1
|
Thariat J, Pham TN, Coupey J, Clarisse B, Grellard JM, Rousseau N, Césaire M, Valable S. CYRAD: a translational study assessing immune response to radiotherapy by photons or protons in postoperative head and neck cancer patients through circulating leukocyte subpopulations and cytokine levels. BMC Cancer 2024; 24:1230. [PMID: 39369231 PMCID: PMC11453088 DOI: 10.1186/s12885-024-13002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Radiotherapy has both immunostimulant and immunosuppressive effects, particularly in radiation-induced lymphopenia. Proton therapy has demonstrated potential in mitigating this lymphopenia, yet the mechanisms by which different types of radiation affect the immune system function are not fully characterized. The Circulating Immunes Cells, Cytokines and Brain Radiotherapy (CYRAD) trial aims to compare the effects of postoperative X-ray and proton radiotherapy on circulating leukocyte subpopulations and cytokine levels in patients with head and neck (CNS and ear nose throat) cancer. METHODS CYRAD is a prospective, non-randomized, single-center non interventional study assessing changes in the circulating leukocyte subpopulations and cytokine levels in head and neck cancer patients receiving X-ray or proton radiotherapy following tumor resection. Dosimetry parameters, including dose deposited to organs-at-risk such as the blood and cervical lymph nodes, are computed. Participants undergo 29 to 35 radiotherapy sessions over 40 to 50 days, followed by a 3-month follow-up. Blood samples are collected before starting radiotherapy (baseline), before the 11th (D15) and 30th sessions (D40), and three months after completing radiotherapy. The study will be conducted with 40 patients, in 2 groups of 20 patients per modality of radiotherapy (proton therapy and photon therapy). Statistical analyses will assess the absolute and relative relationship between variations (depletion, recovery) in immune cells, biomarkers, dosimetry parameters and early outcomes. DISCUSSION Previous research has primarily focused on radiation-induced lymphopenia, paying less attention to the specific impacts of radiation on different lymphoid and myeloid cell types. Early studies indicate that X-ray and proton irradiation may lead to divergent outcomes in leukocyte subpopulations within the bloodstream. Based on these preliminary findings, this study aims to refine our understanding of how proton therapy can better preserve immune function in postoperative (macroscopic tumor-free) head and neck cancer patients, potentially improving treatment outcomes. PROTOCOL VERSION Version 2.1 dated from January 18, 2023. TRIAL REGISTRATION The CYRAD trial is registered from October 19, 2021, at the US National Library of Medicine, ClinicalTrials.gov ID NCT05082961.
Collapse
Affiliation(s)
- Juliette Thariat
- Department of Radiation Oncology, Comprehensive Cancer Centre François Baclesse, Caen, Normandy, France.
- Laboratoire de physique corpusculaire, UMR6534 IN2P3/ENSICAEN, France-Normandie Université, France.
| | - Thao-Nguyen Pham
- Laboratoire de physique corpusculaire, UMR6534 IN2P3/ENSICAEN, France-Normandie Université, France
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14000, France
| | - Julie Coupey
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14000, France
| | - Benedicte Clarisse
- Clinical Research Department, Comprehensive Cancer Centre François Baclesse, Caen, Normandy, France
| | - Jean-Michel Grellard
- Clinical Research Department, Comprehensive Cancer Centre François Baclesse, Caen, Normandy, France
| | | | - Mathieu Césaire
- Department of Radiation Oncology, Comprehensive Cancer Centre François Baclesse, Caen, Normandy, France
| | - Samuel Valable
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, Caen, F-14000, France
| |
Collapse
|
2
|
Beach T, Bakke J, McDonald JT, Riccio E, Javitz HS, Nishita D, Kapur S, Bunin DI, Chang PY. Delayed effects of radiation exposure in a C57L/J mouse model of partial body irradiation with ~2.5% bone marrow shielding. Front Public Health 2024; 12:1349552. [PMID: 38544733 PMCID: PMC10967016 DOI: 10.3389/fpubh.2024.1349552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 05/13/2024] Open
Abstract
Introduction Mouse models of radiation injury are critical to the development of medical countermeasures (MCMs) against radiation. Now that MCMs against hematopoietic acute radiation syndrome (H-ARS) have achieved regulatory approval, attention is shifting to develop MCMs against the adverse effects of gastrointestinal acute radiation syndrome (GI-ARS) and delayed effects of acute radiation exposure (DEARE). The C57L/J mouse model of partial body irradiation (PBI) with 2.5% bone marrow shielding (BM2.5) is being leveraged to examine both GI-ARS and DEARE effects. Within days of PBI, mice may develop H- and GI-ARS followed several months later by DEARE as a multi-organ injury, which typically involves the lung and kidney (L- and K-DEARE, respectively). The objective of this manuscript is to describe the dose response relationship and progression of radiation injury in the C57L/J mouse and to evaluate its suitability for use in DEARE MCM testing. Materials and methods In two separate studies conducted over 2 years, male and female C57L/J mice were exposed to PBI BM2.5 with one hindlimb shielded from radiation, representing ~2.5% bone marrow shielding/sparing. Mice were X-ray irradiated at doses ranging from 9 to 13 Gy at 10 to 12 weeks of age for the purposes of assessing ARS survival at 30 days and DEARE survival at 182 days post-irradiation. Clinical indicators of ARS and DEARE were determined by clinical observations, body weights, hematology, clinical chemistry, magnetic resonance imaging (MRI) of lung, and histopathology of selected tissues. Results C57L/J mice developed canonical ARS responses of hematopoietic atrophy and gastrointestinal injury resulting in dose dependent mortality at doses ≥11 Gy between 1- and 15-days post-irradiation. In animals that survived ARS, DEARE associated mortality occurred in dose dependent fashion at ≥9 Gy for both sexes between 60- and 159-days post-irradiation with histopathology examinations indicating lung injury as the primary cause of death in moribund animals. Conclusion The PBI BM2.5 C57L/J mouse model reliably produced known H- and GI-ARS effects at doses greater than those resulting in DEARE effects. Because of this, the C57L/J mouse can be used to test MCMs against L-DEARE injury, while avoiding ARS associated mortality.
Collapse
|
3
|
Pham TN, Coupey J, Toutain J, Candéias SM, Simonin G, Rousseau M, Touzani O, Thariat J, Valable S. Early effects of different brain radiotherapy modalities on circulating leucocyte subpopulations in rodents. Int J Radiat Biol 2024; 100:744-755. [PMID: 38466699 DOI: 10.1080/09553002.2024.2324471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024]
Abstract
PURPOSES Lymphopenia is extensively studied, but not circulating leucocyte subpopulations, which however have distinct roles in tumor tolerance. Proton therapy has been shown to have a lesser impact on the immune system than conventional X-ray radiotherapy through lower dose exposure to healthy tissues. We explored the differential effects of brain X-ray and proton irradiation on circulating leucocyte subpopulations. MATERIALS AND METHODS Leucocyte subpopulation counts from tumor-free mice were obtained 12 hours after 4 fractions of 2.5 Gy. The relationships between irradiation type (X-rays or protons), irradiated volume (whole-brain/hemi-brain) and dose rate (1 or 2 Gy/min) with circulating leucocyte subpopulations (T-CD4+, T-CD8+, B, and NK-cells, neutrophils, and monocytes) were investigated using linear regression and tree-based modeling approaches. Relationships between dose maps (brain, vessels, lymph nodes (LNs)) and leucocyte subpopulations were analyzed and applied to construct the blood dose model, assessing the hypothesis of a direct lymphocyte-killing effect in radiation-induced lymphopenia. RESULTS Radiation-induced lymphopenia occurred after X-ray but not proton brain irradiation in lymphoid subpopulations (T-CD4+, T-CD8+, B, and NK-cells). There was an increase in neutrophil counts following protons but not X-rays. Monocytes remained unchanged under both X-rays and protons. Besides irradiation type, irradiated volume and dose rate had a significant impact on NK-cell, neutrophil and monocyte levels but not T-CD4+, T-CD8+, and B-cells. The dose to the blood had a heterogeneous impact on leucocyte subpopulations: neutrophil counts remained stable with increasing dose to the blood, while lymphocyte counts decreased with increasing dose (T-CD8+-cells > T-CD4+-cells > B-cells > NK-cells). Direct cell-killing effect of the dose to the blood mildly contributed to radiation-induced lymphopenia. LN exposure significantly contributed to lymphopenia and partially explained the distinct impact of irradiation type on circulating lymphocytes. CONCLUSIONS Leucocyte subpopulations reacted differently to X-ray or proton brain irradiation. This difference could be partly explained by LN exposure to radiation dose. Further researches and analyses on other biological processes and interactions between leucocyte subpopulations are ongoing. The various mechanisms underlying leucocyte subpopulation changes under different irradiation modalities may have implications for the choice of radiotherapy modalities and their combination with immunotherapy in brain cancer treatment.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France - Normandie Université, France
| | - Julie Coupey
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| | - Jérôme Toutain
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| | - Serge M Candéias
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM-UMR5249, Grenoble, France
| | - Gaël Simonin
- CNRS, IPHC, UMR 7178, Strasbourg University, Strasbourg, France
| | - Marc Rousseau
- CNRS, IPHC, UMR 7178, Strasbourg University, Strasbourg, France
| | - Omar Touzani
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| | - Juliette Thariat
- Laboratoire de physique corpusculaire UMR6534 IN2P3/ENSICAEN, France - Normandie Université, France
- Department of Radiation Oncology, Centre François Baclesse, Caen, Normandy, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP Cyceron, Caen, France
| |
Collapse
|
4
|
Garg TK, Garg S, Miousse IR, Wise SY, Carpenter AD, Fatanmi OO, van Rhee F, Singh VK, Hauer-Jensen M. Modulation of Hematopoietic Injury by a Promising Radioprotector, Gamma-Tocotrienol, in Rhesus Macaques Exposed to Partial-Body Radiation. Radiat Res 2024; 201:55-70. [PMID: 38059553 DOI: 10.1667/rade-23-00075.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Currently, no radioprotectors have been approved to mitigate hematopoietic injury after exposure to ionizing radiation. Acute ionizing radiation results in damage to both hematopoietic and immune system cells. Pre-exposure prophylactic agents are needed for first responders and military personnel. In this study, the ability of gamma-tocotrienol (GT3), a promising radioprotector and antioxidant, to ameliorate partial-body radiation-induced damage to the hematopoietic compartment was evaluated in a nonhuman primate (NHP) model. A total of 15 rhesus NHPs were divided into two groups, and were administered either GT3 or vehicle 24 h prior to 4 or 5.8 Gy partial-body irradiation (PBI), with 5% bone marrow (BM) sparing. Each group consisted of four NHPs, apart from the vehicle-treated group exposed to 5.8 Gy, which had only three NHPs. BM samples were collected 8 days prior to irradiation in addition to 2, 7, 14, and 30 days postirradiation. To assess the clonogenic ability of hematopoietic stem and progenitor cells (HSPCs), colony forming unit (CFU) assays were performed, and lymphoid cells were immunophenotyped using flow cytometry. As a result of GT3 treatment, an increase in HSPC function was evident by an increased recovery of CFU-granulocyte macrophages (CFU-GM). Additionally, GT3 treatment was shown to increase the percentage of CD34+ cells, including T and NK-cell subsets. Our data further affirm GT3's role in hematopoietic recovery and suggest the need for its further development as a prophylactic radiation medical countermeasure.
Collapse
Affiliation(s)
- Tarun K Garg
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Isabelle R Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Stephen Y Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Alana D Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Oluseyi O Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Frits van Rhee
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
5
|
Brickey WJ, Caudell DL, Macintyre AN, Olson JD, Dai Y, Li S, Dugan GO, Bourland JD, O’Donnell LM, Tooze JA, Huang G, Yang S, Guo H, French MN, Schorzman AN, Zamboni WC, Sempowski GD, Li Z, Owzar K, Chao NJ, Cline JM, Ting JPY. The TLR2/TLR6 ligand FSL-1 mitigates radiation-induced hematopoietic injury in mice and nonhuman primates. Proc Natl Acad Sci U S A 2023; 120:e2122178120. [PMID: 38051771 PMCID: PMC10723152 DOI: 10.1073/pnas.2122178120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
Thrombocytopenia, hemorrhage, anemia, and infection are life-threatening issues following accidental or intentional radiation exposure. Since few therapeutics are available, safe and efficacious small molecules to mitigate radiation-induced injury need to be developed. Our previous study showed the synthetic TLR2/TLR6 ligand fibroblast stimulating lipopeptide (FSL-1) prolonged survival and provided MyD88-dependent mitigation of hematopoietic acute radiation syndrome (H-ARS) in mice. Although mice and humans differ in TLR number, expression, and function, nonhuman primate (NHP) TLRs are like those of humans; therefore, studying both animal models is critical for drug development. The objectives of this study were to determine the efficacy of FSL-1 on hematopoietic recovery in small and large animal models subjected to sublethal total body irradiation and investigate its mechanism of action. In mice, we demonstrate a lack of adverse effects, an easy route of delivery (subcutaneous) and efficacy in promoting hematopoietic progenitor cell proliferation by FSL-1. NHP given radiation, followed a day later with a single subcutaneous administration of FSL-1, displayed no adversity but showed elevated hematopoietic cells. Our analyses revealed that FSL-1 promoted red blood cell development and induced soluble effectors following radiation exposure. Cytologic analysis of bone marrow aspirates revealed a striking enhancement of mononuclear progenitor cells in FSL-1-treated NHP. Combining the efficacy of FSL-1 in promoting hematopoietic cell recovery with the lack of adverse effects induced by a single administration supports the application of FSL-1 as a viable countermeasure against H-ARS.
Collapse
Affiliation(s)
- W. June Brickey
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - David L. Caudell
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Andrew N. Macintyre
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - John D. Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Yanwan Dai
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Sirui Li
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Gregory O. Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Lisa M. O’Donnell
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Janet A. Tooze
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Guannan Huang
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Shuangshuang Yang
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Hao Guo
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Matthew N. French
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Allison N. Schorzman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - William C. Zamboni
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Zhiguo Li
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
- Duke Cancer Institute, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Kouros Owzar
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
- Duke Cancer Institute, Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC27705
| | - Nelson J. Chao
- Department of Medicine, Duke University School of Medicine, Durham, NC27705
| | - J. Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Winston Salem, NC27157
| | - Jenny P. Y. Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Center of Translational Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
6
|
Bunin DI, Javitz HS, Gahagen J, Bakke J, Lane JH, Andrews DA, Chang PY. Survival and Hematologic Benefits of Romiplostim After Acute Radiation Exposure Supported FDA Approval Under the Animal Rule. Int J Radiat Oncol Biol Phys 2023; 117:705-717. [PMID: 37224926 DOI: 10.1016/j.ijrobp.2023.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE Patients exposed to acute high doses of ionizing radiation are susceptible to dose-dependent bone marrow depression with resultant pancytopenia. Romiplostim (RP; Nplate) is a recombinant thrombopoietin receptor agonist protein that promotes progenitor megakaryocyte proliferation and platelet production and is an approved treatment for patients with chronic immune thrombocytopenia. The goal of our study was to evaluate the postirradiation survival and hematologic benefits of a single dose of RP with or without pegfilgrastim (PF; Neulasta, granulocyte colony stimulating factor) by conducting a well-controlled, treatment-concealed, good laboratory practice-compliant study in rhesus macaques that was compliant with the United States Food and Drug Administration Animal Rule regulatory approval pathway. METHODS AND MATERIALS Irradiated male and female rhesus macaques (20/sex in each of 3 groups: control, RP, and RP + PF) were subcutaneously administered vehicle or RP (5 mg/kg, 10 mL/kg) on day 1 in the presence or absence of 2 doses of PF (0.3 mg/kg, 0.03 mL/kg, days 1 and 8). Total body radiation (680 cGy, 50 cGy/min from cobalt-60 gamma ray source) occurred 24 ± 2 hours previously at a dose targeting 70% lethality for the control cohort over 60 days. The study examined 60-day survival postirradiation as the primary endpoint. Secondary endpoints included incidence, severity, and duration of thrombocytopenia and neutropenia, other hematology parameters, coagulation parameters, and body weight change to provide insights into potential mechanisms of action. RESULTS Compared with sham-treated controls, treated animals demonstrated a 40% to 55% survival benefit compared with controls, less severe clinical signs, reduced incidence of thrombocytopenia and/or neutropenia, earlier hematologic recovery, and reduced morbidity from bacterial infection. CONCLUSIONS These results were pivotal in obtaining Food and Drug Administration approval in January 2021 for RP's new indication as a single administration therapy to increase survival in adults and pediatric patients acutely exposed to myelosuppressive doses of radiation.
Collapse
Affiliation(s)
| | | | - Janet Gahagen
- SRI Biosciences, SRI International, Menlo Park, California
| | - James Bakke
- SRI Biosciences, SRI International, Menlo Park, California
| | | | | | - Polly Y Chang
- SRI Biosciences, SRI International, Menlo Park, California.
| |
Collapse
|
7
|
Cassatt DR, Winters TA, PrabhuDas M. Immune Dysfunction from Radiation Exposure. Radiat Res 2023; 200:389-395. [PMID: 37702416 PMCID: PMC10599297 DOI: 10.1667/rade-22-00197.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/14/2023] [Indexed: 09/14/2023]
Abstract
Exposure to ionizing radiation causes acute damage and loss of bone marrow and peripheral immune cells that can result in high mortality due to reduced resistance to infections and hemorrhage. Besides these acute effects, tissue damage from radiation can trigger inflammatory responses, leading to progressive and chronic tissue damage by radiation-induced loss of immune cell types that are required for resolving tissue injuries. Understanding the mechanisms involved in radiation-induced immune system injury and repair will provide new insights for developing medical countermeasures that help restore immune homeostasis. For these reasons, The Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID) convened a two-day workshop, along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN). This workshop, titled "Immune Dysfunction from Radiation Exposure," was held virtually on September 9-10, 2020; this Commentary provides a high-level overview of what was discussed at the meeting.
Collapse
Affiliation(s)
- David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Rockville, Maryland
| | - Mercy PrabhuDas
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
8
|
Hollingsworth BA, Aldrich JT, Case CM, DiCarlo AL, Hoffman CM, Jakubowski AA, Liu Q, Loelius SG, PrabhuDas M, Winters TA, Cassatt DR. Immune Dysfunction from Radiation Exposure. Radiat Res 2023; 200:396-416. [PMID: 38152282 PMCID: PMC10751071 DOI: 10.1667/rade-22-00004.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The hematopoietic system is highly sensitive to ionizing radiation. Damage to the immune system may result in opportunistic infections and hemorrhage, which could lead to mortality. Inflammation triggered by tissue damage can also lead to additional local or widespread tissue damage. The immune system is responsible for tissue repair and restoration, which is made more challenging when it is in the process of self-recovery. Because of these challenges, the Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID), along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN) sponsored a two-day meeting titled Immune Dysfunction from Radiation Exposure held on September 9-10, 2020. The intent was to discuss the manifestations and mechanisms of radiation-induced immune dysfunction in people and animals, identify knowledge gaps, and discuss possible treatments to restore immune function and enhance tissue repair after irradiation.
Collapse
Affiliation(s)
- Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | | | - Cullen M. Case
- Radiation Injury Treatment Network, Minneapolis, Minnesota
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Corey M. Hoffman
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | | | - Qian Liu
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Shannon G. Loelius
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Mercy PrabhuDas
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
9
|
Ghandhi SA, Morton SR, Shuryak I, Lee Y, Soni RK, Perrier JR, Bakke J, Gahagan J, Bujold K, Authier S, Amundson SA, Brenner DJ, Nishita D, Chang P, Turner HC. Longitudinal multi-omic changes in the transcriptome and proteome of peripheral blood cells after a 4 Gy total body radiation dose to Rhesus macaques. BMC Genomics 2023; 24:139. [PMID: 36944971 PMCID: PMC10031949 DOI: 10.1186/s12864-023-09230-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Non-human primates, such as Rhesus macaques, are a powerful model for studies of the cellular and physiological effects of radiation, development of radiation biodosimetry, and for understanding the impact of radiation on human health. Here, we study the effects of 4 Gy total body irradiation (TBI) at the molecular level out to 28 days and at the cytogenetic level out to 56 days after exposure. We combine the global transcriptomic and proteomic responses in peripheral whole blood to assess the impact of acute TBI exposure at extended times post irradiation. RESULTS The overall mRNA response in the first week reflects a strong inflammatory reaction, infection response with neutrophil and platelet activation. At 1 week, cell cycle arrest and re-entry processes were enriched among mRNA changes, oncogene-induced senescence and MAPK signaling among the proteome changes. Influenza life cycle and infection pathways initiated earlier in mRNA and are reflected among the proteomic changes during the first week. Transcription factor proteins SRC, TGFβ and NFATC2 were immediately induced at 1 day after irradiation with increased transcriptional activity as predicted by mRNA changes persisting up to 1 week. Cell counts revealed a mild / moderate hematopoietic acute radiation syndrome (H-ARS) reaction to irradiation with expected lymphopenia, neutropenia and thrombocytopenia that resolved within 30 days. Measurements of micronuclei per binucleated cell levels in cytokinesis-blocked T-lymphocytes remained high in the range 0.27-0.33 up to 28 days and declined to 0.1 by day 56. CONCLUSIONS Overall, we show that the TBI 4 Gy dose in NHPs induces many cellular changes that persist up to 1 month after exposure, consistent with damage, death, and repopulation of blood cells.
Collapse
Affiliation(s)
- Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Shad R. Morton
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Younghyun Lee
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, NY New York, 10032 USA
| | - Jay R. Perrier
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - James Bakke
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Janet Gahagan
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Kim Bujold
- Charles River Laboratory, 445 Armand-Grappier Blvd, (QC) H7V 4B3 Laval, Canada
| | - Simon Authier
- Charles River Laboratory, 445 Armand-Grappier Blvd, (QC) H7V 4B3 Laval, Canada
| | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| | - Denise Nishita
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Polly Chang
- Biosciences Division, SRI, 333 Ravenswood Avenue, Menlo Park, CA 94025 USA
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY 10032 USA
| |
Collapse
|
10
|
Wu T, Orschell CM. The delayed effects of acute radiation exposure (DEARE): characteristics, mechanisms, animal models, and promising medical countermeasures. Int J Radiat Biol 2023; 99:1066-1079. [PMID: 36862990 PMCID: PMC10330482 DOI: 10.1080/09553002.2023.2187479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE Terrorist use of nuclear weapons and radiation accidents put the human population at risk for exposure to life-threatening levels of radiation. Victims of lethal radiation exposure face potentially lethal acute injury, while survivors of the acute phase are plagued with chronic debilitating multi-organ injuries for years after exposure. Developing effective medical countermeasures (MCM) for the treatment of radiation exposure is an urgent need that relies heavily on studies conducted in reliable and well-characterized animal models according to the FDA Animal Rule. Although relevant animal models have been developed in several species and four MCM for treatment of the acute radiation syndrome are now FDA-approved, animal models for the delayed effects of acute radiation exposure (DEARE) have only recently been developed, and there are no licensed MCM for DEARE. Herein, we provide a review of the DEARE including key characteristics of the DEARE gleaned from human data as well as animal, mechanisms common to multi-organ DEARE, small and large animal models used to study the DEARE, and promising new or repurposed MCM under development for alleviation of the DEARE. CONCLUSIONS Intensification of research efforts and support focused on better understanding of mechanisms and natural history of DEARE are urgently needed. Such knowledge provides the necessary first steps toward the design and development of MCM that effectively alleviate the life-debilitating consequences of the DEARE for the benefit of humankind worldwide.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
11
|
MacVittie TJ. Where are the medical countermeasures against the ARS and DEARE? A current topic relative to an animal model research platform, radiation exposure context, the acute and delayed effects of acute exposure, and the FDA animal rule. Int J Radiat Biol 2023:1-15. [PMID: 36811500 DOI: 10.1080/09553002.2023.2181999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE A question echoed by the National Biodefense Science Board (NBSB) in 2010, remains a reasonable question in 2023; 'Where are the Countermeasures?'. A critical path for development of medical countermeasures (MCM) against acute, radiation-induced organ-specific injury within the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE) requires the recognition of problems and solutions inherent in the path to FDA approval under the Animal Rule. Keep Rule number one in mind, It's not easy. CONSIDERATIONS The current topic herein is focused on defining the nonhuman primate model(s) for efficient MCM development relative to consideration of prompt and delayed exposure in the context of the nuclear scenario. The rhesus macaque is a predictive model for human exposure of partial-body irradiation with marginal bone marrow sparing that allows definition of the multiple organ injury in the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE). The continued definition of natural history is required to delineate an associative or causal interaction within the concurrent multi-organ injury characteristic of the ARS and DEARE. A more efficient development of organ specific MCM for both pre-exposure and post-exposure prophylaxis to include acute radiation-induced combined injury requires closing critical gaps in knowledge and urgent support to rectify the national shortage of nonhuman primates. The rhesus macaque is a validated, predictive model of the human response to prompt and delayed radiation exposure, medical management and MCM treatment. A rational approach to further development of the cynomolgus macaque as a comparable model is urgently required for continued development of MCM for FDA approval. CONCLUSION It is imperative to examine the key variables relative to animal model development and validation, The pharmacokinetics, pharmacodynamics and exposure profiles, of candidate MCM relative to route, administration schedule and optimal efficacy define the fully effective dose. The conduct of adequate and well-controlled pivotal efficacy studies as well as safety and toxicity studies support approval under the FDA Animal Rule and label definition for human use.
Collapse
Affiliation(s)
- Thomas J MacVittie
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Long-Term Immunological Consequences of Radiation Exposure in a Diverse Cohort of Rhesus Macaques. Int J Radiat Oncol Biol Phys 2023; 115:945-956. [PMID: 36288757 PMCID: PMC9974872 DOI: 10.1016/j.ijrobp.2022.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The aim of this study was to develop an improved understanding of the delayed immunologic effects of acute total body irradiation (TBI) using a diverse cohort of nonhuman primates as a model for an irradiated human population. METHODS AND MATERIALS Immune recovery was evaluated in 221 rhesus macaques either left unirradiated (n = 36) or previously irradiated (n = 185) at 1.1 to 8.5 Gy TBI (median, 6.5 Gy) when aged 2.1 to 15.5 years (median, 4.2 years). Blood was drawn annually for up to 5 years total between 0.5 and 14.3 years after exposure. Blood was analyzed by complete blood count, immunophenotyping of monocytes, dendritic cells (DC) and lymphocytes by flow cytometry, and signal joint T-cell receptor exclusion circle quantification in isolated peripheral blood CD4 and CD8 T cells. Animals were categorized by age, irradiation status, and time since irradiation. Sex-adjusted means of immune metrics were evaluated by generalized estimating equation models to identify cell populations altered by TBI. RESULTS Overall, the differences between irradiated and nonirradiated animals were subtle and largely restricted to younger animals and select cell populations. Subsets of monocytes, DC, T cells, and B cells showed significant interaction effects between radiation dose and age after adjustment for sex. Irradiation at a young age caused transient increases in the percentage of peripheral blood myeloid DC and dose-dependent changes in monocyte balance for at least 5 years after TBI. TBI also led to a sustained decrease in the percentage of circulating memory B cells. Young irradiated animals exhibited statistically significant and prolonged disruption of the naïve/effector memory/central memory CD4 and CD8 T-cell equilibrium and exhibited a dose-dependent increase in thymopoiesis for 2 to 3 years after exposure. CONCLUSIONS This study indicates TBI subtly but significantly alters the circulating proportions of cellular mediators of adaptive immune memory for several years after irradiation, especially in macaques under 5 years of age and those receiving a high dose of radiation.
Collapse
|
13
|
Pham TN, Coupey J, Candeias SM, Ivanova V, Valable S, Thariat J. Beyond lymphopenia, unraveling radiation-induced leucocyte subpopulation kinetics and mechanisms through modeling approaches. J Exp Clin Cancer Res 2023; 42:50. [PMID: 36814272 PMCID: PMC9945629 DOI: 10.1186/s13046-023-02621-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Leucocyte subpopulations in both lymphoid and myeloid lineages have a significant impact on antitumor immune response. While radiation-induced lymphopenia is being studied extensively, radiation effects on lymphoid and myeloid subtypes have been relatively less addressed. Interactions between leucocyte subpopulations, their specific radiation sensitivity and the specific kinetics of each subpopulation can be modeled based on both experimental data and knowledge of physiological leucocyte depletion, production, proliferation, maturation and homeostasis. Modeling approaches of the leucocyte kinetics that may be used to unravel mechanisms underlying radiation induced-leucopenia and prediction of changes in cell counts and compositions after irradiation are presented in this review. The approaches described open up new possibilities for determining the influence of irradiation parameters both on a single-time point of acute effects and the subsequent recovery of leukocyte subpopulations. Utilization of these approaches to model kinetic data in post-radiotherapy states may be a useful tool for further development of new treatment strategies or for the combination of radiotherapy and immunotherapy.
Collapse
Affiliation(s)
- Thao-Nguyen Pham
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France ,grid.460771.30000 0004 1785 9671Laboratoire de Physique Corpusculaire UMR6534 IN2P3/ENSICAEN, Normandie Université, Caen, France
| | - Julie Coupey
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Serge M. Candeias
- grid.457348.90000 0004 0630 1517Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM-UMR5249, 38054 Grenoble, France
| | - Viktoriia Ivanova
- grid.412043.00000 0001 2186 4076Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000 Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CNRS, ISTCT, GIP CYCERON, 14000, Caen, France.
| | - Juliette Thariat
- Laboratoire de Physique Corpusculaire UMR6534 IN2P3/ENSICAEN, Normandie Université, Caen, France. .,Department of Radiation Oncology, Centre François Baclesse, Caen, Normandy, France.
| |
Collapse
|
14
|
Garg TK, Garg S, Miousse IR, Wise SY, Carpenter AD, Fatanmi OO, van Rhee F, Singh VK, Hauer-Jensen M. Gamma-Tocotrienol Modulates Total-Body Irradiation-Induced Hematopoietic Injury in a Nonhuman Primate Model. Int J Mol Sci 2022; 23:ijms232416170. [PMID: 36555814 PMCID: PMC9784560 DOI: 10.3390/ijms232416170] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Radiation exposure causes acute damage to hematopoietic and immune cells. To date, there are no radioprotectors available to mitigate hematopoietic injury after radiation exposure. Gamma-tocotrienol (GT3) has demonstrated promising radioprotective efficacy in the mouse and nonhuman primate (NHP) models. We determined GT3-mediated hematopoietic recovery in total-body irradiated (TBI) NHPs. Sixteen rhesus macaques divided into two groups received either vehicle or GT3, 24 h prior to TBI. Four animals in each treatment group were exposed to either 4 or 5.8 Gy TBI. Flow cytometry was used to immunophenotype the bone marrow (BM) lymphoid cell populations, while clonogenic ability of hematopoietic stem cells (HSCs) was assessed by colony forming unit (CFU) assays on day 8 prior to irradiation and days 2, 7, 14, and 30 post-irradiation. Both radiation doses showed significant changes in the frequencies of B and T-cell subsets, including the self-renewable capacity of HSCs. Importantly, GT3 accelerated the recovery in CD34+ cells, increased HSC function as shown by improved recovery of CFU-granulocyte macrophages (CFU-GM) and burst-forming units erythroid (B-FUE), and aided the recovery of circulating neutrophils and platelets. These data elucidate the role of GT3 in hematopoietic recovery, which should be explored as a potential medical countermeasure to mitigate radiation-induced injury to the hematopoietic system.
Collapse
Affiliation(s)
- Tarun K. Garg
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Frits van Rhee
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: (V.K.S.); (M.H.-J.); Tel.: +1-301-295-2347 (V.K.S.); +1-501-686-7912 (M.H.-J.); Fax: +1-501-421-0022 (M.H.-J.)
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (V.K.S.); (M.H.-J.); Tel.: +1-301-295-2347 (V.K.S.); +1-501-686-7912 (M.H.-J.); Fax: +1-501-421-0022 (M.H.-J.)
| |
Collapse
|
15
|
Ebrahimi S, Lim G, Liu A, Lin SH, Ellsworth SG, Grassberger C, Mohan R, Cao W. Radiation-Induced Lymphopenia Risks of Photon Versus Proton Therapy for Esophageal Cancer Patients. Int J Part Ther 2021; 8:17-27. [PMID: 34722808 PMCID: PMC8489492 DOI: 10.14338/ijpt-20-00086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/02/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose To assess possible differences in radiation-induced lymphocyte depletion for esophageal cancer patients being treated with the following 3 treatment modalities: intensity-modulated radiation therapy (IMRT), passive scattering proton therapy (PSPT), and intensity-modulated proton therapy (IMPT). Methods and Materials We used 2 prediction models to estimate lymphocyte depletion based on dose distributions. Model I used a piecewise linear relationship between lymphocyte survival and voxel-by-voxel dose. Model II assumes that lymphocytes deplete exponentially as a function of total delivered dose. The models can be fitted using the weekly absolute lymphocyte counts measurements collected throughout treatment. We randomly selected 45 esophageal cancer patients treated with IMRT, PSPT, or IMPT at our institution (15 per modality) to demonstrate the fitness of the 2 models. A different group of 10 esophageal cancer patients who had received PSPT were included in this study of in silico simulations of multiple modalities. One IMRT and one IMPT plan were created, using our standards of practice for each modality, as competing plans to the existing PSPT plan for each patient. We fitted the models by PSPT plans used in treatment and predicted absolute lymphocyte counts for IMRT and IMPT plans. Results Model validation on each modality group of patients showed good agreement between measured and predicted absolute lymphocyte counts nadirs with mean squared errors from 0.003 to 0.023 among the modalities and models. In the simulation study of IMRT and IMPT on the 10 PSPT patients, the average predicted absolute lymphocyte count (ALC) nadirs were 0.27, 0.35, and 0.37 K/μL after IMRT, PSPT, and IMPT treatments using Model I, respectively, and 0.14, 0.22, and 0.33 K/μL using Model II. Conclusions Proton plans carried a lower predicted risk of lymphopenia after the treatment course than did photon plans. Moreover, IMPT plans outperformed PSPT in terms of predicted lymphocyte preservation.
Collapse
Affiliation(s)
- Saba Ebrahimi
- Department of Industrial Engineering, University of Houston, Houston, TX, USA
| | - Gino Lim
- Department of Industrial Engineering, University of Houston, Houston, TX, USA
| | - Amy Liu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Clemens Grassberger
- Departments of Radiation Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenhua Cao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
16
|
Muller L, Huang W, Jones JW, Farese AM, MacVittie TJ, Kane MA. Complementary Lipidomic, Proteomic, and Mass Spectrometry Imaging Approach to the Characterization of the Acute Effects of Radiation in the Non-human Primate Mesenteric Lymph Node after Partial-body Irradiation with Minimal Bone Marrow Sparing. HEALTH PHYSICS 2021; 121:372-383. [PMID: 34546218 DOI: 10.1097/hp.0000000000001470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT Radiation sequelae is complex and characterized by multiple pathologies, which occur over time and nonuniformly throughout different organs. The study of the mesenteric lymph node (MLN) due to its importance in the gastrointestinal system is of particular interest. Other studies have shown an immediate post-irradiation reduction in cellularity due to the known effects of irradiation on lymphoid cell populations, but the molecular and functional mechanisms that lead to these cellular alterations remain limited. In this work, we show the use of lipidomic, proteomic, and mass spectrometry imaging in the characterization of the effects of acute radiation exposure on the MLN at different time points after ionizing radiation (IR) from 4 d to 21 d after 12 Gy partial body irradiation with 2.5% bone marrow sparing. The combined analyses showed a dysregulation of the lipid and protein composition in the MLN after IR. Protein expression was affected in numerous pathways, including pathways regulating lipids such as LXR/RXR activation and acute phase response. Lipid distribution and abundance was also affected by IR in the MLN, including an accumulation of triacylglycerides, a decrease in polyunsaturated glycerophospholipids, and changes in polyunsaturated fatty acids. Those changes were observed as early as 4 d after IR and were more pronounced for lipids with a higher concentration in the nodules and the medulla of the MLN. These results provide molecular insight into the MLN that can inform on injury mechanism in a non-human primate model of the acute radiation syndrome of the gastrointestinal tract. Those findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Ludovic Muller
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Weiliang Huang
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Jace W Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| | - Ann M Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD
| |
Collapse
|
17
|
Farese AM, Booth C, Tudor GL, Cui W, Cohen EP, Parker GA, Hankey KG, MacVittie TJ. The Natural History of Acute Radiation-induced H-ARS and Concomitant Multi-organ Injury in the Non-human Primate: The MCART Experience. HEALTH PHYSICS 2021; 121:282-303. [PMID: 34546213 PMCID: PMC8462029 DOI: 10.1097/hp.0000000000001451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
ABSTRACT The dose response relationship and corresponding values for mid-lethal dose and slope are used to define the dose- and time-dependent parameters of the hematopoietic acute radiation syndrome. The characteristic time course of mortality, morbidity, and secondary endpoints are well defined. The concomitant comorbidities, potential mortality, and other multi-organ injuries that are similarly dose- and time-dependent are less defined. Determination of the natural history or pathophysiology associated with the lethal hematopoietic acute radiation syndrome is a significant gap in knowledge, especially when considered in the context of a nuclear weapon scenario. In this regard, the exposure is likely ill-defined, heterogenous, and nonuniform. These conditions forecast sparing of bone marrow and increased survival from the acute radiation syndrome consequent to threshold doses for the delayed effects of acute radiation exposure due to marrow sparing, medical management, and use of approved medical countermeasures. The intent herein is to provide a composite natural history of the pathophysiology concomitant with the evolution of the potentially lethal hematopoietic acute radiation syndrome derived from studies that focused on total body irradiation and partial body irradiation with bone marrow sparing. The marked differential in estimated LD50/60 from 7.5 Gy to 10.88 Gy for the total body irradiation and partial body irradiation with 5% bone marrow sparing models, respectively, provided a clear distinction between the attendant multiple organ injury and natural history of the two models that included medical management. Total body irradiation was focused on equivalent LD50/60 exposures. The 10 Gy and 11 Gy partial body with 5% bone marrow sparing exposures bracketed the LD50/60 (10.88 Gy). The incidence, progression, and duration of multiple organ injury was described for each exposure protocol within the hematopoietic acute radiation syndrome. The higher threshold doses for the partial body irradiation with bone marrow sparing protocol induced a marked degree of multiple organ injury to include lethal gastrointestinal acute radiation syndrome, prolonged crypt loss and mucosal damage, immune suppression, acute kidney injury, body weight loss, and added clinical comorbidities that defined a complex timeline of organ injury through the acute hematopoietic acute radiation syndrome. The natural history of the acute radiation syndrome presents a 60-d time segment of multi-organ sequelae that is concomitant with the latent period or time to onset of the evolving multi-organ injury of the delayed effects of acute radiation exposure.
Collapse
Affiliation(s)
- Ann M. Farese
- University of Maryland, School of Medicine, Baltimore, MD
| | | | | | - Wanchang Cui
- Armed Forces Radiobiology Research Institute, Bethesda, MD
| | - Eric P. Cohen
- University of Maryland, School of Medicine, Baltimore, MD
| | | | - Kim G. Hankey
- University of Maryland, School of Medicine, Baltimore, MD
| | | |
Collapse
|
18
|
Macintyre AN, French MJ, Sanders BR, Riebe KJ, Shterev ID, Wiehe K, Hora B, Evangelous T, Dugan G, Bourland JD, Cline JM, Sempowski GD. Long-Term Recovery of the Adaptive Immune System in Rhesus Macaques After Total Body Irradiation. Adv Radiat Oncol 2021; 6:100677. [PMID: 34646962 PMCID: PMC8498734 DOI: 10.1016/j.adro.2021.100677] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Ionizing radiation causes acute damage to hematopoietic and immune cells, but the long-term immunologic consequences of irradiation are poorly understood. We therefore performed a prospective study of the delayed immune effects of radiation using a rhesus macaque model. METHODS AND MATERIALS Ten macaques received 4 Gy high-energy x-ray total body irradiation (TBI) and 6 control animals received sham irradiation. TBI caused transient lymphopenia that resolved over several weeks. Once white blood cell counts recovered, flow cytometry was used to immunophenotype the circulating adaptive immune cell populations 4, 9, and 21 months after TBI. Data were fit using a mixed-effects model to determine age-dependent, radiation-dependent, and interacting effects. T cell receptor (TCR) sequencing and quantification of TCR Excision Circles were used to determine relative contributions of thymopoiesis and peripheral expansion to T cell repopulation. Two years after TBI, the cohort was vaccinated with a 23-valent pneumococcal polysaccharide vaccine and a tetravalent influenza hemagglutinin vaccine. RESULTS Aging, but not TBI, led to significant changes in the frequencies of dendritic cells, CD4 and CD8 T cells, and B cells. However, irradiated animals exhibited increased frequencies of central memory T cells and decreased frequencies of naïve T cells. These consequences of irradiation were time-dependent and more prolonged in the CD8 T cell population. Irradiation led to transient increases in CD8+ T cell TCR Excision Circles and had no significant effect on TCR sequence entropy, indicating T cell recovery was partially mediated by thymopoiesis. Animals that were irradiated and then vaccinated showed normal immunoglobulin G binding and influenza neutralization titers in response to the 4 protein antigens but weaker immunoglobulin G binding titers to 10 of the 23 polysaccharide antigens. CONCLUSIONS These findings indicate that TBI causes subtle but long-lasting immune defects that are evident years after recovery from lymphopenia.
Collapse
Affiliation(s)
- Andrew N. Macintyre
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Matthew J. French
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Brittany R. Sanders
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kristina J. Riebe
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Ivo D. Shterev
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kevin Wiehe
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Bhavna Hora
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Tyler Evangelous
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Greg Dugan
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Mark Cline
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
19
|
Rios CI, Cassatt DR, Hollingsworth BA, Satyamitra MM, Tadesse YS, Taliaferro LP, Winters TA, DiCarlo AL. Commonalities Between COVID-19 and Radiation Injury. Radiat Res 2021; 195:1-24. [PMID: 33064832 PMCID: PMC7861125 DOI: 10.1667/rade-20-00188.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/14/2020] [Indexed: 01/08/2023]
Abstract
As the multi-systemic components of COVID-19 emerge, parallel etiologies can be drawn between SARS-CoV-2 infection and radiation injuries. While some SARS-CoV-2-infected individuals present as asymptomatic, others exhibit mild symptoms that may include fever, cough, chills, and unusual symptoms like loss of taste and smell and reddening in the extremities (e.g., "COVID toes," suggestive of microvessel damage). Still others alarm healthcare providers with extreme and rapid onset of high-risk indicators of mortality that include acute respiratory distress syndrome (ARDS), multi-organ hypercoagulation, hypoxia and cardiovascular damage. Researchers are quickly refocusing their science to address this enigmatic virus that seems to unveil itself in new ways without discrimination. As investigators begin to identify early markers of disease, identification of common threads with other pathologies may provide some clues. Interestingly, years of research in the field of radiation biology documents the complex multiorgan nature of another disease state that occurs after exposure to high doses of radiation: the acute radiation syndrome (ARS). Inflammation is a key common player in COVID-19 and ARS, and drives the multi-system damage that dramatically alters biological homeostasis. Both conditions initiate a cytokine storm, with similar pro-inflammatory molecules increased and other anti-inflammatory molecules decreased. These changes manifest in a variety of ways, with a demonstrably higher health impact in patients having underlying medical conditions. The potentially dramatic human impact of ARS has guided the science that has identified many biomarkers of radiation exposure, established medical management strategies for ARS, and led to the development of medical countermeasures for use in the event of a radiation public health emergency. These efforts can now be leveraged to help elucidate mechanisms of action of COVID-19 injuries. Furthermore, this intersection between COVID-19 and ARS may point to approaches that could accelerate the discovery of treatments for both.
Collapse
Affiliation(s)
- Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Yeabsera S. Tadesse
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
20
|
Patterson AM, Plett PA, Chua HL, Sampson CH, Fisher A, Feng H, Unthank JL, Miller SJ, Katz BP, MacVittie TJ, Orschell CM. Development of a Model of the Acute and Delayed Effects of High Dose Radiation Exposure in Jackson Diversity Outbred Mice; Comparison to Inbred C57BL/6 Mice. HEALTH PHYSICS 2020; 119:633-646. [PMID: 32932286 PMCID: PMC9374540 DOI: 10.1097/hp.0000000000001344] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Development of medical countermeasures against radiation relies on robust animal models for efficacy testing. Mouse models have advantages over larger species due to economics, ease of conducting aging studies, existence of historical databases, and research tools allowing for sophisticated mechanistic studies. However, the radiation dose-response relationship of inbred strains is inherently steep and sensitive to experimental variables, and inbred models have been criticized for lacking genetic diversity. Jackson Diversity Outbred (JDO) mice are the most genetically diverse strain available, developed by the Collaborative Cross Consortium using eight founder strains, and may represent a more accurate model of humans than inbred strains. Herein, models of the Hematopoietic-Acute Radiation Syndrome and the Delayed Effects of Acute Radiation Exposure were developed in JDO mice and compared to inbred C57BL/6. The dose response relationship curve in JDO mice mirrored the more shallow curves of primates and humans, characteristic of genetic diversity. JDO mice were more radioresistant than C57BL/6 and differed in sensitivity to antibiotic countermeasures. The model was validated with pegylated-G-CSF, which provided significantly enhanced 30-d survival and accelerated blood recovery. Long-term JDO survivors exhibited increased recovery of blood cells and functional bone marrow hematopoietic progenitors compared to C57BL/6. While JDO hematopoietic stem cells declined more in number, they maintained a greater degree of quiescence compared to C57BL/6, which is essential for maintaining function. These JDO radiation models offer many of the advantages of small animals with the genetic diversity of large animals, providing an attractive alternative to currently available radiation animal models.
Collapse
Affiliation(s)
- Andrea M. Patterson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - P. Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Carol H. Sampson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Alexa Fisher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hailin Feng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Joseph L. Unthank
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Steve J. Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Barry P. Katz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
21
|
Wu T, Plett PA, Chua HL, Jacobsen M, Sandusky GE, MacVittie TJ, Orschell CM. Immune Reconstitution and Thymic Involution in the Acute and Delayed Hematopoietic Radiation Syndromes. HEALTH PHYSICS 2020; 119:647-658. [PMID: 32947490 PMCID: PMC7541734 DOI: 10.1097/hp.0000000000001352] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Lymphoid lineage recovery and involution after exposure to potentially lethal doses of ionizing radiation have not been well defined, especially the long-term effects in aged survivors and with regard to male/female differences. To examine these questions, male and female C57BL/6 mice were exposed to lethal radiation at 12 wk of age in a model of the Hematopoietic-Acute Radiation Syndrome, and bone marrow, thymus, spleen, and peripheral blood examined up to 24 mo of age for the lymphopoietic delayed effects of acute radiation exposure. Aged mice showed myeloid skewing and incomplete lymphocyte recovery in all lymphoid tissues. Spleen and peripheral blood both exhibited a monophasic recovery pattern, while thymus demonstrated a biphasic pattern. Naïve T cells in blood and spleen and all subsets of thymocytes were decreased in aged irradiated mice compared to age-matched non-irradiated controls. Of interest, irradiated males experienced significantly improved reconstitution of thymocyte subsets and peripheral blood elements compared to females. Bone marrow from aged irradiated survivors was significantly deficient in the primitive lymphoid-primed multipotent progenitors and common lymphoid progenitors, which were only 8-10% of levels in aged-matched non-irradiated controls. Taken together, these analyses define significant age- and sex-related deficiencies at all levels of lymphopoiesis throughout the lifespan of survivors of the Hematopoietic-Acute Radiation Syndrome and may provide a murine model suitable for assessing the efficacy of potential medical countermeasures and therapeutic strategies to alleviate the severe immune suppression that occurs after radiation exposure.
Collapse
Affiliation(s)
- Tong Wu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - P. Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - George E. Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
22
|
Innate and secondary humoral responses are improved by increasing the time between MVA vaccine immunizations. NPJ Vaccines 2020; 5:24. [PMID: 32218996 PMCID: PMC7081268 DOI: 10.1038/s41541-020-0175-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Comprehending the mechanisms behind the impact of vaccine regimens on immunity is critical for improving vaccines. Indeed, the time-interval between immunizations may influence B and T cells, as well as innate responses. We compared two vaccine schedules using cynomolgus macaques immunized with an attenuated vaccinia virus. Two subcutaneous injections 2 weeks apart led to an impaired secondary antibody response and similar innate myeloid responses to both immunizations. In contrast, a delayed boost (2 months) improved the quality of the antibody response and involved more activated/mature innate cells, induced late after the prime and responding to the recall. The magnitude and quality of the secondary antibody response correlated with the abundance of these neutrophils, monocytes, and dendritic cells that were modified phenotypically and enriched prior to revaccination at 2 months, but not 2 weeks. These late phenotypic modifications were associated with an enhanced ex vivo cytokine production (including IL-12/23 and IL-1β) by PBMCs short after the second immunization, linking phenotype and functions. This integrated analysis reveals a deep impact of the timing between immunizations, and highlights the importance of early but also late innate responses involving phenotypical changes, in shaping humoral immunity.
Collapse
|
23
|
Sun GY, Wang SL, Song YW, Jin J, Wang WH, Liu YP, Ren H, Fang H, Tang Y, Zhao XR, Song YC, Yu ZH, Liu XF, Li YX. Radiation-Induced Lymphopenia Predicts Poorer Prognosis in Patients With Breast Cancer: A Post Hoc Analysis of a Randomized Controlled Trial of Postmastectomy Hypofractionated Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 108:277-285. [PMID: 32147519 DOI: 10.1016/j.ijrobp.2020.02.633] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/17/2020] [Accepted: 02/22/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of this study was to determine whether radiation-induced lymphopenia affects the survival of patients with breast cancer. METHODS AND MATERIALS Post hoc analysis was conducted on data from 598 patients with breast cancer from a randomized controlled trial comparing postmastectomy hypofractionated radiation therapy (HFRT; 43.5 Gy in 15 fractions over 3 weeks) with conventional fractionated radiation therapy (CFRT; 50 Gy in 25 fractions over 5 weeks). Mean peripheral lymphocyte count (PLC) at different time points in the 2 groups was compared by the t test. Disease-free survival and overall survival were analyzed by the Kaplan-Meier method and compared between groups by the log-rank test. RESULTS Baseline PLC (pre-PLC) was comparable between HFRT and CFRT patients (1.60 ± 0.57 × 109/L vs 1.56 ± 0.52 × 109/L; P = .33). In both groups, the PLC declined steadily during the course of radiation therapy but started to recover at 1 month after radiation therapy. Incidence of lymphopenia was significantly lower in HFRT patients (45.4% vs 55.7%; P = .01). Nadir-PLC was significantly higher in HFRT patients (1.08 ± 0.37 × 109/L vs 0.97 ± 0.31× 109/L; P < .001), as was the nadir-PLC/pre-PLC ratio (0.72 ± 0.28 vs 0.67 ± 0.28; P = .02). Median follow-up was 57.6 months (interquartile range, 38.5-81.4). The 5-year disease-free survival was significantly lower in patients with a nadir-PLC/pre-PLC ratio <0.8 than in those with a ratio ≥0.8 (71.8% vs 82.6%; P = .01); however, overall survival was comparable between the groups (85.8% vs 90.6%; P = .24). CONCLUSIONS The risk of radiation-induced lymphopenia in patients with breast cancer is lower with HFRT than with CFRT. A low nadir-PLC/pre-PLC ratio may predict poor prognosis.
Collapse
Affiliation(s)
- Guang-Yi Sun
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu-Lian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yong-Wen Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Hu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Ping Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Ren
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Fang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Tang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu-Ran Zhao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Chun Song
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zi-Hao Yu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Fan Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye-Xiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Ellsworth SG, Yalamanchali A, Zhang H, Grossman SA, Hobbs R, Jin JY. Comprehensive Analysis of the Kinetics of Radiation-Induced Lymphocyte Loss in Patients Treated with External Beam Radiation Therapy. Radiat Res 2019; 193:73-81. [PMID: 31675264 DOI: 10.1667/rr15367.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced lymphopenia (RIL) is associated with worse survival in patients with solid tumors, as well as lower response rates to checkpoint inhibitors. While single-fraction total-body irradiation is known to result in exponential decreases in the absolute lymphocyte count (ALC), the kinetics of lymphocyte loss after focal fractionated exposures have not previously been characterized. In the current study, lymphocyte loss kinetics was analyzed among patients undergoing focal fractionated radiotherapy for clinical indications. This registry-based study included 419 patients who received either total-body irradiation (TBI; n = 30), stereotactic body radiation therapy (SBRT; n = 73) or conventionally fractionated chemoradiation therapy (CFRT; n = 316). For each patient, serial ALCs were plotted against radiotherapy fraction number. The initial three weeks of treatment for CFRT patients and the entirety of treatment for SBRT and TBI patients were fit to exponential decay in the form ALC(x) = ae-bx, where ALC(x) is the ALC after x fractions. From those fits, fractional lymphocyte loss (FLL) was calculated as FLL = (1 - e-b) * 100, and multivariable regression was performed to identify significant correlates of FLL. Median linearized R2 when fitting the initial fractions was 0.98, 0.93 and 0.97 for patients receiving TBI, SBRT and CFRT, respectively. In CFRT patients, apparent ALC loss rate slowed after week 3. Fitting ALC loss over the entire CFRT course therefore required the addition of a constant term, "c". For TBI and SBRT patients, treatment ended during the pure exponential decay phase. Initial FLL varied significantly with treatment technique. Mean FLL was 35.5%, 24.3% and 10.77% for patients receiving TBI, SBRT and CFRT, respectively (P < 0.001). Significant correlates of FLL varied by site and included field size, dose per fraction, mean spleen dose, chemotherapy backbone and age. Finally, total percentage ALC loss during radiotherapy was highly correlated with FLL (P < 0.001). Lymphocyte depletion kinetics during the initial phase of fractionated radiotherapy are characterized by pure exponential decay. Initial FLL is strongly correlated with radiotherapy planning parameters and total percentage ALC loss. The two groups with the highest FLL received no concurrent chemotherapy, suggesting that ALC loss can be a consequence of radiotherapy alone. This work may assist in selecting patients for adaptive radiotherapy approaches to mitigate RIL risk.
Collapse
Affiliation(s)
- Susannah G Ellsworth
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana; Departments of
| | - Anirudh Yalamanchali
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana; Departments of
| | - Hong Zhang
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana; Departments of
| | | | - Robert Hobbs
- Departments of Radiation Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Jian-Yue Jin
- Department of Radiation Oncology, Case Western Reserve University School of Medicine
| |
Collapse
|
25
|
Caudell DL, Michalson KT, Andrews RN, Snow WW, Bourland JD, DeBo RJ, Cline JM, Sempowski GD, Register TC. Transcriptional Profiling of Non-Human Primate Lymphoid Organ Responses to Total-Body Irradiation. Radiat Res 2019; 192:40-52. [PMID: 31059377 PMCID: PMC6699496 DOI: 10.1667/rr15100.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The global threat of exposure to radiation and its subsequent outcomes require the development of effective strategies to mitigate immune cell injury. In this study we explored transcriptional and immunophenotypic characteristics of lymphoid organs of a non-human primate model after total-body irradiation (TBI). Fifteen middle-aged adult, ovariectomized, female cynomolgus macaques received a single dose of 0, 2 or 5 Gy gamma radiation. Thymus, spleen and lymph node from three controls and 2 Gy (n = 2) and 5 Gy (n = 2) exposed animals were assessed for molecular responses to TBI through microarray-based transcriptional profiling at day 5 postirradiation, and cellular changes through immunohistochemical (IHC) characterization of markers for B and T lymphocytes and macrophages across all 15 animals at time points up to 6 months postirradiation. Irradiated macaques developed acute hematopoietic syndrome. Analysis of array data at day 5 postirradiation identified transcripts with ≥2-fold difference from control and a false discovery rate (FDR) of Padj < 0.05 in lymph node (n = 666), spleen (n = 493) and thymus (n=3,014). Increasing stringency of the FDR to P < 0.001 reduced the number of genes to 71 for spleen and 379 for thymus. IHC and gene expression data demonstrated that irradiated animals had reduced numbers of T and B lymphocytes along with relative elevations of macrophages. Transcriptional analysis revealed unique patterns in primary and secondary lymphoid organs of cynomolgus macaques. Among the many differentially regulated transcripts, upregulation of noncoding RNAs [MIR34A for spleen and thymus and NEAT1 (NCRNA00084) for thymus] showed potential as biomarkers of radiation injury and targets for mitigating the effects of radiation-induced hematopoietic syndrome-impaired lymphoid reconstitution.
Collapse
Affiliation(s)
- David L. Caudell
- Departments of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Kristofer T. Michalson
- Departments of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Rachel N. Andrews
- Departments of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - William W. Snow
- Departments of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - J. Daniel Bourland
- Departments of Radiation Oncology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Ryne J. DeBo
- Departments of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - J. Mark Cline
- Departments of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Gregory D. Sempowski
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Thomas C. Register
- Departments of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
26
|
Carter CL, Hankey KG, Booth C, Tudor GL, Parker GA, Jones JW, Farese AM, MacVittie TJ, Kane MA. Characterizing the Natural History of Acute Radiation Syndrome of the Gastrointestinal Tract: Combining High Mass and Spatial Resolution Using MALDI-FTICR-MSI. HEALTH PHYSICS 2019; 116:454-472. [PMID: 30681424 PMCID: PMC6384159 DOI: 10.1097/hp.0000000000000948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The acute radiation syndrome of the gastrointestinal tract has been histologically characterized, but the molecular and functional mechanisms that lead to these cellular alterations remain enigmatic. Mass spectrometry imaging is the only technique that enables the simultaneous detection and cellular or regional localization of hundreds of biomolecules in a single experiment. This current study utilized matrix-assisted laser desorption/ionization mass spectrometry imaging for the molecular characterization of the first natural history study of gastrointestinal acute radiation syndrome in the nonhuman primate. Jejunum samples were collected at days 4, 8, 11, 15, and 21 following 12-Gy partial-body irradiation with 2.5% bone marrow sparing. Mass spectrometry imaging investigations identified alterations in lipid species that further understanding of the functional alterations that occur over time in the different cellular regions of the jejunum following exposure to high doses of irradiation. Alterations in phosphatidylinositol species informed on dysfunctional epithelial cell differentiation and maturation. Differences in glycosphingolipids of the villi epithelium that would influence the absorptive capacity and functional structure of the brush border membrane were detected. Dichotomous alterations in cardiolipins indicated altered structural and functional integrity of mitochondria. Phosphatidylglycerol species, known regulators of toll-like receptors, were detected and localized to regions in the lamina propria that contained distinct immune cell populations. These results provide molecular insight that can inform on injury mechanism in a nonhuman primate model of the acute radiation syndrome of the gastrointestinal tract. Findings may contribute to the identification of therapeutic targets and the development of new medical countermeasures.
Collapse
Affiliation(s)
- Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | | | | | - George A. Parker
- Charles River Laboratories, Pathology Associates, Raleigh-Durham, North Carolina, USA
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD USA
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences, Baltimore, MD USA
| |
Collapse
|
27
|
MacVittie TJ, Farese AM, Parker GA, Jackson W, Booth C, Tudor GL, Hankey KG, Potten CS. The Gastrointestinal Subsyndrome of the Acute Radiation Syndrome in Rhesus Macaques: A Systematic Review of the Lethal Dose-response Relationship With and Without Medical Management. HEALTH PHYSICS 2019; 116:305-338. [PMID: 30624353 PMCID: PMC9446380 DOI: 10.1097/hp.0000000000000903] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Well-characterized animal models that mimic the human response to potentially lethal doses of radiation are required to assess the efficacy of medical countermeasures under the criteria of the US Food and Drug Administration's Animal Rule. Development of a model for the gastrointestinal acute radiation syndrome requires knowledge of the radiation dose-response relationship and time course of mortality and morbidity across the acute and prolonged gastrointestinal radiation syndrome. The nonhuman primate, rhesus macaque, is a relevant animal model that has been used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality relative to the hematopoietic acute radiation syndrome, gastrointestinal acute radiation syndrome, and lung injury. It can be used to assess the natural history of gastrointestinal damage, concurrent multiple organ injury, and aspects of the mechanism of action for acute radiation exposure and treatment. A systematic review of relevant studies that determined the dose-response relationship for the gastrointestinal acute and prolonged radiation syndrome in the rhesus macaque relative to radiation dose, quality, dose rate, exposure uniformity, and use of medical management has never been performed.
Collapse
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | | | | | | | - Kim G Hankey
- University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
28
|
Whole thorax irradiation of non-human primates induces persistent nuclear damage and gene expression changes in peripheral blood cells. PLoS One 2018; 13:e0191402. [PMID: 29351567 PMCID: PMC5774773 DOI: 10.1371/journal.pone.0191402] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
We investigated the cytogenetic and gene expression responses of peripheral blood cells of non-human primates (NHP, Macaca mulatta) that were whole-thorax irradiated with a single dose of 10 Gy. In this model, partial irradiation of NHPs in the thoracic region (Whole Thorax Lung Irradiation, WTLI) allows the study of late radiation-induced lung injury, while avoiding acute radiation syndromes related to hematopoietic and gastrointestinal injury. A transient drop in circulating lymphocytes and platelets was seen by 9 days, followed by elevations in respiratory rate, circulating neutrophils, lymphocytes, and monocytes at 60-100 days, corresponding to computed tomography (CT) and histologic evidence of pneumonitis, and elective euthanasia of four animals. To evaluate long-term DNA damage in NHP peripheral blood lymphocytes after 10 Gy WTLI, we used the cytokinesis-block micronucleus (CBMN) assay to measure chromosomal aberrations as post-mitotic micronuclei in blood samples collected up to 8 months after irradiation. Regression analysis showed significant induction of micronuclei in NHP blood cells that persisted with a gradual decline over the 8-month study period, suggesting long-term DNA damage in blood lymphocytes after WTLI. We also report transcriptomic changes in blood up to 30 days after WTLI. We isolated total RNA from peripheral blood at 3 days before and then at 2, 5 and 30 days after irradiation. We identified 1187 transcripts that were significantly changed across the 30-day time course. From changes in gene expression, we identified biological processes related to immune responses, which persisted across the 30-day study. Response to oxygen-containing compounds and bacteria were implicated by gene-expression changes at the earliest day 2 and latest, day 30 time-points. Gene expression changes suggest a persistent altered state of the immune system, specifically response to infection, for at least a month after WTLI.
Collapse
|