1
|
Brooks AL, Conca J, Glines WM, Waltar AE. How the Science of Radiation Biology Can Help Reduce the Crippling Fear of Low-level Radiation. HEALTH PHYSICS 2023; 124:407-424. [PMID: 36989223 DOI: 10.1097/hp.0000000000001677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
ABSTRACT The fear of radiation has been present almost since the discovery of radiation, but has intensified since the "dawn of the atomic age" over 75 y ago. This fear has often served as an impediment to the safe and beneficial uses of radiation and radioactive material. The underlying causes of such fear are varied, can be complex, and are often not associated with any scientific knowledge or understanding. The authors believe that a clear understanding of the current scientific knowledge and understanding of the effects of radiation exposure may be useful in helping to allay some of the fear of radiation. This manuscript attempts to (1) address several scientific questions that we believe have contributed to the fear of radiation, (2) review the data derived from research that can be used to address these questions, and (3) summarize how the results of such scientific research can be used to help address the fear of low-dose and low-dose-rate radiation. Several examples of how fear of radiation has affected public perception of radiological events are discussed, as well as a brief history of the etiology of radiation fear. Actions needed to reduce the public fear of radiation and help fulfill the full societal benefits of radiation and radioactive materials are suggested.
Collapse
Affiliation(s)
- Antone L Brooks
- Research Professor Emeritus, Washington State University, Chief Scientist, DOE Low Dose Program, 6802 W. 13th Avenue, Kennewick, WA 99338
| | - James Conca
- President UFA Ventures, Inc., Richland, WA, Science writer for Forbes
| | - Wayne M Glines
- Senior Technical Advisor (retired), Department of Energy, 2315 Camas Avenue, Richland, WA 99354
| | - Alan E Waltar
- Professor and Head (retired), Department of Nuclear Engineering, Texas A&M University, Past President, American Nuclear Society, 12449 Ingalls Creek Road, Peshastin, WA 98847
| |
Collapse
|
2
|
Brooks AL, Hoel D, Glines WM. Radiobiology of Select Radionuclides in Hanford Site Tank Waste. HEALTH PHYSICS 2022; 123:99-115. [PMID: 35506883 DOI: 10.1097/hp.0000000000001563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There are several important radionuclides involved in the "clean-up" or environmental isolation of nuclear waste contained in US Department of Energy Hanford Site underground waste tanks that drive many of the decisions associated with this activity. To make proper human health risk analyses and ensure that the most appropriate decisions are made, it is important to understand the radiation biology and the human health risk associated with these radionuclides. This manuscript provides some basic radiological science, in particular radiation biology, for some of these radionuclides, i.e., 3 H, 90 Sr, 137 Cs, 99 Tc, 129 I, and the alpha emitters 239, 240 Pu, 233,234,235,238 U, and 241 Am. These radionuclides were selected based on their designation as "constituents of potential concern," historical significance, or potential impact on human health risk. In addition to the radiobiology of these select radionuclides, this manuscript provides brief discussions of the estimated cost of planned management of Hanford tank waste and a comparison with releases into the Techa River from activities associated with the Mayak Production Association. A set of summary conclusions of the potential human health risks associated with these radionuclides is given.
Collapse
Affiliation(s)
- Antone L Brooks
- Research Professor Emeritus, Washington State University Tri-Cities, Richland, WA
| | - David Hoel
- Medical University of South Carolina, 36 South Battery, Charleston, SC 29401
| | | |
Collapse
|
3
|
Akleyev AV, Degteva MO, Krestinina LY. Overall results and prospects of the cancer risk assessment in the Urals population affected by chronic low dose-rate exposure. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Li C, Alves Dos Reis A, Ansari A, Bertelli L, Carr Z, Dainiak N, Degteva M, Efimov A, Kalinich J, Kryuchkov V, Kukhta B, Kurihara O, Antonia Lopez M, Port M, Riddell T, Rump A, Sun Q, Tuo F, Youngman M, Zhang J. Public health response and medical management of internal contamination in past radiological or nuclear incidents: A narrative review. ENVIRONMENT INTERNATIONAL 2022; 163:107222. [PMID: 35378442 PMCID: PMC9749825 DOI: 10.1016/j.envint.2022.107222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 05/03/2023]
Abstract
Following a radiological or nuclear emergency, workers, responders and the public may be internally contaminated with radionuclides. Screening, monitoring and assessing any internal contamination and providing necessary medical treatment, especially when a large number of individuals are involved, is challenging. Experience gained and lessons learned from the management of previous incidents would help to identify gaps in knowledge and capabilities on preparedness for and response to radiation emergencies. In this paper, eight large-scale and five workplace radiological and nuclear incidents are reviewed cross 14 technical areas, under the broader topics of emergency preparedness, emergency response and recovery processes. The review findings suggest that 1) new strategies, algorithms and technologies are explored for rapid screening of large populations; 2) exposure assessment and dose estimation in emergency response and dose reconstruction in recovery process are supported by complementary sources of information, including 'citizen science'; 3) surge capacity for monitoring and dose assessment is coordinated through national and international laboratory networks; 4) evidence-based guidelines for medical management and follow-up of internal contamination are urgently needed; 5) mechanisms for international and regional access to medical countermeasures are investigated and implemented; 6) long-term health and medical follow up programs are designed and justified; and 7) capabilities and capacity developed for emergency response are sustained through adequate resource allocation, routine non-emergency use of technical skills in regular exercises, training, and continuous improvement.
Collapse
Affiliation(s)
| | | | - Armin Ansari
- Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Zhanat Carr
- World Health Organization, Geneva, Switzerland
| | | | - Marina Degteva
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - Alexander Efimov
- State Unitary Enterprise Southern Urals Biophysics Institute of Federal Medical Biological Agency, Ozyorsk, Russia
| | - John Kalinich
- Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, USA
| | - Victor Kryuchkov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Boris Kukhta
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Osamu Kurihara
- National Institutes of Quantum and Radiological Science and Technology, Chiba, Japan
| | - Maria Antonia Lopez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnolόgicas, Madrid, Spain
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Alexis Rump
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Quanfu Sun
- National Institute for Radiological Protection, Beijing, China
| | - Fei Tuo
- National Institute for Radiological Protection, Beijing, China
| | | | - Jianfeng Zhang
- National Institute for Radiological Protection, Beijing, China
| |
Collapse
|
5
|
Hiller M, Woda C, Degteva M, Bugrov N, Shishkina E, Pryakhin E, Ivanov O. External dose reconstruction at the shore of the Metlinsky Pond in the former village of Metlino (Techa River, Russia) based on environmental surveys, luminescence measurements and radiation transport modelling. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:87-109. [PMID: 34816291 DOI: 10.1007/s00411-021-00953-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
The cohorts of people formerly living at the Techa River shoreline in the Southern Urals, Russia, are widely studied cohorts for the investigation of low-dose radiation effects to human health. The nuclear facilities of the Mayak Production Association (PA) discharged their radioactive effluents into the nearby Techa River, especially in the first years of operation. Health status of cohort member data is constantly being improved and updated. Consequently, there is a need to also improve and verify the underlying dosimetry, which gives information about the dose of cohort members. For the Techa River population, the dosimetry is handled in the Techa River Dosimetry System (TRDS). The present work shows results of a feasibility study to validate the TRDS at the location of the village of Metlino, a village just 7 km downstream from the Mayak PA. For this settlement there were two sources of external exposure, the contaminated banks of the Techa River and the contaminated shoreline of the nearby Metlinsky Pond. In the present study the north-western wall of a granary was used as a dose archive to validate dose estimates. Measurements of doses in brick accumulated over many decades and measurements of the current dose rate in bricks were combined with dose rate measurements in air above ground in front of the granary, historical contamination data and Monte-Carlo simulations. Air kerma estimates for 1949-1956 significantly different from zero could not be reconstructed for the Metlinsky Pond shoreline near the granary, but an upper dose limit could be estimated. Implications for TRDS-2016 are discussed.
Collapse
Affiliation(s)
| | - Clemens Woda
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Medicine, 85764, Neuherberg, Germany
| | - Marina Degteva
- Urals Research Center for Radiation Medicine, Chelaybinsk, Russia
| | - Nikolay Bugrov
- Urals Research Center for Radiation Medicine, Chelaybinsk, Russia
| | - Elena Shishkina
- Urals Research Center for Radiation Medicine, Chelaybinsk, Russia
- Chelyabinsk State University, Chelyabinsk, 454001, Russia
| | - Evgeny Pryakhin
- Urals Research Center for Radiation Medicine, Chelaybinsk, Russia
| | - Oleg Ivanov
- National Research Center, Kurchatov Institute, Moscow, 123182, Russia
| |
Collapse
|
6
|
Ulanowski A, Hiller M, Woda C. Absorbed doses in bricks and TL-dosimeters due to anthropogenic and natural environmental radiation sources. RADIAT MEAS 2021. [DOI: 10.1016/j.radmeas.2020.106458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Giussani A, Lopez MA, Romm H, Testa A, Ainsbury EA, Degteva M, Della Monaca S, Etherington G, Fattibene P, Güclu I, Jaworska A, Lloyd DC, Malátová I, McComish S, Melo D, Osko J, Rojo A, Roch-Lefevre S, Roy L, Shishkina E, Sotnik N, Tolmachev SY, Wieser A, Woda C, Youngman M. Eurados review of retrospective dosimetry techniques for internal exposures to ionising radiation and their applications. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:357-387. [PMID: 32372284 PMCID: PMC7369133 DOI: 10.1007/s00411-020-00845-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 04/15/2020] [Indexed: 05/17/2023]
Abstract
This work presents an overview of the applications of retrospective dosimetry techniques in case of incorporation of radionuclides. The fact that internal exposures are characterized by a spatially inhomogeneous irradiation of the body, which is potentially prolonged over large periods and variable over time, is particularly problematic for biological and electron paramagnetic resonance (EPR) dosimetry methods when compared with external exposures. The paper gives initially specific information about internal dosimetry methods, the most common cytogenetic techniques used in biological dosimetry and EPR dosimetry applied to tooth enamel. Based on real-case scenarios, dose estimates obtained from bioassay data as well as with biological and/or EPR dosimetry are compared and critically discussed. In most of the scenarios presented, concomitant external exposures were responsible for the greater portion of the received dose. As no assay is available which can discriminate between radiation of different types and different LETs on the basis of the type of damage induced, it is not possible to infer from these studies specific conclusions valid for incorporated radionuclides alone. The biological dosimetry assays and EPR techniques proved to be most applicable in cases when the radionuclides are almost homogeneously distributed in the body. No compelling evidence was obtained in other cases of extremely inhomogeneous distribution. Retrospective dosimetry needs to be optimized and further developed in order to be able to deal with real exposure cases, where a mixture of both external and internal exposures will be encountered most of the times.
Collapse
Affiliation(s)
- A Giussani
- BfS-Bundesamt für Strahlenschutz, Ingolstädter Landstr. 1, 85764, Oberschleißheim, Germany.
| | - M A Lopez
- CIEMAT - Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Av.da Complutense 40, 28040, Madrid, Spain
| | - H Romm
- BfS-Bundesamt für Strahlenschutz, Ingolstädter Landstr. 1, 85764, Oberschleißheim, Germany
| | - A Testa
- ENEA Casaccia Research Center, Via Anguillarese 301, Santa Maria di Galeria, 00123, Rome, Italy
| | - E A Ainsbury
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| | - M Degteva
- Urals Research Center for Radiation Medicine (URCRM), Vorovskt str. 68A, Chelyabinsk, 454141, Russia
| | - S Della Monaca
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - G Etherington
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| | - P Fattibene
- Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - I Güclu
- Cekmece Nuclear Research and Training Center Radiobiology Unit Yarımburgaz, Turkish Atomic Energy Authority, Istanbul, Turkey
| | - A Jaworska
- DSA-Norwegian Radiation and Nuclear Safety Authority, Skøyen, P. O. Box 329, 0213, Oslo, Norway
| | - D C Lloyd
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| | - I Malátová
- SURO-National Radiation Protection Institute, Bartoskova 28, 14000, Prague, Czech Republic
| | - S McComish
- US Transuranium and Uranium Registries, Washington State University, Richland, WA, USA
| | - D Melo
- Melohill Technology, 1 Research Court, Rockville, MD, 20850, USA
| | - J Osko
- National Centre for Nuclear Research, A. Soltana 7, 05400, Otwock, Poland
| | - A Rojo
- ARN-Nuclear Regulatory Authority of Argentina, Av. del Libertador 8250, Buenos Aires, Argentina
| | - S Roch-Lefevre
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - L Roy
- Institut de Radioprotection et de Sûreté Nucléaire, IRSN, Pôle Santé et Environnement, Direction de la Santé, Fontenay-aux-Roses, France
| | - E Shishkina
- Urals Research Center for Radiation Medicine (URCRM), Vorovskt str. 68A, Chelyabinsk, 454141, Russia
- Chelyabinsk State University (ChelSU), 129, Bratiev Kashirinih Street, Chelyabinsk, 454001, Russia
| | - N Sotnik
- Southern Urals Biophysics Institute (SUBI), Ozyorsk, Chelyabinsk Region, 456780, Russia
| | - S Y Tolmachev
- US Transuranium and Uranium Registries, Washington State University, Richland, WA, USA
| | - A Wieser
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - C Woda
- Institute of Radiation Medicine, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - M Youngman
- Public Health England - Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, OX11 0RQ, Oxon, UK
| |
Collapse
|
8
|
Giussani A, Lopez MA, Testa A. THE EURADOS WORK TOWARDS A REVIEW ON RETROSPECTIVE DOSIMETRY AFTER INCORPORATION OF RADIONUCLIDES. RADIATION PROTECTION DOSIMETRY 2019; 186:12-14. [PMID: 30561679 DOI: 10.1093/rpd/ncy244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/30/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Biological dosimetry methods are well established and validated for providing dose estimates following external radiation exposures. In contrast, interpreting biological dosimetry data in cases of internal exposures is still challenging. In this context, a joint collaboration between two Working Groups (WG) of European Radiation Dosimetry Group (EURADOS), WG10 on 'Retrospective Dosimetry' and WG7 on 'Internal Dosimetry', was initiated with the aim to address the main issues related to the advantages and limitations of biological and electron paramagnetic resonance (EPR) dosimetry in cases of internal and mixed internal/external exposures. The organization of the review work, the main findings of the analysis performed and the driving lines for possible future research work are briefly described in the present document.
Collapse
Affiliation(s)
- Augusto Giussani
- BFS - Federal Office for Radiation Protection, Department of Medical and Occupational Radiation Protection, Ingolstädter Landstr. 1, Oberschleißheim, Germany
| | - Maria Antonia Lopez
- CIEMAT, Departamento de Medio Ambiente, Dosimetría Interna, Av.da Complutense 22, 2Madrid, Spain
| | - Antonella Testa
- ENEA Casaccia Research Center, Division of Health Protection Technologies, Laboratory Biosafety and Risk Assessment, Via Anguillarese 301, Santa Maria di Galeria Rome, Italy
| |
Collapse
|
9
|
Degteva MO, Napier BA, Tolstykh EI, Shishkina EA, Shagina NB, Volchkova AY, Bougrov NG, Smith MA, Anspaugh LR. Enhancements in the Techa River Dosimetry System: TRDS-2016D Code for Reconstruction of Deterministic Estimates of Dose From Environmental Exposures. HEALTH PHYSICS 2019; 117:378-387. [PMID: 30958804 DOI: 10.1097/hp.0000000000001067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Waterborne releases to the Techa River from the Mayak plutonium facility in Russia during 1949-1956 resulted in significant doses to persons living downstream. The dosimetry system Techa River Dosimetry System-2016D has been developed, which provides individual doses of external and internal exposure for the members of the Techa River cohort and other persons who were exposed to releases of radioactive material to the Southern Urals. The results of computation of individual doses absorbed in red bone marrow and extraskeletal tissues for the Techa River cohort members (29,647 persons) are presented, which are based on residence histories on the contaminated Techa River and the East Urals Radioactive Trace, which was formed in 1957 as a result of the Kyshtym Accident. Available Sr body-burden measurements and available information on individual household locations have been used for refinement of individual dose estimates. Techa River Dosimetry System-2016D-based dose estimates will be used for verification of risk of low-dose-rate effects of ionizing radiation in the Techa River cohort.
Collapse
Affiliation(s)
- M O Degteva
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - B A Napier
- Battelle Pacific Northwest National Laboratory, Richland, WA
| | - E I Tolstykh
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - E A Shishkina
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - N B Shagina
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - A Yu Volchkova
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - N G Bougrov
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - M A Smith
- Battelle Pacific Northwest National Laboratory, Richland, WA
| | - L R Anspaugh
- Emeritus, Department of Radiology, University of Utah, Salt Lake City, UT
| |
Collapse
|
10
|
Shishkina EA, Pryakhin EA, Sharagin PA, Osipov DI, Tryapitsina GA, Atamanyuk NI, Egoreichenkov EA, Trapeznikov AV, Rudolfsen G, Teien HC, Sneve MK. The radiation exposure of fish in the period of the Techa river peak contamination. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 201:43-55. [PMID: 30753952 DOI: 10.1016/j.jenvrad.2019.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/26/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in downstream contamination of the river ecosystem. The discharged liquid waste contained both short-lived isotopes (95Zr, 95Nb, 103,106Ru, 141,144Ce, 91Y, 89Sr and 140Ba with half-life from 3 days to 1.02 years) and the long-lived 90Sr and 137Cs (half-life - 28.79 y and 30.07 y, respectively). Even now, when two half-lives of 90Sr and 137Cs have passed, the contamination in the upper river region (about 70 km from the source of releases) is still relatively high. Current anthropogenic dose rates calculated for the fish of the Techa River depend on the distance along the stream and decrease from 150 to 3 μGy day-1. Radiation exposure of fish is expected to have been much higher at the time of the releases. The aim of the study was to evaluate the dose rates for the most common fish species of the river, viz., roach (Rutilus rutilus), perch (Perca fluviatilis) and pike (Esox lucius), in the period of peak contamination of the upper reaches of the Techa River from 1950 to 1951. To achieve this objective, calculation of both internal and external dose rates was performed. For dose rate calculation, the contamination of the river compartments was modeled, body-size dependent dose coefficients were evaluated, morphometric data were analyzed. Maximum dose rates were obtained for roach; minimum - for pike, it depends on fish lifestyle (time spent at the bottom). In the period before September 1950, fish of the upper reaches are assessed to have been exposed to dose rates exceeding the screening level equal to 240 μGy day-1. From September 1950 up to the end of 1952 the fish dose rates along the Techa River were found to be close to the UNSCEAR threshold equal to 9.6 × 103 μGy day-1 or even much more higher (up to 1.9 × 105 μGy day-1). Extremely high historical dose rates did not lead to the difference in fish size and fish growth rate currently observed in the Techa River and in the comparison waterbody (the Miass River). Discussion includes the description of radiation effects observed currently in the river fish. Today the effects observed in hematopoietic system may be the consequence of radiation exposure of fish over several generations. For example, long term dwelling of fish in the radioactively contaminated environment leads to their adaptation to chronic radiation exposure. At the same time, an increase their sensitivity and decrease their adaptive capacity to respond to other stress factors can be observed.
Collapse
Affiliation(s)
- E A Shishkina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia; Chelyabinsk State University, Chelyabinsk, Russia.
| | - E A Pryakhin
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - P A Sharagin
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - D I Osipov
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - G A Tryapitsina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia; Chelyabinsk State University, Chelyabinsk, Russia
| | - N I Atamanyuk
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - E A Egoreichenkov
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - A V Trapeznikov
- Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences (IPAE), Yekaterinburg, Russia
| | - G Rudolfsen
- Norwegian Radiation Protection Authority, Østerås, Norway; University of Tromsø, Tromsø, Norway
| | - H C Teien
- Norwegian University of Life Sciences (NMBU), Center of Excellence in Environmental Radioactivity (CERAD), Ås, Norway
| | - M K Sneve
- Norwegian Radiation Protection Authority, Østerås, Norway
| |
Collapse
|
11
|
Yarmoshenko IV, Malinovsky GP, Zhukovsky MV, Tolstykh EV. COMPARISON OF MEASURES ON PROTECTION AGAINST ACCIDENTAL RADIATION AND INDOOR RADON EXPOSURE IN MUSLYUMOVO, TECHA RIVER. RADIATION PROTECTION DOSIMETRY 2017; 177:125-129. [PMID: 29036496 DOI: 10.1093/rpd/ncx168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of the study was comparison of the doses received due to contamination of the Techa River with those received from the indoor radon exposure. The study was performed on the example of Muslyumovo, the village closest to Mayak nuclear complex. The accidental doses were estimated using data on radionuclide intakes and ICRP-72 dose coefficients, and Techa River Dosimetry System. Radon exposure was estimated applying results of the radon surveys in 1992 and 2015. The doses prevented by means of different protection measures were considered. The maximum reduction of population exposure could be achieved in the case of timely evacuation to uncontaminated territory together with the indoor radon prevention measures.
Collapse
Affiliation(s)
- I V Yarmoshenko
- IIE UB RAS, Sophy Kovalevskoy St., 20, Ekaterinburg 620219, Russia
| | - G P Malinovsky
- IIE UB RAS, Sophy Kovalevskoy St., 20, Ekaterinburg 620219, Russia
| | - M V Zhukovsky
- IIE UB RAS, Sophy Kovalevskoy St., 20, Ekaterinburg 620219, Russia
| | - E V Tolstykh
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| |
Collapse
|
12
|
Krestinina LY, Kharyuzov YE, Epiphanova SB, Tolstykh EI, Deltour I, Schüz J, Akleyev AV. Cancer Incidence after In Utero Exposure to Ionizing Radiation in Techa River Residents. Radiat Res 2017; 188:314-324. [PMID: 28715276 DOI: 10.1667/rr14695.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Health effects of in utero exposure to ionizing radiation, especially among adults, are still unclear. The aim of this study was to analyze cancer risk in a cohort of subjects exposed in utero due to releases of nuclear waste into the Techa River in the Southern Urals, taking into account additional postnatal exposure. Analysis for solid cancer was based on 242 cases among 10,482 cohort members, accumulating 381,948 person-years at risk, with follow-up from 1956-2009, while analysis for hematological malignancies was based on 26 cases among 11,070 persons, with 423,502 person-years at risk, with follow-up from 1953-2009. Mean doses accumulated in soft tissues and in red bone marrow during the prenatal period were 4 mGy and 30 mGy, respectively. Additional respective mean postnatal doses received by cohort members were 11 and 84 mGy. Poisson regression analysis was used to estimate the excess relative risk (ERR) of cancer incidence related to in utero and postnatal doses. No association was observed for in utero exposure with solid cancer risk [ERR per 10 mGy: -0.007; 95% confidence interval (CI): <-0.107; 0.148] or with hematological malignancy risk (ERR/10 mGy: -0.011; 95% CI: <-0.015; 0.099). However, ERR of solid cancer increased significantly with increasing postnatal dose (ERR/10 mGy: 0.11; 95% CI: 0.04; 0.22). The very wide confidence intervals in these ERR results are similar to those of studies performed on the LSS cohort and the offspring of the Mayak Female Worker Cohort, as well as case-control studies of effects after in utero medical exposure. There were limitations of this study, with decreased statistical power, due to the low prenatal doses received by most of the cohort members, the small number of cancer cases and the absence of cohort members over the age of 59 years (living cohort members had reached 49-59 years of age). Further aging of the cohort and extension of the follow-up period will enhance the statistical power of this study in the future. There is a shortage of cohort studies reporting on the effects of prenatal radiation exposure, as well as information on chronic exposure during the prenatal period. Therefore, further research of this unique cohort will be a useful addition to the published literature on this subject, and a valuable means of elucidating the long-term effects of low-dose radiation exposure in the fetus.
Collapse
Affiliation(s)
- L Yu Krestinina
- a Urals Research Center for Radiation Medicine (URCRM), Chelyabinsk, Russian Federation
| | - Yu E Kharyuzov
- a Urals Research Center for Radiation Medicine (URCRM), Chelyabinsk, Russian Federation
| | - S B Epiphanova
- a Urals Research Center for Radiation Medicine (URCRM), Chelyabinsk, Russian Federation
| | - E I Tolstykh
- a Urals Research Center for Radiation Medicine (URCRM), Chelyabinsk, Russian Federation
| | - I Deltour
- b Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - J Schüz
- b Section of Environment and Radiation, International Agency for Research on Cancer (IARC), Lyon, France
| | - A V Akleyev
- a Urals Research Center for Radiation Medicine (URCRM), Chelyabinsk, Russian Federation
| |
Collapse
|
13
|
Hiller MM, Woda C, Bougrov NG, Degteva MO, Ivanov O, Ulanovsky A, Romanov S. External dose reconstruction for the former village of Metlino (Techa River, Russia) based on environmental surveys, luminescence measurements, and radiation transport modelling. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:139-159. [PMID: 28374124 DOI: 10.1007/s00411-017-0688-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa River Dosimetry System within a factor of two.
Collapse
Affiliation(s)
- M M Hiller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, 85764, Neuherberg, Germany.
| | - C Woda
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, 85764, Neuherberg, Germany
| | - N G Bougrov
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - M O Degteva
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - O Ivanov
- Kurchatov Institute Moscow, Moscow, 123182, Russia
| | - A Ulanovsky
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, 85764, Neuherberg, Germany
| | - S Romanov
- Southern Urals Biophysics Institute, Ozyorsk, Russia
| |
Collapse
|
14
|
Tolstykh EI, Peremyslova LM, Degteva MO, Napier BA. Reconstruction of radionuclide intakes for the residents of East Urals Radioactive Trace (1957-2011). RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:27-45. [PMID: 28102439 DOI: 10.1007/s00411-016-0677-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/23/2016] [Indexed: 06/06/2023]
Abstract
The East Urals Radioactive Trace (EURT) was formed after a chemical explosion in the radioactive waste-storage facility of the Mayak Production Association in 1957 (Southern Urals, Russia) and resulted in an activity dispersion of 7.4 × 1016 Bq into the atmosphere. Internal exposure due to ingestion of radionuclides with local foodstuffs was the main factor of public exposure at the EURT. The EURT cohort, combining residents of most contaminated settlements, was formed for epidemiological study at the Urals Research Center for Radiation Medicine, Russia (URCRM). For the purpose of improvement of radionuclide intake estimates for cohort members, the following data sets collected in URCRM were used: (1) Total β-activity and radiochemical measurements of 90Sr in local foodstuffs over all of the period of interest (1958-2011; n = 2200), which were used for relative 90Sr intake estimations. (2) 90Sr measurements in human bones and whole body (n = 338); these data were used for average 90Sr intake derivations using an age- and gender-dependent Sr-biokinetic model. Non-strontium radionuclide intakes were evaluated on the basis of 90Sr intake data and the radionuclide composition of contaminated foodstuffs. Validation of radionuclide intakes during the first years after the accident was first carried out using measurements of the feces β-activity of EURT residents (n = 148). The comparison of experimental and reconstructed values of feces β-activity shows good agreement. 90Sr intakes for residents of settlements evacuated 7-14 days after the accident were also obtained from 90Sr measurements in human bone and whole body. The results of radionuclide intake reconstruction will be used to estimate the internal doses for the members of the EURT cohort.
Collapse
Affiliation(s)
- Evgenia I Tolstykh
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia.
| | - Lyudmila M Peremyslova
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia
| | - Marina O Degteva
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia
| | - Bruce A Napier
- Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
15
|
Schüz J, Deltour I, Krestinina LY, Tsareva YV, Tolstykh EI, Sokolnikov ME, Akleyev AV. In utero exposure to radiation and haematological malignancies: pooled analysis of Southern Urals cohorts. Br J Cancer 2017; 116:126-133. [PMID: 27855443 PMCID: PMC5220143 DOI: 10.1038/bjc.2016.373] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is scientifically uncertain whether in utero exposure to low-dose ionising radiation increases the lifetime risk of haematological malignancies. METHODS We pooled two cohorts from the Southern Urals comprising offspring of female workers of a large nuclear facility (the Mayak Production Association) and of women living in areas along the Techa River contaminated by nuclear accidents/waste from the same facility, with detailed dosimetry. RESULTS The combined cohort totalled 19 536 subjects with 700 504 person-years at risk over the period of incidence follow-up, and slightly more over the period of mortality follow-up, yielding 58 incident cases and 36 deaths up to age 61 years. Risk was increased in subjects who received in utero doses of ⩾80 mGy (excess relative risk (ERR): 1.27; 95% confidence interval (CI): -0.20 to 4.71), and the risk increased consistently per 100 mGy of continuous exposure in utero (ERR: 0.77; CI: 0.02 to 2.56). No association was apparent in mortality-based analyses. Results for leukaemia and lymphoma were similar. A very weak positive association was observed between incidence and postnatal exposure. CONCLUSIONS In summary, the results suggest a positive association between in utero exposure to ionising radiation and risk of haematological malignancies, but the small number of outcomes and inconsistent incidence and mortality findings preclude firm conclusions.
Collapse
Affiliation(s)
- Joachim Schüz
- International Agency for Research on Cancer (IARC), Section of Environment and Radiation, Lyon, France
| | - Isabelle Deltour
- International Agency for Research on Cancer (IARC), Section of Environment and Radiation, Lyon, France
| | | | - Yulia V Tsareva
- Southern Urals Biophysics Institute, Ozyorsk, Russian Federation
| | - Evgenia I Tolstykh
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russian Federation
| | | | - Alexander V Akleyev
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russian Federation
- Chelyabinsk State University, Chelyabinsk, Russian Federation
| |
Collapse
|
16
|
Bailiff I, Sholom S, McKeever S. Retrospective and emergency dosimetry in response to radiological incidents and nuclear mass-casualty events: A review. RADIAT MEAS 2016. [DOI: 10.1016/j.radmeas.2016.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Shishkina EA, Volchkova AY, Timofeev YS, Fattibene P, Wieser A, Ivanov DV, Krivoschapov VA, Zalyapin VI, Della Monaca S, De Coste V, Degteva MO, Anspaugh LR. External dose reconstruction in tooth enamel of Techa riverside residents. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:477-499. [PMID: 27600653 DOI: 10.1007/s00411-016-0666-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
This study summarizes the 20-year efforts for dose reconstruction in tooth enamel of the Techa riverside residents exposed to ionizing radiation as a result of radionuclide releases into the river in 1949-1956. It represents the first combined analysis of all the data available on EPR dosimetry with teeth of permanent residents of the Techa riverside territory. Results of electron paramagnetic resonance (EPR) measurements of 302 teeth donated by 173 individuals living permanently in Techa riverside settlements over the period of 1950-1952 were analyzed. These people were residents of villages located at the free-flowing river stream or at the banks of stagnant reservoirs such as ponds or blind river forks. Cumulative absorbed doses measured using EPR are from several sources of exposure, viz., background radiation, internal exposure due to bone-seeking radionuclides (89Sr, 90Sr/90Y), internal exposure due to 137Cs/137mBa incorporated in soft tissues, and anthropogenic external exposure. The purpose of the present study was to evaluate the contribution of different sources of enamel exposure and to deduce external doses to be used for validation of the Techa River Dosimetry System (TRDS). Since various EPR methods were used, harmonization of these methods was critical. Overall, the mean cumulative background dose was found to be 63 ± 47 mGy; cumulative internal doses due to 89Sr and 90Sr/90Y were within the range of 10-110 mGy; cumulative internal doses due to 137Cs/137mBa depend on the distance from the site of releases and varied from 1 mGy up to 90 mGy; mean external doses were maximum for settlements located at the banks of stagnant reservoirs (~500 mGy); in contrast, external doses for settlements located along the free-flowing river stream did not exceed 160 mGy and decreased downstream with increasing distance from the site of release. External enamel doses calculated using the TRDS code and derived from the EPR measurements were found to be in good agreement.
Collapse
Affiliation(s)
- E A Shishkina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076.
| | - A Yu Volchkova
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - Y S Timofeev
- Southern Urals State University, 76, Lenin Av., Chelyabinsk, Russia, 454080
| | - P Fattibene
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - A Wieser
- German Research Centre for Environmental Health, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - D V Ivanov
- M.N. Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, 18 S. Kovalevskaya Street, Ekaterinburg, Russia, 620990
- Ural Federal University, 19 Mira Str, Yekaterinburg, Russia, 620002
| | - V A Krivoschapov
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - V I Zalyapin
- Southern Urals State University, 76, Lenin Av., Chelyabinsk, Russia, 454080
| | - S Della Monaca
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - V De Coste
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - M O Degteva
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - L R Anspaugh
- University of Utah, 201 Presidents Circle, Salt Lake City, UT, 84112, USA
| |
Collapse
|
18
|
Shishkina EA, Pryakhin EA, Popova IY, Osipov DI, Tikhova Y, Andreyev SS, Shaposhnikova IA, Egoreichenkov EA, Styazhkina EV, Deryabina LV, Tryapitsina GA, Melnikov V, Rudolfsen G, Teien HC, Sneve MK, Akleyev AV. Evaluation of distribution coefficients and concentration ratios of (90)Sr and (137)Cs in the Techa River and the Miass River. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 158-159:148-163. [PMID: 27105147 DOI: 10.1016/j.jenvrad.2016.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 06/05/2023]
Abstract
Empirical data on the behavior of radionuclides in aquatic ecosystems are needed for radioecological modeling, which is commonly used for predicting transfer of radionuclides, estimating doses, and assessing possible adverse effects on species and communities. Preliminary studies of radioecological parameters including distribution coefficients and concentration ratios, for (90)Sr and (137)Cs were not in full agreement with the default values used in the ERICA Tool and the RESRAD BIOTA codes. The unique radiation situation in the Techa River, which was contaminated by long-lived radionuclides ((90)Sr and (137)Cs) in the middle of the last century allows improved knowledge about these parameters for river systems. Therefore, the study was focused on the evaluation of radioecological parameters (distribution coefficients and concentration ratios for (90)Sr and (137)Cs) for the Techa River and the Miass River, which is assumed as a comparison waterbody. To achieve the aim the current contamination of biotic and abiotic components of the river ecosystems was studied; distribution coefficients for (90)Sr and (137)Cs were calculated; concentration ratios of (90)Sr and (137)Cs for three fish species (roach, perch and pike), gastropods and filamentous algae were evaluated. Study results were then compared with default values available for use in the well-known computer codes ERICA Tool and RESRAD BIOTA (when site-specific data are not available). We show that the concentration ratios of (137)Cs in whole fish bodies depend on the predominant type of nutrition (carnivores and phytophagous). The results presented here are useful in the context of improving of tools for assessing concentrations of radionuclides in biota, which could rely on a wider range of ecosystem information compared with the process limited the current versions of ERICA and RESRAD codes. Further, the concentration ratios of (90)Sr are species-specific and strongly dependent on Ca(2+) concentration in water. The universal characteristic allows us to combine the data of fish caught in the water with different mineralization by multiplying the concentration of Ca(2+). The concentration ratios for fishes were well-fitted by Generalized Logistic Distribution function (GLD). In conclusion, the GLD can be used for probabilistic modeling of the concentration ratios in freshwater fishes to improve the confidence in the modeling results. This is important in the context of risk assessment and regulatory.
Collapse
Affiliation(s)
- E A Shishkina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia.
| | - E A Pryakhin
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - I Ya Popova
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - D I Osipov
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - Yu Tikhova
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - S S Andreyev
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - I A Shaposhnikova
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - E A Egoreichenkov
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia; Chelyabinsk State University, Chelyabinsk, Russia
| | - E V Styazhkina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - L V Deryabina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - G A Tryapitsina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia; Chelyabinsk State University, Chelyabinsk, Russia
| | - V Melnikov
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia
| | - G Rudolfsen
- Norwegian Radiation Protection Authority, Oslo, Norway; University of Tromsø, Tromsø, Norway
| | - H-C Teien
- Norwegian University of Life Sciences (UMB), Center of Excellence in Environmental Radioactivity (CERAD), Ås, Norway
| | - M K Sneve
- Norwegian Radiation Protection Authority, Oslo, Norway
| | - A V Akleyev
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076 Chelyabinsk, Russia; Chelyabinsk State University, Chelyabinsk, Russia
| |
Collapse
|
19
|
Pryakhin EA, Mokrov YG, Tryapitsina GA, Ivanov IA, Osipov DI, Atamanyuk NI, Deryabina LV, Shaposhnikova IA, Shishkina EA, Obvintseva NA, Egoreichenkov EA, Styazhkina EV, Osipova OF, Mogilnikova NI, Andreev SS, Tarasov OV, Geras'kin SA, Trapeznikov AV, Akleyev AV. Characterization of biocenoses in the storage reservoirs of liquid radioactive wastes of Mayak PA. Initial descriptive report. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 151 Pt 2:449-460. [PMID: 26094572 DOI: 10.1016/j.jenvrad.2015.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/17/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
As a result of operation of the Mayak Production Association (Mayak PA), Chelyabinsk Oblast, Russia, an enterprise for production and separation of weapon-grade plutonium in the Soviet Union, ecosystems of a number of water bodies have been radioactively contaminated. The article presents information about the current state of ecosystems of 6 special industrial storage reservoirs of liquid radioactive waste from Mayak PA: reservoirs R-3, R-4, R-9, R-10, R-11 and R-17. At present the excess of the radionuclide content in the water of the studied reservoirs and comparison reservoirs (Shershnyovskoye and Beloyarskoye reservoirs) is 9 orders of magnitude for (90)Sr and (137)Cs, and 6 orders of magnitude for alpha-emitting radionuclides. According to the level of radioactive contamination, the reservoirs of the Mayak PA could be arranged in the ascending order as follows: R-11, R-10, R-4, R-3, R-17 and R-9. In 2007-2012 research of the status of the biocenoses of these reservoirs in terms of phytoplankton, zooplankton, bacterioplankton, zoobenthos, aquatic plants, ichthyofauna, avifauna parameters was performed. The conducted studies revealed decrease in species diversity in reservoirs with the highest levels of radioactive and chemical contamination. This article is an initial descriptive report on the status of the biocenoses of radioactively contaminated reservoirs of the Mayak PA, and is the first article in a series of publications devoted to the studies of the reaction of biocenoses of the fresh-water reservoirs of the Mayak PA to a combination of natural and man-made factors, including chronic radiation exposure.
Collapse
Affiliation(s)
- E A Pryakhin
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | | | - G A Tryapitsina
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia; Chelyabinsk State University, Chelyabinsk, Russia
| | - I A Ivanov
- Ozersk Institute of Technology NRNU MEPhI, Ozersk, Russia
| | - D I Osipov
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - N I Atamanyuk
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | | | | | - E A Shishkina
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - N A Obvintseva
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | | | - E V Styazhkina
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - O F Osipova
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - N I Mogilnikova
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - S S Andreev
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | | | - S A Geras'kin
- Russian Institute of Agricultural Radiobiology and Agricultural Ecology, Obninsk, Russia
| | - A V Trapeznikov
- Institute of Plant and Animal Ecology UrB RAS, Yekaterinburg, Russia
| | - A V Akleyev
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia; Chelyabinsk State University, Chelyabinsk, Russia
| |
Collapse
|
20
|
Rühm W, Woloschak GE, Shore RE, Azizova TV, Grosche B, Niwa O, Akiba S, Ono T, Suzuki K, Iwasaki T, Ban N, Kai M, Clement CH, Bouffler S, Toma H, Hamada N. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:379-401. [PMID: 26343037 DOI: 10.1007/s00411-015-0613-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/18/2015] [Indexed: 05/21/2023]
Abstract
The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection.
Collapse
Affiliation(s)
- Werner Rühm
- Institute of Radiation Protection, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Gayle E Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy E Shore
- Radiation Effects Research Foundation (RERF), 5-2 Hijiyama Park, Minami-ku, Hiroshima City, 732-0815, Japan
| | - Tamara V Azizova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, Russian Federation, 456780
| | - Bernd Grosche
- Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, 85764, Oberschleissheim, Germany
| | - Ohtsura Niwa
- Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
| | - Suminori Akiba
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Japan
| | - Tetsuya Ono
- Institute for Environmental Sciences, 1-7 Ienomae, Rokkasho, Aomori-ken, 039-3212, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Tokyo, 201-8511, Japan
| | - Nobuhiko Ban
- Faculty of Nursing, Tokyo Healthcare University, 2-5-1 Higashigaoka, Meguro, Tokyo, 152-8558, Japan
| | - Michiaki Kai
- Department of Environmental Health Science, Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita, 840-1201, Japan
| | - Christopher H Clement
- International Commission on Radiological Protection (ICRP), PO Box 1046, Station B, 280 Slater Street, Ottawa, ON, K1P 5S9, Canada
| | - Simon Bouffler
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England (PHE), Chilton, Didcot, OX11 ORQ, UK
| | - Hideki Toma
- JAPAN NUS Co., Ltd. (JANUS), 7-5-25 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Nobuyuki Hamada
- International Commission on Radiological Protection (ICRP), PO Box 1046, Station B, 280 Slater Street, Ottawa, ON, K1P 5S9, Canada.
| |
Collapse
|
21
|
Shagina NB, Tolstykh EI, Fell TP, Smith TJ, Harrison JD, Degteva MO. Strontium biokinetic model for the lactating woman and transfer to breast milk: application to Techa River studies. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2015; 35:677-694. [PMID: 26295519 DOI: 10.1088/0952-4746/35/3/677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper presents a biokinetic model for strontium metabolism in the lactating woman and transfer to breast milk for members of Techa River communities exposed as a result of discharges of liquid radioactive wastes from the Mayak plutonium production facility (Russia) in the early 1950s. This model was based on that developed for the International Commission for Radiological Protection with modifications to account for population specific features of breastfeeding and maternal bone mineral metabolism. The model is based on a biokinetic model for the adult female with allowances made for changes in mineral metabolism during periods of exclusive and partial breast-feeding. The model for females of all ages was developed earlier from extensive data on (90)Sr-body measurements for Techa Riverside residents. Measurements of (90)Sr concentrations in the maternal skeleton and breast milk obtained in the1960s during monitoring of global fallout in the Southern Urals region were used for evaluation of strontium transfer to breast and breast milk. The model was validated with independent data from studies of global fallout in Canada and measurements of (90)Sr body-burden in women living in the Techa River villages who were breastfeeding during maximum (90)Sr-dietary intakes. The model will be used in evaluations of the intake of strontium radioisotopes in breast milk by children born in Techa River villages during the radioactive releases and quantification of (90)Sr retention in the maternal skeleton.
Collapse
Affiliation(s)
- N B Shagina
- Urals Research Center for Radiation Medicine, Chelyabinsk, 454076, Russia
| | | | | | | | | | | |
Collapse
|
22
|
Shagina NB, Fell TP, Tolstykh EI, Harrison JD, Degteva MO. Strontium biokinetic model for the pregnant woman and fetus: application to Techa River studies. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2015; 35:659-676. [PMID: 26295413 DOI: 10.1088/0952-4746/35/3/659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A biokinetic model for strontium (Sr) for the pregnant woman and fetus (Sr-PWF model) has been developed for use in the quantification of doses from internal radiation exposures following maternal ingestion of Sr radioisotopes before or during pregnancy. The model relates in particular to the population of the Techa River villages exposed to significant amounts of ingested Sr radioisotopes as a result of releases of liquid radioactive wastes from the Mayak plutonium production facility (Russia) in the early 1950s. The biokinetic model for Sr metabolism in the pregnant woman was based on a biokinetic model for the adult female modified to account for changes in mineral metabolism during pregnancy. The model for non-pregnant females of all ages was developed earlier with the use of extensive data on (90)Sr-body measurements in the Techa Riverside residents. To determine changes in model parameter values to take account of changing mineral metabolism during pregnancy, data from longitudinal studies of calcium homeostasis during human pregnancy were analysed and applied. Exchanges between maternal and fetal circulations and retention in fetal skeleton and soft tissues were modelled as adaptations of previously published models, taking account of data on Sr and calcium (Ca) metabolism obtained in Russia (Southern Urals and Moscow) relating to dietary calcium intakes, calcium contents in maternal and fetal skeletons and strontium transfer to the fetus. The model was validated using independent data on (90)Sr in the fetal skeleton from global fallout as well as unique data on (90)Sr-body burden in mothers and their still-born children for Techa River residents. While the Sr-PWF model has been developed specifically for ingestion of Sr isotopes by Techa River residents, it is also more widely applicable to maternal ingestion of Sr radioisotopes at different times before and during pregnancy and different ages of pregnant women in a general population.
Collapse
Affiliation(s)
- N B Shagina
- Urals Research Centre for Radiation Medicine, Chelyabinsk, 454076 Russia
| | | | | | | | | |
Collapse
|
23
|
Davis FG, Krestinina LY, Preston D, Epifanova S, Degteva M, Akleyev AV. Solid Cancer Incidence in the Techa River Incidence Cohort: 1956–2007. Radiat Res 2015; 184:56-65. [DOI: 10.1667/rr14023.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Maynard MR, Shagina NB, Tolstykh EI, Degteva MO, Fell TP, Bolch WE. Fetal organ dosimetry for the Techa River and Ozyorsk offspring cohorts, part 1: a Urals-based series of fetal computational phantoms. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:37-46. [PMID: 25421863 DOI: 10.1007/s00411-014-0571-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
The European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) project aims to improve understanding of cancer risks associated with chronic in utero radiation exposure. A comprehensive series of hybrid computational fetal phantoms was previously developed at the University of Florida in order to provide the SOLO project with the capability of computationally simulating and quantifying radiation exposures to individual fetal bones and soft tissue organs. To improve harmonization between the SOLO fetal biokinetic models and the computational phantoms, a subset of those phantoms was systematically modified to create a novel series of phantoms matching anatomical data representing Russian fetal biometry in the Southern Urals. Using previously established modeling techniques, eight computational Urals-based phantoms aged 8, 12, 18, 22, 26, 30, 34, and 38 weeks post-conception were constructed to match appropriate age-dependent femur lengths, biparietal diameters, individual bone masses and whole-body masses. Bone and soft tissue organ mass differences between the common ages of the subset of UF phantom series and the Urals-based phantom series illustrated the need for improved understanding of fetal bone densities as a critical parameter of computational phantom development. In anticipation for SOLO radiation dosimetry studies involving the developing fetus and pregnant female, the completed phantom series was successfully converted to a cuboidal voxel format easily interpreted by radiation transport software.
Collapse
Affiliation(s)
- Matthew R Maynard
- Advanced Laboratory for Radiation Dosimetry Studies (ALRADS), J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-8300, USA
| | - Natalia B Shagina
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia
| | - Evgenia I Tolstykh
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia
| | - Marina O Degteva
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia
| | - Tim P Fell
- Centre for Radiation, Chemical and Environmental Health, Public Health England, Didcot, Chilton, Oxon, OX11 0RQ, UK
| | - Wesley E Bolch
- Advanced Laboratory for Radiation Dosimetry Studies (ALRADS), J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611-8300, USA.
| |
Collapse
|
25
|
Shagina NB, Tolstykh EI, Degteva MO, Anspaugh LR, Napier BA. Age and gender specific biokinetic model for strontium in humans. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2015; 35:87-127. [PMID: 25574605 DOI: 10.1088/0952-4746/35/1/87] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitations for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on (90)Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic model for strontium (Sr-AGe model). The Sr-AGe model has a similar structure to the ICRP model for the alkaline earth elements. The following parameters were mainly re-evaluated: gastrointestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0-80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general populations exposed to ingested strontium radioisotopes.
Collapse
Affiliation(s)
- N B Shagina
- Urals Research Center for Radiation Medicine, Chelyabinsk 454076, Russia
| | | | | | | | | |
Collapse
|
26
|
Tolstykh EI, Shagina NB, Degteva MO. Increase in accumulation of strontium-90 in the maternal skeleton during pregnancy and lactation: analysis of the Techa River data. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:551-557. [PMID: 24861824 DOI: 10.1007/s00411-014-0548-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
The unique contamination of the Techa River (Southern Urals, Russia) in the 1950s by long-lived (90)Sr allows investigation of the accumulation of bone-seeking elements in humans. This study is based on information compiled at the Urals Research Center for Radiation Medicine (Chelyabinsk, Russia) over a long period of time. It includes the results of in vivo measurements of (90)Sr-body burden with a whole body counter (WBC), data on personal medical examinations and residence and family histories. Data on 185 women from two Techa riverside villages Muslyumovo and Brodokalmak were selected. The settlements differ in terms of (90)Sr diet intake (higher in Muslyumovo than in Brodokalmak) and ethnicity (residents were mainly Slavs in Brodokalmak and Turkic in Muslyumovo). Results of a total of 555 WBC measurements performed in 1974-1997 were available for the women studied; maximum measured values reached 40 kBq/body. The women from each settlement were subdivided into three groups according to their childbearing history: pregnancy and lactation occurred (1) during the period of maximal (90)Sr intake (1950-1951); (2) after the period of maximal intake and (3) before this period or women who were childless. An increase was found in accumulation of (90)Sr in maternal skeleton during pregnancy and lactation (group 1) by a factor of 1.5-2 in comparison with non-pregnant, non-lactating women. This result was found in both Muslyumovo and Brodokalmak samples. An increase in accumulation of toxic elements in pregnant/lactating women is associated with increased radiation/toxic doses and risk for the women's health.
Collapse
Affiliation(s)
- Evgenia I Tolstykh
- Urals Research Center for Radiation Medicine, 68-A, Vorovsky Street, Chelyabinsk, 454076, Russia,
| | | | | |
Collapse
|
27
|
Vozilova AV, Shagina NB, Degteva MO, Moquet J, Ainsbury EA, Darroudi F. FISH analysis of translocations induced by chronic exposure to Sr radioisotopes: second set of analysis of the Techa River Cohort. RADIATION PROTECTION DOSIMETRY 2014; 159:34-37. [PMID: 24743760 DOI: 10.1093/rpd/ncu131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fluorescent in situ hybridisation analysis of stable translocations was performed for 26 residents living along the Techa River (Russia), who were predominantly (95%) exposed to ingested strontium radioisotopes ((89)Sr and (90)Sr) resulting in exposure of their red bone marrow (RBM). Analysis was conducted at the Urals Research Center for Radiation Medicine, Public Health England and Leiden University Medical Center. Each laboratory scored 1000 cells per donor, which resulted in ∼1000 genome equivalents (GE) per donor. The age-dependent spontaneous level of translocations for each donor was evaluated on the basis of data published by Sigurdson et al. (International study of factors affecting human chromosome. Mutat. Res. 2008;652: :112-121). Reconstruction of doses was performed with the 'Techa River Dosimetry System' developed in 2009. In the studied donors, the range of individual cumulated RBM dose was from 0.3 to 3.7 Gy. Analysis of the yield of stable translocations dependent on the individual RBM dose from (89,90)Sr showed a linear dose-response relationship of 0.007 ± 0.002 translocation/GE cell/Gy (R = 0.61, p = 0.001). This set of results was in a good agreement with the previous data reported for 18 donors by Vozilova et al. (Preliminary FISH-based assessment of external dose for residents exposed on the Techa River.
Collapse
Affiliation(s)
- Alexandra V Vozilova
- Urals Research Center for Radiation Medicine (URCRM), Vorovsky str. 68A, Chelyabinsk 454076, Russia
| | - Natalia B Shagina
- Urals Research Center for Radiation Medicine (URCRM), Vorovsky str. 68A, Chelyabinsk 454076, Russia
| | - Marina O Degteva
- Urals Research Center for Radiation Medicine (URCRM), Vorovsky str. 68A, Chelyabinsk 454076, Russia
| | - Jayne Moquet
- Public Health England (PHE), Chilton, Didcot, Oxon OX11 ORQ, UK
| | | | - Firouz Darroudi
- Department of Toxicogenetics, Leiden University Medical Center (LUMC), Einthovenweg 20, Leiden 2300RC, The Netherlands
| |
Collapse
|
28
|
Ainsbury EA, Moquet J, Rothkamm K, Darroudi F, Vozilova A, Degteva M, Azizova TV, Lloyd DC, Harrison J. What radiation dose does the FISH translocation assay measure in cases of incorporated radionuclides for the Southern Urals populations? RADIATION PROTECTION DOSIMETRY 2014; 159:26-33. [PMID: 24736296 DOI: 10.1093/rpd/ncu118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The fluorescence in situ hybridisation (FISH) technique is now well established for retrospective dosimetry in cases of external radiation exposure that occurred many years ago. However, the question remains as to whether FISH provides valid estimates of cumulative red bone marrow radiation doses in cases of incorporation of radionuclides or combined external and internal exposures. This question has arisen in connection with the interpretation of results of dose assessments for epidemiological studies of plutonium workers at the Russian Mayak plant and of members of the public exposed to strontium radioisotopes and external radiation as a result of discharges from Mayak to the Techa River. Exposures to penetrating external radiation result in fairly uniform irradiation of body tissues, and hence similar doses to all tissues, for which FISH dosimetry can provide a reliable measure of this whole body dose. However, intakes of radionuclides into the body by inhalation or ingestion may result in retention in specific organs and tissues, so that the distribution of dose is highly heterogeneous. For radionuclides emitting short-range radiations (e.g. alpha particles), this heterogeneity can apply to dose delivery within tissues and between cells within tissues. In this paper, an attempt is made to address the question of what FISH measures in such circumstances by considering evidence regarding the origin and lifetime dynamics of lymphocyte subsets in the human body in relation to the localised delivery of dose from the internal emitters (90)Sr and (239)Pu, which are of particular interest for the Southern Urals Mayak and Techa River populations, and for which most evidence is available in these populations. It is concluded that the FISH translocation assay can be usefully applied for detecting internal and combined external gamma and internal doses from internally deposited (90)Sr, albeit with fairly large uncertainties. The same may be true of (239)Pu, as well as other radionuclides, although much work remains to be done to establish dose-response relationships.
Collapse
Affiliation(s)
| | - Jayne Moquet
- Public Health England (PHE) CRCE, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| | - Kai Rothkamm
- Public Health England (PHE) CRCE, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| | - Firouz Darroudi
- Department of Toxicogenetics, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Alexandra Vozilova
- Urals Research Center for Radiation Medicine (URCRM), Chelyabinsk, Russian Federation
| | - Marina Degteva
- Urals Research Center for Radiation Medicine (URCRM), Chelyabinsk, Russian Federation
| | - Tamara V Azizova
- Southern Urals Biophysics Institute (SUBI), Chelyabinsk, Russian Federation
| | - David C Lloyd
- Public Health England (PHE) CRCE, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| | - John Harrison
- Public Health England (PHE) CRCE, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| |
Collapse
|
29
|
Wieser A, Vasilenko E, Aladova E, Fattibene P, Semiochkina N, Smetanin M. Electron paramagnetic resonance measurements of absorbed dose in teeth from citizens of Ozyorsk. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:321-333. [PMID: 24604722 PMCID: PMC3996272 DOI: 10.1007/s00411-014-0527-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/21/2014] [Indexed: 06/03/2023]
Abstract
In 1945, within the frame of the Uranium Project for the production of nuclear weapons, the Mayak nuclear facilities were constructed at the Lake Irtyash in the Southern Urals, Russia. The nuclear workers of the Mayak Production Association (MPA), who lived in the city of Ozyorsk, are the focus of epidemiological studies for the assessment of health risks due to protracted exposure to ionising radiation. Electron paramagnetic resonance measurements of absorbed dose in tooth enamel have already been used in the past, in an effort to validate occupational external doses that were evaluated in the Mayak Worker Dosimetry System. In the present study, 229 teeth of Ozyorsk citizens not employed at MPA were investigated for the assessment of external background exposure in Ozyorsk. The annually absorbed dose in tooth enamel from natural background radiation was estimated to be (0.7 ± 0.3) mGy. For citizens living in Ozyorsk during the time of routine noble gas releases of the MPA, which peaked in 1953, the average excess absorbed dose in enamel above natural background was (36 ± 29) mGy, which is consistent with the gamma dose obtained by model calculations. In addition, there were indications of possible accidental gaseous MPA releases that affected the population of Ozyorsk, during the early and late MPA operation periods, before 1951 and after 1960.
Collapse
Affiliation(s)
- A Wieser
- Institute of Radiation Protection, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764, Neuherberg, Germany,
| | | | | | | | | | | |
Collapse
|
30
|
Shishkina EA, Tolstykh EI, Verdi E, Volchkova AY, Veronese I, El-Faramawy NA, Göksu HY, Degteva MO. Concentrations of 90Sr in the tooth tissues 60 years after intake: results of TL measurements and applications for Techa River dosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:159-173. [PMID: 24292426 DOI: 10.1007/s00411-013-0501-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/09/2013] [Indexed: 06/02/2023]
Abstract
This article focuses on the study of (90)Sr in the tooth tissues of Techa riverside residents 60 years after intake. The Techa River was contaminated by radioactive wastes in the 1950s. Contamination of the river system, including water, bottom sediment, floodplain soil, and grass, depended on the distance from the source of releases. Therefore, the average (90)Sr intake was different in different settlements located downstream the river. An additional factor influencing (90)Sr accumulation in the teeth is the rate of tissue mineralization at the time of intake which depended on the donor's age at the time of releases. Measurements of (90)Sr concentration in various dental tissues (enamel, crown, and root dentin) of 166 teeth were performed about 60 years after the main intake using the method of thermoluminescence passive beta detection. The paper presents the current levels of tooth tissue contamination, and the tooth-to-tooth variability of (90)Sr concentration in tooth tissues was assessed for the tissues which were matured at the time of massive liquid radioactive waste releases into the Techa River. A model describing the expected levels of (90)Sr in matured dental tissues depending on age and intake has been elaborated for the population under study. The results obtained will be used for calculation of internal dose in enamel and for interpretation of tooth doses measured by means of the electron paramagnetic resonance method, among the population of the Techa River region.
Collapse
Affiliation(s)
- E A Shishkina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076, Chelyabinsk, Russia,
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Napier BA. Joint U.S./Russian studies of population exposures resulting from nuclear production activities in the southern Urals. HEALTH PHYSICS 2014; 106:294-304. [PMID: 24378505 DOI: 10.1097/hp.0000000000000033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Beginning in 1948, the Soviet Union initiated a program for production of nuclear materials for a weapons program. The first facility for production of plutonium was constructed in the central portion of the country east of the southern Ural Mountains, about halfway between the major industrial cities of Ekaterinburg and Chelyabinsk. The facility, now known as the Mayak Production Association, and its associated town, now known as Ozersk, were built to irradiate uranium in reactors, separate the resulting plutonium in reprocessing plants, and prepare plutonium metal in the metallurgical plant. The rush to production, coupled with inexperience in handling radioactive materials, led to large radiation exposures, not only to the workers in the facilities, but also to the surrounding public. Fuel processing started with no controls on releases, and fuel dissolution and accidents in reactors resulted in release of ~37 PBq of I between 1948 and 1967. Designed disposals of low- and intermediate-level liquid radioactive wastes, and accidental releases via cooling water from tank farms of high-level liquid radioactive wastes into the small Techa River, caused significant contamination and exposures to residents of numerous small riverside villages downstream of the site. Discovery of the magnitude of the aquatic contamination in late 1951 caused revisions to the waste handling regimes, but not before over 200 PBq of radionuclides (with large contributions of Sr and Cs) were released. Liquid wastes were diverted to tiny Lake Karachay (which today holds over 4 EBq); cooling water was stopped in the tank farms. In 1957, one of the tanks in the tank farm overheated and exploded; over 70 PBq, disproportionately Sr, was blown over a large area to the northeast of the site. A large area was contaminated and many villages evacuated. This area today is known as the East Urals Radioactive Trace (EURT). Each of these releases was significant; together they have created a unique group of cohorts with their chronic, low dose-rate radiation exposure. The 26,000 workers at Mayak were highly exposed to external gamma and inhaled plutonium. A cohort of individuals raised as children in Ozersk is under evaluation for their exposures to radioiodine. The Techa River Cohort consists of over 30,000 people who were born before the start of exposure in 1949 and lived along the Techa River. The Techa River Offspring Cohort consists of ~21,000 persons born to one or more exposed parents of this group, many who also lived along the contaminated river. The EURT Cohort consists of ~18,000 people who were evacuated from the EURT soon after the 1957 explosion and another 8,000 who remained. These groups together are the focus of dose reconstruction and epidemiological studies funded by the United States, Russia, and the European Union to address the question, "Are doses delivered at low dose rates as effective in producing health effects as the same doses delivered at high dose rates?"Introduction of Joint U.S. and Russian Studies of Population Exposures (Video 2:13, http://links.lww.com/HP/A28).
Collapse
Affiliation(s)
- Bruce A Napier
- *Environmental Assessment Group, Earth Systems Science Division, Pacific Northwest National Laboratory, P.O. Box 999, MS K3-54, Richland, WA 99352
| |
Collapse
|
32
|
Krestinina LY, Davis FG, Schonfeld S, Preston DL, Degteva M, Epifanova S, Akleyev AV. Leukaemia incidence in the Techa River Cohort: 1953-2007. Br J Cancer 2013; 109:2886-93. [PMID: 24129230 PMCID: PMC3844904 DOI: 10.1038/bjc.2013.614] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/31/2013] [Accepted: 09/16/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Little is known about leukaemia risk following chronic radiation exposures at low dose rates. The Techa River Cohort of individuals residing in riverside villages between 1950 and 1961 when releases from the Mayak plutonium production complex contaminated the river allows quantification of leukaemia risks associated with chronic low-dose-rate internal and external exposures. METHODS Excess relative risk models described the dose-response relationship between radiation dose on the basis of updated dose estimates and the incidence of haematological malignancies ascertained between 1953 and 2007 among 28 223 cohort members, adjusted for attained age, sex, and other factors. RESULTS Almost half of the 72 leukaemia cases (excluding chronic lymphocytic leukaemia (CLL)) were estimated to be associated with radiation exposure. These data are consistent with a linear dose response with no evidence of modification. The excess relative risk estimate was 0.22 per 100 mGy. There was no evidence of significant dose effect for CLL or other haematopoietic malignancies. CONCLUSION These analyses demonstrate that radiation exposures, similar to those received by populations exposed as a consequence of nuclear accidents, are associated with long-term dose-related increases in leukaemia risks. Using updated dose estimates, the leukaemia risk per unit dose is about half of that based on previous dosimetry.
Collapse
Affiliation(s)
- L Y Krestinina
- Urals Research Center for Radiation Medicine, Epidemiology Laboratory, 68-a, Vorovsky Street, Chelyabinsk 454076, Russia
| | - F G Davis
- University of Illinois at Chicago, School of Public Health, Division of Epidemiology/Biostatistics, 1603 West Taylor Street, Chicago, IL 60612, USA
| | - S Schonfeld
- International Agency for Research on Cancer, Section of Environment and Radiation, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
- National Cancer Institute, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, 6120 Executive Boulevard, Bethesda, MD 20892, USA
| | - D L Preston
- Hirosoft International Company, 1335 H Street, Eureka, CA 95501, USA
| | - M Degteva
- Urals Research Center for Radiation Medicine, Epidemiology Laboratory, 68-a, Vorovsky Street, Chelyabinsk 454076, Russia
| | - S Epifanova
- Urals Research Center for Radiation Medicine, Epidemiology Laboratory, 68-a, Vorovsky Street, Chelyabinsk 454076, Russia
| | - A V Akleyev
- Urals Research Center for Radiation Medicine, Epidemiology Laboratory, 68-a, Vorovsky Street, Chelyabinsk 454076, Russia
| |
Collapse
|
33
|
Vozilova AV, Shagina NB, Degteva MO, Akleyev AV. Chronic radioisotope effects on residents of the Techa River (Russia) region: cytogenetic analysis more than 50 years after onset of exposure. Mutat Res 2013; 756:115-8. [PMID: 23751212 DOI: 10.1016/j.mrgentox.2013.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
This paper presents the results of a cytogenetic study conducted among residents of the Techa Riverside communities (Southern Urals, Russia) exposed in the early 1950s as a result of releases of liquid radioactive wastes from the Mayak plutonium-production facility. The study was performed 50-60 years after the beginning of the exposure for those individuals who were predominantly exposed to strontium radioisotopes ((89,90)Sr) through drinking contaminated river water and consumption of local foodstuff. Standard cytogenetic methods were used for evaluation of the frequency of unstable chromosome aberrations in exposed persons as well as in persons from the control group who were of similar age and sex, living in similar socio-economic conditions in non-contaminated territories of the Southern Urals. The exposure doses were reconstructed for the studied donors using the Techa River Dosimetry System developed in 2009. The doses of internal exposure from ingested radionuclides were evaluated using individual or family in vivo measurements of (90)Sr-body burden. Individual cumulative absorbed doses in red bone marrow (RBM) in the studied persons varied in the range of 0.01-4.4Gy. A significantly higher level of unstable chromosome aberrations (UCA) in T-cells was observed in the group of exposed individuals as compared to control group. The highest UCA level was detected in the individuals who were suspected of having chronic radiation syndrome.
Collapse
Affiliation(s)
- A V Vozilova
- Clinical Physiology Laboratory of the Urals Research Center for Radiation Medicine of the Federal Medical-Biological Agency of Russia, 68-A Vorovsky st., Chelyabinsk 454076, Russian Federation.
| | | | | | | |
Collapse
|
34
|
Tolstykh EI, Degteva MO, Peremyslova LM, Shagina NB, Vorobiova MI, Anspaugh LR, Napier BA. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: 137Cs. HEALTH PHYSICS 2013; 104:481-498. [PMID: 23532077 DOI: 10.1097/hp.0b013e318285bb7a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Radioactive contamination of the Techa River (Southern Urals, Russia) occurred from 1949-1956 due to routine and accidental releases of liquid radioactive wastes from the Mayak Production Association. The long-lived radionuclides in the releases were Sr and Cs. Contamination of the components of the Techa River system resulted in chronic external and internal exposure of about 30,000 residents of riverside villages. Data on radionuclide intake with diet are used to estimate internal dose in the Techa River Dosimetry System (TRDS), which was elaborated for the assessment of radiogenic risk for Techa Riverside residents. The Sr intake function was recently improved, taking into account the recently available archival data on radionuclide releases and in-depth analysis of the extensive data on Sr measurements in Techa Riverside residents. The main purpose of this paper is to evaluate the dietary intake of Cs by Techa Riverside residents. The Cs intake with river water used for drinking was reconstructed on the basis of the Sr intake-function and the concentration ratio Cs-to-Sr in river water. Intake via Cs transfer from floodplain soil to grass and cows' milk was evaluated for the first time. As a result, the maximal Cs intake level was indicated near the site of releases in upper-Techa River settlements (8,000-9,000 kBq). For villages located on the lower Techa River, the Cs intake was significantly less (down to 300 kBq). Cows' milk was the main source of Cs in diet in the upper-Techa River region.
Collapse
Affiliation(s)
- E I Tolstykh
- Urals Research Center for Radiation Medicine, Vorovskogo 68 a, 454076 Chelyabinsk, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
35
|
Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, Akleyev A. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:47-57. [PMID: 23124827 DOI: 10.1007/s00411-012-0438-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 10/21/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present study was to analyze the mortality from circulatory diseases for about 30,000 members of the Techa River cohort over the period 1950-2003, and to investigate how these rates depend on radiation doses. This population received both external and internal exposures from (90)Sr, (89)Sr, (137)Cs, and other uranium fission products as a result of waterborne releases from the Mayak nuclear facility in the Southern Urals region of the Russian Federation. The analysis included individualized estimates of the total (external plus internal) absorbed dose in muscle calculated based on the Techa River Dosimetry System 2009. The cohort-average dose to muscle tissue was 35 mGy, and the maximum dose was 510 mGy. Between 1950 and 2003, 7,595 deaths from circulatory diseases were registered among cohort members with 901,563 person years at risk. Mortality rates in the cohort were analyzed using a simple parametric excess relative risk (ERR) model. For all circulatory diseases, the estimated excess relative risk per 100 mGy with a 15-year lag period was 3.6 % with a 95 % confidence interval of 0.2-7.5 %, and for ischemic heart disease it was 5.6 % with a 95 % confidence interval of 0.1-11.9 %. A linear ERR model provided the best fit. Analyses with a lag period shorter than 15 years from the beginning of exposure did not reveal any significant risk of mortality from either all circulatory diseases or ischemic heart disease. There was no evidence of an increased mortality risk from cerebrovascular disease (p > 0.5). These results should be regarded as preliminary, since they will be updated after adjustment for smoking and alcohol consumption.
Collapse
|
36
|
Schonfeld SJ, Krestinina LY, Epifanova S, Degteva MO, Akleyev AV, Preston DL. Solid cancer mortality in the techa river cohort (1950-2007). Radiat Res 2013; 179:183-9. [PMID: 23289384 PMCID: PMC3613701 DOI: 10.1667/rr2932.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our understanding of cancer risk from ionizing radiation is largely based on studies of populations exposed at high dose and high dose rates. Less certain is the magnitude of cancer risk from protracted, low-dose and low-dose-rate radiation exposure. We estimated the dose-response relationship for solid cancer mortality in a cohort of 29,730 individuals who lived along the Techa River between 1950 and 1960. This population was exposed to both external γ radiation and internal (90)Sr, (137)Cs and other radionuclides after the release of radioactive waste into the river by the Mayak Radiochemical Plant. The analysis utilized the latest individualized doses from the Techa River Dosimetry System (TRDS) 2009. We estimated excess relative risks (ERRs) per Gy for solid cancer mortality using Poisson regression methods with 95% confidence intervals (CIs) and P values based on likelihood ratio tests. Between 1950 and 2007, there were 2,303 solid cancer deaths. The linear ERR/Gy = 0.61 (95%; CI 0.04-1.27), P = 0.03. It is estimated that approximately 2% (49.7) of solid cancers deaths were associated with the radiation exposure. Our results, based on 2,303 solid cancer deaths and more than 50 years of follow-up, support an increased risk of solid cancer mortality following protracted radiation exposure from the Techa River contamination. The wide confidence interval of our estimate reflects the challenges of quantifying and describing the shape of the dose-response relationship in the low dose range. Nevertheless, the risk estimates provide important information concerning health risks from whole-body radiation exposure that can occur from accidents that result in wide-scale environmental contamination.
Collapse
Affiliation(s)
- S J Schonfeld
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Shagina NB, Vorobiova MI, Degteva MO, Peremyslova LM, Shishkina EA, Anspaugh LR, Napier BA. Reconstruction of the contamination of the Techa River in 1949-1951 as a result of releases from the "Mayak" Production Association. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:349-366. [PMID: 22797860 DOI: 10.1007/s00411-012-0414-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/17/2012] [Indexed: 06/01/2023]
Abstract
More accurate reconstruction of the radioactive contamination of the Techa River system in 1949-1951 has been made on the basis of refined data on the amounts and the rate of discharge of radionuclides into the Techa River from the Mayak Production Association; this has led to the development of a modified Techa River model that describes the transport of radionuclides through the up-river ponds and along the Techa River and deposition of radionuclides in the river-bottom sediments and flooded areas. The refined Techa River source-term data define more precisely the time-dependent rates of release and radionuclide composition of the releases that occurred during 1949-1951. The Techa River model takes into account the time-dependent characteristics of the releases and considers (a) the transport of radionuclides adsorbed on solid particles originally contained in the discharges or originating in the up-river ponds as a result of stirring up of contaminated bottom sediments and (b) the transport of radionuclides in soluble form. The output of the Techa River model provides concentrations of all source-term radionuclides in the river water, bottom sediments, and floodplain soils at different distances from the site of radioactive releases for the period of major contamination in 1950-1951. The outputs of the model show good agreement with historical measurements of water and sediment contamination. In addition, the river-model output for (90)Sr concentration in the river water is harmonized with retrospective estimates derived from the measurements of (90)Sr in the residents of the Techa Riverside villages. Modeled contamination of the floodplain soils by (137)Cs is shown to be in agreement with the values reconstructed from late measurements of this radionuclide. Reconstructed estimates of the Techa River contamination are being used for the quantification of internal and external doses received by residents of the Techa Riverside communities.
Collapse
Affiliation(s)
- N B Shagina
- Urals Research Center for Radiation Medicine, 68a Vorovsky Street, 454076, Chelyabinsk, Russian Federation,
| | | | | | | | | | | | | |
Collapse
|
38
|
Vozilova AV, Shagina NB, Degteva MO, Edwards AA, Ainsbury EA, Moquet JE, Hone P, Lloyd DC, Fomina JN, Darroudi F. Preliminary FISH-Based Assessment of External Dose for Residents Exposed on the Techa River. Radiat Res 2012; 177:84-91. [DOI: 10.1667/rr2485.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|