1
|
Fang X, Ding H, Chen Y, Wang Q, Yuan X, Zhang C, Huang J, Huang J, Lv J, Hu H, Huang C, Hu X, Lin Y, Zhang N, Zhou W, Huang Y, Li W, Niu S, Wu Z, Lin J, Yang B, Yuan T, Zhang W. Wireless Optogenetic Targeting Nociceptors Helps Host Cells Win the Competitive Colonization in Implant-Associated Infections. SMALL METHODS 2024; 8:e2400216. [PMID: 39087367 DOI: 10.1002/smtd.202400216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Indexed: 08/02/2024]
Abstract
The role of nociceptive nerves in modulating immune responses to harmful stimuli via pain or itch induction remains controversial. Compared to conventional surgery, various implant surgeries are more prone to infections even with low bacterial loads. In this study, an optogenetic technique is introduced for selectively activating peripheral nociceptive nerves using a fully implantable, wirelessly rechargeable optogenetic device. By targeting nociceptors in the limbs of awake, freely moving mice, it is found that activation induces anticipatory immunity in the innervated territory and enhances the adhesion of various host cells to the implant surface. This effect mediates acute immune cell-mediated killing of Staphylococcus aureus on implants and enables the host to win "implant surface competition" against Staphylococcus aureus. This finding provides new strategies for preventing and treating implant-associated infections.
Collapse
Affiliation(s)
- Xinyu Fang
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Haiqi Ding
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yang Chen
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Qijin Wang
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedics, Affiliated Mindong Hospital of Fujian Medical University, Fu'an, 355000, China
| | - Xuhui Yuan
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Chaofan Zhang
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Jiagu Huang
- Department of Orthopedic Surgery, Ningde municipal Hospital, Ningde, 352000, China
| | - Jiexin Huang
- Department of Orthopedic Surgery, Nanping First Hospital, Nanping, 353000, China
| | - Jianhua Lv
- Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian, 351100, China
| | - Hongxin Hu
- Department of Orthopedic Surgery, Affiliated Hospital of Putian University, Putian, 351100, China
| | - Changyu Huang
- Department of Orthopedic Surgery, Quanzhou Orthopedic-traumatological Hospital, Quanzhou, 362000, China
| | - Xueni Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Yiming Lin
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Nanxin Zhang
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Wei Zhou
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Ying Huang
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Wenbo Li
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Susheng Niu
- Key Laboratory of Orthopedics & Traumatology of Traditional Chinese Medicine and Rehabilitation Ministry of Education, Fujian university of Traditional Chinese Medicine, Fuzhou, 350000, China
| | - Zhaoyang Wu
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Jianhua Lin
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Bin Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| | - Tifei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200000, China
| | - Wenming Zhang
- Department of Orthopedic Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350000, China
- Fujian Provincial Institute of Orthopedics, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350000, China
| |
Collapse
|
2
|
Gao Z, Zhou Y, Zhang J, Foroughi J, Peng S, Baughman RH, Wang ZL, Wang CH. Advanced Energy Harvesters and Energy Storage for Powering Wearable and Implantable Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404492. [PMID: 38935237 DOI: 10.1002/adma.202404492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Wearable and implantable active medical devices (WIMDs) are transformative solutions for improving healthcare, offering continuous health monitoring, early disease detection, targeted treatments, personalized medicine, and connected health capabilities. Commercialized WIMDs use primary or rechargeable batteries to power their sensing, actuation, stimulation, and communication functions, and periodic battery replacements of implanted active medical devices pose major risks of surgical infections or inconvenience to users. Addressing the energy source challenge is critical for meeting the growing demand of the WIMD market that is reaching valuations in the tens of billions of dollars. This review critically assesses the recent advances in energy harvesting and storage technologies that can potentially eliminate the need for battery replacements. With a key focus on advanced materials that can enable energy harvesters to meet the energy needs of WIMDs, this review examines the crucial roles of advanced materials in improving the efficiencies of energy harvesters, wireless charging, and energy storage devices. This review concludes by highlighting the key challenges and opportunities in advanced materials necessary to achieve the vision of self-powered wearable and implantable active medical devices, eliminating the risks associated with surgical battery replacement and the inconvenience of frequent manual recharging.
Collapse
Affiliation(s)
- Ziyan Gao
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Zhou
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Javad Foroughi
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Gonzalez M, Gradwell MA, Thackray JK, Patel KR, Temkar KK, Abraira VE. Using DeepLabCut-Live to probe state dependent neural circuits of behavior with closed-loop optogenetic stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605489. [PMID: 39131312 PMCID: PMC11312470 DOI: 10.1101/2024.07.28.605489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Background Closed-loop behavior paradigms enable us to dissect the state-dependent neural circuits underlying behavior in real-time. However, studying context-dependent locomotor perturbations has been challenging due to limitations in molecular tools and techniques for real-time manipulation of spinal cord circuits. New Method We developed a novel closed-loop optogenetic stimulation paradigm that utilizes DeepLabCut-Live pose estimation to manipulate primary sensory afferent activity at specific phases of the locomotor cycle in mice. A compact DeepLabCut model was trained to track hindlimb kinematics in real-time and integrated into the Bonsai visual programming framework. This allowed an LED to be triggered to photo-stimulate sensory neurons expressing channelrhodopsin at user-defined pose-based criteria, such as during the stance or swing phase. Results Optogenetic activation of nociceptive TRPV1+ sensory neurons during treadmill locomotion reliably evoked paw withdrawal responses. Photoactivation during stance generated a brief withdrawal, while stimulation during swing elicited a prolonged response likely engaging stumbling corrective reflexes. Comparison with Existing Methods This new method allows for high spatiotemporal precision in manipulating spinal circuits based on the phase of the locomotor cycle. Unlike previous approaches, this closed-loop system can control for the state-dependent nature of sensorimotor responses during locomotion. Conclusions Integrating DeepLabCut-Live with optogenetics provides a powerful new approach to dissect the context-dependent role of sensory feedback and spinal interneurons in modulating locomotion. This technique opens new avenues for uncovering the neural substrates of state-dependent behaviors and has broad applicability for studies of real-time closed-loop manipulation based on pose estimation.
Collapse
Affiliation(s)
- Melissa Gonzalez
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- Department of Biomedical Engineering, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Mark A Gradwell
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Joshua K Thackray
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- Human Genetics Institute of New Jersey, Rutgers University, The State University of New Jersey, Piscataway, NJ, United States of America
| | - Komal R Patel
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- Department of Psychology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Kanaksha K Temkar
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| | - Victoria E Abraira
- Cell Biology and Neuroscience Department, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
- W.M. Keck Center for Collaborative Neuroscience, Rutgers University, The State University of New Jersey, New Brunswick, NJ, United States of America
| |
Collapse
|
4
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Poddar S, Mondal H, Podder I. Aetiology, pathogenesis and management of neuropathic itch: A narrative review with recent updates. Indian J Dermatol Venereol Leprol 2024; 90:5-18. [PMID: 37317726 DOI: 10.25259/ijdvl_846_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/17/2023] [Indexed: 06/16/2023]
Abstract
Neuropathic itch is a relatively common yet under-reported cause of systemic pruritus. It is a debilitating condition often associated with pain, which impairs the patient's quality of life. Although much literature exists about renal and hepatic pruritus, there is a dearth of information and awareness about neuropathic itch. The pathogenesis of neuropathic itch is complex and can result from an insult at any point along the itch pathway, ranging from the peripheral receptors and nerves until the brain. There are several causes of neuropathic itch, many of which do not produce any skin lesions and are thus, often missed. A detailed history and clinical examination are necessary for the diagnosis, while laboratory and radiologic investigations may be needed in select cases. Several therapeutic strategies currently exist involving both non-pharmacological and pharmacological measures, the latter including topical, systemic, and invasive options. Further research is ongoing to clarify its pathogenesis and to design newer targeted therapies with minimal adverse effects. This narrative review highlights the current understanding of this condition, focusing on its causes, pathogenesis, diagnosis, and management, along with newer investigational drugs.
Collapse
Affiliation(s)
- Shreya Poddar
- Department of Dermatology, Asansol District Hospital, Asansol, West Bengal, India
| | - Himel Mondal
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Indrashis Podder
- Department of Dermatology, College of Medicine & Sagore Dutta Hospital, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023; 7:405-423. [PMID: 33686282 PMCID: PMC8423863 DOI: 10.1038/s41551-021-00683-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Tethered and battery-powered devices that interface with neural tissues can restrict natural motions and prevent social interactions in animal models, thereby limiting the utility of these devices in behavioural neuroscience research. In this Review Article, we discuss recent progress in the development of miniaturized and ultralightweight devices as neuroengineering platforms that are wireless, battery-free and fully implantable, with capabilities that match or exceed those of wired or battery-powered alternatives. Such classes of advanced neural interfaces with optical, electrical or fluidic functionality can also combine recording and stimulation modalities for closed-loop applications in basic studies or in the practical treatment of abnormal physiological processes.
Collapse
Affiliation(s)
- Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Le Cai
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA
| | - Philipp Gutruf
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA.
- Bio5 Institute and Neuroscience GIDP, University of Arizona, Tucson, AZ, USA.
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
7
|
Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023; 23:25-42. [PMID: 36385560 PMCID: PMC9912378 DOI: 10.1038/s41568-022-00527-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.
Collapse
Affiliation(s)
- David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
8
|
Nelson TS, Sinha GP, Santos DFS, Jukkola P, Prasoon P, Winter MK, McCarson KE, Smith BN, Taylor BK. Spinal neuropeptide Y Y1 receptor-expressing neurons are a pharmacotherapeutic target for the alleviation of neuropathic pain. Proc Natl Acad Sci U S A 2022; 119:e2204515119. [PMID: 36343228 PMCID: PMC9674229 DOI: 10.1073/pnas.2204515119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022] Open
Abstract
Peripheral nerve injury sensitizes a complex network of spinal cord dorsal horn (DH) neurons to produce allodynia and neuropathic pain. The identification of a druggable target within this network has remained elusive, but a promising candidate is the neuropeptide Y (NPY) Y1 receptor-expressing interneuron (Y1-IN) population. We report that spared nerve injury (SNI) enhanced the excitability of Y1-INs and elicited allodynia (mechanical and cold hypersensitivity) and affective pain. Similarly, chemogenetic or optogenetic activation of Y1-INs in uninjured mice elicited behavioral signs of spontaneous, allodynic, and affective pain. SNI-induced allodynia was reduced by chemogenetic inhibition of Y1-INs, or intrathecal administration of a Y1-selective agonist. Conditional deletion of Npy1r in DH neurons, but not peripheral afferent neurons prevented the anti-hyperalgesic effects of the intrathecal Y1 agonist. We conclude that spinal Y1-INs are necessary and sufficient for the behavioral symptoms of neuropathic pain and represent a promising target for future pharmacotherapeutic development of Y1 agonists.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ghanshyam P. Sinha
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Diogo F. S. Santos
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Peter Jukkola
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Michelle K. Winter
- Kansas Intellectual and Developmental Disabilities Research Center; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ken E. McCarson
- Kansas Intellectual and Developmental Disabilities Research Center; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Bret N. Smith
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
9
|
Wang J, Wang L, Li G, Yan D, Liu C, Xu T, Zhang X. Ultra-Small Wearable Flexible Biosensor for Continuous Sweat Analysis. ACS Sens 2022; 7:3102-3107. [PMID: 36218347 DOI: 10.1021/acssensors.2c01533] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the field of wearable sensing, small and precise sensors can greatly reduce the burden on the wearer and improve the sense of experience, which is the future direction of sensing development. Herein, we introduce an ultra-small wearable biosensor system that integrates an MS02 chip for real-time and highly accurate sweat detection. The whole system mainly includes flexible electrodes and a printed circle board (PCB). The size of the PCB is only 1.5 cm × 0.8 cm, which greatly minimizes the size of the sweat system and improves wearing comfort. Notably, this miniaturized system is comparable to a commercial electrochemical workstation, ensuring the reliability and accuracy of real-time analysis. The core processing MS02 chip, with a dimension of 1.2 mm × 1.1 mm, is used to perform electrochemical signal processing. By performing electrochemical characterization and measurements of the ultra-small wearable biosensor system, on-body monitoring of four biomarkers (glucose, lactate, Na+, and K+) in sweat of human volunteers has been successfully achieved. With the help of this electrochemical sensor system, mass of biochemical data from perspiration can be acquired to better understand the body's response to daily activities, which will facilitate the early prediction of abnormal physiological changes in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Lirong Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Guanhua Li
- Shenzhen Refresh Intelligent Technology Co. Ltd., Shenzhen, Guangdong 518000, PR China
| | - Dan Yan
- Shenzhen Refresh Intelligent Technology Co. Ltd., Shenzhen, Guangdong 518000, PR China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Improved Locomotor Recovery in a Rat Model of Spinal Cord Injury by BioLuminescent-OptoGenetic (BL-OG) Stimulation with an Enhanced Luminopsin. Int J Mol Sci 2022; 23:ijms232112994. [PMID: 36361784 PMCID: PMC9656028 DOI: 10.3390/ijms232112994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 11/27/2022] Open
Abstract
Irrespective of the many strategies focused on dealing with spinal cord injury (SCI), there is still no way to restore motor function efficiently or an adequate regenerative therapy. One promising method that could potentially prove highly beneficial for rehabilitation in patients is to re-engage specific neuronal populations of the spinal cord following SCI. Targeted activation may maintain and strengthen existing neuronal connections and/or facilitate the reorganization and development of new connections. BioLuminescent-OptoGenetics (BL-OG) presents an avenue to non-invasively and specifically stimulate neurons; genetically targeted neurons express luminopsins (LMOs), light-emitting luciferases tethered to light-sensitive channelrhodopsins that are activated by adding the luciferase substrate coelenterazine (CTZ). This approach employs ion channels for current conduction while activating the channels through treatment with the small molecule CTZ, thus allowing non-invasive stimulation of all targeted neurons. We previously showed the efficacy of this approach for improving locomotor recovery following severe spinal cord contusion injury in rats expressing the excitatory luminopsin 3 (LMO3) under control of a pan-neuronal and motor-neuron-specific promoter with CTZ applied through a lateral ventricle cannula. The goal of the present study was to test a new generation of LMOs based on opsins with higher light sensitivity which will allow for peripheral delivery of the CTZ. In this construct, the slow-burn Gaussia luciferase variant (sbGLuc) is fused to the opsin CheRiff, creating LMO3.2. Taking advantage of the high light sensitivity of this opsin, we stimulated transduced lumbar neurons after thoracic SCI by intraperitoneal application of CTZ, allowing for a less invasive treatment. The efficacy of this non-invasive BioLuminescent-OptoGenetic approach was confirmed by improved locomotor function. This study demonstrates that peripheral delivery of the luciferin CTZ can be used to activate LMOs expressed in spinal cord neurons that employ an opsin with increased light sensitivity.
Collapse
|
11
|
Maruta T, Hidaka K, Kouroki S, Koshida T, Kurogi M, Kage Y, Mizuno S, Shirasaka T, Yanagita T, Takahashi S, Takeya R, Tsuneyoshi I. Selective optogenetic activation of NaV1.7-expressing afferents in NaV1.7-ChR2 mice induces nocifensive behavior without affecting responses to mechanical and thermal stimuli. PLoS One 2022; 17:e0275751. [PMID: 36201719 PMCID: PMC9536842 DOI: 10.1371/journal.pone.0275751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
In small and large spinal dorsal root ganglion neurons, subtypes of voltage-gated sodium channels, such as NaV1.7, NaV1.8, and NaV1.9 are expressed with characteristically localized and may play different roles in pain transmission and intractable pain development. Selective stimulation of each specific subtype in vivo may elucidate its role of each subtype in pain. So far, this has been difficult with current technology. However, Optogenetics, a recently developed technique, has enabled selective activation or inhibition of specific neural circulation in vivo. Moreover, optogenetics had even been used to selectively excite NaV1.8-expressing dorsal root ganglion neurons to induce nocifensive behavior. In recent years, genetic modification technologies such as CRISPR/Cas9 have advanced, and various knock-in mice can be easily generated using such technology. We aimed to investigate the effects of selective optogenetic activation of NaV1.7-expressing afferents on mouse behavior. We used CRISPR/Cas9-mediated homologous recombination to generate bicistronic NaV1.7-iCre knock-in mice, which express iCre recombinase under the endogenous NaV1.7 gene promoter without disrupting NaV1.7. The Cre-driver mice were crossed with channelrhodopsin-2 (ChR2) Cre-reporter Ai32 mice to obtain NaV1.7iCre/+;Ai32/+, NaV1.7iCre/iCre;Ai32/+, NaV1.7iCre/+;Ai32/Ai32, and NaV1.7iCre/iCre;Ai32/Ai32 mice. Compared with wild-type mice behavior, no differences were observed in the behaviors associated with mechanical and thermal stimuli exhibited by mice of the aforementioned genotypes, indicating that the endogenous NaV1.7 gene was not affected by the targeted insertion of iCre. Blue light irradiation to the hind paw induced paw withdrawal by mice of all genotypes in a light power-dependent manner. The threshold and incidence of paw withdrawal and aversive behavior in a blue-lit room were dependent on ChR2 expression level; the strongest response was observed in NaV1.7iCre/iCre;Ai32/Ai32 mice. Thus, we developed a non-invasive pain model in which peripheral nociceptors were optically activated in free-moving transgenic NaV1.7-ChR2 mice.
Collapse
Affiliation(s)
- Toyoaki Maruta
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
- * E-mail:
| | - Kotaro Hidaka
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Satoshi Kouroki
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Tomohiro Koshida
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Mio Kurogi
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Yohko Kage
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tetsuro Shirasaka
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Toshihiko Yanagita
- Department of Clinical Pharmacology, School of Nursing, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryu Takeya
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Isao Tsuneyoshi
- Department of Anesthesiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| |
Collapse
|
12
|
Frederick RA, Shih E, Towle VL, Joshi-Imre A, Troyk PR, Cogan SF. Chronic stability of activated iridium oxide film voltage transients from wireless floating microelectrode arrays. Front Neurosci 2022; 16:876032. [PMID: 36003961 PMCID: PMC9393423 DOI: 10.3389/fnins.2022.876032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Successful monitoring of the condition of stimulation electrodes is critical for maintaining chronic device performance for neural stimulation. As part of pre-clinical safety testing in preparation for a visual prostheses clinical trial, we evaluated the stability of the implantable devices and stimulation electrodes using a combination of current pulsing in saline and in canine visual cortex. Specifically, in saline we monitored the stability and performance of 3000 μm2 geometric surface area activated iridium oxide film (AIROF) electrodes within a wireless floating microelectrode array (WFMA) by measuring the voltage transient (VT) response through reverse telemetry. Eight WFMAs were assessed in vitro for 24 days, where n = 4 were pulsed continuously at 80 μA (16 nC/phase) and n = 4 remained in solution with no applied stimulation. Subsequently, twelve different WFMAs were implanted in visual cortex in n = 3 canine subjects (4 WFMAs each). After a 2-week recovery period, half of the electrodes in each of the twelve devices were pulsed continuously for 24 h at either 20, 40, 63, or 80 μA (200 μs pulse width, 100 Hz). VTs were recorded to track changes in the electrodes at set time intervals in both the saline and in vivo study. The VT response of AIROF electrodes remained stable during pulsing in saline over 24 days. Electrode polarization and driving voltage changed by less than 200 mV on average. The AIROF electrodes also maintained consistent performance, overall, during 24 h of pulsing in vivo. Four of the in vivo WFMA devices showed a change in polarization, access voltage, or driving voltage over time. However, no VT recordings indicated electrode failure, and the same trend was typically seen in both pulsed and unpulsed electrodes within the same device. Overall, accelerated stimulation testing in saline and in vivo indicated that AIROF electrodes in the WFMA were able to consistently deliver up to 16 nC per pulse and would be suitable for chronic clinical use.
Collapse
Affiliation(s)
- Rebecca A. Frederick
- Neural Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Ellen Shih
- Neural Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Vernon L. Towle
- Clinical Neurophysiologic Mapping Laboratory, Department of Neurology, The University of Chicago, Chicago, IL, United States
| | - Alexandra Joshi-Imre
- Neural Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Philip R. Troyk
- Laboratory of Neuroprosthetic Research, Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States
| | - Stuart F. Cogan
- Neural Interfaces Laboratory, Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
13
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
14
|
Kim H, Kim MJ, Kwon YW, Jeon S, Lee S, Kim C, Choi BT, Shin Y, Hong SW, Shin HK. Benefits of a Skull-Interfaced Flexible and Implantable Multilight Emitting Diode Array for Photobiomodulation in Ischemic Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104629. [PMID: 35076161 PMCID: PMC9008794 DOI: 10.1002/advs.202104629] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/08/2022] [Indexed: 05/05/2023]
Abstract
Photobiomodulation (PBM) has received attention due to its potential for improving tissue function and enhancing regeneration in stroke. A lightweight, compact, and simple system of miniaturized electronic devices consisting of packaged light-emitting diodes (LEDs) that incorporates a flexible substrate for in vivo brain PBM in a mouse model is developed. Using this device platform, the preventive and therapeutic effects of PBM affixed to the exposed skull of mice in the photothrombosis and middle cerebral artery occlusion stroke model are evaluated. Among the wavelength range of 630, 850, and 940 nm LED array, the PBM with 630-nm LED array is proved to be the most effective for reducing the infarction volume and neurological impairment after ischemic stroke. Moreover, the PBM with 630 nm LED array remarkably improves the capability of spatial learning and memory in the chronic poststroke phase, attenuates AIM2 inflammasome activation and inflammasome-mediated pyroptosis, and modulates microglial polarization in the hippocampus and cortex 7 days following ischemic stroke. Thus, PBM may prevent tissue and functional damage in acute ischemic injury, thereby attenuating the development of cognitive impairment after stroke.
Collapse
Affiliation(s)
- Hyunha Kim
- Department of Korean Medical ScienceGraduate Training Program of Korean Medical Therapeutics for Healthy‐AgingSchool of Korean MedicinePusan National UniversityYangsan50612Republic of Korea
- Department of Pharmacology and NeuroscienceCreighton University School of MedicineOmahaNE68178USA
| | - Min Jae Kim
- Department of Korean Medical ScienceGraduate Training Program of Korean Medical Therapeutics for Healthy‐AgingSchool of Korean MedicinePusan National UniversityYangsan50612Republic of Korea
| | - Young Woo Kwon
- Department of Nano‐Fusion TechnologyCollege of Nanoscience & NanotechnologyPusan National UniversityBusan46241Republic of Korea
| | - Sangheon Jeon
- Department of Congo‐Mechatronics EngineeringDepartment of Optics and Mechatronics EngineeringCollege of Nanoscience & NanotechnologyPusan National UniversityBusan46241Republic of Korea
| | - Seo‐Yeon Lee
- Department of PharmacologyWonkwang University School of MedicineIksan54538Republic of Korea
| | - Chang‐Seok Kim
- Department of Congo‐Mechatronics EngineeringDepartment of Optics and Mechatronics EngineeringCollege of Nanoscience & NanotechnologyPusan National UniversityBusan46241Republic of Korea
| | - Byung Tae Choi
- Department of Korean Medical ScienceGraduate Training Program of Korean Medical Therapeutics for Healthy‐AgingSchool of Korean MedicinePusan National UniversityYangsan50612Republic of Korea
| | - Yong‐Il Shin
- Department of Rehabilitation MedicineSchool of MedicinePusan National UniversityYangsan50612Republic of Korea
| | - Suck Won Hong
- Department of Congo‐Mechatronics EngineeringDepartment of Optics and Mechatronics EngineeringCollege of Nanoscience & NanotechnologyPusan National UniversityBusan46241Republic of Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical ScienceGraduate Training Program of Korean Medical Therapeutics for Healthy‐AgingSchool of Korean MedicinePusan National UniversityYangsan50612Republic of Korea
| |
Collapse
|
15
|
Guo F, Du Y, Qu FH, Lin SD, Chen Z, Zhang SH. Dissecting the Neural Circuitry for Pain Modulation and Chronic Pain: Insights from Optogenetics. Neurosci Bull 2022; 38:440-452. [PMID: 35249185 PMCID: PMC9068856 DOI: 10.1007/s12264-022-00835-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Pain is an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage. The processing of pain involves complicated modulation at the levels of the periphery, spinal cord, and brain. The pathogenesis of chronic pain is still not fully understood, which makes the clinical treatment challenging. Optogenetics, which combines optical and genetic technologies, can precisely intervene in the activity of specific groups of neurons and elements of the related circuits. Taking advantage of optogenetics, researchers have achieved a body of new findings that shed light on the cellular and circuit mechanisms of pain transmission, pain modulation, and chronic pain both in the periphery and the central nervous system. In this review, we summarize recent findings in pain research using optogenetic approaches and discuss their significance in understanding the pathogenesis of chronic pain.
Collapse
Affiliation(s)
- Fang Guo
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yu Du
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Feng-Hui Qu
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shi-Da Lin
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shi-Hong Zhang
- Department of Pharmacology and Department of Anesthesiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
16
|
V3 Interneurons Are Active and Recruit Spinal Motor Neurons during In Vivo Fictive Swimming in Larval Zebrafish. eNeuro 2022; 9:ENEURO.0476-21.2022. [PMID: 35277451 PMCID: PMC8970435 DOI: 10.1523/eneuro.0476-21.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/25/2022] Open
Abstract
Survival for vertebrate animals is dependent on the ability to successfully find food, locate a mate, and avoid predation. Each of these behaviors requires motor control, which is set by a combination of kinematic properties. For example, the frequency and amplitude of motor output combine in a multiplicative manner to determine features of locomotion such as distance traveled, speed, force (thrust), and vigor. Although there is a good understanding of how different populations of excitatory spinal interneurons establish locomotor frequency, there is a less thorough mechanistic understanding for how locomotor amplitude is established. Recent evidence indicates that locomotor amplitude is regulated in part by a subset of functionally and morphologically distinct V2a excitatory spinal interneurons (Type II, nonbursting) in larval and adult zebrafish. Here, we provide direct evidence that most V3 interneurons (V3-INs), which are a developmentally and genetically defined population of ventromedial glutamatergic spinal neurons, are active during fictive swimming. We also show that elimination of the spinal V3-IN population reduces the proportion of active motor neurons (MNs) during fictive swimming but does not alter the range of locomotor frequencies produced. These data are consistent with V3-INs providing excitatory drive to spinal MNs during swimming in larval zebrafish and may contribute to the production of locomotor amplitude independently of locomotor frequency.
Collapse
|
17
|
Isagulyan ED, Mikhailova VA, Aslakhanova KS, Slavin KV. Prospects of neuromodulation for chronic pain. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2021.100027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
18
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
19
|
Petersen ED, Sharkey ED, Pal A, Shafau LO, Zenchak-Petersen J, Peña AJ, Aggarwal A, Prakash M, Hochgeschwender U. Restoring Function After Severe Spinal Cord Injury Through BioLuminescent-OptoGenetics. Front Neurol 2022; 12:792643. [PMID: 35126293 PMCID: PMC8811305 DOI: 10.3389/fneur.2021.792643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 02/02/2023] Open
Abstract
The ability to manipulate specific neuronal populations of the spinal cord following spinal cord injury (SCI) could prove highly beneficial for rehabilitation in patients through maintaining and strengthening still existing neuronal connections and/or facilitating the formation of new connections. A non-invasive and highly specific approach to neuronal stimulation is bioluminescent-optogenetics (BL-OG), where genetically expressed light emitting luciferases are tethered to light sensitive channelrhodopsins (luminopsins, LMO); neurons are activated by the addition of the luciferase substrate coelenterazine (CTZ). This approach utilizes ion channels for current conduction while activating the channels through the application of a small chemical compound, thus allowing non-invasive stimulation and recruitment of all targeted neurons. Rats were transduced in the lumbar spinal cord with AAV2/9 to express the excitatory LMO3 under control of a pan-neuronal or motor neuron-specific promoter. A day after contusion injury of the thoracic spine, rats received either CTZ or vehicle every other day for 2 weeks. Activation of either neuron population below the level of injury significantly improved locomotor recovery lasting beyond the treatment window. Utilizing histological and gene expression methods we identified neuronal plasticity as a likely mechanism underlying the functional recovery. These findings provide a foundation for a rational approach to spinal cord injury rehabilitation, thereby advancing approaches for functional recovery after SCI.SummaryBioluminescent optogenetic activation of spinal neurons results in accelerated and enhanced locomotor recovery after spinal cord injury in rats.
Collapse
Affiliation(s)
- Eric D. Petersen
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Erik D. Sharkey
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Akash Pal
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Lateef O. Shafau
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | | | - Alex J. Peña
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Anu Aggarwal
- Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, IL, United States
| | - Mansi Prakash
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
| | - Ute Hochgeschwender
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
- College of Medicine, Central Michigan University, Mount Pleasant, MI, United States
- *Correspondence: Ute Hochgeschwender
| |
Collapse
|
20
|
Bansal A, Shikha S, Zhang Y. Towards translational optogenetics. Nat Biomed Eng 2022; 7:349-369. [PMID: 35027688 DOI: 10.1038/s41551-021-00829-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.
Collapse
Affiliation(s)
- Akshaya Bansal
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Swati Shikha
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Yong Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore. .,NUS Suzhou Research Institute, Suzhou, Jiangsu, P. R. China.
| |
Collapse
|
21
|
Ji J, He Q, Luo X, Bang S, Matsuoka Y, McGinnis A, Nackley AG, Ji RR. IL-23 Enhances C-Fiber-Mediated and Blue Light-Induced Spontaneous Pain in Female Mice. Front Immunol 2021; 12:787565. [PMID: 34950149 PMCID: PMC8688771 DOI: 10.3389/fimmu.2021.787565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
The incidence of chronic pain is especially high in women, but the underlying mechanisms remain poorly understood. Interleukin-23 (IL-23) is a pro-inflammatory cytokine and contributes to inflammatory diseases (e.g., arthritis and psoriasis) through dendritic/T cell signaling. Here we examined the IL-23 involvement in sexual dimorphism of pain, using an optogenetic approach in transgenic mice expressing channelrhodopsin-2 (ChR2) in TRPV1-positive nociceptive neurons. In situ hybridization revealed that compared to males, females had a significantly larger portion of small-sized (100-200 μm2) Trpv1+ neurons in dorsal root ganglion (DRG). Blue light stimulation of a hindpaw of transgenic mice induced intensity-dependent spontaneous pain. At the highest intensity, females showed more intense spontaneous pain than males. Intraplantar injection of IL-23 (100 ng) induced mechanical allodynia in females only but had no effects on paw edema. Furthermore, intraplantar IL-23 only potentiated blue light-induced pain in females, and intrathecal injection of IL-23 also potentiated low-dose capsaicin (500 ng) induced spontaneous pain in females but not males. IL-23 expresses in DRG macrophages of both sexes. Intrathecal injection of IL-23 induced significantly greater p38 phosphorylation (p-p38), a marker of nociceptor activation, in DRGs of female mice than male mice. In THP-1 human macrophages estrogen and chemotherapy co-application increased IL-23 secretion, and furthermore, estrogen and IL-23 co-application, but not estrogen and IL-23 alone, significantly increased IL-17A release. These findings suggest a novel role of IL-23 in macrophage signaling and female-dominant pain, including C-fiber-mediated spontaneous pain. Our study has also provided new insight into cytokine-mediated macrophage-nociceptor interactions, in a sex-dependent manner.
Collapse
Affiliation(s)
- Jasmine Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Neuroscience Department, Wellesley College, Wellesley, MA, United States
| | - Qianru He
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Yutaka Matsuoka
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Andrea G. Nackley
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
22
|
Kim WS, Hong S, Park SI. Robust, wireless gastric optogenetic implants for the study of peripheral pathways and applications in obesity . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5742-5746. [PMID: 34892424 DOI: 10.1109/embc46164.2021.9629753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optogenetics has the potential to transform the study of organ functions in the peripheral nervous system via relatively easy access to the nerves and a direct link between the brain and organ systems. Implementation typically requires a static skeletal feature for the securement of a fiber. Unfortunately, the soft nature of peripheral nervous systems makes the wired fiber-optic approach less ideal for the study of the peripheral nervous system. Existing wireless approaches could bypass some constraints associated with optical fibers and thereby offer organ specificity. However, they suffer from durability loss due to considerable biological strains and unable to perform longitudinal experiments. Here, we propose a new class of wireless gastric optogenetic implant for identifying signaling pathways, in particular viscerosensory pathways, that can regulate food intake to treat obesity. Robust, wireless gastric optogenetic implants with a tubing-assisted U-shaped tether directly interface with nerve endings in the stomach with chronic stability in operation (> 100 kilocycles) and allows for optogenetic stimulations of vagus nerves in a freely behaving animal. We demonstrated utilities of the proposed wireless device in in vivo experiments. Results suggest the potential for identifying interventions for the treatment of obesity.Clinical Relevance - Identification of the roles of subpopulations in viscerosensory pathways would provide the platform for the development of better therapeutics for the treatment of obesity.
Collapse
|
23
|
Cho Y, Park S, Lee J, Yu KJ. Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005786. [PMID: 34050691 PMCID: PMC11468537 DOI: 10.1002/adma.202005786] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Neuroscience is an essential field of investigation that reveals the identity of human beings, with a comprehensive understanding of advanced mental activities, through the study of neurobiological structures and functions. Fully understanding the neurotransmission system that allows for connectivity among neuronal circuits has paved the way for the development of treatments for neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and depression. The field of flexible implants has attracted increasing interest mainly to overcome the mechanical mismatch between rigid electrode materials and soft neural tissues, enabling precise measurements of neural signals from conformal contact. Here, the current issues of flexible neural implants (chronic device failure, non-bioresorbable electronics, low-density electrode arrays, among others are summarized) by presenting material candidates and designs to address each challenge. Furthermore, the latest investigations associated with the aforementioned issues are also introduced, including suggestions for ideal neural implants. In terms of the future direction of these advances, designing flexible devices would provide new opportunities for the study of brain-machine interfaces or brain-computer interfaces as part of locomotion through brain signals, and for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Younguk Cho
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Sanghoon Park
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Juyoung Lee
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Ki Jun Yu
- School of Electrical EngineeringYU‐KIST InstituteYonsei UniversitySeoul03722Korea
| |
Collapse
|
24
|
Kathe C, Michoud F, Schönle P, Rowald A, Brun N, Ravier J, Furfaro I, Paggi V, Kim K, Soloukey S, Asboth L, Hutson TH, Jelescu I, Philippides A, Alwahab N, Gandar J, Huber D, De Zeeuw CI, Barraud Q, Huang Q, Lacour SP, Courtine G. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat Biotechnol 2021; 40:198-208. [PMID: 34580478 PMCID: PMC7612390 DOI: 10.1038/s41587-021-01019-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Optoelectronic systems can exert precise control over targeted neurons and pathways throughout the brain in untethered animals, but similar technologies for the spinal cord are not well established. In the present study, we describe a system for ultrafast, wireless, closed-loop manipulation of targeted neurons and pathways across the entire dorsoventral spinal cord in untethered mice. We developed a soft stretchable carrier, integrating microscale light-emitting diodes (micro-LEDs), that conforms to the dura mater of the spinal cord. A coating of silicone-phosphor matrix over the micro-LEDs provides mechanical protection and light conversion for compatibility with a large library of opsins. A lightweight, head-mounted, wireless platform powers the micro-LEDs and performs low-latency, on-chip processing of sensed physiological signals to control photostimulation in a closed loop. We use the device to reveal the role of various neuronal subtypes, sensory pathways and supraspinal projections in the control of locomotion in healthy and spinal-cord injured mice.
Collapse
Affiliation(s)
- Claudia Kathe
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Frédéric Michoud
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Philipp Schönle
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | - Andreas Rowald
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Noé Brun
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | - Jimmy Ravier
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Ivan Furfaro
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Valentina Paggi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Kyungjin Kim
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Sadaf Soloukey
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
| | - Leonie Asboth
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Thomas H Hutson
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Ileana Jelescu
- Centre d'Imagerie Biomedicale, EPFL, Lausanne, Switzerland
| | - Antoine Philippides
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Noaf Alwahab
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Jérôme Gandar
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Daniel Huber
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute of Neuroscience, Royal Dutch Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Qiuting Huang
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland.
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland. .,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland. .,Department of Neurosurgery, CHUV, Lausanne, Switzerland.
| |
Collapse
|
25
|
Scalco A, Moro N, Mongillo M, Zaglia T. Neurohumoral Cardiac Regulation: Optogenetics Gets Into the Groove. Front Physiol 2021; 12:726895. [PMID: 34531763 PMCID: PMC8438220 DOI: 10.3389/fphys.2021.726895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiac autonomic nervous system (ANS) is the main modulator of heart function, adapting contraction force, and rate to the continuous variations of intrinsic and extrinsic environmental conditions. While the parasympathetic branch dominates during rest-and-digest sympathetic neuron (SN) activation ensures the rapid, efficient, and repeatable increase of heart performance, e.g., during the "fight-or-flight response." Although the key role of the nervous system in cardiac homeostasis was evident to the eyes of physiologists and cardiologists, the degree of cardiac innervation, and the complexity of its circuits has remained underestimated for too long. In addition, the mechanisms allowing elevated efficiency and precision of neurogenic control of heart function have somehow lingered in the dark. This can be ascribed to the absence of methods adequate to study complex cardiac electric circuits in the unceasingly moving heart. An increasing number of studies adds to the scenario the evidence of an intracardiac neuron system, which, together with the autonomic components, define a little brain inside the heart, in fervent dialogue with the central nervous system (CNS). The advent of optogenetics, allowing control the activity of excitable cells with cell specificity, spatial selectivity, and temporal resolution, has allowed to shed light on basic neuro-cardiology. This review describes how optogenetics, which has extensively been used to interrogate the circuits of the CNS, has been applied to untangle the knots of heart innervation, unveiling the cellular mechanisms of neurogenic control of heart function, in physiology and pathology, as well as those participating to brain-heart communication, back and forth. We discuss existing literature, providing a comprehensive view of the advancement in the understanding of the mechanisms of neurogenic heart control. In addition, we weigh the limits and potential of optogenetics in basic and applied research in neuro-cardiology.
Collapse
Affiliation(s)
- Arianna Scalco
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Nicola Moro
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
| | - Marco Mongillo
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tania Zaglia
- Veneto Institute of Molecular Medicine, Padova, Italy
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
26
|
Manoilov KY, Verkhusha VV, Shcherbakova DM. A guide to the optogenetic regulation of endogenous molecules. Nat Methods 2021; 18:1027-1037. [PMID: 34446923 DOI: 10.1038/s41592-021-01240-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 07/09/2021] [Indexed: 12/26/2022]
Abstract
Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs.
Collapse
Affiliation(s)
- Kyrylo Yu Manoilov
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Science Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
27
|
Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. Proc Natl Acad Sci U S A 2021; 118:2025775118. [PMID: 34301889 DOI: 10.1073/pnas.2025775118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wireless, battery-free, and fully subdermally implantable optogenetic tools are poised to transform neurobiological research in freely moving animals. Current-generation wireless devices are sufficiently small, thin, and light for subdermal implantation, offering some advantages over tethered methods for naturalistic behavior. Yet current devices using wireless power delivery require invasive stimulus delivery, penetrating the skull and disrupting the blood-brain barrier. This can cause tissue displacement, neuronal damage, and scarring. Power delivery constraints also sharply curtail operational arena size. Here, we implement highly miniaturized, capacitive power storage on the platform of wireless subdermal implants. With approaches to digitally manage power delivery to optoelectronic components, we enable two classes of applications: transcranial optogenetic activation millimeters into the brain (validated using motor cortex stimulation to induce turning behaviors) and wireless optogenetics in arenas of more than 1 m2 in size. This methodology allows for previously impossible behavioral experiments leveraging the modern optogenetic toolkit.
Collapse
|
28
|
Yamagishi K, Zhou W, Ching T, Huang SY, Hashimoto M. Ultra-Deformable and Tissue-Adhesive Liquid Metal Antennas with High Wireless Powering Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008062. [PMID: 34031936 DOI: 10.1002/adma.202008062] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Flexible and stretchable antennas are important for wireless communication using wearable and implantable devices to address mechanical mismatch at the tissue-device interface. Emerging technologies of liquid-metal-based stretchable electronics are promising approaches to improve the flexibility and stretchability of conventional metal-based antennas. However, existing methods to encapsulate liquid metals require monolithically thick (at least 100 µm) substrates, and the resulting devices are limited in deformability and tissue-adhesiveness. To overcome this limitation, fabrication of microchannels by direct ink writing on a 7 µm-thick elastomeric substrate is demonstrated, to obtain liquid metal microfluidic antennas with unprecedented deformability. The fabricated wireless light-emitting device is powered by a standard near-field-communication system (13.56 MHz, 1 W) and retained a consistent operation under deformations including stretching (>200% uniaxial strain), twisting (180° twist), and bending (3.0 mm radius of curvature) while maintaining a high quality factor (q > 20). Suture-free conformal adhesion of the polydopamine-coated device to ex vivo animal tissues under mechanical deformations is also demonstrated. This technology offers a new capability for the design and fabrication of wireless biomedical devices requiring conformable tissue-device integration toward minimally invasive, imperceptible medical treatments.
Collapse
Affiliation(s)
- Kento Yamagishi
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Wenshen Zhou
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Terry Ching
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore, 487372, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Shao Ying Huang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Michinao Hashimoto
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore, 487372, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| |
Collapse
|
29
|
Surgical implantation of wireless, battery-free optoelectronic epidural implants for optogenetic manipulation of spinal cord circuits in mice. Nat Protoc 2021; 16:3072-3088. [PMID: 34031611 PMCID: PMC9273129 DOI: 10.1038/s41596-021-00532-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
The use of optogenetics to regulate neuronal activity has revolutionized the study of the neural circuitry underlying a number of complex behaviors in rodents. Advances have been particularly evident in the study of brain circuitry and related behaviors, while advances in the study of spinal circuitry have been less striking because of technical hurdles. We have developed and characterized a wireless and fully implantable optoelectronic device that enables optical manipulation of spinal cord circuitry in mice via a microscale light-emitting diode (µLED) placed in the epidural space (NeuroLux spinal optogenetic device). This protocol describes how to surgically implant the device into the epidural space and then analyze light-induced behavior upon µLED activation. We detail optimized optical parameters for in vivo stimulation and demonstrate typical behavioral effects of optogenetic activation of nociceptive spinal afferents using this device. This fully wireless spinal µLED system provides considerable versatility for behavioral assays compared with optogenetic approaches that require tethering of animals, and superior temporal and spatial resolution when compared with other methods used for circuit manipulation such as chemogenetics. The detailed surgical approach and improved functionality of these spinal optoelectronic devices substantially expand the utility of this approach for the study of spinal circuitry and behaviors related to mechanical and thermal sensation, pruriception and nociception. The surgical implantation procedure takes ~1 h. The time required for the study of behaviors that are modulated by the light-activated circuit is variable and will depend upon the nature of the study.
Collapse
|
30
|
Stuart T, Cai L, Burton A, Gutruf P. Wireless and battery-free platforms for collection of biosignals. Biosens Bioelectron 2021; 178:113007. [PMID: 33556807 PMCID: PMC8112193 DOI: 10.1016/j.bios.2021.113007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/02/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Recent progress in biosensors have quantitively expanded current capabilities in exploratory research tools, diagnostics and therapeutics. This rapid pace in sensor development has been accentuated by vast improvements in data analysis methods in the form of machine learning and artificial intelligence that, together, promise fantastic opportunities in chronic sensing of biosignals to enable preventative screening, automated diagnosis, and tools for personalized treatment strategies. At the same time, the importance of widely accessible personal monitoring has become evident by recent events such as the COVID-19 pandemic. Progress in fully integrated and chronic sensing solutions is therefore increasingly important. Chronic operation, however, is not truly possible with tethered approaches or bulky, battery-powered systems that require frequent user interaction. A solution for this integration challenge is offered by wireless and battery-free platforms that enable continuous collection of biosignals. This review summarizes current approaches to realize such device architectures and discusses their building blocks. Specifically, power supplies, wireless communication methods and compatible sensing modalities in the context of most prevalent implementations in target organ systems. Additionally, we highlight examples of current embodiments that quantitively expand sensing capabilities because of their use of wireless and battery-free architectures.
Collapse
Affiliation(s)
- Tucker Stuart
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Le Cai
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA; Department of Electrical Engineering, University of Arizona, Tucson, AZ, 85721, USA; Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA; Neuroscience GIDP, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
31
|
Ausra J, Munger SJ, Azami A, Burton A, Peralta R, Miller JE, Gutruf P. Wireless battery free fully implantable multimodal recording and neuromodulation tools for songbirds. Nat Commun 2021; 12:1968. [PMID: 33785751 PMCID: PMC8009877 DOI: 10.1038/s41467-021-22138-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Wireless battery free and fully implantable tools for the interrogation of the central and peripheral nervous system have quantitatively expanded the capabilities to study mechanistic and circuit level behavior in freely moving rodents. The light weight and small footprint of such devices enables full subdermal implantation that results in the capability to perform studies with minimal impact on subject behavior and yields broad application in a range of experimental paradigms. While these advantages have been successfully proven in rodents that move predominantly in 2D, the full potential of a wireless and battery free device can be harnessed with flying species, where interrogation with tethered devices is very difficult or impossible. Here we report on a wireless, battery free and multimodal platform that enables optogenetic stimulation and physiological temperature recording in a highly miniaturized form factor for use in songbirds. The systems are enabled by behavior guided primary antenna design and advanced energy management to ensure stable optogenetic stimulation and thermography throughout 3D experimental arenas. Collectively, these design approaches quantitatively expand the use of wireless subdermally implantable neuromodulation and sensing tools to species previously excluded from in vivo real time experiments.
Collapse
Affiliation(s)
- Jokubas Ausra
- Departments of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | | | - Amirhossein Azami
- Departments of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Alex Burton
- Departments of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Roberto Peralta
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Julie E Miller
- Department of Neuroscience, The University of Arizona, Tucson, AZ, USA.
- Departments of Speech, Language & Hearing Sciences, Neurology, and Bio5 Institute, Neuroscience GIDP, The University of Arizona, Tucson, AZ, USA.
| | - Philipp Gutruf
- Departments of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
- Departments of Electrical and Computer Engineering, Bio5 Institute, Neuroscience GIDP, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
32
|
Xu Z, Agbigbe O, Nigro N, Yakobi G, Shapiro J, Ginosar Y. Use of high-resolution thermography as a validation measure to confirm epidural anesthesia in mice: a cross-over study. Int J Obstet Anesth 2021; 46:102981. [PMID: 33906822 DOI: 10.1016/j.ijoa.2021.102981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 03/14/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Effective epidural anesthesia is confirmed in humans by sensory assessments but these tests are not feasible in mice. We hypothesized that, in mice, infrared thermography would demonstrate selective segmental warming of lower extremities following epidural anesthesia. METHODS We anesthetized 10 C57BL/6 mice with isoflurane and then inserted a PU-10 epidural catheter under direct surgical microscopy at T11-12. A thermal camera (thermal sensitivity ±0.05°C, pixel resolution 320x240 pixels, and spatial resolution 200 μm) recorded baseline temperature of front and rear paws, tail and ears. Thermography was assessed at baseline and 2, 5, 10, and 15 min after an epidural bolus dose of 50 μL bupivacaine 0.25% or 50 μL saline (control) using a cross-over design with dose order randomized and investigators blinded to study drug. Thermal images were recorded from video and analyzed using FLIR software. Effect over time and maximal effect (Emax) were assessed by repeated measures ANOVA and paired t-tests. Comparisons were between bupivacaine and control, and between lower vs upper extremities. RESULTS Epidural bupivacaine caused progressive warming of lower compared with upper extremities (P <0.001), typically returning to baseline by 15 min after administration. Mean (±SD) Emax was +3.73 (±1.56) °C for lower extremities compared with 0.56 (±0.68) °C (P=0.03) for upper extremities. Following epidural saline, there was no effect over time (Emax for lower extremities -0.88 (±0.28) °C compared with the upper extremities -0.88 (±0.19) °C (P >0.99). CONCLUSIONS Thermography is a useful tool to confirm epidural catheter placement in animals for which subjective, non-noxious, sensory measures are impossible.
Collapse
Affiliation(s)
- Z Xu
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA
| | - O Agbigbe
- Washington University School of Medicine, St Louis, MO, USA
| | - N Nigro
- Washington University School of Medicine, St Louis, MO, USA
| | - G Yakobi
- Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah Hebrew University Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - J Shapiro
- Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah Hebrew University Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Y Ginosar
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, USA; Department of Anesthesiology, Critical Care and Pain Medicine, Hadassah Hebrew University Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute of Translational Medicine, Hadassah Hebrew University Medical Center, and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
33
|
Cai L, Gutruf P. Soft, Wireless and subdermally implantable recording and neuromodulation tools. J Neural Eng 2021; 18. [PMID: 33607646 DOI: 10.1088/1741-2552/abe805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Progress in understanding neuronal interaction and circuit behavior of the central and peripheral nervous system strongly relies on the advancement of tools that record and stimulate with high fidelity and specificity. Currently, devices used in exploratory research predominantly utilize cables or tethers to provide pathways for power supply, data communication, stimulus delivery and recording, which constrains the scope and use of such devices. In particular, the tethered connection, mechanical mismatch to surrounding soft tissues and bones frustrate the interface leading to irritation and limitation of motion of the subject, which in the case of fundamental and preclinical studies, impacts naturalistic behaviors of animals and precludes the use in experiments involving social interaction and ethologically relevant three-dimensional environments, limiting the use of current tools to mostly rodents and exclude species such as birds and fish. This review explores the current state-of-the-art in wireless, subdermally implantable tools that quantitively expand capabilities in analysis and perturbation of the central and peripheral nervous system by removing tethers and externalized features of implantable neuromodulation and recording tools. Specifically, the review explores power harvesting strategies, wireless communication schemes, and soft materials and mechanics that enable the creation of such devices and discuss their capabilities in the context of freely-behaving subjects. Highlights of this class of devices includes wireless battery-free and fully implantable operation with capabilities in cell specific recording, multimodal neural stimulation and electrical, optogenetic and pharmacological neuromodulation capabilities. We conclude with discussion on translation of such technologies which promises routes towards broad dissemination.
Collapse
Affiliation(s)
- Le Cai
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| | - Philipp Gutruf
- Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona, 85719, UNITED STATES
| |
Collapse
|
34
|
Optogenetic Modulation of Neural Progenitor Cells Improves Neuroregenerative Potential. Int J Mol Sci 2020; 22:ijms22010365. [PMID: 33396468 PMCID: PMC7794764 DOI: 10.3390/ijms22010365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022] Open
Abstract
Neural progenitor cell (NPC) transplantation possesses enormous potential for the treatment of disorders and injuries of the central nervous system, including the replacement of lost cells or the repair of host neural circuity after spinal cord injury (SCI). Importantly, cell-based therapies in this context still require improvements such as increased cell survival and host circuit integration, and we propose the implementation of optogenetics as a solution. Blue-light stimulation of NPCs engineered to ectopically express the excitatory light-sensitive protein channelrhodopsin-2 (ChR2-NPCs) prompted an influx of cations and a subsequent increase in proliferation and differentiation into oligodendrocytes and neurons and the polarization of astrocytes from a pro-inflammatory phenotype to a pro-regenerative/anti-inflammatory phenotype. Moreover, neurons derived from blue-light-stimulated ChR2-NPCs exhibited both increased branching and axon length and improved axon growth in the presence of axonal inhibitory drugs such as lysophosphatidic acid or chondroitin sulfate proteoglycan. Our results highlight the enormous potential of optogenetically stimulated NPCs as a means to increase neuroregeneration and improve cell therapy outcomes for enhancing better engraftments and cell identity upon transplantation in conditions such as SCI.
Collapse
|
35
|
Recent advances in neurotechnologies with broad potential for neuroscience research. Nat Neurosci 2020; 23:1522-1536. [PMID: 33199897 DOI: 10.1038/s41593-020-00739-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022]
Abstract
Interest in deciphering the fundamental mechanisms and processes of the human mind represents a central driving force in modern neuroscience research. Activities in support of this goal rely on advanced methodologies and engineering systems that are capable of interrogating and stimulating neural pathways, from single cells in small networks to interconnections that span the entire brain. Recent research establishes the foundations for a broad range of creative neurotechnologies that enable unique modes of operation in this context. This review focuses on those systems with proven utility in animal model studies and with levels of technical maturity that suggest a potential for broad deployment to the neuroscience community in the relatively near future. We include a brief summary of existing and emerging neuroscience techniques, as background for a primary focus on device technologies that address associated opportunities in electrical, optical and microfluidic neural interfaces, some with multimodal capabilities. Examples of the use of these technologies in recent neuroscience studies illustrate their practical value. The vibrancy of the engineering science associated with these platforms, the interdisciplinary nature of this field of research and its relevance to grand challenges in the treatment of neurological disorders motivate continued growth of this area of study.
Collapse
|
36
|
Lee J, Parker KE, Kawakami C, Kim JR, Qazi R, Yea J, Zhang S, Kim CY, Bilbily J, Xiao J, Jang KI, McCall JG, Jeong JW. Rapidly-customizable, scalable 3D-printed wireless optogenetic probes for versatile applications in neuroscience. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2004285. [PMID: 33708031 PMCID: PMC7942018 DOI: 10.1002/adfm.202004285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 05/21/2023]
Abstract
Optogenetics is an advanced neuroscience technique that enables the dissection of neural circuitry with high spatiotemporal precision. Recent advances in materials and microfabrication techniques have enabled minimally invasive and biocompatible optical neural probes, thereby facilitating in vivo optogenetic research. However, conventional fabrication techniques rely on cleanroom facilities, which are not easily accessible and are expensive to use, making the overall manufacturing process inconvenient and costly. Moreover, the inherent time-consuming nature of current fabrication procedures impede the rapid customization of neural probes in between in vivo studies. Here, we introduce a new technique stemming from 3D printing technology for the low-cost, mass production of rapidly customizable optogenetic neural probes. We detail the 3D printing production process, on-the-fly design versatility, and biocompatibility of 3D printed optogenetic probes as well as their functional capabilities for wireless in vivo optogenetics. Successful in vivo studies with 3D printed devices highlight the reliability of this easily accessible and flexible manufacturing approach that, with advances in printing technology, can foreshadow its widespread applications in low-cost bioelectronics in the future.
Collapse
Affiliation(s)
- Juhyun Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyle E. Parker
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine; Department of Anesthesiology, Washington University Pain Center, Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Chinatsu Kawakami
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Jenny R. Kim
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine; Department of Anesthesiology, Washington University Pain Center, Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Raza Qazi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junwoo Yea
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Shun Zhang
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - John Bilbily
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine; Department of Anesthesiology, Washington University Pain Center, Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Jianliang Xiao
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Kyung-In Jang
- Department of Robotics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jordan G. McCall
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine; Department of Anesthesiology, Washington University Pain Center, Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
37
|
Mondello SE, Pedigo BD, Sunshine MD, Fischedick AE, Horner PJ, Moritz CT. A micro-LED implant and technique for optogenetic stimulation of the rat spinal cord. Exp Neurol 2020; 335:113480. [PMID: 32991934 DOI: 10.1016/j.expneurol.2020.113480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 11/17/2022]
Abstract
To date, relatively few studies have used optogenetic stimulation to address basic science and therapeutic questions within the spinal cord. Even less have reported optogenetic stimulation in the rat spinal cord. This is likely due to a lack of accessible optogenetic implants. The development of a device that can be fabricated and operated by most laboratories, requiring no special equipment, would allow investigators to begin dissecting the functions of specific neuronal cell-types and circuitry within the spinal cord, as well as investigate therapies for spinal ailments like spinal cord injury. Here, we describe a long-term implantable μLED device designed for optogenetic stimulation of the spinal cord in awake, freely moving rats that is simple enough to be fabricated, implanted and operated by most laboratories. This device, which sits above the dorsal cord, can induce robust movements for at least 6 weeks without causing physical or thermal damage to the underlying spinal cord. In this regard, the presented μLED device could help tease apart the complexities of the spinal cord and uncover potential future therapeutics.
Collapse
Affiliation(s)
- S E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195, USA; Center for Neurotechnology, Seattle, Washington 98195, USA
| | - B D Pedigo
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195, USA
| | - M D Sunshine
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195, USA
| | - A E Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195, USA
| | - P J Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - C T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195, USA; University of Washington Institute for Neuroengineering, University of Washington, Seattle, Washington 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, Washington 98195, USA; Center for Neurotechnology, Seattle, Washington 98195, USA; Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
38
|
Harding EK, Fung SW, Bonin RP. Insights Into Spinal Dorsal Horn Circuit Function and Dysfunction Using Optical Approaches. Front Neural Circuits 2020; 14:31. [PMID: 32595458 PMCID: PMC7303281 DOI: 10.3389/fncir.2020.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Somatosensation encompasses a variety of essential modalities including touch, pressure, proprioception, temperature, pain, and itch. These peripheral sensations are crucial for all types of behaviors, ranging from social interaction to danger avoidance. Somatosensory information is transmitted from primary afferent fibers in the periphery into the central nervous system via the dorsal horn of the spinal cord. The dorsal horn functions as an intermediary processing center for this information, comprising a complex network of excitatory and inhibitory interneurons as well as projection neurons that transmit the processed somatosensory information from the spinal cord to the brain. It is now known that there can be dysfunction within this spinal cord circuitry in pathological pain conditions and that these perturbations contribute to the development and maintenance of pathological pain. However, the complex and heterogeneous network of the spinal dorsal horn has hampered efforts to further elucidate its role in somatosensory processing. Emerging optical techniques promise to illuminate the underlying organization and function of the dorsal horn and provide insights into the role of spinal cord sensory processing in shaping the behavioral response to somatosensory input that we ultimately observe. This review article will focus on recent advances in optogenetics and fluorescence imaging techniques in the spinal cord, encompassing findings from both in vivo and in vitro preparations. We will also discuss the current limitations and difficulties of employing these techniques to interrogate the spinal cord and current practices and approaches to overcome these challenges.
Collapse
Affiliation(s)
- Erika K Harding
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Samuel Wanchi Fung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Abstract
Bioelectric devices can probe fundamental biological dynamics and improve the lives of human beings. However, direct application of traditional rigid electronics onto soft tissues can cause signal transduction and biocompatibility issues. One common mitigation strategy is the use of soft-hard composites to form more biocompatible interfaces with target cells or tissues. Here, we identify several soft-hard composite designs in naturally occurring systems. We use these designs to categorize the existing bioelectric interfaces and to suggest future opportunities. We discuss the utility of soft-hard composites for a variety of interfaces, such as in vitro and in vivo electronic or optoelectronic sensing and genetic and non-genetic modulation. We end the review by proposing new soft-hard composites for future bioelectric studies.
Collapse
Affiliation(s)
- Yiliang Lin
- The James Franck Institute, University of Chicago, Chicago,
IL 60637, USA
| | - Yin Fang
- The James Franck Institute, University of Chicago, Chicago,
IL 60637, USA
| | - Jiping Yue
- Department of Chemistry, University of Chicago, Chicago, IL
60637, USA
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago,
IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL
60637, USA
- The Institute for Biophysical Dynamics, University of
Chicago, Chicago, IL 60637, USA
| |
Collapse
|
40
|
Sałat K. Chemotherapy-induced peripheral neuropathy: part 1-current state of knowledge and perspectives for pharmacotherapy. Pharmacol Rep 2020; 72:486-507. [PMID: 32394362 PMCID: PMC7329796 DOI: 10.1007/s43440-020-00109-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Background Despite the increasing knowledge of the etiology of neuropathic pain, this type of chronic pain is resistant to available analgesics in approximately 50% of patients and therefore is continuously a subject of considerable interest for physiologists, neurologists, medicinal chemists, pharmacologists and others searching for more effective treatment options for this debilitating condition. Materials and methods The present review article is the first of the two articles focused on chemotherapy-induced peripheral neuropathy (CIPN). Results CIPN is regarded as one of the most common drug-induced neuropathies and is highly pharmacoresistant. The lack of efficacious pharmacological methods for treating CIPN and preventing its development makes CIPN-related neuropathic pain a serious therapeutic gap in current medicine and pharmacotherapy. In this paper, the most recent advances in the field of studies on CIPN caused by platinum compounds (namely oxaliplatin and cisplatin), taxanes, vinca alkaloids and bortezomib are summarized. Conclusions The prevalence of CIPN, potential causes, risk factors, symptoms and molecular mechanisms underlying this pharmacoresistant condition are discussed. Graphic abstract ![]()
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Krakow, Poland.
| |
Collapse
|
41
|
Xie Z, Avila R, Huang Y, Rogers JA. Flexible and Stretchable Antennas for Biointegrated Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902767. [PMID: 31490582 DOI: 10.1002/adma.201902767] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/16/2019] [Indexed: 05/24/2023]
Abstract
Combined advances in material science, mechanical engineering, and electrical engineering form the foundations of thin, soft electronic/optoelectronic platforms that have unique capabilities in wireless monitoring and control of various biological processes in cells, tissues, and organs. Miniaturized, stretchable antennas represent an essential link between such devices and external systems for control, power delivery, data processing, and/or communication. Applications typically involve a demanding set of considerations in performance, size, and stretchability. Some of the most effective strategies rely on unusual materials such as liquid metals, nanowires, and woven textiles or on optimally configured 2D/3D structures such as serpentines and helical coils of conventional materials. In the best cases, the performance metrics of small, stretchable, radio frequency (RF) antennas realized using these strategies compare favorably to those of traditional devices. Examples range from dipole, monopole, and patch antennas for far-field RF operation, to magnetic loop antennas for near-field communication (NFC), where the key parameters include operating frequency, Q factor, radiation pattern, and reflection coefficient S11 across a range of mechanical deformations and cyclic loads. Despite significant progress over the last several years, many challenges and associated research opportunities remain in the development of high-efficiency antennas for biointegrated electronic/optoelectronic systems.
Collapse
Affiliation(s)
- Zhaoqian Xie
- Departments of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Raudel Avila
- Departments of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yonggang Huang
- Departments of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Department of Materials Science and Engineering, Biomedical Engineering, Neurological Surgery, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Simpson Querrey Institute and Feinberg Medical School, Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
42
|
Jung YH, Kim JU, Lee JS, Shin JH, Jung W, Ok J, Kim TI. Injectable Biomedical Devices for Sensing and Stimulating Internal Body Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907478. [PMID: 32104960 DOI: 10.1002/adma.201907478] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
The rapid pace of progress in implantable electronics driven by novel technology has created devices with unconventional designs and features to reduce invasiveness and establish new sensing and stimulating techniques. Among the designs, injectable forms of biomedical electronics are explored for accurate and safe targeting of deep-seated body organs. Here, the classes of biomedical electronics and tools that have high aspect ratio structures designed to be injected or inserted into internal organs for minimally invasive monitoring and therapy are reviewed. Compared with devices in bulky or planar formats, the long shaft-like forms of implantable devices are easily placed in the organs with minimized outward protrusions via injection or insertion processes. Adding flexibility to the devices also enables effortless insertions through complex biological cavities, such as the cochlea, and enhances chronic reliability by complying with natural body movements, such as the heartbeat. Diverse types of such injectable implants developed for different organs are reviewed and the electronic, optoelectronic, piezoelectric, and microfluidic devices that enable stimulations and measurements of site-specific regions in the body are discussed. Noninvasive penetration strategies to deliver the miniscule devices are also considered. Finally, the challenges and future directions associated with deep body biomedical electronics are explained.
Collapse
Affiliation(s)
- Yei Hwan Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ju Seung Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Joo Hwan Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Department of Biomedical Engineering, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
43
|
Kim K, Kim B, Lee CH. Printing Flexible and Hybrid Electronics for Human Skin and Eye-Interfaced Health Monitoring Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902051. [PMID: 31298450 DOI: 10.1002/adma.201902051] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/02/2019] [Indexed: 05/27/2023]
Abstract
Advances in printing materials and techniques for flexible and hybrid electronics in the domain of connected healthcare have enabled rapid development of innovative body-interfaced health monitoring systems at a tremendous pace. Thin, flexible, and stretchable biosensors that are printed on a biocompatible soft substrate provide the ability to noninvasively and unobtrusively integrate with the human body for continuous monitoring and early detection of diseases and other conditions affecting health and well being. Hybrid integration of such biosensors with extremely well-established silicon-based microcircuit chips offers a viable route for in-sensor data processing and wireless transmission in many medical and clinical settings. Here, a set of advanced and hybrid printing techniques is summarized, covering diverse aspects ranging from active electronic materials to process capability, for their use in human skin and eye-interfaced health monitoring systems with different levels of complexity. Essential components of the devices, including constituent biomaterials, structural layouts, assembly methods, and power and data processing configurations, are outlined and discussed in a categorized manner tailored to specific clinical needs. Perspectives on the benefits and challenges of these systems in basic and applied biomedical research are presented and discussed.
Collapse
Affiliation(s)
- Kyunghun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, School of Mechanical Engineering, Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
44
|
Fallegger F, Schiavone G, Lacour SP. Conformable Hybrid Systems for Implantable Bioelectronic Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903904. [PMID: 31608508 DOI: 10.1002/adma.201903904] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Indexed: 05/27/2023]
Abstract
Conformable bioelectronic systems are promising tools that may aid the understanding of diseases, alleviate pathological symptoms such as chronic pain, heart arrhythmia, and dysfunctions, and assist in reversing conditions such as deafness, blindness, and paralysis. Combining reduced invasiveness with advanced electronic functions, hybrid bioelectronic systems have evolved tremendously in the last decade, pushed by progress in materials science, micro- and nanofabrication, system assembly and packaging, and biomedical engineering. Hybrid integration refers here to a technological approach to embed within mechanically compliant carrier substrates electronic components and circuits prepared with traditional electronic materials. This combination leverages mechanical and electronic performance of polymer substrates and device materials, respectively, and offers many opportunities for man-made systems to communicate with the body with unmet precision. However, trade-offs between materials selection, manufacturing processes, resolution, electrical function, mechanical integrity, biointegration, and reliability should be considered. Herein, prominent trends in manufacturing conformable hybrid systems are analyzed and key design, function, and validation principles are outlined together with the remaining challenges to produce reliable conformable, hybrid bioelectronic systems.
Collapse
Affiliation(s)
- Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| |
Collapse
|
45
|
Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X. Flexible Hybrid Electronics for Digital Healthcare. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902062. [PMID: 31243834 DOI: 10.1002/adma.201902062] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/28/2019] [Indexed: 05/25/2023]
Abstract
Recent advances in material innovation and structural design provide routes to flexible hybrid electronics that can combine the high-performance electrical properties of conventional wafer-based electronics with the ability to be stretched, bent, and twisted to arbitrary shapes, revolutionizing the transformation of traditional healthcare to digital healthcare. Here, material innovation and structural design for the preparation of flexible hybrid electronics are reviewed, a brief chronology of these advances is given, and biomedical applications in bioelectrical monitoring and stimulation, optical monitoring and treatment, acoustic imitation and monitoring, bionic touch, and body-fluid testing are described. In conclusion, some remarks on the challenges for future research of flexible hybrid electronics are presented.
Collapse
Affiliation(s)
- Yinji Ma
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yingchao Zhang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Shisheng Cai
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Han
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xin Liu
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Fengle Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yu Cao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Zhouheng Wang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Hangfei Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yihao Chen
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
46
|
Lee GH, Moon H, Kim H, Lee GH, Kwon W, Yoo S, Myung D, Yun SH, Bao Z, Hahn SK. Multifunctional materials for implantable and wearable photonic healthcare devices. NATURE REVIEWS. MATERIALS 2020; 5:149-165. [PMID: 32728478 PMCID: PMC7388681 DOI: 10.1038/s41578-019-0167-3] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 05/20/2023]
Abstract
Numerous light-based diagnostic and therapeutic devices are routinely used in the clinic. These devices have a familiar look as items plugged in the wall or placed at patients' bedsides, but recently, many new ideas have been proposed for the realization of implantable or wearable functional devices. Many advances are being fuelled by the development of multifunctional materials for photonic healthcare devices. However, the finite depth of light penetration in the body is still a serious constraint for their clinical applications. In this Review, we discuss the basic concepts and some examples of state-of-the-art implantable and wearable photonic healthcare devices for diagnostic and therapeutic applications. First, we describe emerging multifunctional materials critical to the advent of next-generation implantable and wearable photonic healthcare devices and discuss the path for their clinical translation. Then, we examine implantable photonic healthcare devices in terms of their properties and diagnostic and therapeutic functions. We next describe exemplary cases of noninvasive, wearable photonic healthcare devices across different anatomical applications. Finally, we discuss the future research directions for the field, in particular regarding mobile healthcare and personalized medicine.
Collapse
Affiliation(s)
- Geon-Hui Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- These authors contributed equally: Geon-Hui Lee, Hanul Moon, Hyemin Kim
| | - Hanul Moon
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- These authors contributed equally: Geon-Hui Lee, Hanul Moon, Hyemin Kim
| | - Hyemin Kim
- PHI Biomed Co., Seoul, South Korea
- These authors contributed equally: Geon-Hui Lee, Hanul Moon, Hyemin Kim
| | - Gae Hwang Lee
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon, South Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Seoul, South Korea
| | - Seunghyup Yoo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - David Myung
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- PHI Biomed Co., Seoul, South Korea
| |
Collapse
|
47
|
Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat Commun 2019; 10:5742. [PMID: 31848334 PMCID: PMC6917818 DOI: 10.1038/s41467-019-13637-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Small animals support a wide range of pathological phenotypes and genotypes as versatile, affordable models for pathogenesis of cardiovascular diseases and for exploration of strategies in electrotherapy, gene therapy, and optogenetics. Pacing tools in such contexts are currently limited to tethered embodiments that constrain animal behaviors and experimental designs. Here, we introduce a highly miniaturized wireless energy-harvesting and digital communication electronics for thin, miniaturized pacing platforms weighing 110 mg with capabilities for subdermal implantation and tolerance to over 200,000 multiaxial cycles of strain without degradation in electrical or optical performance. Multimodal and multisite pacing in ex vivo and in vivo studies over many days demonstrate chronic stability and excellent biocompatibility. Optogenetic stimulation of cardiac cycles with in-animal control and induction of heart failure through chronic pacing serve as examples of modes of operation relevant to fundamental and applied cardiovascular research and biomedical technology. Pacing tools that support small animals and can serve as models for pathogenesis of cardiovascular diseases are currently not available. Here, the authors report a miniaturized wireless battery-free implantable multimodal and multisite pacemaker that provides unlimited stimulation to test subjects.
Collapse
|
48
|
Abstract
The peripheral nervous system (PNS) is highly complicated and heterogenous. Conventional neuromodulatory approaches have revealed numerous essential biological functions of the PNS and provided excellent tools to treat a large variety of human diseases. Yet growing evidence indicated the importance of cell-type-specific neuromodulation in the PNS in not only biological research using animal models but also potential human therapies. Optogenetics is a recently developed neuromodulatory approach combining optics and genetics that can effectively stimulate or silence neuronal activity with high spatial and temporal precision. Here, I review research regarding optogenetic manipulations for cell-type-specific control of the PNS, highlighting the advantages and challenges of current optogenetic tools, and discuss their potential future applications.
Collapse
Affiliation(s)
- Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
49
|
Jarrin S, Finn DP. Optogenetics and its application in pain and anxiety research. Neurosci Biobehav Rev 2019; 105:200-211. [DOI: 10.1016/j.neubiorev.2019.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
|
50
|
Near-Field Communication Sensors. SENSORS 2019; 19:s19183947. [PMID: 31547400 PMCID: PMC6767079 DOI: 10.3390/s19183947] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 11/21/2022]
Abstract
Near-field communication is a new kind of low-cost wireless communication technology developed in recent years, which brings great convenience to daily life activities such as medical care, food quality detection, and commerce. The integration of near-field communication devices and sensors exhibits great potential for these real-world applications by endowing sensors with new features of powerless and wireless signal transferring and conferring near field communication device with sensing function. In this review, we summarize recent progress in near field communication sensors, including the development of materials and device design and their applications in wearable personal healthcare devices. The opportunities and challenges in near-field communication sensors are discussed in the end.
Collapse
|