1
|
Henningsen K, Henry R, Gaskell SK, Alcock R, Mika A, Rauch C, Cheuvront SN, Blazy P, Kenefick R, Costa RJS. Exertional heat stress promotes the presence of bacterial DNA in plasma: A counterbalanced randomised controlled trial. J Sci Med Sport 2024; 27:610-617. [PMID: 38906729 DOI: 10.1016/j.jsams.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVES The primary aim was to explore the impact of exertional-heat stress (EHS) promoted exercise-associated bacteraemia. A secondary aim was to examine if an amino acid beverage (AAB) intervention may mitigate exercise-associated bacteraemia. DESIGN Counterbalanced randomised control trial. METHODS Twenty endurance trained male participants completed two randomised EHS trials. On one occasion, participants consumed a 237 mL AAB twice daily for 7 days prior, immediately before and every 20 min during EHS (2 h running at 60 % V̇O2max in 35 °C). On the other occasion, a water volume control (CON) equivalent was consumed. Whole blood samples were collected pre- and immediately post-EHS, and were analysed for plasma DNA concentration by fluorometer quantification after microbial extraction, and bacterial relative abundance by next generation 16s rRNA gene sequencing. RESULTS Increased concentration of microbial DNA in plasma pre- to post-EHS was observed on CON (pre-EHS 0.014 ng/μL, post-EHS 0.039 ng/μL) (p < 0.001) and AAB (pre-EHS 0.015 ng/μL, post-EHS 0.031 ng/μL) (p < 0.001). The magnitude of change from pre- to post-exercise on AAB was 40 % lower, but no significant difference was observed versus CON (p = 0.455). Predominant bacterial groups identified included: phyla-Proteobacteria (88.0 %), family-Burkholderiaceae (59.1 %), and genus-Curvibacter (58.6 %). No significant variation in absolute and relative change in α-diversity and relative abundance for phyla, family, and genus bacterial groups was observed in AAB versus CON. CONCLUSIONS The increased presence of microbial-bacterial DNA in systemic circulation in response to EHS appears positive in all participants. An amino acid beverage supplementation period prior to and consumption during EHS did not provide significant attenuation of EHS-associated bacteraemia.
Collapse
|
2
|
Pannkuk EL, Laiakis EC, Garty G, Bansal S, Jayatilake MM, Tan Y, Ponnaiya B, Wu X, Amundson SA, Brenner DJ, Fornace AJ. Impact of Partial Body Shielding from Very High Dose Rates on Untargeted Metabolomics in Biodosimetry. ACS OMEGA 2024; 9:35182-35196. [PMID: 39157112 PMCID: PMC11325421 DOI: 10.1021/acsomega.4c05688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
A realistic exposure to ionizing radiation (IR) from an improvised nuclear device will likely include individuals who are partially shielded from the initial blast delivered at a very high dose rate (VHDR). As different tissues have varying levels of radiosensitivity, e.g., hematopoietic vs gastrointestinal tissues, the effects of shielding on radiation biomarkers need to be addressed. Here, we explore how biofluid (urine and serum) metabolite signatures from male and female C57BL/6 mice exposed to VHDR (5-10 Gy/s) total body irradiation (TBI, 0, 4, and 8 Gy) compare to individuals exposed to partial body irradiation (PBI) (lower body irradiated [LBI] or upper body irradiated [UBI] at an 8 Gy dose) using a data-independent acquisition untargeted metabolomics approach. Although sex differences were observed in the spatial groupings of urine signatures from TBI and PBI mice, a metabolite signature (N6,N6,N6-trimethyllysine, carnitine, propionylcarnitine, hexosamine-valine-isoleucine, taurine, and creatine) previously developed from variable dose rate experiments was able to identify individuals with high sensitivity and specificity, irrespective of radiation shielding. A panel of serum metabolites composed from previous untargeted studies on nonhuman primates had excellent performance for separating irradiated cohorts; however, a multiomic approach to complement the metabolome could increase dose estimation confidence intervals. Overall, these results support the inclusion of small-molecule markers in biodosimetry assays without substantial interference from the upper or lower body shielding.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
| | - Evagelia C. Laiakis
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
- Department
of Radiation Medicine, Georgetown University
Hospital, Washington, District of Columbia 20057, United States
| | - Guy Garty
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Sunil Bansal
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Meth M. Jayatilake
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
| | - Yuewen Tan
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
| | - Brian Ponnaiya
- Radiological
Research Accelerator Facility, Columbia
University, Irvington, New York 10533, United States
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Xuefeng Wu
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Sally A. Amundson
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - David J. Brenner
- Center for
Radiological Research, Columbia University
Irving Medical Center, New York, New York 10032, United States
| | - Albert J. Fornace
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Department
of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, District of Columbia 20057, United States
- Center
for Metabolomic Studies, Georgetown University, Washington, District of
Columbia 20057, United States
- Department
of Radiation Medicine, Georgetown University
Hospital, Washington, District of Columbia 20057, United States
| |
Collapse
|
3
|
Xiao M, Hull L, Zizzo A, Lin B, Zhai M, Wang L, Cui W. Effects of radiation mitigating amino acid mixture on mice of different sexes. Front Public Health 2024; 12:1394023. [PMID: 38887249 PMCID: PMC11180883 DOI: 10.3389/fpubh.2024.1394023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
To date, few FDA-approved medical countermeasures are available for addressing hematopoietic acute radiation syndrome (H-ARS). In this study, we present our latest research findings focusing on the evaluation of a novel radiation mitigator known as the mitigating amino acid mixture (MAAM). MAAM is composed of five amino acids as the recently reported amino acid-based oral rehydration solution for mitigating gastrointestinal (GI)-ARS. CD2F1 male and female mice were exposed to 60Co-γ total body irradiation (TBI) at 9.0 or 9.5 Gy. Following irradiation, mice were orally administered with MAAM or a saline vehicle control once daily for a duration of 14 days, commencing 24 h after TBI. Mouse survival and body weight change were monitored for 30 days after irradiation. Complete blood counts (CBCs), bone marrow (BM) stem and progenitor cell survival (clonogenicity), and a serum cytokine antibody array were analyzed using samples from day 30 surviving mice. Our data revealed that MAAM treatment significantly enhanced survival rates in irradiated male CD2F1 mice, and the survival rate increased from 25% in the vehicle control group to 60% in the MAAM-treated group (p < 0.05) after 9.0 Gy TBI. The number of BM colonies significantly increased from 41.8 ± 6.4 /104 cells (in the vehicle group) to 78.5 ± 17.0 /104 cells (in the MAAM group) following 9.0 Gy TBI. Furthermore, MAAM treatment led to a decrease in the levels of six cytokines/proteins [cluster of differentiation 40 (CD40), interleukin (IL)-17A, C-X-C motif chemokine 10 (CXCL10/CRG-2), cutaneous T cell-attracting chemokine (CTACK), macrophage inflammatory protein (MIP)-3β, and IL-1β] and an increase in the levels of five other cytokines/proteins [IL-3Rβ, IL-5, leptin, IL-6, and stem cell factor (SCF)] in mouse serum compared to the vehicle group after 9.0 Gy TBI. However, similar alleviating effects of MAAM were not observed in the irradiated CD2F1 female mice. The serum cytokine profile in the irradiated female mice was different compared to the irradiated male mice. In summary, our data suggest that the beneficial effects of the mitigative amino acid combination treatment after radiation exposure may depend on sex.
Collapse
Affiliation(s)
- Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Lisa Hull
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Alex Zizzo
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Bin Lin
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Min Zhai
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Li Wang
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Wanchang Cui
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| |
Collapse
|
4
|
King MA, Grosche A, Ward SM, Ward JA, Sasidharan A, Mayer TA, Plamper ML, Xu X, Ward MD, Clanton TL, Vidyasagar S. Amino acid solution mitigates hypothermia response and intestinal damage following exertional heat stroke in male mice. Physiol Rep 2023; 11:e15681. [PMID: 37217446 PMCID: PMC10202825 DOI: 10.14814/phy2.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Increased gut permeability is implicated in the initiation and extent of the cytokine inflammatory response associated with exertional heat stroke (EHS). The primary objective of this study was to determine if a five amino acid oral rehydration solution (5AAS), specifically designed for the protection of the gastrointestinal lining, would prolong time to EHS, maintain gut function and dampen the systemic inflammatory response (SIR) measured during EHS recovery. Male C57/BL6J mice instrumented with radiotelemetry were gavaged with 150 μL of 5AAS or H2 O, and ≈12 h later were either exposed to an EHS protocol where mice exercised in a 37.5°C environmental chamber to a self-limiting maximum core temperature (Tc,max) or performed the exercise control (EXC) protocol (25°C). 5AAS pretreatment attenuated hypothermia depth and length (p < 0.005), which are indicators of EHS severity during recovery, without any effect on physical performance or thermoregulatory responses in the heat as determined by percent body weight lost (≈9%), max speed (≈6 m/min), distance (≈700 m), time to Tc,max (≈160 min), thermal area (≈550°C∙min), and Tc,max (42.2°C). EHS groups treated with 5AAS showed a significant decrease in gut transepithelial conductance, decreased paracellular permeability, increased villus height, increased electrolyte absorption and changes in tight junction protein expression pattern suggestive of improved barrier integrity (p < 0.05). No differences were witnessed between EHS groups in acute phase response markers of liver, circulating SIR markers, or indicators of organ damage during recovery. These results suggest that a 5AAS improves Tc regulation during EHS recovery through maintaining mucosal function and integrity.
Collapse
Affiliation(s)
- Michelle A. King
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Astrid Grosche
- Radiation OncologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Shauna M. Ward
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Jermaine A. Ward
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Anusree Sasidharan
- Radiation OncologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Thomas A. Mayer
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Mark L. Plamper
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Xiaodong Xu
- Radiation OncologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Matthew D. Ward
- Thermal and Mountain Medicine DivisionUnited States Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Thomas L. Clanton
- Health and Human PerformanceUniversity of FloridaGainesvilleFloridaUSA
| | - Sadasivan Vidyasagar
- Radiation OncologyUniversity of Florida College of MedicineGainesvilleFloridaUSA
| |
Collapse
|
5
|
DiCarlo AL, Carnell LS, Rios CI, Prasanna PG. Inter-agency perspective: Translating advances in biomarker discovery and medical countermeasures development between terrestrial and space radiation environments. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:9-19. [PMID: 36336375 PMCID: PMC9832585 DOI: 10.1016/j.lssr.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/18/2022] [Accepted: 06/12/2022] [Indexed: 05/22/2023]
Abstract
Over the past 20+ years, the U.S. Government has made significant strides in establishing research funding and initiating a portfolio consisting of subject matter experts on radiation-induced biological effects in normal tissues. Research supported by the National Cancer Institute (NCI) provided much of the early findings on identifying cellular pathways involved in radiation injuries, due to the need to push the boundaries to kill tumor cells while minimizing damage to intervening normal tissues. By protecting normal tissue surrounding the tumors, physicians can deliver a higher radiation dose to tumors and reduce adverse effects related to the treatment. Initially relying on this critical NCI research, the National Institute of Allergy and Infectious Diseases (NIAID), first tasked with developing radiation medical countermeasures in 2004, has provided bridge funding to move basic research toward advanced development and translation. The goal of the NIAID program is to fund approaches that can one day be employed to protect civilian populations during a radiological or nuclear incident. In addition, with the reality of long-term space flights and the possibility of radiation exposures to both acute, high-intensity, and chronic lower-dose levels, the National Aeronautics and Space Administration (NASA) has identified requirements to discover and develop radioprotectors and mitigators to protect their astronauts during space missions. In sustained partnership with sister agencies, these three organizations must continue to leverage funding and findings in their overlapping research areas to accelerate biomarker identification and product development to help safeguard these different and yet undeniably similar human populations - cancer patients, public citizens, and astronauts.
Collapse
Affiliation(s)
- Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD, 20852 United States of America.
| | - Lisa S Carnell
- Biological and Physical Sciences Division, National Aeronautics and Space Administration (NASA), 300 E Street SW, Washington, DC, 20546 United States of America
| | - Carmen I Rios
- Radiation and Nuclear Countermeasures Program (RNCP), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD, 20852 United States of America
| | - Pataje G Prasanna
- Radiation Research Program (RRP), National Cancer Institute (NCI), National Institutes of Health (NIH), 9609 Medical Center Drive, Bethesda, MD, 20892 United States of America
| |
Collapse
|
6
|
Das R, Sobi RA, Sultana AA, Nahar B, Bardhan PK, Luke L, Fontaine O, Ahmed T. A double-blind clinical trial to compare the efficacy and safety of a multiple amino acid-based ORS with the standard WHO-ORS in the management of non-cholera acute watery diarrhea in infants and young children: "VS002A" trial protocol. Trials 2022; 23:706. [PMID: 36008819 PMCID: PMC9403960 DOI: 10.1186/s13063-022-06601-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/25/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Diarrhea is the second deadliest disease for under-five children globally and the situation is more serious in developing countries. Oral rehydration solution (ORS) is being used as a standard treatment for acute watery diarrhea for a long time. Our objective is to compare the efficacy of amino acid-based ORS "VS002A" compared to standard glucose-based WHO-ORS in infants and young children suffering from acute non-cholera watery diarrhea. METHODS It is a randomized, double-blind, two-cell clinical trial at Dhaka Hospital of icddr,b. A total of 312 male children aged 6-36 months old with acute non-bloody watery diarrhea are included in this study. Intervention arm participants get amino acid-based ORS (VS002A) and the control arm gets standard glucose-based WHO-ORS. The primary efficacy endpoint is the duration of diarrhea in the hospital. DISCUSSION Oral rehydration therapy (ORT) with the present ORS formulation has certain limitations - it does not reduce the volume, frequency, or duration of diarrhea. Additionally, the failure of present standard ORS to significantly reduce stool output likely contributes to the relatively limited use of ORS by mothers as they do not feel that ORS is helping their child recover from the episode of diarrhea. Certain neutral amino acids (e.g., glycine, L-alanine, L-glutamine) can enhance the absorption of sodium ions and water from the gut. By using this concept, a shelf-stable, sugar-free amino acid-based hydration medicinal food named 'VS002A' that effectively rehydrates, and improves the barrier function of the bowel following infections targeting the gastrointestinal tract has been developed. If the trial shows significant benefits of VS002A use, this may provide evidence to support consideration of the use of VS002A in the present WHO diarrhea management guidelines. Conversely, if there is no evidence of benefit, these results will reaffirm the current guidelines. TRIAL REGISTRATION ClinicalTrials.gov NCT04677296 . Registered on December 21, 2020.
Collapse
Affiliation(s)
- Rina Das
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh.
- Department of Environmental Health Sciences, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
| | - Rukaeya Amin Sobi
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Al-Afroza Sultana
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Baitun Nahar
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Pradip Kumar Bardhan
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura Luke
- Science & Technology, Entrinsic Bioscience Inc., Boston, MA, USA
| | - Olivier Fontaine
- Science & Technology, Entrinsic Bioscience Inc., Boston, MA, USA
| | - Tahmeed Ahmed
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- James P. Grant School of Public Health, BRAC University, Dhaka, 1212, Bangladesh
- Department of Global Health, University of Washington, Seattle, WA, 98104, USA
| |
Collapse
|
7
|
Four AAs increase DMT1 abundance in duodenal brush-border membrane vesicles and enhance iron absorption in iron-deprived mice. Blood Adv 2022; 6:3011-3021. [PMID: 35061889 PMCID: PMC9131898 DOI: 10.1182/bloodadvances.2021005111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022] Open
Abstract
Oral iron supplementation is usually recommended to treat iron-deficiency anemia; however, excess enteral iron has negative side effects. We identified 4 AAs that stimulate intestinal iron absorption and may potentiate iron repletion at lower effective supplemental doses.
Iron-deficiency anemia is common worldwide and typically treated by oral iron supplementation. Excess enteral iron, however, may cause pathological outcomes. Developing new repletion approaches is thus warranted. Previous experimentation revealed that select amino acids (AAs) induce trafficking of transporters onto the enterocyte brush-border membrane (BBM) and enhance electrolyte absorption/secretion. Here, we hypothesized that certain AAs would increase the abundance of the main intestinal iron importer, divalent metal-ion transporter 1 (DMT1), on the BBM of duodenal enterocytes, thus stimulating iron absorption. Accordingly, all 20 AAs were screened using an ex vivo duodenal loop/DMT1 western blotting approach. Four AAs (Asp, Gln, Glu, and Gly) were selected for further experimentation and combined into a new formulation. The 4 AAs stimulated 59Fe transport in mouse duodenal epithelial sheets in Ussing chambers (∼4-fold; P < .05). In iron-deprived mice, oral intragastric administration of the 4 AA formulation increased DMT1 protein abundance on the enterocyte BBM by ∼1.5-fold (P < .05). The 4 AAs also enhanced in vivo 59Fe absorption by ∼2-fold (P < .05), even when ∼26 µg of cold iron was included in the transport solution (equal to a human dose of ∼73 mg). Further experimentation using DMT1int/int mice showed that intestinal DMT1 was required for induction of iron transport by the 4 AAs. Select AAs thus enhance iron absorption by inducing DMT1 trafficking onto the apical membrane of duodenal enterocytes. We speculate that further refinement of this new 4 AA formulation will ultimately allow iron repletion at lower effective doses (thus mitigating negative side effects of excess enteral iron).
Collapse
|
8
|
Livanova AA, Fedorova AA, Zavirsky AV, Bikmurzina AE, Krivoi II, Markov AG. Dose and time dependence of functional impairments in rat jejunum following ionizing radiation exposure. Physiol Rep 2021; 9:e14960. [PMID: 34337895 PMCID: PMC8326886 DOI: 10.14814/phy2.14960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/19/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
Ionizing radiation causes dramatic change in the transport and barrier functions of the intestine. The degree of radiation damage rate depends primarily on the absorbed dose and post-irradiation time. Variety of experimental protocols providing different time points and doses exist, with the lack of a common approach. In this study, to develop a unified convenient experimental scheme, dose and time dependence of barrier and transport properties of rat jejunum following ionizing radiation exposure were examined. Male Wistar rats were exposed to total body X-ray irradiation (2, 5, or 10 Gy). The control group was subjected to sham irradiation procedure. Samples of rat jejunum were obtained at 24, 48, or 72 h post-irradiation. Transepithelial resistance, short circuit current (Isc ), and paracellular permeability for sodium fluorescein of jejunum samples were measured in an Ussing chamber; a histological examination was also performed. These parameters were significantly disturbed only 72 h after irradiation at a dose of 10 Gy, which was accompanied by loss of crypt and villi, inflammatory infiltrations, and disintegration of enterocytes. This suggests that found experimental point (72 h after 10 Gy exposure) is the most appropriate for future study using rat jejunum as a model.
Collapse
Affiliation(s)
- Alexandra A. Livanova
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
- Department of BiologyS.M. Kirov Military Medical AcademySt. PetersburgRussia
| | - Arina A. Fedorova
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
| | - Alexander V. Zavirsky
- Department of Military Toxicology and Medical DefenseS.M. Kirov Military Medical AcademySt. PetersburgRussia
| | | | - Igor I. Krivoi
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
| | - Alexander G. Markov
- Department of General PhysiologySt. Petersburg State UniversitySt. PetersburgRussia
| |
Collapse
|
9
|
Chauhan A, Das S, Miller R, Luque L, Cheuvront SN, Cloud J, Tarter Z, Siddiqui F, Ramirez RA, Anthony L. Can an amino acid mixture alleviate gastrointestinal symptoms in neuroendocrine tumor patients? BMC Cancer 2021; 21:580. [PMID: 34016080 PMCID: PMC8139143 DOI: 10.1186/s12885-021-08315-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
Background Neuroendocrine tumors, although relatively rare in incidence, are now the second most prevalent gastrointestinal neoplasm owing to indolent disease biology. A small but significant sub-group of neuroendocrine tumor patients suffer from diarrhea. This is usually secondary to carcinoid syndrome but can also be a result of short gut syndrome, bile acid excess or iatrogenic etiologies. Recently, an amino acid based oral rehydration solution (enterade Advanced Oncology Formula) was found to have anti-diarrheal properties in preclinical models. Methods A retrospective chart review of all NET patients treated with enterade AO was performed after IRB approval. Results Ninety-eight NET patients who had received enterade AO at our clinic from May 2017 through June 2019 were included. Patients (N=49 of 98) with follow up data on bowel movements (BMs) were included for final analysis. Eighty-four percent of patients (41/49) had fewer BMs after taking enterade AO and 66% (27/41) reported more than 50% reduction in BM frequency. The mean number of daily BMs was 6.6 (range, 320) at baseline before initiation of therapy, while the mean number of BMs at 1 week time point post enterade AO was 2.9 (range, 011). Conclusions Our retrospective observations are encouraging and support prospective validation with appropriate controls in NET patients. This is first published report of the potential anti-diarrheal activity of enterade AO in NET patients.
Collapse
Affiliation(s)
- Aman Chauhan
- Division of Medical Oncology, University of Kentucky, Lexington, KY, USA. .,Markey Cancer Center, University of Kentucky, 800 Rose Street CC402, Lexington, KY, 40536, USA.
| | - Satya Das
- Division of Medical Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel Miller
- Markey Cancer Center, University of Kentucky, 800 Rose Street CC402, Lexington, KY, 40536, USA
| | - Laura Luque
- Science & Technology, Entrinsic Bioscience Inc., Boston, MA, USA
| | | | - James Cloud
- School of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zach Tarter
- School of Medicine, University of Kentucky, Lexington, KY, USA
| | - Fariha Siddiqui
- School of Medicine, University of Kentucky, Lexington, KY, USA
| | - Robert A Ramirez
- Division of Oncology Ochsner Health System, New Orleans, LA, USA
| | - Lowell Anthony
- Division of Medical Oncology, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, 800 Rose Street CC402, Lexington, KY, 40536, USA
| |
Collapse
|
10
|
De Filipp Z, Glotzbecker B, Luque L, Kim HT, Mitchell KM, Cheuvront SN, Soiffer RJ. Randomized Study of enterade® to Reduce Diarrhea in Patients Receiving High-Dose Chemotherapy and Autologous Hematopoietic Stem Cell Transplantation. Asian Pac J Cancer Prev 2021; 22:301-304. [PMID: 33507712 PMCID: PMC8184175 DOI: 10.31557/apjcp.2021.22.1.301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
High-dose chemotherapy frequently causes injury to the gastrointestinal mucosa, resulting in diarrhea. The purpose of the current study was to assess the tolerability and efficacy of enterade® in reducing ≥ grade 2 diarrhea (G2D) in association with high-dose melphalan followed by autologous stem cell transplantation (ASCT). We conducted a prospective, double blinded, multi-center trial in which 114 subjects were randomized to receive enterade® or placebo twice daily during the transplant hospitalization. Gastrointestinal toxicities (nausea, vomiting, oral mucositis and dysphagia) resulted in poor study compliance in both arms. Among subjects who were able to complete planned therapy (13%), the incidence of G2D was lower for those receiving enterade® as compared to placebo (16% vs 86%, p<0.03). Twice daily oral administration of enterade® and placebo following high-dose chemotherapy and ASCT was not feasible due to significant gastrointestinal toxicities. Future explorations of enterade® should be conducted in populations capable of reasonable oral intake.
Collapse
Affiliation(s)
- Zachariah De Filipp
- Blood and Marrow Transplant Program, Massachusetts General Hospital, Boston, MA, USA
| | - Brett Glotzbecker
- Department of Clinical Oncology, Dana Farber Cancer Institute, Boston, MA. USA
| | - Laura Luque
- Department of Science & Technology, Entrinsic Bioscience, Norwood, MA, USA
| | - Haesook T Kim
- Department of Clinical Research, Dana Farber Cancer Institute, Boston, MA, USA
| | | | - Samuel N Cheuvront
- Department of Science & Technology, Entrinsic Bioscience, Norwood, MA, USA
| | - Robert J Soiffer
- Department of Clinical Oncology, Dana Farber Cancer Institute, Boston, MA. USA
| |
Collapse
|
11
|
Sadeghi H, Bagheri H, Shekarchi B, Javadi A, Najafi M. Mitigation of Radiation-Induced Gastrointestinal System Injury by Melatonin: A Histopathological Study. Curr Drug Res Rev 2020; 12:72-79. [PMID: 32578524 DOI: 10.2174/2589977511666191031094625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 06/11/2023]
Abstract
AIMS The current study aimed to investigate the potential role of melatonin in the mitigation of radiation-induced gastrointestinal injury. BACKGROUND Organs of the gastrointestinal system such as the intestines, colon, duodenum, ileum etc. are sensitive to ionizing radiation. Mitigation of radiation-induced gastrointestinal injury is an interesting topic in radiobiology and a life-saving approach for exposed persons after a radiation event or improving the quality of life of radiotherapy patients. OBJECTIVE The study aimed to find the possible mitigation effect of melatonin on radiation-induced damage to the small and large intestines. METHODS 40 male mice were randomly assigned into four groups namely G1: control, G2: melatonin treatment, G3: whole-body irradiation, and G4: melatonin treatment after whole-body irradiation. A cobalt-60 gamma-ray source was used to deliver 7 Gy to the whole body. 100 mg/kg melatonin was administered orally 24 h after irradiation and continued for 5 days. Thirty days after irradiation, histopathological evaluations were performed. RESULTS The whole-body irradiation led to remarkable inflammation, villi shortening, apoptosis and damage to goblet cells of the small intestine. Furthermore, moderate to severe inflammation, apoptosis, congestion, crypt injury and goblet cell damage were reported for the colon. Treatment with melatonin after whole-body irradiation led to significant mitigation of radiation toxicity in both small and large intestines. CONCLUSION Melatonin could mitigate intestinal injury following whole-body exposure to radiation. Treatment with melatonin after an accidental exposure to radiation may increase survival via mitigation of damages to radiosensitive organs, including the gastrointestinal system.
Collapse
Affiliation(s)
- Hossein Sadeghi
- AJA Radiation Sciences Radiation Sciences (ARSRC), Tehran, Iran
| | - Hamed Bagheri
- AJA Radiation Sciences Radiation Sciences (ARSRC), Tehran, Iran
| | - Babak Shekarchi
- AJA Radiation Sciences Radiation Sciences (ARSRC), Tehran, Iran
| | - Abdolreza Javadi
- Department of Pathology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
12
|
Gupta R, Yin L, Grosche A, Lin S, Xu X, Guo J, Vaught LA, Okunieff PG, Vidyasagar S. An Amino Acid-Based Oral Rehydration Solution Regulates Radiation-Induced Intestinal Barrier Disruption in Mice. J Nutr 2020; 150:1100-1108. [PMID: 32133527 DOI: 10.1093/jn/nxaa025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Radiotherapy inadvertently affects gastrointestinal (GI) epithelial cells, causing intestinal barrier disruption and increased permeability. OBJECTIVE We examined the effect of amino acid-based oral rehydration solution (AA-ORS) on radiation-induced changes of intestinal barrier function and epithelial tight junctions (TJs) in a randomized experimental study using a total-body irradiation (TBI) mouse model. METHODS Eight-week-old male Swiss mice received a single-dose TBI (0, 1, 3, or 5 Gy), and subsequent gastric gavage with AA-ORS (threonine, valine, serine, tyrosine, and aspartic acid) or saline for 2 or 6 d. Intestinal barrier function of mouse ileum was characterized by electrophysiological analysis of conductance, anion selectivity, and paracellular permeability [fluorescein isothiocyanate (FITC)-dextran]. Ultrastructural changes of TJs were evaluated by transmission electron microscopy. Membrane protein and mRNA expression of claudin-1, -2, -3, -5, and -7, occludin, and E-cadherin were analyzed with western blot, qPCR, and immunohistochemistry. Nonparametric tests were used to compare treatment-dose differences for each time point. RESULTS Saline-treated mice had a higher conductance at doses as low as 3 Gy, and as early as 2 d post-TBI compared with 0 Gy (P < 0.001). Paracellular permeability and dilution potential were increased 6 d after 5 Gy TBI (P < 0.001). Conductance decreased with AA-ORS after 2 d in 3-Gy and 5-Gy mice (P < 0.05 and P < 0.001), and on day 6 after 5 Gy TBI (P < 0.001). Anion selectivity and FITC permeability decreased from 0.73 ± 0.02 to 0.61 ± 0.03 pCl/pNa (P < 0.01) and from 2.7 ± 0.1 × 105 to 2.1 ± 0.1 × 105 RFU (P < 0.001) in 5-Gy mice treated with AA-ORS for 6 d compared with saline. Irradiation-induced ultrastructural changes of TJs characterized by decreased electron density and gap formation improved with AA-ORS. Reduced claudin-1, -3, and -7 membrane expression after TBI recovered with AA-ORS within 6 d, whereas claudin-2 decreased indicating restitution of TJ proteins. CONCLUSIONS Radiation-induced functional and structural disruption of the intestinal barrier in mice is reversed by AA-ORS rendering AA-ORS a potential treatment option in prospective clinical trials in patients with gastrointestinal barrier dysfunction.
Collapse
Affiliation(s)
- Reshu Gupta
- Entrinsic Health Solutions, Norwood, MA, USA
| | - Liangjie Yin
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| | | | | | - Xiaodong Xu
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| | - Jing Guo
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| | - Lauren A Vaught
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| | - Paul G Okunieff
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, University of Florida Shands Cancer Center, Gainesville, FL, USA
| |
Collapse
|
13
|
Efficacy of Jackfruit365™ Green Jackfruit Flour Fortified Diet on Pegfilgrastim to Prevent Chemotherapy-Induced Leukopenia, Irrespective of Tumor Type or Drugs Used-A Retrospective Study. Biomolecules 2020; 10:biom10020218. [PMID: 32024271 PMCID: PMC7072368 DOI: 10.3390/biom10020218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 01/03/2023] Open
Abstract
Chemotherapy-Induced Leukopenia (CIL) is associated with increased mortality and economic burden on patients. This study was conducted to evaluate whether inclusion of green jackfruit flour in regular diet of those patients receiving chemotherapy, could prevent CIL. This was a retrospective study conducted among a group of patients undergoing chemotherapy for solid tumors at Renai Medicity Hospital, Palarivattom, Cochin, Kerala, India, since June 2018. The study group comprised of 50 consecutive subjects, who were supplemented with green jackfruit flour diet in their regular diet and further followed up prospectively. The control group was retrospective with 50 subjects prior to June 2018, with no diet supplements. Those who received less than three cycles were excluded from either arm. The mean age of the participants in study group and control group were 53.16 ± 11.06 and 56.96 ± 12.16 years respectively. In the study group, six patients out of 37, and 20 patients out of 50 in the control group, developed CIL. They received 38 and 105 vials of filgrastim respectively. After excluding those cycles in study group patients, where green jackfruit flour was not taken, the mean number of cycles in which CIL developed (p = 0.00) and number of vials of filgrastim taken per cycle (p = 0.00) were significantly different from control group and no patient in the study group developed CIL. Inclusion of green jackfruit flour as a dietary intervention prevents chemotherapy-induced leukopenia in patients undergoing chemotherapy along with pegfilgrastim.
Collapse
|
14
|
Affiliation(s)
- Henry J Binder
- Section of Digestive Diseases, Department of Internal Medicine, Yale University, PO Box 208019, New Haven, CT, 06520, USA.
| |
Collapse
|
15
|
Cui W, Li X, Hull L, Xiao M. GATA-type transcription factors play a vital role in radiation sensitivity of Cryptococcus neoformans by regulating the gene expression of specific amino acid permeases. Sci Rep 2019; 9:6385. [PMID: 31015536 PMCID: PMC6478845 DOI: 10.1038/s41598-019-42778-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022] Open
Abstract
Cryptococcus neoformans is a basidiomycete fungus that is highly resistant to ionizing radiation and has been identified in highly radioactive environments. Transcription factors (TFs) are master regulators of gene expression by binding to specific DNA sequences within promoters of target genes. A library of 322 signature-tagged gene deletion strains for 155 C. neoformans TF genes has been established. Previous phenome-based functional analysis of the C. neoformans TF mutant library identified key TFs important for various phenotypes, such as growth, differentiation, virulence-factor production, and stress responses. Here, utilizing the established TF mutant library, we identified 5 TFs that are important for radiation sensitivity, including SRE1, BZP2, GAT5, GAT6, and HCM1. Interestingly, BZP2, GAT5 and GAT6 all belong to the GATA-type transcription factors. These factors regulate transcription of nitrogen catabolite repression (NCR) sensitive genes when preferred nitrogen sources are absent or limiting. In addition to radiation, we found that specific GATA factors are important for other stressors such as rapamycin, fluconazole, and hydroxyurea treatment. Using real-time PCR method, we studied the expression of GATA down-stream genes after radiation exposure and identified that AAP4, AAP5 and URO1 were differentially expressed in the GAT5 and GAT6 mutants compared to the wild type cells. In summary, our data suggest that GATA TFs are important for radiation sensitivity in C. neoformans by regulating specific downstream AAP genes.
Collapse
Affiliation(s)
- Wanchang Cui
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - XiangHong Li
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lisa Hull
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Mang Xiao
- Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
16
|
Can an amino acid-based oral rehydration solution be effective in managing immune therapy-induced diarrhea? Med Hypotheses 2019; 127:66-70. [PMID: 31088651 DOI: 10.1016/j.mehy.2019.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
Abstract
Immune checkpoint inhibitor (ICPi) therapy has transformed the way we treat cancer. However, its immune related adverse events (irAEs) can be debilitating and life threatening. Immune therapy-induced diarrhea (ITID) is one of the most commonly encountered irAEs and can lead to expensive and prolonged hospitalizations. The current standard of care for grade 3 or 4 ITID involves ICPi discontinuation, the initiation of steroids, and infliximab for refractory disease. This treatment regimen reverses the desired anti-tumor effect of ICPis, can lead to side effects, and is cost-ineffective. We report the first case of the successful treatment of grade 3 ITID with steroids and an amino acid-based oral rehydration solution (AA-ORS), enterade. Research suggests that AA-ORS may be used to reduce diarrhea and adequately hydrate patients, in contrast to glucose-based oral rehydration solutions, which have been implicated as a contributing factor to diarrhea in cancer patients. We hypothesize that an AA-ORS may mitigate ITID via safer and more economically viable means than the current standard of care, but more controlled trials are needed to test this hypothesis.
Collapse
|
17
|
Wang X, Zhang M, Flores SRL, Woloshun RR, Yang C, Yin L, Xiang P, Xu X, Garrick MD, Vidyasagar S, Merlin D, Collins JF. Oral Gavage of Ginger Nanoparticle-Derived Lipid Vectors Carrying Dmt1 siRNA Blunts Iron Loading in Murine Hereditary Hemochromatosis. Mol Ther 2019; 27:493-506. [PMID: 30713087 PMCID: PMC6401192 DOI: 10.1016/j.ymthe.2019.01.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/19/2022] Open
Abstract
Nanoparticles (NPs) have been utilized to deliver drugs to the intestinal epithelium in vivo. Moreover, NPs derived from edible plants are less toxic than synthetic NPs. Here, we utilized ginger NP-derived lipid vectors (GDLVs) in a proof-of-concept investigation to test the hypothesis that inhibiting expression of divalent metal-ion transporter 1 (Dmt1) would attenuate iron loading in a mouse model of hereditary hemochromatosis (HH). Initial experiments using duodenal epithelial organ cultures from intestine-specific Dmt1 knockout (KO) (Dmt1int/int) mice in the Ussing chamber established that Dmt1 is the only active iron importer during iron-deficiency anemia. Further, when Dmt1int/int mice were crossed with mice lacking the iron-regulatory hormone, hepcidin (Hepc-/-), iron loading was abolished. Hence, intestinal Dmt1 is required for the excessive iron absorption that typifies HH. Additional experiments established a protocol to produce GDLVs carrying functional Dmt1 small interfering RNAs (siRNAs) and to target these gene delivery vehicles to the duodenal epithelium in vivo (by incorporating folic acid [FA]). When FA-GDLVs carrying Dmt1 siRNA were administered to weanling Hepc-/- mice for 16 days, intestinal Dmt1 mRNA expression was attenuated and tissue iron accumulation was blunted. Oral delivery of functional siRNAs by FA-GDLVs is a suitable therapeutic approach to mitigate iron loading in murine HH.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Mingzhen Zhang
- Institute of Medical Engineering, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Center for Diagnostics and Therapeutics, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Shireen R L Flores
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Regina R Woloshun
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Chunhua Yang
- Center for Diagnostics and Therapeutics, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Liangjie Yin
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Ping Xiang
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA; State Key Lab of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Xiaodong Xu
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | - Michael D Garrick
- Department of Biochemistry, State University of New York (SUNY), Buffalo, NY, USA
| | | | - Didier Merlin
- Center for Diagnostics and Therapeutics, Institute for Biomedical Science, Georgia State University, Atlanta, GA, USA; Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - James F Collins
- Food Science & Human Nutrition Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
18
|
Gómez BI, McIntyre MK, Gurney JM, Chung KK, Cancio LC, Dubick MA, Burmeister DM. Enteral resuscitation with oral rehydration solution to reduce acute kidney injury in burn victims: Evidence from a porcine model. PLoS One 2018; 13:e0195615. [PMID: 29718928 PMCID: PMC5931460 DOI: 10.1371/journal.pone.0195615] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/26/2018] [Indexed: 01/07/2023] Open
Abstract
Intravenous (IV) resuscitation of burn patients has greatly improved outcomes and become a cornerstone of modern burn care. However, the heavy fluids and vascular access required may not be feasible in austere environments, mass casualty, or delayed transport scenarios. Enteral resuscitation has been proposed for these situations; we sought to examine the effectiveness of this strategy on improving burn-induced kidney injury. Anesthetized Yorkshire swine sustaining 40% TBSA full-thickness contact burns were randomized to three groups (n = 6/group): fluid deprivation, ad libitum water access, or 70 mL/kg/d Oral Rehydration Salt solution (ORS). Urine and blood were collected at baseline (BL), 6, 12, 24, 32, and 48h post-burn, at which point tissue was harvested and CT angiography performed. Although fluid consumption by ad libitum and ORS groups were matched (132±54mL/kg versus 120±24mL/kg, respectively), ORS intake increased urine output compared with water and no water (47.3±9.0 mL/kg versus 16.1±2.5 mL/kg, and 24.5±1.7 mL/kg respectively). Plasma creatinine peaked 6h following burn (1.67±0.07mg/dL) in all animals, but at 48h was comparable to BL in animals receiving water (1.23±0.06mg/dL) and ORS (1.30±0.09mg/dL), but not fluid deprived animals (1.56±0.05mg/dL) (P<0.05). Circulating levels of blood urea nitrogen steadily increased, but also decreased by 48h in animals receiving enteral fluids (P<0.05). Water deprivation reduced renal artery diameter (-1.4±0.17mm), whereas resuscitation with water (-0.44±0.14 mm) or ORS maintained it (-0.63±0.20 mm;P< 0.02). Circulating cytokines IL-1β, IL-6, IFNγ, and GM-CSF were moderately elevated in the fluid-deprived group. Taken together, the data suggest that enteral resuscitation with ORS rescues kidney function following burn injury. Incorporating enteral fluids may improve outcomes in resource-poor environments and possibly reduce IV fluid requirements to prevent co-morbidities associated with over-resuscitation. Studies into different volumes/types of enteral fluids are warranted. While ORS has saved many lives in cholera-associated dehydration, it should be investigated further for use in burn patients.
Collapse
Affiliation(s)
- Belinda I. Gómez
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, United States of America
| | - Matthew K. McIntyre
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, United States of America
| | - Jennifer M. Gurney
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, United States of America
- Brooke Army Medical Center, Fort Sam Houston, TX, United States of America
| | - Kevin K. Chung
- Brooke Army Medical Center, Fort Sam Houston, TX, United States of America
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Leopoldo C. Cancio
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, United States of America
- Brooke Army Medical Center, Fort Sam Houston, TX, United States of America
| | - Michael A. Dubick
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, United States of America
| | - David M. Burmeister
- United States Army Institute of Surgical Research, Fort Sam Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
19
|
Sollanek KJ, Tsurumoto M, Vidyasagar S, Kenefick RW, Cheuvront SN. Neither body mass nor sex influences beverage hydration index outcomes during randomized trial when comparing 3 commercial beverages. Am J Clin Nutr 2018; 107:544-549. [PMID: 29635499 DOI: 10.1093/ajcn/nqy005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/27/2017] [Indexed: 11/14/2022] Open
Abstract
Background The beverage hydration index (BHI) assesses the hydration potential of any consumable fluid relative to water. The BHI is a relatively new metric, and the impact of body mass, sex, and reproducibility has yet to be investigated. Objectives To assess the independent impact of body mass and sex on BHI using beverages not previously assessed, including an amino acid-based oral rehydration solution (AA-ORS), a glucose-containing ORS (G-ORS), and a sports drink (SpD), compared with water (control). The reproducibility of the results was examined using statistical modeling (bootstrap analysis). Design Using a repeated-measures design, 40 euhydrated and fasted subjects (17 male, 23 female; urine specific gravity <1.025) were studied on 4 separate occasions. During each trial, subjects ingested 1 L of each beverage, and urine output was measured immediately postingestion and at 1-h intervals for the next 4 h. The BHI was calculated as a ratio of each individual's cumulative urine output after drinking 1 L of water over their cumulative urine output after drinking each of the test beverages. Results The calculated mean ± SD BHIs of the beverages were as follows: water (1.0 ± 0.0), AA-ORS (1.15 ± 0.28), G-ORS (1.21 ± 0.28), and SpD (1.09 ± 0.26). The BHI for both AA-ORS and G-ORS was greater than that for water (P < 0.05). Despite overall differences in body mass, neither body mass nor sex independently affected BHI. Based upon statistical modeling, our results demonstrate excellent reproducibility of outcomes and external validity. Conclusions Our results suggest that the BHI may be used and interpreted with confidence independently of body mass or sex. Furthermore, a novel carbohydrate-free AA-ORS and a traditional commercially available G-ORS were superior to water in optimizing hydration, whereas SpD was not. This trial was registered at clinicaltrials.gov as NCT03262597.
Collapse
Affiliation(s)
- Kurt J Sollanek
- Department of Kinesiology, Sonoma State University, Rohnert Park, CA
| | - Matthew Tsurumoto
- Department of Kinesiology, Sonoma State University, Rohnert Park, CA
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genetics Research, Gainesville, FL
| | | | | |
Collapse
|
20
|
Kobayashi M, Asai A, Ito I, Suzuki S, Higuchi K, Suzuki F. Short-Term Alcohol Abstinence Improves Antibacterial Defenses of Chronic Alcohol-Consuming Mice against Gut Bacteria-Associated Sepsis Caused by Enterococcus faecalis Oral Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1998-2007. [PMID: 28708971 DOI: 10.1016/j.ajpath.2017.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/28/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
The effects of short-term alcohol abstinence on host antibacterial resistance against Enterococcus faecalis oral infection was investigated in chronic alcohol-consuming mice [mice with 0.1 g/day of 20% ethanol consumption for 12 or 16 weeks (CAC-mice)]. These mice were highly susceptible to the infection; however, after 7 days of alcohol abstinence (aaCAC-mice), their antibacterial resistances were completely restored to the normal mouse level. Normal mice inoculated with CAC-mouse hepatic macrophages were shown to be susceptible to the infection, whereas the same macrophage preparation from aaCAC-mice did not impair the antibacterial resistance of normal mice. aaCAC-mouse liver macrophages protected nonobese diabetic-severe combined immunodeficiency IL-2Rγnull mice exposed to E. faecalis, whereas those from CAC-mice did not. Monocyte-derived (MD) M2b macrophages were predominantly isolated from CAC-mouse livers, but these cells were not significantly isolated from aaCAC-mouse livers. Hepatic MD macrophages from aaCAC-mice switched to M1 macrophages in response to bacterial antigen, whereas the same macrophage preparation from CAC-mice did not. M1 Kupffer cells, M2a Kupffer cells, and MD M2b macrophages were shown to be not bactericidal, whereas E. faecalis was killed effectively by M1 macrophages derived from aaCAC-mouse hepatic MD macrophages. These results indicate that MD M2b macrophages predominantly distributed in the liver are responsible for the impaired resistance of CAC-mice to E. faecalis oral infection, and aaCAC-mice without MD M2b macrophages in the livers are resistant to the infection.
Collapse
Affiliation(s)
- Makiko Kobayashi
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
| | - Akira Asai
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Ichiaki Ito
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas
| | - Sumihiro Suzuki
- Department of Biostatistics and Epidemiology, University of North Texas Health Science Center, Fort Worth, Texas
| | - Kazuhide Higuchi
- Second Department of Internal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Fujio Suzuki
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas.
| |
Collapse
|
21
|
Evans GH, James LJ, Shirreffs SM, Maughan RJ. Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. J Appl Physiol (1985) 2017; 122:945-951. [PMID: 28126906 DOI: 10.1152/japplphysiol.00745.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 11/22/2022] Open
Abstract
Hypohydration, or a body water deficit, is a common occurrence in athletes and recreational exercisers following the completion of an exercise session. For those who will undertake a further exercise session that day, it is important to replace water losses to avoid beginning the next exercise session hypohydrated and the potential detrimental effects on performance that this may lead to. The aim of this review is to provide an overview of the research related to factors that may affect postexercise rehydration. Research in this area has focused on the volume of fluid to be ingested, the rate of fluid ingestion, and fluid composition. Volume replacement during recovery should exceed that lost during exercise to allow for ongoing water loss; however, ingestion of large volumes of plain water results in a prompt diuresis, effectively preventing longer-term maintenance of water balance. Addition of sodium to a rehydration solution is beneficial for maintenance of fluid balance due to its effect on extracellular fluid osmolality and volume. The addition of macronutrients such as carbohydrate and protein can promote maintenance of hydration by influencing absorption and distribution of ingested water, which in turn effects extracellular fluid osmolality and volume. Alcohol is commonly consumed in the postexercise period and may influence postexercise rehydration, as will the coingestion of food. Future research in this area should focus on providing information related to optimal rates of fluid ingestion, advisable solutions to ingest during different duration recovery periods, and confirmation of mechanistic explanations for the observations outlined.
Collapse
Affiliation(s)
- Gethin H Evans
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom;
| | - Lewis J James
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom; and
| | - Susan M Shirreffs
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | - Ronald J Maughan
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, Leicestershire, United Kingdom; and
| |
Collapse
|
22
|
Yin L, Gupta R, Vaught L, Grosche A, Okunieff P, Vidyasagar S. An amino acid-based oral rehydration solution (AA-ORS) enhanced intestinal epithelial proliferation in mice exposed to radiation. Sci Rep 2016; 6:37220. [PMID: 27876791 PMCID: PMC5120277 DOI: 10.1038/srep37220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022] Open
Abstract
Destruction of clonogenic cells in the crypt following irradiation are thought to cause altered gastrointestinal function. Previously, we found that an amino acid-based oral rehydration solution (AA-ORS) improved gastrointestinal function in irradiated mice. However, the exact mechanisms were unknown. Electrophysiology, immunohistochemistry, qPCR, and Western blot analysis were used to determine that AA-ORS increased proliferation, maturation, and differentiation and improved electrolyte and nutrient absorption in irradiated mice. A single-hit, multi-target crypt survival curve showed a significant increase in crypt progenitors in irradiated mice treated with AA-ORS for six days (8.8 ± 0.4) compared to the saline-treated group (6.1 ± 0.3; P < 0.001) without a change in D0 (4.8 ± 0.1 Gy). The Dq values increased from 8.8 ± 0.4 Gy to 10.5 ± 0.5 Gy with AA-ORS treatment (P < 0.01), indicating an increased radiation tolerance of 1.7 Gy. We also found that AA-ORS treatment (1) increased Lgr5+, without altering Bmi1 positive cells; (2) increased levels of proliferation markers (Ki-67, p-Erk, p-Akt and PCNA); (3) decreased apoptosis markers, such as cleaved caspase-3 and Bcl-2; and (4) increased expression and protein levels of NHE3 and SGLT1 in the brush border membrane. This study shows that AA-ORS increased villus height and improved electrolyte and nutrient absorption.
Collapse
Affiliation(s)
- Liangjie Yin
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genetics Research Complex, 2033 Mowry Road, Box 103633, Gainesville, FL 32610, USA
| | - Reshu Gupta
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genetics Research Complex, 2033 Mowry Road, Box 103633, Gainesville, FL 32610, USA
| | - Lauren Vaught
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genetics Research Complex, 2033 Mowry Road, Box 103633, Gainesville, FL 32610, USA
| | - Astrid Grosche
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genetics Research Complex, 2033 Mowry Road, Box 103633, Gainesville, FL 32610, USA
| | - Paul Okunieff
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genetics Research Complex, 2033 Mowry Road, Box 103633, Gainesville, FL 32610, USA
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, University of Florida Health Cancer Center, Cancer and Genetics Research Complex, 2033 Mowry Road, Box 103633, Gainesville, FL 32610, USA
| |
Collapse
|
23
|
Pannkuk EL, Laiakis EC, Authier S, Wong K, Fornace AJ. Targeted Metabolomics of Nonhuman Primate Serum after Exposure to Ionizing Radiation: Potential Tools for High-throughput Biodosimetry. RSC Adv 2016; 6:51192-51202. [PMID: 28367319 PMCID: PMC5373493 DOI: 10.1039/c6ra07757a] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a need for research to rapidly determine an individual's absorbed dose and its potential health effects after a potential radiological or nuclear event that could expose large portions of a population to ionizing radiation (IR). Studies on biomarker identification after radiation exposure could aid in biodosimetry, identifying individual dose absorbed, as well as biologic response, and administering immediate and proper medical care. Metabolomics on easily accessible biofluids is an emerging field with potential for high-throughput biodosimetry. While tremendous effort has been put into obtaining discovery based global radiation signatures from a number of biofluids and model organisms, quantitative targeted analysis on a subset of known radiation biomarkers is required to develop an optimized panel of biomarkers for future clinical applications. The current study analyzes levels of several known broad chemical groups (acylcarnitines, amino acids, phosphatidylcholines, and biogenic amines) affected by IR in serum from nonhuman primates (NHP) 7 days after exposure through multiple reaction monitoring (MRM) analysis with a triple quadrupole mass spectrometry (MS) platform. We identified several novel metabolites affected by IR exposure through univariate and unsupervised multivariate analyses. Levels of acylcarnitines, amino acids, and phospholipids were perturbed indicating altered protein metabolism, fatty acid β-oxidation, and inflammation. Fold changes in carnitine and short-chain acylcarnitines (acetylcarnitine, propionylcarnitine, butyrylcarnitine, and valerylcarnitine) complement previous global radiation signatures on NHP; notably, the levels of change were lower than previously observed in urine. Decreased levels of glutamate, citrulline, and arginine after IR are biomarkers indicating gastrointestinal syndrome and perturbations to the urea cycle. Sex differences were also assessed and were more prevalent in circulating acylcarnitines and phospholipids after IR exposure. These biomarkers may be combined with previously described compounds from DNA damage to develop a defined metabolomic biodosimetry panel to be analyzed by MS platforms, which are increasingly available in clinical laboratories.
Collapse
Affiliation(s)
- Evan L. Pannkuk
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
| | | | | | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|