1
|
Viteri-Dávila C, Morales-Jadán D, Creel A, Jop Vidal AG, Boldo XM, Rivera-Olivero IA, Bautista-Muñoz C, Alibayov B, Garcia-Bereguiain MÁ, Vidal JE. The Crisis of Macrolide Resistance in Pneumococci in Latin America. Am J Trop Med Hyg 2024; 111:756-764. [PMID: 39084209 PMCID: PMC11448541 DOI: 10.4269/ajtmh.23-0913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/24/2024] [Indexed: 08/02/2024] Open
Abstract
Macrolide antibiotics are recommended for the treatment of pneumococcal pneumonia and invasive pneumococcal disease (IPD). Prior to 2000, ∼10% of Streptococcus pneumoniae strains isolated from IPD cases in Latin American countries were resistant to macrolides. The mechanism of resistance to macrolides was associated mainly with the efflux pump known as the macrolide efflux genetic assembly, since most pneumococcal strains carried the mef(A/E) gene, whereas <6% strains carried both the methylase gene ermB and mef(A/E). In the first decade of this century, a significant increase in the prevalence of macrolide resistance was observed in pneumococcal strains in both Mexico and Peru. Approximately 30% of S. pneumoniae strains in these countries were already resistant to erythromycin, while the prevalence in Colombia, Argentina, and Brazil remained below 10%. During the last decade, we have been experiencing a worrisome increase in pneumococcal strains carrying resistance to macrolides, with a prevalence of up to 80% for resistance to erythromycin. The mechanism for disseminating macrolide resistance has evolved. Currently, more than 55% of invasive S. pneumoniae macrolide-resistant strains carry both the ermB and the mef(A/E)/mel genes. Lessons learned from the current macrolide resistance crisis in Latin America can inform interventions in other regions.
Collapse
Affiliation(s)
| | | | - Aidan Creel
- Summer Undergraduate Research Experience Program, School of Graduate Studies in the Health Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ana G. Jop Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xavier M. Boldo
- Research Center, Health Sciences Academic Division, Juarez Autonomous University of Tabasco, Villahermosa, Mexico
| | | | | | - Babek Alibayov
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Jorge E. Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
2
|
Gonzales BE, Mercado EH, Castillo-Tokumori F, Montero AE, Luna-Muschi A, Marcelo-Ragas M, Campos F, Chaparro E, Del Águila O, Castillo ME, Saenz A, Reyes I, Hernandez R, Ochoa TJ. Pneumococcal serotypes and antibiotic resistance in healthy carriage children after introduction of PCV13 in Lima, Peru. Vaccine 2023:S0264-410X(23)00592-3. [PMID: 37270366 DOI: 10.1016/j.vaccine.2023.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To determinate the frequency of Streptococcus pneumoniae nasopharyngeal carriers, serotypes and antimicrobial resistance in healthy children in Lima, Peru, post-PCV13 introduction and to compare the results with a similar study conducted between 2006 and 2008 before PCV7 introduction (pre-PCV7). METHODS A cross-sectional multicenter study was conducted between January 2018 and August 2019 in 1000 healthy children under two years of age. We use standard microbiological methods to determinate S. pneumoniae from nasopharyngeal swab, Kirby Bauer and minimum inhibitory concentration methods to determinate antimicrobial susceptibility and whole genomic sequencing to determinate pneumococcal serotypes. RESULTS The pneumococcal carriage rate was 20.8 % vs. 31.1 % in pre-PCV7 (p < 0.001). The most frequent serotypes were 15C, 19A and 6C (12.4 %, 10.9 % and 10.9 % respectively). The carriage of PCV13 serotypes after PCV13 introduction decreased from 59.1 % (before PCV7 introduction) to 18.7 % (p < 0.001). Penicillin resistance was 75.5 %, TMP/SMX 75.5 % and azithromycin 50.0 %, using disk diffusion. Penicillin resistance rates using MIC breakpoint for meningitis (MIC ≥ 0.12) increased from 60.4 % to 74.5 % (p = 0.001). CONCLUSION The introduction of PCV13 in the immunization program in Peru has decreased the pneumococcal nasopharyngeal carriage and the frequency of PCV13 serotypes; however, there has been an increase in non-PCV13 serotypes and antimicrobial resistance.
Collapse
Affiliation(s)
- Brayan E Gonzales
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru; Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru
| | - Erik H Mercado
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru; Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru
| | - Franco Castillo-Tokumori
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru; Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru
| | - Andrea E Montero
- Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru; Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Alessandra Luna-Muschi
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru; Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru
| | - Madhelli Marcelo-Ragas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru; Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru
| | - Francisco Campos
- Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru; Departamento de Pediatría, Hospital Nacional Docente Madre-Niño San Bartolomé, Lima, Peru
| | - Eduardo Chaparro
- Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru; Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Pediatría, Hospital Nacional Cayetano Heredia, Lima, Peru
| | - Olguita Del Águila
- Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru; Servicio de Pediatría de Especialidades Clínicas, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - María E Castillo
- Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru; Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru; Oficina de Epidemiología, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Andrés Saenz
- Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru; Departamento de Pediatría, Hospital Nacional Daniel Alcides Carrión, Lima, Peru
| | - Isabel Reyes
- Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru; Servicio de Hospitalización, Hospital de Emergencias Pediátricas, Lima, Peru
| | - Roger Hernandez
- Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru; Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru; Departamento de Pediatría, Hospital Nacional Cayetano Heredia, Lima, Peru
| | - Theresa J Ochoa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru; Grupo Peruano de Investigación en Neumococo (GPIN), Lima, Peru; Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
3
|
Gonzales BE, Mercado EH, Pinedo-Bardales M, Hinostroza N, Campos F, Chaparro E, Del Águila O, Castillo ME, Saenz A, Reyes I, Ochoa TJ. Increase of Macrolide-Resistance in Streptococcus pneumoniae Strains After the Introduction of the 13-Valent Pneumococcal Conjugate Vaccine in Lima, Peru. Front Cell Infect Microbiol 2022; 12:866186. [PMID: 35615398 PMCID: PMC9125093 DOI: 10.3389/fcimb.2022.866186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/04/2022] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae upper respiratory infections and pneumonia are often treated with macrolides, but recently macrolide resistance is becoming an increasingly important problem. The 13-valent pneumococcal conjugate vaccine (PCV13) was introduced in the National Immunization Program of Peru in 2015. This study aimed to evaluate the temporal evolution of macrolide resistance in S. pneumoniae isolates collected in five cross-sectional studies conducted before and after this vaccine introduction, from 2006 to 2019 in Lima, Peru. A total of 521 and 242 S. pneumoniae isolates recovered from nasopharyngeal swabs from healthy carrier children < 2 years old (2 carriage studies) and samples from normally sterile body areas from pediatric patients with invasive pneumococcal disease (IPD) (3 IPD studies), respectively, were included in this study. Phenotypic macrolide resistance was detected using the Kirby-Bauer method and/or MIC test. We found a significant increase in macrolide resistance over time, from 33.5% to 50.0% in carriage studies, and from 24.8% to 37.5% and 70.8% in IPD studies. Macrolide resistance genes [erm(B) and mef(A/E)] were screened using PCR. In carriage studies, we detected a significant decrease in the frequency of mef(A/E) genes among macrolide-resistant S. pneumoniae strains (from 66.7% to 50.0%) after introduction of PCV13. The most common mechanism of macrolide-resistant among IPD strains was the presence of erm(B) (96.0%, 95.2% and 85.1% in the 3 IPD studies respectively). Macrolide resistance was more common in serotype 19A strains (80% and 90% among carriage and IPD strains, respectively) vs. non-serotype 19A (35.5% and 34.4% among carriage and IPD strains, respectively). In conclusion, S. pneumoniae macrolide resistance rates are very high among Peruvian children. Future studies are needed in order to evaluate macrolide resistance trends among pneumococcal strains, especially now after the COVID-19 pandemic, since azithromycin was vastly used as empiric treatment of COVID-19 in Peru.
Collapse
Affiliation(s)
- Brayan E. Gonzales
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erik H. Mercado
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Maria Pinedo-Bardales
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Noemi Hinostroza
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francisco Campos
- Departamento de Pediatría, Hospital Nacional Docente Madre-Niño San Bartolomé, Lima, Peru
| | - Eduardo Chaparro
- Departamento de Pediatría, Hospital Nacional Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Olguita Del Águila
- Servicio de Pediatría de Especialidades Clínicas, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru
| | - María E. Castillo
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- Oficina de Epidemiología, Instituto Nacional de Salud del Niño, Lima, Peru
| | - Andrés Saenz
- Departamento de Pediatría, Hospital Nacional Daniel Alcides Carrión, Lima, Peru
| | - Isabel Reyes
- Servicio de Hospitalización, Hospital de Emergencias Pediátricas, Lima, Peru
| | - Theresa J. Ochoa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima, Peru
- *Correspondence: Theresa J. Ochoa,
| |
Collapse
|
4
|
Vidal JE, Wier MN, A. Angulo-Zamudio U, McDevitt E, Jop Vidal AG, Alibayov B, Scasny A, Wong SM, Akerley BJ, McDaniel LS. Prophylactic Inhibition of Colonization by Streptococcus pneumoniae with the Secondary Bile Acid Metabolite Deoxycholic Acid. Infect Immun 2021; 89:e0046321. [PMID: 34543118 PMCID: PMC8594607 DOI: 10.1128/iai.00463-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pneumoniae colonizes the nasopharynx of children and the elderly but also kills millions worldwide yearly. The secondary bile acid metabolite deoxycholic acid (DoC) affects the viability of human pathogens but also plays multiple roles in host physiology. We assessed in vitro the antimicrobial activity of DoC and investigated its potential to eradicate S. pneumoniae colonization using a model of human nasopharyngeal colonization and an in vivo mouse model of colonization. At a physiological concentration, DoC (0.5 mg/ml; 1.27 mM) killed all tested S. pneumoniae strains (n = 48) 2 h postinoculation. The model of nasopharyngeal colonization showed that DoC eradicated colonization by S. pneumoniae strains as soon as 10 min postexposure. The mechanism of action did not involve activation of autolysis, since the autolysis-defective double mutants ΔlytAΔlytC and ΔspxBΔlctO were as susceptible to DoC as was the wild type (WT). Oral streptococcal species (n = 20), however, were not susceptible to DoC (0.5 mg/ml). Unlike trimethoprim, whose spontaneous resistance frequency (srF) for TIGR4 or EF3030 was ≥1 × 10-9, no spontaneous resistance was observed with DoC (srF, ≥1 × 10-12). Finally, the efficacy of DoC to eradicate S. pneumoniae colonization was assessed in vivo using a topical route via intranasal (i.n.) administration and as a prophylactic treatment. Mice challenged with S. pneumoniae EF3030 carried a median of 4.05 × 105 CFU/ml 4 days postinoculation compared to 6.67 × 104 CFU/ml for mice treated with DoC. Mice in the prophylactic group had an ∼99% reduction of the pneumococcal density (median, 2.61 × 103 CFU/ml). Thus, DoC, an endogenous human bile salt, has therapeutic potential against S. pneumoniae.
Collapse
Affiliation(s)
- Jorge E. Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Meagan N. Wier
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | - Erin McDevitt
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ana G. Jop Vidal
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Babek Alibayov
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anna Scasny
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Sandy M. Wong
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Brian J. Akerley
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Larry S. McDaniel
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
5
|
Howard LM, Dantuluri KL, Soper N, Thomsen IP, Grijalva CG. Rapid Changes in Nasopharyngeal Antibiotic Resistance Gene Profiles After Short Courses of Antibiotics in a Pilot Study of Ambulatory Young Children. Open Forum Infect Dis 2021; 8:ofab519. [PMID: 35350815 PMCID: PMC8947223 DOI: 10.1093/ofid/ofab519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022] Open
Abstract
We quantified antibiotic resistance genes before and after short antibiotic courses in nasopharyngeal specimens from ambulatory children. Carriage of certain bacteria and resistance genes was common before antibiotics. After antibiotics, we observed substantial reductions in pneumococcal and Staphylococcus aureus carriage and rapid expansion in the abundance of certain resistance genes.
Collapse
Affiliation(s)
- Leigh M Howard
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keerti L Dantuluri
- Levine Children’s Hospital at Atrium Health, Charlotte, North Carolina, USA
| | - Nicole Soper
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Isaac P Thomsen
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
6
|
Britton KJ, Pickering JL, Pomat WS, de Gier C, Nation ML, Pell CL, Granland CM, Solomon V, Ford RL, Greenhill A, Hinds J, Moore HC, Richmond PC, Blyth CC, Lehmann D, Satzke C, Kirkham LAS. Lack of effectiveness of 13-valent pneumococcal conjugate vaccination against pneumococcal carriage density in Papua New Guinean infants. Vaccine 2021; 39:5401-5409. [PMID: 34384633 DOI: 10.1016/j.vaccine.2021.07.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Papua New Guinea (PNG) introduced the 13-valent pneumococcal conjugate vaccine (PCV13) in 2014, with administration at 1, 2, and 3 months of age. PCV13 has reduced or eliminated carriage of vaccine types in populations with low pneumococcal carriage prevalence, carriage density and serotype diversity. This study investigated PCV13 impact on serotype-specific pneumococcal carriage prevalence, density, and serotype diversity in PNG infants, who have some of the highest reported rates of pneumococcal carriage and disease in the world. METHODS Nasopharyngeal swabs were collected at 1, 4 and 9 months of age from PCV13-vaccinated infants (n = 57) and age-/season-matched, unvaccinated infants (at approximately 1 month, n = 53; 4 months, n = 57; 9 months, n = 52). Serotype-specific pneumococcal carriage density and antimicrobial resistance genes were identified by qPCR and microarray. RESULTS Pneumococci were present in 89% of swabs, with 60 different serotypes and four non-encapsulated variants detected. Multiple serotype carriage was common (47% of swabs). Vaccine type carriage prevalence was similar between PCV13-vaccinated and unvaccinated infants at 4 and 9 months of age. The prevalence of non-vaccine type carriage was also similar between cohorts, with non-vaccine types present in three-quarters of samples (from both vaccinated and unvaccinated infants) by 4 months of age. The median pneumococcal carriage density was high and similar at each age group (~7.0 log10genome equivalents/mL). PCV13 had no effect on overall pneumococcal carriage density, vaccine type density, non-vaccine type density, or the prevalence of antimicrobial resistance genes. CONCLUSION PNG infants experience dense and diverse pneumococcal colonisation with concurrent serotypes from 1 month of age. PCV13 had no impact on pneumococcal carriage density, even for vaccine serotypes. The low prevalence of vaccine serotypes, high pneumococcal carriage density and abundance of non-vaccine serotypes likely contribute to the lack of PCV13 impact on carriage in PNG infants. Indirect effects of the infant PCV programs are likely to be limited in PNG. Alternative vaccines with broader coverage should be considered.
Collapse
Affiliation(s)
- Kathryn J Britton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia; Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Australia.
| | - Janessa L Pickering
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia.
| | - William S Pomat
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia; Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | - Camilla de Gier
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia; Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Australia.
| | - Monica L Nation
- Translational Microbiology Group, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Casey L Pell
- Translational Microbiology Group, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Caitlyn M Granland
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia.
| | - Vela Solomon
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | - Rebecca L Ford
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea.
| | - Andrew Greenhill
- School of Health and Life Sciences, Federation University, Victoria, Australia.
| | - Jason Hinds
- Institute for Infection and Immunity, St. George's University of London, London, United Kingdom.
| | - Hannah C Moore
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia.
| | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia; Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Australia.
| | - Christopher C Blyth
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia; Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Australia; Department of Paediatric Infectious Diseases, Perth Children's Hospital, Perth, Australia; Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Perth, Australia.
| | - Deborah Lehmann
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia.
| | - Catherine Satzke
- Translational Microbiology Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| | - Lea-Ann S Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Perth, Australia; Centre for Child Health Research, The University of Western Australia, Perth, Australia.
| |
Collapse
|
7
|
Khan T, Das RS, Arya BK, Chaudhary A, Chatterjee J, Das Bhattacharya S. Impact of pneumococcal conjugate vaccine on the carriage density of Streptococcus pneumoniae and Staphylococcus aureus in children living with HIV: a nested case-control study. Hum Vaccin Immunother 2020; 16:1918-1922. [PMID: 31995435 PMCID: PMC7482878 DOI: 10.1080/21645515.2019.1706411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 01/25/2023] Open
Abstract
Nasopharyngeal colonization density of Streptococcus pneumoniae (pneumococcus) is associated with disease severity and transmission. Little is known about the density of pneumococcal carriage in children with HIV (CLH). Pneumococcal vaccines may impact the density of pneumococcus and competing microbes within the nasopharynx. We examined the impact of one dose of PCV13 on carriage density of pneumococcus and Staphylococcus aureus, in CLH, HIV-uninfected children (HUC), and their unvaccinated parents. We conducted a pilot-nested case-control study, within a larger prospective cohort study, on the impact of PCV13, in families in West Bengal India. Quantitative real-time PCR was run on 147 nasopharyngeal swabs from 27 CLH and 23 HUC, and their parents, before and after PCV13 immunization. CLH had higher median pneumococcal carriage density, compared to HUC: 6.28 × 108 copies/mL vs. 2.11 × 105 copies/mL (p = .005). Following one dose of PCV13, pneumococcal densities dropped in both groups, with an increase in S. aureus carriage to 80% from 48% in CLH, and to 60% in HUC from 25%. While limited in sample size, this pilot study shows that CLH carried higher densities of pneumococcus. PCV13 was associated with a decrease in pneumococcal density and a temporal increase in S. aureus carriage regardless of HIV status.
Collapse
Affiliation(s)
- Tila Khan
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ranjan Saurav Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Bikas K. Arya
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amrita Chaudhary
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Jyotirmoy Chatterjee
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | |
Collapse
|
8
|
Pomat WS, van den Biggelaar AHJ, Wana S, Francis JP, Solomon V, Greenhill AR, Ford R, Orami T, Passey M, Jacoby P, Kirkham LA, Lehmann D, Richmond PC. Safety and Immunogenicity of Pneumococcal Conjugate Vaccines in a High-risk Population: A Randomized Controlled Trial of 10-Valent and 13-Valent Pneumococcal Conjugate Vaccine in Papua New Guinean Infants. Clin Infect Dis 2020; 68:1472-1481. [PMID: 30184183 PMCID: PMC6481999 DOI: 10.1093/cid/ciy743] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
Background There are little data on the immunogenicity of PCV10 and PCV13 in the same high-risk population. Methods PCV10 and PCV13 were studied head-to-head in a randomized controlled trial in Papua New Guinea in which 262 infants received 3 doses of PCV10 or PCV13 at 1, 2, and 3 months of age. Serotype-specific immunoglobulin G (IgG) concentrations, and pneumococcal and nontypeable Haemophilus influenzae (NTHi) carriage were assessed prevaccination and at 4 and 9 months of age. Infants were followed up for safety until 9 months of age. Results One month after the third dose of PCV10 or PCV13, ˃80% of infants had IgG concentrations ≥0.35µg/mL for vaccine serotypes, and 6 months postvaccination IgG concentrations ≥0.35 µg/mL were maintained for 8/10 shared PCV serotypes in > 75% of children vaccinated with either PCV10 or PCV13. Children carried a total of 65 different pneumococcal serotypes (plus nonserotypeable). At 4 months of age, 92% (95% confidence interval [CI] 85–96) of children vaccinated with PCV10 and 81% (95% CI 72–88) vaccinated with PCV13 were pneumococcal carriers (P = .023), whereas no differences were seen at 9 months of age, or for NTHi carriage. Both vaccines were well tolerated and not associated with serious adverse events. Conclusions Infant vaccination with 3 doses of PCV10 or PCV13 is safe and immunogenic in a highly endemic setting; however, to significantly reduce pneumococcal disease in these settings, PCVs with broader serotype coverage and potency to reduce pneumococcal carriage are needed. Clinical Trials Registration NCT01619462.
Collapse
Affiliation(s)
| | - Anita H J van den Biggelaar
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute and Centre for Child Health Research, University of Western Australia, Perth
| | - Sandra Wana
- Papua New Guinea Institute of Medical Research, Goroka
| | | | - Vela Solomon
- Papua New Guinea Institute of Medical Research, Goroka
| | - Andrew R Greenhill
- Papua New Guinea Institute of Medical Research, Goroka.,School of Health and Life Sciences, Federation University, Churchill, Victoria
| | - Rebecca Ford
- Papua New Guinea Institute of Medical Research, Goroka
| | - Tilda Orami
- Papua New Guinea Institute of Medical Research, Goroka
| | - Megan Passey
- The University of Sydney, University Centre for Rural Health, School of Public Health, Lismore, New South Wales
| | - Peter Jacoby
- Department of Biostatistics, Telethon Kids Institute and Centre for Child Health Research, University of Western Australia, Perth
| | - Lea-Ann Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute and Centre for Child Health Research, University of Western Australia, Perth.,School of Biomedical Sciences, University of Western Australia, Perth
| | - Deborah Lehmann
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute and Centre for Child Health Research, University of Western Australia, Perth
| | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute and Centre for Child Health Research, University of Western Australia, Perth.,Division of Paediatrics and Child Health, School of Medicine, University of Western Australia, Perth
| | | |
Collapse
|
9
|
Arguedas A, Trzciński K, O'Brien KL, Ferreira DM, Wyllie AL, Weinberger D, Danon L, Pelton SI, Azzari C, Hammitt LL, Sá-Leão R, Brandileone MCC, Saha S, Suaya J, Isturiz R, Jodar L, Gessner BD. Upper respiratory tract colonization with Streptococcus pneumoniae in adults. Expert Rev Vaccines 2020; 19:353-366. [PMID: 32237926 DOI: 10.1080/14760584.2020.1750378] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Most of the current evidence regarding pneumococcal upper respiratory colonization in adults suggests that despite high disease burden, carriage prevalence is low. Contemporary studies on adult pneumococcal colonization have largely followed the pediatric approach by which samples are obtained mostly from the nasopharynx and bacterial detection is evaluated by routine culture alone. Recent evidence suggests that the 'pediatric approach' may be insufficient in adults and pneumococcal detection in this population may be improved by longitudinal studies that include samples from additional respiratory sites combined with more extensive laboratory testing. AREAS COVERED In this article, relevant literature published in peer review journals on adult pneumococcal colonization, epidemiology, detection methods, and recommendations were reviewed. EXPERT OPINION Respiratory carriage of Streptococcus pneumoniae has been underestimated in adults. Contemporary pneumococcal carriage studies in adults that collect samples from alternative respiratory sites such as the oropharynx, saliva, or nasal wash; are culture-enriched for pneumococcus; and use molecular diagnostic methods designed to target two pneumococcal DNA sequences should enhance pneumococcal detection in the adult respiratory tract. This finding may have implications for the interpretation of dynamics of pneumococcal transmission and vaccination.
Collapse
Affiliation(s)
- Adriano Arguedas
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc , Collegeville, PA, USA
| | - Krzysztof Trzciński
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Centre Utrecht , Utrecht, The Netherlands
| | - Katherine L O'Brien
- Department of International Health, Johns Hopkins Bloomberg School of Public Health , Baltimore, MD, USA
| | | | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health , New Haven, CT, USA
| | - Daniel Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health , New Haven, CT, USA
| | | | - Stephen I Pelton
- Pediatric Infectious Diseases, Department of Pediatrics, Maxwell Finland Laboratory for Infectious Diseases, Boston Medical Center , Boston, MA, USA
| | - Chiara Azzari
- Meyer Children's Hospital and University of Florence , Florence, Italy
| | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health , Baltimore, MD, USA
| | - Raquel Sá-Leão
- Instituto De Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Oeiras, Portugal
| | | | - Samir Saha
- Child Health Research Foundation , Matuail, Dhaka, Bangladesh
| | - Jose Suaya
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc , New York, NY, USA
| | - Raul Isturiz
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc , Collegeville, PA, USA
| | - Luis Jodar
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc , Collegeville, PA, USA
| | - Bradford D Gessner
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc , Collegeville, PA, USA
| |
Collapse
|
10
|
Howard LM, Zhu Y, Griffin MR, Edwards KM, Williams JV, Gil AI, Vidal JE, Klugman KP, Lanata CF, Grijalva CG. Nasopharyngeal Pneumococcal Density during Asymptomatic Respiratory Virus Infection and Risk for Subsequent Acute Respiratory Illness. Emerg Infect Dis 2020; 25:2040-2047. [PMID: 31625844 PMCID: PMC6810199 DOI: 10.3201/eid2511.190157] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Increased nasopharyngeal pneumococcal (Streptococcus pneumoniae) colonization density has been associated with invasive pneumococcal disease, but factors that increase pneumococcal density are poorly understood. We evaluated pneumococcal densities in nasopharyngeal samples from asymptomatic young children from Peru and their association with subsequent acute respiratory illness (ARI). Total pneumococcal densities (encompassing all present serotypes) during asymptomatic periods were significantly higher when a respiratory virus was detected versus when no virus was detected (p<0.001). In adjusted analyses, increased pneumococcal density was significantly associated with the risk for a subsequent ARI (p<0.001), whereas asymptomatic viral detection alone was associated with lower risk for subsequent ARI. These findings suggest that interactions between viruses and pneumococci in the nasopharynx during asymptomatic periods might have a role in onset of subsequent ARI. The mechanisms for these interactions, along with other potentially associated host and environmental factors, and their role in ARI pathogenesis and pneumococcal transmission require further elucidation.
Collapse
|
11
|
Sutcliffe CG, Grant LR, Cloessner E, Klugman KP, Vidal JE, Reid R, Colelay J, Weatherholtz RC, Chochua S, Jacobs MR, Santosham M, O’Brien KL, Hammitt LL. Association of Laboratory Methods, Colonization Density, and Age With Detection of Streptococcus pneumoniae in the Nasopharynx. Am J Epidemiol 2019; 188:2110-2119. [PMID: 31509184 PMCID: PMC7036660 DOI: 10.1093/aje/kwz191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 08/19/2019] [Accepted: 08/23/2018] [Indexed: 12/30/2022] Open
Abstract
Culture-based methods for detecting Streptococcus pneumoniae in the nasopharynx lack sensitivity. In this study, we aimed to compare the performance of culture and molecular methods in detecting pneumococcus in the nasopharynx of healthy individuals and to evaluate the associations of age and colonization density with detection. Between 2010 and 2012, nasopharyngeal specimens were collected from healthy individuals living on Navajo Nation and White Mountain Apache Tribal lands in the United States. Pneumococci were detected by means of broth-enrichment culture and autolysin-encoding gene (lytA) quantitative polymerase chain reaction (qPCR). Among 982 persons evaluated (median age, 18.7 years; 47% male), 35% were culture-positive and an additional 27% were qPCR-positive. Agreement between culture and qPCR was 70.9% but was higher among children (age <18 years) (75.9%-84.4%) than among adults (age ≥18 years) (61.0%-74.6%). The mean density of colonization was lower for culture-negative samples (3.14 log10 copies/mL) than for culture-positive samples (5.02 log10 copies/mL), overall and for all age groups. The percent culture-positive increased with increasing density, exceeding 80% at densities of ≥10,000 copies/mL. Mean colonization density decreased with age. Use of qPCR improved detection of pneumococcus in the nasopharynx of healthy individuals. This finding was most notable among adults, probably because of improved detection of low-density colonization.
Collapse
Affiliation(s)
- Catherine G Sutcliffe
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Lindsay R Grant
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Emily Cloessner
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Keith P Klugman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Jorge E Vidal
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Raymond Reid
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Janene Colelay
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Robert C Weatherholtz
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Sopio Chochua
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Michael R Jacobs
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mathuram Santosham
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Katherine L O’Brien
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Laura L Hammitt
- Center for American Indian Health, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
12
|
Tin Tin Htar M, Sings HL, Syrochkina M, Taysi B, Hilton B, Schmitt HJ, Gessner BD, Jodar L. The impact of pneumococcal conjugate vaccines on serotype 19A nasopharyngeal carriage. Expert Rev Vaccines 2019; 18:1243-1270. [DOI: 10.1080/14760584.2019.1675521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - Heather L. Sings
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Maria Syrochkina
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Moscow, Russia
| | - Bulent Taysi
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Istanbul, Turkey
| | - Betsy Hilton
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Heinz-Josef Schmitt
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Bradford D. Gessner
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Luis Jodar
- Vaccines Medical Development and Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
13
|
Silva SM, Rodrigues ICG, Santos RDS, Ternes YMF. The direct and indirect effects of the pneumococcal conjugated vaccine on carriage rates in children aged younger than 5 years in Latin America and the Caribbean: a systematic review. EINSTEIN-SAO PAULO 2019; 18:eRW4890. [PMID: 31778464 PMCID: PMC6896659 DOI: 10.31744/einstein_journal/2020rw4890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/25/2019] [Indexed: 11/24/2022] Open
Abstract
Objective To demonstrate the impact of pneumococcal conjugate vaccine in Streptococcus pneumoniae carriage status in children younger than 5 years in Latin America and the Caribbean. Methods A systematic literature review was carried out on the direct and indirect effects of pneumococcal vaccine in the carriage status, after implementation in childhood immunization programs. Studies carried out in children younger than 5 years were selected from the PubMed® and Virtual Health Library databases, and data collected after implementation of pneumococcal vaccine in Latin America and the Caribbean, between 2008 and 2018. Results From 1,396 articles identified, 738 were selected based on titles and abstracts. After duplicate removal, 31 studies were eligible for full-text reading, resulting in 6 publications for analysis. All selected publications were observational studies and indicated a decrease in the carriage and vaccine types, and an increase in the circulation of non-vaccine serotypes, such as 6A, 19A, 35B, 21 and 38. We did not identify changes in the antimicrobial resistance after vaccine implementation. Conclusion A decrease in the carriage status of vaccine types and non-vaccine types was detected. The continuous monitoring of pneumococcal vaccine effect is fundamental to demonstrate the impact of the carriage status and, consequently, of invasive pneumococcal disease, allowing better targeting approaches in countries that included pneumococcal vaccine in their immunization programs. Our study protocol was registered in PROSPERO (www.crd.york.ac.uk/prospero) under number CRD42018096719.
Collapse
|
14
|
DeMuri GP, Gern JE, Eickhoff JC, Lynch SV, Wald ER. Dynamics of Bacterial Colonization With Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis During Symptomatic and Asymptomatic Viral Upper Respiratory Tract Infection. Clin Infect Dis 2019; 66:1045-1053. [PMID: 29121208 PMCID: PMC6019034 DOI: 10.1093/cid/cix941] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/06/2017] [Indexed: 12/02/2022] Open
Abstract
Background Virus is detected in about 80% of upper respiratory tract infections (URTIs) in children and is also detectable in the nasopharynx of 30% of asymptomatic children. The effect of asymptomatic viral infection on the dynamics of bacterial density and colonization of the nasopharynx has not been reported. The current study was performed to assess the presence and density of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the nasopharynx of 4–7-year-old children during URTI and when well. Methods Nasal samples were obtained during 4 surveillance periods when children were asymptomatic and whenever they had symptoms of URTI. Respiratory viruses and bacterial pathogens were identified and quantified using polymerase chain reaction. Results The proportion of children colonized with all 3 bacteria was higher during visits for acute URTI than during asymptomatic surveillance visits. Mean bacterial densities were significantly higher at all visits for all 3 pathogens when a virus was detected. The differences between the means were 1.0, 0.4, and 0.7 log10 colony-forming unit equivalents per milliliter for S. pneumoniae, H. influenzae, and M. catarrhalis, respectively, compared with visits in which virus was not detected. The percentage of children colonized and density were also higher at asymptomatic visits in which virus was detected than at visits in which virus was not detected. Conclusion The density and frequency of colonization with S. pneumoniae, H. influenzae, and M. catarrhalis in nasal wash samples increase during periods of both symptomatic and asymptomatic viral infection. Increases in bacterial colonization observed during asymptomatic viral infection were nearly the same magnitude as when children were symptomatic.
Collapse
Affiliation(s)
- Gregory P DeMuri
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - James E Gern
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Susan V Lynch
- Department of Medicine, University of California, San Francisco
| | - Ellen R Wald
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| |
Collapse
|
15
|
Neal EFG, Flasche S, Nguyen CD, Ratu FT, Dunne EM, Koyamaibole L, Reyburn R, Rafai E, Kama M, Ortika BD, Boelsen LK, Kado J, Tikoduadua L, Devi R, Tuivaga E, Satzke C, Mulholland EK, Edmunds WJ, Russell FM. Associations between ethnicity, social contact, and pneumococcal carriage three years post-PCV10 in Fiji. Vaccine 2019; 38:202-211. [PMID: 31668367 PMCID: PMC6964150 DOI: 10.1016/j.vaccine.2019.10.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/10/2019] [Accepted: 10/10/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Pneumococcal carriage is a prerequisite for pneumococcal disease. Little is known about whether social contact frequency and intensity are associated with pneumococcal carriage. In Fiji, indigenous iTaukei have higher prevalence of pneumococcal carriage compared with Fijians of Indian Descent (FID). We hypothesised that contact differences may contribute to ethnic differences in pneumococcal carriage prevalence and density. METHODS In 2015, young infants (5-8 weeks), toddlers (12-23 months), children (2-6 years), and caregivers from Suva and surrounding areas, participated in a cross-sectional survey (n = 2014), three years post pneumococcal conjugate vaccine introduction. Demographic and contact data, and nasopharyngeal swabs were collected. Pneumococci were detected, and quantified using quantitative real-time PCR, with molecular serotyping by microarray. Associations between ethnicity, contact, and pneumococcal carriage and density were estimated using multivariable generalised estimating equation regression models. RESULTS iTaukei participants had larger household sizes, higher pneumococcal carriage rates, more contacts, and more frequent contacts of longer duration, compared with FID. The odds of vaccine-type carriage increased by 28% (95% CI 8-53%) P < 0.01 in association with physical contact with 7-14 year old children. iTaukei ethnicity was associated with vaccine-type carriage (aOR) 1.73; 95% CI 1.06-2.82, P = 0.03) and non-vaccine type carriage (aOR 5.98; 95% CI 4.47-8.00, P < 0.01). Ethnicity and contact were not associated with pneumococcal density. CONCLUSIONS iTaukei had greater frequency and intensity of contact compared with FID. Physical contact was associated with pneumococcal carriage. Observed differences in pneumococcal nasopharyngeal carriage prevalence between iTaukei and FID were not explained by differences in social contact patterns by ethnicity.
Collapse
Affiliation(s)
- Eleanor F G Neal
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.
| | - Stefan Flasche
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Cattram D Nguyen
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | - F Tupou Ratu
- Ministry of Health and Medical Services, Suva, Fiji
| | - Eileen M Dunne
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Rita Reyburn
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Eric Rafai
- Ministry of Health and Medical Services, Suva, Fiji
| | - Mike Kama
- Ministry of Health and Medical Services, Suva, Fiji
| | - Belinda D Ortika
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Laura K Boelsen
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Joseph Kado
- College of Medicine Nursing and Health Sciences, Fiji National University, Suva, Fiji; Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | | | - Rachel Devi
- Ministry of Health and Medical Services, Suva, Fiji
| | | | - Catherine Satzke
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - E Kim Mulholland
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - W John Edmunds
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fiona M Russell
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
16
|
Chan J, Nguyen CD, Dunne EM, Kim Mulholland E, Mungun T, Pomat WS, Rafai E, Satzke C, Weinberger DM, Russell FM. Using pneumococcal carriage studies to monitor vaccine impact in low- and middle-income countries. Vaccine 2019; 37:6299-6309. [PMID: 31500968 DOI: 10.1016/j.vaccine.2019.08.073] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/13/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
Pneumococcal disease is a leading cause of childhood mortality, globally. The pneumococcal conjugate vaccine (PCV) has been introduced to many countries worldwide. However there are few studies evaluating PCV impacts in low- and middle-income countries (LMIC) because measuring the impact of PCV on pneumococcal disease in LMICs is challenging. We review the role of pneumococcal carriage studies for the evaluation of PCVs in LMICs and discuss optimal methods for conducting these studies. Fifteen carriage studies from 13 LMICs quantified the effects of PCV on carriage, and identified replacement carriage serotypes in the post-PCV era. Ten studies reported on the indirect effects of PCV on carriage. Results can be used to inform cost-effectiveness evaluations, guide policy decisions on dosing and product, and monitor equity in program implementation. Critically, we highlight gaps in our understanding of serotype replacement disease in LMICs and identify priorities for research to address this gap.
Collapse
Affiliation(s)
- Jocelyn Chan
- New Vaccines Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| | - Cattram D Nguyen
- New Vaccines Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Eileen M Dunne
- New Vaccines Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - E Kim Mulholland
- New Vaccines Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tuya Mungun
- National Center of Communicable Diseases (NCCD), Ministry of Health, Ulaanbaatar, Mongolia
| | - William S Pomat
- Papua New Guinea Institute of Medical Research, Infection and Immunity Unit, Goroka, Papua New Guinea; Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Eric Rafai
- Ministry of Health and Medical Services, Suva, Fiji
| | - Catherine Satzke
- New Vaccines Group, Murdoch Children's Research Institute, Melbourne, Australia; Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, United States
| | - Fiona M Russell
- New Vaccines Group, Murdoch Children's Research Institute, Melbourne, Australia; Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
17
|
German EL, Solórzano C, Sunny S, Dunne F, Gritzfeld JF, Mitsi E, Nikolaou E, Hyder-Wright AD, Collins AM, Gordon SB, Ferreira DM. Protective effect of PCV vaccine against experimental pneumococcal challenge in adults is primarily mediated by controlling colonisation density. Vaccine 2019; 37:3953-3956. [PMID: 31176540 PMCID: PMC6611220 DOI: 10.1016/j.vaccine.2019.05.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 11/03/2022]
Abstract
Widespread use of Pneumococcal Conjugate Vaccines (PCV) has reduced vaccine-type nasopharyngeal colonisation and invasive pneumococcal disease. In a double-blind, randomised controlled trial using the Experimental Human Pneumococcal Challenge (EHPC) model, PCV-13 (Prevenar-13) conferred 78% protection against colonisation acquisition and reduced bacterial intensity (AUC) as measured by classical culture. We used a multiplex qPCR assay targeting lytA and pneumococcal serotype 6A/B cpsA genes to re-assess the colonisation status of the same volunteers. Increase in detection of low-density colonisation resulted in reduced PCV efficacy against colonisation acquisition (29%), compared to classical culture (83%). For experimentally colonised volunteers, PCV had a pronounced effect on decreasing colonisation density. These results obtained in adults suggest that the success of PCV vaccination could primarily be mediated by the control of colonisation density. Studies assessing the impact of pneumococcal vaccines should allow for density measurements in their design.
Collapse
Affiliation(s)
- E L German
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - C Solórzano
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - S Sunny
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - F Dunne
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - J F Gritzfeld
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - E Mitsi
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - E Nikolaou
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | | | - A M Collins
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - S B Gordon
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| | - D M Ferreira
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| |
Collapse
|
18
|
High Frequency of Macrolide-Resistant Streptococcus pneumoniae Colonization in Respiratory Tract of Healthy Children in Ardabil, Iran. TANAFFOS 2019; 18:118-125. [PMID: 32440299 PMCID: PMC7230131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Streptococcus pneumoniae (S. pneumoniae) is one of the most common causes of human diseases in young children. Macrolides are commonly antibiotics used for empirical treatment of community-acquired respiratory infections. The purpose of this study was to determine antibiotic resistance pattern as well as the relationship between macrolide resistance and the major mechanisms of resistance in pneumococci isolated from healthy children. MATERIALS AND METHODS In this cross-sectional study, 43 isolates of S. pneumoniae were collected from healthy children in Ardabil. Resistance pattern against tested antibiotics was determined using the disk diffusion method. The Minimum Inhibitory Concentration (MIC) of erythromycin was determined using the E-test strips. The mefA/E and ermB gene were detected in erythromycin-resistant isolates using the specific primers and Polymerase Chain Reaction (PCR) technique. RESULTS According to antimicrobial susceptibility testing, 74.4 % of the isolates were resistant to erythromycin, 95.3 % to penicillin, 81.3 % to co-trimoxazole, 72 % to azithromycin, 41.8 % to tetracycline, 27.9 % to clindamycin, and 16.2 % to chloramphenicol. All isolates were susceptible to levofloxacin and vancomycin. In the case of rifampin, 95.3% of the isolates were sensitive and 4.6% semi-sensitive. The MIC of erythromycin for resistant isolates was between 1.5 and ≥ 256 μg/ml. PCR results revealed that 100% of erythromycin-resistant isolates contained mefA/E gene and 81.25 % contained both the ermB and mefA/E genes. CONCLUSION The prevalence of antibiotic-resistant strains of S. pneumoniae, especially resistance to macrolides, was high among healthy children in Ardabil. According to the results of this study, we suggest using levofloxacin, rifampin and vancomycin antibiotics as an appropriate prophylactic regimen in pneumococcal infections.
Collapse
|
19
|
Satzke C, Dunne EM, Choummanivong M, Ortika BD, Neal EFG, Pell CL, Nation ML, Fox KK, Nguyen CD, Gould KA, Hinds J, Chanthongthip A, Xeuatvongsa A, Mulholland EK, Sychareun V, Russell FM. Pneumococcal carriage in vaccine-eligible children and unvaccinated infants in Lao PDR two years following the introduction of the 13-valent pneumococcal conjugate vaccine. Vaccine 2018; 37:296-305. [PMID: 30502068 DOI: 10.1016/j.vaccine.2018.10.077] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/27/2023]
Abstract
Pneumococcal carriage is a prerequisite for disease, and underpins herd protection provided by pneumococcal conjugate vaccines (PCVs). There are few data on the impact of PCVs in lower income settings, particularly in Asia. In 2013, the Lao People's Democratic Republic (Lao PDR) introduced 13-valent PCV (PCV13) as a 3 + 0 schedule (doses at 6, 10 and 14 weeks of age) with limited catch-up vaccination. We conducted two cross-sectional carriage surveys (pre- and two years post-PCV) to assess the impact of PCV13 on nasopharyngeal pneumococcal carriage in 5-8 week old infants (n = 1000) and 12-23 month old children (n = 1010). Pneumococci were detected by quantitative real-time PCR, and molecular serotyping was performed using DNA microarray. Post PCV13, there was a 23% relative reduction in PCV13-type carriage in children aged 12-23 months (adjusted prevalence ratio [aPR] 0.77 [0.61-0.96]), and no significant change in non-PCV13 serotype carriage (aPR 1.11 [0.89-1.38]). In infants too young to be vaccinated, there was no significant change in carriage of PCV13 serotypes (aPR 0.74 [0.43-1.27]) or non-PCV13 serotypes (aPR 1.29 [0.85-1.96]), although trends were suggestive of indirect effects. Over 70% of pneumococcal-positive samples contained at least one antimicrobial resistance gene, which were more common in PCV13 serotypes (p < 0.001). In 12-23 month old children, pneumococcal density of both PCV13 serotypes and non-PCV13 serotypes was higher in PCV13-vaccinated compared with undervaccinated children (p = 0.004 and p < 0.001, respectively). This study provides evidence of PCV13 impact on carriage in a population without prior PCV7 utilisation, and provides important data from a lower-middle income setting in Asia. The reductions in PCV13 serotype carriage in vaccine-eligible children are likely to result in reductions in pneumococcal transmission and disease in Lao PDR.
Collapse
Affiliation(s)
- Catherine Satzke
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Australia.
| | - Eileen M Dunne
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | | | - Belinda D Ortika
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia
| | - Eleanor F G Neal
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Casey L Pell
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia
| | - Monica L Nation
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia
| | - Kimberley K Fox
- Expanded Programme on Immunization, World Health Organization Regional Office for the Western Pacific, Manila, Philippines
| | - Cattram D Nguyen
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Katherine A Gould
- Institute for Infection and Immunity, St. George's, University of London, London, UK; BUGS Bioscience, London Bioscience Innovation Centre, London, UK
| | - Jason Hinds
- Institute for Infection and Immunity, St. George's, University of London, London, UK; BUGS Bioscience, London Bioscience Innovation Centre, London, UK
| | - Anisone Chanthongthip
- Laos-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
| | | | - E Kim Mulholland
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Fiona M Russell
- Pneumococcal Research, Murdoch Children's Research Institute, Royal Children's Hospital, Flemington Road, Parkville, Australia; Department of Paediatrics, The University of Melbourne, Parkville, Australia; Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Parkville, Australia
| |
Collapse
|
20
|
Birindwa AM, Emgård M, Nordén R, Samuelsson E, Geravandi S, Gonzales-Siles L, Muhigirwa B, Kashosi T, Munguakonkwa E, Manegabe JT, Cibicabene D, Morisho L, Mwambanyi B, Mirindi J, Kabeza N, Lindh M, Andersson R, Skovbjerg S. High rate of antibiotic resistance among pneumococci carried by healthy children in the eastern part of the Democratic Republic of the Congo. BMC Pediatr 2018; 18:361. [PMID: 30453916 PMCID: PMC6241069 DOI: 10.1186/s12887-018-1332-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/31/2018] [Indexed: 12/02/2022] Open
Abstract
Background Pneumococcal conjugate vaccines have been introduced in the infant immunisation programmes in many countries to reduce the rate of fatal pneumococcal infections. In the Democratic Republic of the Congo (DR Congo) a 13-valent vaccine (PCV13) was introduced in 2013. Data on the burden of circulating pneumococci among children after this introduction are lacking. In this study, we aimed to determine the risk factors related to pneumococcal carriage in healthy Congolese children after the vaccine introduction and to assess the antibiotic resistance rates and serotype distribution among the isolated pneumococci. Methods In 2014 and 2015, 794 healthy children aged one to 60 months attending health centres in the eastern part of DR Congo for immunisation or growth monitoring were included in the study. Data on socio-demographic and medical factors were collected by interviews with the children’s caregivers. Nasopharyngeal swabs were obtained from all the children for bacterial culture, and isolated pneumococci were further tested for antimicrobial resistance using disc diffusion tests and, when indicated, minimal inhibitory concentration (MIC) determination, and for serotype/serogroup by molecular testing. Results The pneumococcal detection rate was 21%, being higher among children who had not received PCV13 vaccination, lived in rural areas, had an enclosed kitchen, were malnourished or presented with fever (p value < 0.05). The predominant serotypes were 19F, 11, 6A/B/C/D and 10A. More than 50% of the pneumococcal isolates belonged to a serotype/serogroup not included in PCV13. Eighty per cent of the isolates were not susceptible to benzylpenicillin and non-susceptibility to ampicillin and ceftriaxone was also high (42 and 37% respectively). Almost all the isolates (94%) were resistant to trimethoprim-sulphamethoxazole, while 43% of the strains were resistant to ≥3 antibiotics. Conclusions Our study shows alarmingly high levels of reduced susceptibility to commonly used antibiotics in pneumococci carried by healthy Congolese children. This highlights the importance of local antibiotic resistance surveillance and indicates the needs for the more appropriate use of antibiotics in the area. The results further indicate that improved living conditions are needed to reduce the pneumococcal burden, in addition to PCV13 vaccination. Electronic supplementary material The online version of this article (10.1186/s12887-018-1332-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Archippe M Birindwa
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden. .,Panzi Hospital, Bukavu, Democratic Republic of the Congo. .,Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo. .,Hôpital Général de Référence de Panzi, BP: 266, Bukavu, DR, Congo.
| | - Matilda Emgård
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rickard Nordén
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ebba Samuelsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Shadi Geravandi
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Lucia Gonzales-Siles
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Théophile Kashosi
- Université Evangélique en Afrique, Bukavu, Democratic Republic of the Congo
| | | | | | | | | | | | | | - Nadine Kabeza
- Panzi Hospital, Bukavu, Democratic Republic of the Congo
| | - Magnus Lindh
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rune Andersson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,CARe - Center for Antibiotic Resistance Research, Gothenburg University, Gothenburg, Sweden
| | - Susann Skovbjerg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Early Declines in Vaccine Type Pneumococcal Carriage in Children Less Than 5 Years Old After Introduction of 10-valent Pneumococcal Conjugate Vaccine in Mozambique. Pediatr Infect Dis J 2018; 37:1054-1060. [PMID: 30216295 DOI: 10.1097/inf.0000000000002134] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Pneumococcal carriage is a precursor of invasive pneumococcal disease. Mozambique introduced 10-valent pneumococcal conjugate vaccine (PCV10) in April 2013, using a 3-dose schedule without a booster. We evaluated PCV10 impact on pneumococcal carriage and colonization density by HIV status. METHODS We conducted 2 cross-sectional surveys (pre and post PCV10 introduction) among children 6 weeks to 59 months old. Participants included HIV-infected children presenting for routine care at outpatient clinics and a random sample of HIV-uninfected children from the community. We collected demographic data, vaccination history and nasopharyngeal swabs. Swabs were cultured and isolates serotyped by Quellung. We selected serotypes 11A, 19A and 19F for bacterial density analyses. We compared vaccine-type (VT) carriage prevalence from the pre-PCV10 with the post-PCV10 period by HIV status. FINDINGS Prevalence of VT carriage declined from 35.9% (110/306) pre already defined in the background. It should be pre-PCV (PCV) to 20.7% (36/174 fully vaccinated) post PCV (P < 0.001) in HIV-uninfected and from 34.8% (144/414) to 19.7% (27/137 fully vaccinated) (P = 0.002) in HIV-infected children. Colonization prevalence for the 3 serotypes (3, 6A, 19A) included in the 13-valent PCV but not in PCV10 increased from 12.4% (38/306) to 20.7% (36/174 fully vaccinated) (P = 0.009) among HIV- uninfected children, mainly driven by 19A; no significant increase was observed in HIV-infected children. VT carriage among unvaccinated children decreased by 30% (P = 0.005) in HIV-infected children, with no significant declines observed in HIV-uninfected children. CONCLUSION Declines in VT carriage were observed in both HIV-uninfected and HIV-infected children after PCV10 introduction with an early signal of herd effect especially in HIV-infected children. Ongoing monitoring of increases in 19A carriage and disease is necessary.
Collapse
|
22
|
Nelson KN, Grijalva CG, Chochua S, Hawkins PA, Gil AI, Lanata CF, Griffin MR, Edwards KM, Klugman KP, Vidal JE. Dynamics of Colonization of Streptococcus pneumoniae Strains in Healthy Peruvian Children. Open Forum Infect Dis 2018; 5:ofy039. [PMID: 29588913 PMCID: PMC5842394 DOI: 10.1093/ofid/ofy039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
Background Although asymptomatic carriage of Streptococcus pneumoniae (Spn) is common, acquisition of the bacteria is the first step in disease pathogenesis. We examined the effect of introduction of the 7-valent pneumococcal vaccine on Spn carriage patterns in a cohort of Peruvian children. Methods We used data from a prospective cohort study that collected monthly nasopharyngeal samples from children under 3 years of age. Spn isolates were serotyped using Quellung reactions, and bacterial density was determined by quantitative polymerase chain reaction. Changes in Spn carriage patterns, including the rate of carriage and number and density of serotypes carried over time, were evaluated before (2009) and after widespread vaccination with PCV7 (2011). Using all pneumococcal detections from each child and year, we identified serotypes that were present both at first and last detection as “persisters” and serotypes that replaced a different earlier type and were detected last as “recolonizers.” Results Ninety-two percent (467/506) of children in 2009 and 89% (451/509) in 2011 carried Spn at least once. In 2009 and 2011, rates of carriage were 9.03 and 9.04 Spn detections per person-year, respectively. In 2009, 23F, a serotype included in PCV7, was the only type identified as a persister and 6A, 15B, and 19A were identified as recolonizer serotypes. In 2011, 6B and 7C were persister serotypes and 13 was a frequent recolonizer serotype. Conclusions Overall Spn carriage among children under 3 in Peru was similar before and after introduction of PCV7; however, serotype-specific rates and longitudinal carriage patterns have shifted.
Collapse
Affiliation(s)
- Kristin N Nelson
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Carlos G Grijalva
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Sopio Chochua
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Paulina A Hawkins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Ana I Gil
- Instituto de Investigación Nutricional, Lima, Perú
| | | | - Marie R Griffin
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Kathryn M Edwards
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Keith P Klugman
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia.,Bill and Melinda Gates Foundation, Seattle, Washington
| | - Jorge E Vidal
- Department of Global Health, Emory University Rollins School of Public Health, Atlanta, Georgia
| |
Collapse
|
23
|
Fan RR, Howard LM, Griffin MR, Edwards KM, Zhu Y, Williams JV, Vidal JE, Klugman KP, Gil AI, Lanata CF, Grijalva CG. Nasopharyngeal Pneumococcal Density and Evolution of Acute Respiratory Illnesses in Young Children, Peru, 2009-2011. Emerg Infect Dis 2018; 22:1996-1999. [PMID: 27767919 PMCID: PMC5088003 DOI: 10.3201/eid2211.160902] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
We examined nasopharyngeal pneumococcal colonization density patterns surrounding acute respiratory illnesses (ARI) in young children in Peru. Pneumococcal densities were dynamic, gradually increasing leading up to an ARI, peaking during the ARI, and decreasing after the ARI. Rhinovirus co-infection was associated with higher pneumococcal densities.
Collapse
|
24
|
Wouters I, Van Heirstraeten L, Desmet S, Blaizot S, Verhaegen J, Goossens H, Van Damme P, Malhotra-Kumar S, Theeten H. Nasopharyngeal s. pneumoniae carriage and density in Belgian infants after 9 years of pneumococcal conjugate vaccine programme. Vaccine 2017; 36:15-22. [PMID: 29180027 DOI: 10.1016/j.vaccine.2017.11.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/06/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND In Belgium, the infant pneumococcal conjugate vaccine (PCV) programme changed from PCV7 (2007-2011) to PCV13 (2011-2015) and to PCV10 (2015-2016). A 3-year nasopharyngeal carriage study was initiated during the programme switch in 2016. Main objective of the year 1 assessment was to obtain a baseline measurement of pneumococcal carriage prevalence, carriage density, serotype distribution and antibiotic resistance. MATERIALS/METHODS Two infant populations aged 6-30 months and without use of antibiotics in the seven days prior to sampling were approached: (1) attending one of 85 randomly selected day-care centres (DCC); (2) presenting with AOM at study-trained general practitioners and paediatricians. Demographic and clinical characteristics were documented and a single nasopharyngeal swab was taken. S. pneumoniae were cultured, screened for antibiotic resistance and serotyped, and quantitative Taqman real-time PCR (qRT-PCR) targeting LytA was performed. RESULTS Culture-based (DCC: 462/760; 60.8% - AOM: 27/39; 69.2%) and LytA-based (DCC: 603/753; 80.1% - AOM: 32/39; 82.1%) carriage prevalence was high. Average pneumococcal DNA load in LytA-positive day-care samples was 6.5 × 106 copies/µl (95%CI = 3.9-9.2 × 106, median = 3.5 × 105); DNA load was positively associated with signs of common cold and negatively with previous antibiotic use. Culture-based frequency of 13 pneumococcal vaccine (PCV) serotypes was 5.4% in DCC and 7.7% in AOM, with 19F and 14 being most frequent, and frequencies below 0.5% for serotypes 3, 6A, 19A in both populations. Predominant non-PCV serotypes were 23B and 23A in day-care and 11A in infants with AOM. In day-care, resistance to penicillin was rare (<0.5%) and absent against levofloxacin; 32.7% and 16.9% isolates were cotrimoxazole- and erythromycin-resistant respectively. CONCLUSION Four years after PCV13 introduction in the vaccination programme, PCV13 serotype carriage was rare in infants throughout Belgium and penicillin resistance was rare. Continued surveillance in the context of a PCV programme switch is necessary.
Collapse
Affiliation(s)
- Ine Wouters
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Liesbet Van Heirstraeten
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefanie Desmet
- Reference Centre for Pneumococci, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Stéphanie Blaizot
- Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jan Verhaegen
- Reference Centre for Pneumococci, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Heidi Theeten
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | | |
Collapse
|
25
|
Pneumococcal vaccination: Direct and herd effect on carriage of vaccine types and antibiotic resistance in Icelandic children. Vaccine 2017; 35:5242-5248. [PMID: 28823621 DOI: 10.1016/j.vaccine.2017.08.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Since the introduction of pneumococcal conjugate vaccines, vaccine type pneumococcal carriage and disease has decreased world-wide. The aim was to monitor changes in the nasopharyngeal carriage of pneumococci, the distribution of serotypes and antimicrobial resistance in children before and after initiation of the 10-valent pneumococcal vaccination in 2011, in a previously unvaccinated population. METHODS Repeated cross-sectional study at 15day-care centres in greater Reykjavik area. Nasopharyngeal swabs were collected yearly in March from 2009 to 2015. The swabs were selectively cultured for pneumococci, which were serotyped using latex agglutination and/or PCR and antimicrobial susceptibility determined. Two independent studies were conducted. In study 1, on total impact, isolates from children aged <4years were included. The vaccine-eligible-cohort (birth-years: 2011-2013, sampled in 2013-2015) was compared with children at the same age born in 2005-2010 and sampled in 2009-2012. In study 2 on herd effect, isolates from older non-vaccine-eligible children (3.5-6.3years) were compared for the periods before and after the vaccination (2009-2011 vs 2013-2015. Vaccine impact was determined using 1-odds-ratio. RESULTS Following vaccination, the vaccine impact on vaccine type acquisition was 94% (95% CI: 91-96%) in study 1 and 56% (95% CI: 44-65%) in study 2. The impact on serotype 6A was 33% (95% CI: -9%; 59%) in study 1 and 42% (95% CI: 10-63%) in study 2 with minimal effect on 19A. The non-vaccine serotypes/groups 6C, 11, 15 and 23B were the most common serotypes/groups after vaccination. Isolates from the vaccine-eligible-cohort had lower penicillin MICs, less resistance to erythromycin and co-trimoxazole and less multi resistance than isolates from the control-group. CONCLUSIONS The efficacy of the vaccination on vaccine serotypes was high, and a milder effect on vaccine-associated-serotype 6A was observed for the vaccine-eligible-cohort. There was a significant herd effect on vaccine types in older non-vaccine-eligible children. Overall antimicrobial non-susceptibility was reduced.
Collapse
|
26
|
Competitive Dominance within Biofilm Consortia Regulates the Relative Distribution of Pneumococcal Nasopharyngeal Density. Appl Environ Microbiol 2017; 83:AEM.00953-17. [PMID: 28576759 DOI: 10.1128/aem.00953-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/25/2017] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae is a main cause of child mortality worldwide, but strains also asymptomatically colonize the upper airways of most children and form biofilms. Recent studies have demonstrated that ∼50% of colonized children carry at least two different serotypes (i.e., strains) in the nasopharynx; however, studies of how strains coexist are limited. In this work, we investigated the physiological, genetic, and ecological requirements for the relative distribution of densities, and spatial localization, of pneumococcal strains within biofilm consortia. Biofilm consortia were prepared with vaccine type strains (i.e., serotype 6B [S6B], S19F, or S23F) and strain TIGR4 (S4). Experiments first revealed that the relative densities of S6B and S23F were similar in biofilm consortia. The density of S19F strains, however, was reduced to ∼10% in biofilm consortia, including either S6B, S23F, or TIGR4, in comparison to S19F monostrain biofilms. Reduction of S19F density within biofilm consortia was also observed in a simulated nasopharyngeal environment. Reduction of relative density was not related to growth rates, since the Malthusian parameter demonstrated similar rates of change of density for most strains. To investigate whether quorum sensing (QS) regulates relative densities in biofilm consortia, two different mutants were prepared: a TIGR4ΔluxS mutant and a TIGR4ΔcomC mutant. The density of S19F strains, however, was similarly reduced when consortia included TIGR4, TIGR4ΔluxS, or TIGR4ΔcomC Moreover, production of a different competence-stimulating peptide (CSP), CSP1 or CSP2, was not a factor that affected dominance. Finally, a mathematical model, confocal experiments, and experiments using Transwell devices demonstrated physical contact-mediated control of pneumococcal density within biofilm consortia.IMPORTANCEStreptococcus pneumoniae kills nearly half a million children every year, but it also produces nasopharyngeal biofilm consortia in a proportion of asymptomatic children, and these biofilms often contain two strains (i.e., serotypes). In our study, we investigated how strains coexist within pneumococcal consortia produced by vaccine serotypes S4, S6B, S19F, and S23F. Whereas S6B and S23F shared the biofilm consortium, our studies demonstrated reduction of the relative density of S19F strains, to ∼10% of what it would otherwise be if alone, in consortial biofilms formed with S4, S6B, or S23F. This dominance was not related to increased fitness when competing for nutrients, nor was it regulated by quorum-sensing LuxS/AI-2 or Com systems. It was demonstrated, however, to be enhanced by physical contact rather than by a product(s) secreted into the supernatant, as would naturally occur in the semidry nasopharyngeal environment. Competitive interactions within pneumococcal biofilm consortia regulate nasopharyngeal density, a risk factor for pneumococcal disease.
Collapse
|
27
|
PCV13-vaccinated children still carrying PCV13 additional serotypes show similar carriage density to a control group of PCV7-vaccinated children. Vaccine 2017; 35:945-950. [DOI: 10.1016/j.vaccine.2016.12.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 11/22/2022]
|
28
|
Development of a TaqMan Array Card for Pneumococcal Serotyping on Isolates and Nasopharyngeal Samples. J Clin Microbiol 2016; 54:1842-1850. [PMID: 27170020 PMCID: PMC4922116 DOI: 10.1128/jcm.00613-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/30/2016] [Indexed: 12/31/2022] Open
Abstract
Streptococcus pneumoniae is both a commensal and a major pathogen that causes invasive disease in people of all ages. The introduction of serotype-specific pneumococcal vaccines has reduced the burden of disease but has also led to replacement with new strains; thus, serotyping remains important for vaccine-related disease surveillance. Conventional serotyping methods are laborious and expensive. We developed an easy-to-perform genotypic TaqMan array card (TAC) to identify S. pneumoniae strains, including lytA-based sequences, and 53 sequence-specific PCRs to identify 74 serotypes/serogroups covering all current vaccine types as well as prevalent nonvaccine types. The TAC method was evaluated on 146 clinical S. pneumoniae isolates and 13 nonpneumococcal species that naturally inhabit the upper respiratory tract and yielded 97% (142/146) sensitivity and 100% (13/13) specificity versus results of standard Quellung serotyping. The calculated limit of detection was 20 to 200 fg (∼8 to 84 genome equivalents) per reaction. On 23 blinded nasopharyngeal specimens that were pneumococcus culture positive, the TAC pan-pneumococcus lytA assay was positive in 21 (91% sensitivity versus culture). On TAC lytA-positive specimens, a serotype result was obtained on 86%, and the result was 95% accurate versus the subsequent culture's Quellung result. TAC also detected mixed serotypes in two specimens where Quellung detected only the predominant serotype. This TAC method yields fast and comprehensive serotyping compared to the standard method and may be useful on direct specimens.
Collapse
|