valsartan in combination with cilnidipine or amlodipine on cardiac remodeling and diastolic dysfunction in Dahl salt-sensitive rats. Hypertens Res 2014; 38:39-47. [DOI: 10.1038/hr.2014.136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 07/30/2014] [Accepted: 08/12/2014] [Indexed: 11/09/2022]
|
19
|
Effects of salt status and blockade of mineralocorticoid receptors on aldosterone-induced cardiac injury. Hypertens Res 2013; 37:125-33. [PMID: 24048492 DOI: 10.1038/hr.2013.124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/18/2013] [Indexed: 12/16/2022]
Abstract
The mineralocorticoid aldosterone regulates sodium and water homeostasis in the human body. The combination of excess aldosterone and salt loading induces hypertension and cardiac damage. However, little is known of the effects of aldosterone on blood pressure and cardiac pathophysiology in the absence of salt loading. We have now investigated the effects of salt status and blockade of mineralocorticoid receptors (MRs) on cardiac pathophysiology in uninephrectomized Sprague-Dawley rats implanted with an osmotic minipump to maintain hyperaldosteronism. The rats were fed a low-salt (0.0466% NaCl in chow) or high-salt (0.36% NaCl in chow plus 1% NaCl in drinking water) diet in the absence or presence of treatment with a subdepressor dose of the MR antagonist spironolactone (SPL). Aldosterone excess in the setting of low salt intake induced substantial cardiac remodeling and diastolic dysfunction without increasing blood pressure. These effects were accompanied by increased levels of oxidative stress and inflammation as well as increased expression of genes related to the renin-angiotensin and endothelin systems in the heart. All of these cardiac changes were completely blocked by the administration of SPL. On the other hand, aldosterone excess in the setting of high salt intake induced hypertension and a greater extent of cardiac injury, with the cardiac changes being only partially attenuated by SPL in a manner independent of its antihypertensive effect. The combination of dietary salt restriction and MR antagonism is thus a promising therapeutic option for the management of hypertensive patients with hyperaldosteronism or relative aldosterone excess.
Collapse
|
20
|
Iyer RP, Lindsey ML, Chilton RJ. A two-for-one bargain: using cilnidipine to treat hypertension and its comorbidities. J Clin Hypertens (Greenwich) 2013; 15:455-7. [PMID: 23815532 PMCID: PMC3815552 DOI: 10.1111/jch.12112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rugmani Padmanabhan Iyer
- San Antonio Cardiovascular Proteomics CenterThe University of Texas Health Science Center at San AntonioSan AntonioTX
- Jackson Center for Heart ResearchDepartment of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMS
| | - Merry L. Lindsey
- San Antonio Cardiovascular Proteomics CenterThe University of Texas Health Science Center at San AntonioSan AntonioTX
- Jackson Center for Heart ResearchDepartment of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMS
- Research ServicesG.V. (Sonny) Montgomery Veterans Affairs Medical CenterJacksonMS
| | - Robert J. Chilton
- San Antonio Cardiovascular Proteomics CenterThe University of Texas Health Science Center at San AntonioSan AntonioTX
- Division of CardiologyDepartment of MedicineThe University of Texas Health Science Center at San AntonioSan AntonioTX
| |
Collapse
|
21
|
Nishida M, Ishikawa T, Saiki S, Sunggip C, Aritomi S, Harada E, Kuwahara K, Hirano K, Mori Y, Kim-Mitsuyama S. Voltage-dependent N-type Ca2+ channels in endothelial cells contribute to oxidative stress-related endothelial dysfunction induced by angiotensin II in mice. Biochem Biophys Res Commun 2013; 434:210-6. [PMID: 23537646 DOI: 10.1016/j.bbrc.2013.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 03/15/2013] [Indexed: 10/27/2022]
Abstract
N-type voltage-dependent Ca(2+)channels (VDCCs), expressed predominantly in the nervous system, play pivotal roles in sympathetic regulation of the circulatory system. Although N-type VDCCs are also reportedly expressed in the vasculature, their pathophysiological role is obscure. We demonstrated that oxidative stress-related endothelial dysfunction induced by angiotensin (Ang) II is suppressed in mice lacking the N-type VDCC α1B subunit (Cav 2.2). Impairment of endothelium-dependent relaxation of the thoracic aorta observed following Ang II treatment in wild-type (WT) mice was significantly attenuated in the Ang II-treated Cav 2.2-deficient mice, despite the comparable increase of the blood pressure in the two groups of mice. The thoracic aorta of the Cav 2.2-deficient mice showed a smaller positive area of oxidative stress markers as compared to the WT mice. The Ang II-induced endothelial dysfunction was also suppressed by cilnidipine, an L/N-type VDCC blocker, but not by amlodipine, an L-type VDCC blocker; however, this unique effect of cilnidipine was completely abolished in the Cav 2.2-deficient mice. Furthermore, selective inhibition of N-type VDCCs by ω-conotoxin GVIA dramatically suppressed the production of reactive oxygen species (ROS) as well as agonist-induced Ca(2+) influx in the vascular endothelial cells. These results suggest that N-type VDCCs expressed in the vascular endothelial cells contribute to ROS production and endothelial dysfunction observed in Ang II-treated hypertensive mice.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Drug Discovery and Evolution, Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mishima K, Maeshima A, Miya M, Sakurai N, Ikeuchi H, Hiromura K, Nojima Y. Involvement of N-type Ca(2+) channels in the fibrotic process of the kidney in rats. Am J Physiol Renal Physiol 2013; 304:F665-73. [PMID: 23324177 DOI: 10.1152/ajprenal.00561.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-type Ca(2+) channels are densely distributed in sympathetic nerves that innervate renal tubules. However, the role of N-type Ca(2+) channels in renal fibrosis remains unknown. To address this issue, we examined the difference between the effects of amlodipine (an L-type Ca(2+) channel blocker) and cilnidipine (a dual L/N-type Ca(2+) channel blocker) on fibrotic changes using a rat unilateral ureteral obstruction (UUO) model. The expression of both L-type and N-type Ca(2+) channels was significantly upregulated in UUO kidneys compared with that in contralateral kidneys. There were no significant differences in mean blood pressure among the rats tested. Both amlodipine and cilnidipine significantly attenuated fibrotic changes in UUO kidneys. The antifibrotic effect of cilnidipine was more potent than that of amlodipine. Amlodipine as well as cilnidipine reduced type III collagen deposition, α-smooth muscle actin (α-SMA) expression, and interstitial cell proliferation. In addition, cilnidipine significantly reduced deposition of type I collagen and macrophage infiltration in UUO kidneys. With the use of in vivo bromodeoxyuridine labeling, label-retaining cells (LRCs) were identified as a population of tubular cells that participate in epithelial-mesenchymal transition after UUO. Some LRCs migrated into the interstitium, expressed α-SMA and vimentin, and produced several extracellular matrixes in UUO kidneys. The number of interstitial LRCs was significantly decreased by cilnidipine but not amlodipine. These data suggest that N-type Ca(2+) channels contribute to multiple steps of renal fibrosis, and its blockade may thus be a useful therapeutic approach for prevention of renal fibrosis.
Collapse
Affiliation(s)
- Keiichiro Mishima
- Department of Medicine and Clinical Science, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | | | | | | | | | | | | |
Collapse
|