1
|
Gozzi N, Preatoni G, Ciotti F, Hubli M, Schweinhardt P, Curt A, Raspopovic S. Unraveling the physiological and psychosocial signatures of pain by machine learning. MED 2024; 5:1495-1509.e5. [PMID: 39116869 DOI: 10.1016/j.medj.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Pain is a complex subjective experience, strongly impacting health and quality of life. Despite many attempts to find effective solutions, present treatments are generic, often unsuccessful, and present significant side effects. Designing individualized therapies requires understanding of multidimensional pain experience, considering physical and emotional aspects. Current clinical pain assessments, relying on subjective one-dimensional numeric self-reports, fail to capture this complexity. METHODS To this aim, we exploited machine learning to disentangle physiological and psychosocial components shaping the pain experience. Clinical, psychosocial, and physiological data were collected from 118 chronic pain and healthy participants undergoing 40 pain trials (4,697 trials). FINDINGS To understand the objective response to nociception, we classified pain from the physiological signals (accuracy >0.87), extracting the most important biomarkers. Then, using multilevel mixed-effects models, we predicted the reported pain, quantifying the mismatch between subjective level and measured physiological response. From these models, we introduced two metrics: TIP (subjective index of pain) and Φ (physiological index). These represent possible added value in the clinical process, capturing psychosocial and physiological pain dimensions, respectively. Patients with high TIP are characterized by frequent sick leave from work and increased clinical depression and anxiety, factors associated with long-term disability and poor recovery, and are indicated for alternative treatments, such as psychological ones. By contrast, patients with high Φ show strong nociceptive pain components and could benefit more from pharmacotherapy. CONCLUSIONS TIP and Φ, explaining the multidimensionality of pain, might provide a new tool potentially leading to targeted treatments, thereby reducing the costs of inefficient generic therapies. FUNDING RESC-PainSense, SNSF-MOVE-IT197271.
Collapse
Affiliation(s)
- Noemi Gozzi
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Greta Preatoni
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Federico Ciotti
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
2
|
Tang B, Livesey E, Colagiuri B. The downside to choice: instrumental control increases conditioned nocebo hyperalgesia. Pain 2024; 165:2257-2273. [PMID: 38709490 DOI: 10.1097/j.pain.0000000000003251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/12/2024] [Indexed: 05/07/2024]
Abstract
ABSTRACT Nocebo hyperalgesia is a pervasive problem in which the treatment context triggers negative expectations that exacerbate pain. Thus, developing ethical strategies to mitigate nocebo hyperalgesia is crucial. Emerging research suggests that choice has the capacity to reduce nocebo side effects, but choice effects on nocebo hyperalgesia have not been explored. This study investigated the impact of choice on conditioned nocebo hyperalgesia using a well-established electrocutaneous pain paradigm where increases in noxious stimulation were surreptitiously paired with the activation of a sham device. In study 1, healthy volunteers (N = 104) were randomised to choice over (nocebo) treatment administration, nocebo administration without choice, or a natural history control group. Nocebo hyperalgesia was greater for those with choice than no choice, suggesting that choice increased rather than diminished nocebo hyperalgesia. Study 2 tested whether providing positive information about the benefits of choice in coping with pain could counteract heightened nocebo hyperalgesia caused by choice. A different sample of healthy adults (N = 137) were randomised to receive nocebo treatment with choice and positive choice information, choice only, or no choice. The positive choice information failed to attenuate the effect of choice on nocebo hyperalgesia. The current results suggest that, rather than decreasing nocebo hyperalgesia, treatment choice may exacerbate pain outcomes when a painful procedure is repeatedly administered. As such, using choice as a strategy to mitigate nocebo outcomes should be treated with caution.
Collapse
Affiliation(s)
- Biya Tang
- School of Psychology, The University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
3
|
Scheuren PS, Bösch S, Rosner J, Allmendinger F, Kramer JLK, Curt A, Hubli M. Priming of the autonomic nervous system after an experimental human pain model. J Neurophysiol 2023; 130:436-446. [PMID: 37405990 PMCID: PMC10625835 DOI: 10.1152/jn.00064.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023] Open
Abstract
Modulated autonomic responses to noxious stimulation have been reported in experimental and clinical pain. These effects are likely mediated by nociceptive sensitization, but may also, more simply reflect increased stimulus-associated arousal. To disentangle between sensitization- and arousal-mediated effects on autonomic responses to noxious input, we recorded sympathetic skin responses (SSRs) in response to 10 pinprick and heat stimuli before (PRE) and after (POST) an experimental heat pain model to induce secondary hyperalgesia (EXP) and a control model (CTRL) in 20 healthy females. Pinprick and heat stimuli were individually adapted for pain perception (4/10) across all assessments. Heart rate, heart rate variability, and skin conductance level (SCL) were assessed before, during, and after the experimental heat pain model. Both pinprick- and heat-induced SSRs habituated from PRE to POST in CTRL, but not EXP (P = 0.033). Background SCL (during stimuli application) was heightened in EXP compared with CTRL condition during pinprick and heat stimuli (P = 0.009). Our findings indicate that enhanced SSRs after an experimental pain model are neither fully related to subjective pain, as SSRs dissociated from perceptual responses, nor to nociceptive sensitization, as SSRs were enhanced for both modalities. Our findings can, however, be explained by priming of the autonomic nervous system during the experimental pain model, which makes the autonomic nervous system more susceptible to noxious input. Taken together, autonomic readouts have the potential to objectively assess not only nociceptive sensitization but also priming of the autonomic nervous system, which may be involved in the generation of distinct clinical pain phenotypes.NEW & NOTEWORTHY The facilitation of pain-induced sympathetic skin responses observed after experimentally induced central sensitization is unspecific to the stimulation modality and thereby unlikely solely driven by nociceptive sensitization. In addition, these enhanced pain-induced autonomic responses are also not related to higher stimulus-associated arousal, but rather a general priming of the autonomic nervous system. Hence, autonomic readouts may be able to detect generalized hyperexcitability in chronic pain, beyond the nociceptive system, which may contribute to clinical pain phenotypes.
Collapse
Affiliation(s)
- Paulina Simonne Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Sofia Bösch
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Danish Pain Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Florin Allmendinger
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - John Lawrence Kipling Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Rockholt MM, Kenefati G, Doan LV, Chen ZS, Wang J. In search of a composite biomarker for chronic pain by way of EEG and machine learning: where do we currently stand? Front Neurosci 2023; 17:1186418. [PMID: 37389362 PMCID: PMC10301750 DOI: 10.3389/fnins.2023.1186418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023] Open
Abstract
Machine learning is becoming an increasingly common component of routine data analyses in clinical research. The past decade in pain research has witnessed great advances in human neuroimaging and machine learning. With each finding, the pain research community takes one step closer to uncovering fundamental mechanisms underlying chronic pain and at the same time proposing neurophysiological biomarkers. However, it remains challenging to fully understand chronic pain due to its multidimensional representations within the brain. By utilizing cost-effective and non-invasive imaging techniques such as electroencephalography (EEG) and analyzing the resulting data with advanced analytic methods, we have the opportunity to better understand and identify specific neural mechanisms associated with the processing and perception of chronic pain. This narrative literature review summarizes studies from the last decade describing the utility of EEG as a potential biomarker for chronic pain by synergizing clinical and computational perspectives.
Collapse
Affiliation(s)
- Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
5
|
Stankewitz A, Mayr A, Irving S, Witkovsky V, Schulz E. Pain and the emotional brain: pain-related cortical processes are better reflected by affective evaluation than by cognitive evaluation. Sci Rep 2023; 13:8273. [PMID: 37217563 DOI: 10.1038/s41598-023-35294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
The experience of pain has been dissociated into two interwoven aspects: a sensory-discriminative aspect and an affective-motivational aspect. We aimed to explore which of the pain descriptors is more deeply rooted in the human brain. Participants were asked to evaluate applied cold pain. The majority of the trials showed distinct ratings: some were rated higher for unpleasantness and others for intensity. We compared the relationship between functional data recorded from 7 T MRI with unpleasantness and intensity ratings and revealed a stronger relationship between cortical data and unpleasantness ratings. The present study underlines the importance of the emotional-affective aspects of pain-related cortical processes in the brain. The findings corroborate previous studies showing a higher sensitivity to pain unpleasantness compared to ratings of pain intensity. For the processing of pain in healthy subjects, this effect may reflect the more direct and intuitive evaluation of emotional aspects of the pain system, which is to prevent harm and to preserve the physical integrity of the body.
Collapse
Affiliation(s)
- Anne Stankewitz
- Department of Neuroradiology, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Astrid Mayr
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, A: Marchioninistr. 15, 81377, München, Germany
| | - Stephanie Irving
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Enrico Schulz
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität München, A: Marchioninistr. 15, 81377, München, Germany.
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
- Department of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
6
|
Gélébart J, Garcia-Larrea L, Frot M. Amygdala and anterior insula control the passage from nociception to pain. Cereb Cortex 2023; 33:3538-3547. [PMID: 35965070 DOI: 10.1093/cercor/bhac290] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/18/2023] Open
Abstract
Activation of the spinothalamic system does not always result in a subjective pain perception. While the cerebral network processing nociception is relatively well known, the one underlying its transition to conscious pain remains poorly described. We used intracranial electroencephalography in epileptic patients to investigate whether the amplitudes and functional connectivity of posterior and anterior insulae (PI and AI) and amygdala differ according to the subjective reports to laser stimuli delivered at a constant intensity set at nociceptive threshold. Despite the constant intensity of stimuli, all patients reported variable subjective perceptions from one stimulus to the other. Responses in the sensory PI remained stable throughout the experiment, hence reflecting accurately the stability of the stimulus. In contrast, both AI and amygdala responses showed significant enhancements associated with painful relative to nonpainful reports, in a time window corresponding to the conscious integration of the stimulus. Functional connectivity in the gamma band between these two regions increased significantly, both before and after stimuli perceived as painful. While the PI appears to transmit faithfully the actual stimulus intensity received via the spinothalamic tract, the AI and the amygdala appear to play a major role in the transformation of nociceptive signals into a painful perception.
Collapse
Affiliation(s)
- Juliette Gélébart
- Central Integration of Pain (Neuropain Lab) - Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, 69677 Bron cedex, France
| | - Luis Garcia-Larrea
- Central Integration of Pain (Neuropain Lab) - Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, 69677 Bron cedex, France
- Centre d'Evaluation et de Traitement de la Douleur, Hospices Civils de Lyon, 69677 Bron cedex, France
| | - Maud Frot
- Central Integration of Pain (Neuropain Lab) - Lyon Neuroscience Research Center, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, 69677 Bron cedex, France
| |
Collapse
|
7
|
A Potential Objective Sign of Central Sensitization: Referred Pain Elicited by Manual Gluteus Minimus Muscle Exploration is Coincident with Pathological Autonomic Response Provoked by Noxious Stimulation. Pain Res Manag 2023; 2023:4030622. [PMID: 36776486 PMCID: PMC9911239 DOI: 10.1155/2023/4030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/31/2022] [Accepted: 01/21/2023] [Indexed: 02/05/2023]
Abstract
Referred pain/sensation provoked by trigger points suits the nociplastic pain criteria. There is a debate over whether trigger points are related to a peripheral phenomenon or central sensitization (CS) processes. Referred pain is considered a possible sign of CS, which occurs probably mainly due to the abnormal activity of the immune and autonomic nervous systems. To confirm abnormal autonomic reactivity within the referred pain zone of active trigger points, a new diagnostic tool, the Skorupska Protocol® (the SP test®), was applied. The test uses noxious stimulation (10 minutes of dry needling under infrared camera control) as a diagnostic tool to confirm abnormal autonomic nervous system activity. A response to the SP test® of healthy subjects with referred pain sensations provoked by latent trigger points (LTrPs) stimulation was not explored before. The study aims at examining if LTrPs can develop an autonomic response. Methods. Two groups of healthy subjects, (i) gluteus minimus LTrPs with referred pain (n = 20) and (ii) control (n = 27), were examined using the SP test®. Results. Abnormal autonomic activity within the referred pain zone was confirmed for all analyzed LTrPs subjects. 70% of control subjects had no feature of vasodilatation and others presented minor vasomotor fluctuations. The size of vasomotor reactivity within the referred pain zone was LTrPs 11.1 + 10.96% vs. control 0.8 + 0.6% (p < 0.05). Conclusions. Noxious stimulation of latent TrPs induces abnormal autonomic nervous system activity within the referred pain zone. The observed phenomenon supports the concept of central nervous system involvement in the referred pain patomechanizm.
Collapse
|
8
|
Scheuren PS, De Schoenmacker I, Rosner J, Brunner F, Curt A, Hubli M. Pain-autonomic measures reveal nociceptive sensitization in complex regional pain syndrome. Eur J Pain 2023; 27:72-85. [PMID: 36130736 PMCID: PMC10092513 DOI: 10.1002/ejp.2040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Allodynia and hyperalgesia are common signs in individuals with complex regional pain syndrome (CRPS), mainly attributed to sensitization of the nociceptive system. Appropriate diagnostic tools for the objective assessment of such hypersensitivities are still lacking, which are essential for the development of mechanism-based treatment strategies. OBJECTIVES This study investigated the use of pain-autonomic readouts to objectively detect sensitization processes in CRPS. METHODS Twenty individuals with chronic CRPS were recruited for the study alongside 16 age- and sex-matched healthy controls (HC). All individuals underwent quantitative sensory testing and neurophysiological assessments. Sympathetic skin responses (SSRs) were recorded in response to 15 pinprick and 15 noxious heat stimuli of the affected (CRPS hand/foot) and a control area (contralateral shoulder/hand). RESULTS Individuals with CRPS showed increased mechanical pain sensitivity and increased SSR amplitudes compared with HC in response to pinprick and heat stimulation of the affected (p < 0.001), but not in the control area (p > 0.05). Habituation of pinprick-induced SSRs was reduced in CRPS compared to HC in both the affected (p = 0.018) and slightly in the control area (p = 0.048). Habituation of heat-induced SSR was reduced in CRPS in the affected (p = 0.008), but not the control area (p = 0.053). CONCLUSIONS This is the first study demonstrating clinical evidence that pain-related autonomic responses may represent objective tools to quantify sensitization processes along the nociceptive neuraxis in CRPS (e.g. widespread hyperexcitability). Pain-autonomic readouts could help scrutinize mechanisms underlying the development and maintenance of chronic pain in CRPS and provide valuable metrics to detect mechanism-based treatment responses in clinical trials. SIGNIFICANCE This study provides clinical evidence that autonomic measures to noxious stimuli can objectively detect sensitization processes along the nociceptive neuraxis in complex regional pain syndrome (CRPS) (e.g. widespread hyperexcitability). Pain-autonomic readouts may represent valuable tools to explore pathophysiological mechanisms in a variety of pain patients and offer novel avenues to help guide mechanism-based therapeutic strategies.
Collapse
Affiliation(s)
- Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Iara De Schoenmacker
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Florian Brunner
- Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Adamczyk WM, Szikszay TM, Nahman-Averbuch H, Skalski J, Nastaj J, Gouverneur P, Luedtke K. To Calibrate or not to Calibrate? A Methodological Dilemma in Experimental Pain Research. THE JOURNAL OF PAIN 2022; 23:1823-1832. [PMID: 35918020 DOI: 10.1016/j.jpain.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/24/2022] [Accepted: 07/20/2022] [Indexed: 05/23/2023]
Abstract
To calibrate or not to calibrate? This question is raised by almost everyone designing an experimental pain study with supra-threshold stimulation. The dilemma is whether to individualize stimulus intensity to the pain threshold / supra-threshold pain level of each participant or whether to provide the noxious stimulus at a fixed intensity so that everyone receives the identical input. Each approach has unique pros and cons which need to be considered to i) accurately design an experiment, ii) enhance statistical inference in the given data and, iii) reduce bias and the influence of confounding factors in the individual study e.g., body composition, differences in energy absorption and previous experience. Individualization requires calibration, a procedure already irritating the nociceptive system but allowing to match the pain level across individuals. It leads to a higher variability of the stimulus intensity, thereby influencing the encoding of "noxiousness" by the central nervous system. Results might be less influenced by statistical phenomena such as ceiling/floor effects and the approach does not seem to rise ethical concerns. On the other hand, applying a fixed (standardized) intensity reduces the problem of intensity encoding leading to a large between-subjects variability in pain responses. Fixed stimulation intensities do not require pre-exposure. It can be proposed that one method is not preferable over another, however the choice depends on the study aim and the desired level of external validity. This paper discusses considerations for choosing the optimal approach for experimental pain studies and provides recommendations for different study designs. PERSPECTIVE: To calibrate pain or not? This dilemma is related to almost every experimental pain research. The decision is a trade-off between statistical power and greater control of stimulus encoding. The article decomposes both approaches and presents the pros and cons of either approach supported by data and simulation experiment.
Collapse
Affiliation(s)
- Waclaw M Adamczyk
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland; Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany.
| | - Tibor M Szikszay
- Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany
| | - Hadas Nahman-Averbuch
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacek Skalski
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Jakub Nastaj
- Laboratory of Pain Research, Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Philip Gouverneur
- Institute of Medical Informatics, University of Lübeck, Lübeck, Germany
| | - Kerstin Luedtke
- Institute of Health Sciences, Department of Physiotherapy, Pain & Exercise Research Luebeck (P.E.R.L.), University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
10
|
Liu D, Zhou X, Tan Y, Yu H, Cao Y, Tian L, Yang L, Wang S, Liu S, Chen J, Liu J, Wang C, Yu H, Zhang J. Altered brain functional activity and connectivity in bone metastasis pain of lung cancer patients: A preliminary resting-state fMRI study. Front Neurol 2022; 13:936012. [PMID: 36212659 PMCID: PMC9532555 DOI: 10.3389/fneur.2022.936012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis pain (BMP) is one of the most prevalent symptoms among cancer survivors. The present study aims to explore the brain functional activity and connectivity patterns in BMP of lung cancer patients preliminarily. Thirty BMP patients and 33 healthy controls (HCs) matched for age and sex were recruited from inpatients and communities, respectively. All participants underwent fMRI data acquisition and pain assessment. Low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were applied to evaluate brain functional activity. Then, functional connectivity (FC) was calculated for the ALFF- and ReHo-identified seed brain regions. A two-sample t-test or Manny–Whitney U-test was applied to compare demographic and neuropsychological data as well as the neuroimaging indices according to the data distribution. A correlation analysis was conducted to explore the potential relationships between neuroimaging indices and pain intensity. Receiver operating characteristic curve analysis was applied to assess the classification performance of neuroimaging indices in discriminating individual subjects between the BMP patients and HCs. No significant intergroup differences in demographic and neuropsychological data were noted. BMP patients showed reduced ALFF and ReHo largely in the prefrontal cortex and increased ReHo in the bilateral thalamus and left fusiform gyrus. The lower FC was found within the prefrontal cortex. No significant correlation between the neuroimaging indices and pain intensity was observed. The neuroimaging indices showed satisfactory classification performance between the BMP patients and HCs, and the combined ALFF and ReHo showed a better accuracy rate (93.7%) than individual indices. In conclusion, altered brain functional activity and connectivity in the prefrontal cortex, fusiform gyrus, and thalamus may be associated with the neuropathology of BMP and may represent a potential biomarker for classifying BMP patients and healthy controls.
Collapse
Affiliation(s)
- Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Xiaoyu Zhou
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yong Tan
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Hong Yu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ying Cao
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Ling Tian
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Liejun Yang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Sixiong Wang
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Shihong Liu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiao Chen
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Jiang Liu
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Chengfang Wang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Huiqing Yu
- Department of Palliative Care and Department of Geriatric Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Huiqing Yu
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
- Jiuquan Zhang
| |
Collapse
|
11
|
Zhang H, Hu S, Wang Z, Li X, Wang S, Chen G. A Temporospatial Study of Sympathetic Skin Response and Electroencephalogram in Oral Mucosa Thermal Perception. Front Neurosci 2022; 16:907658. [PMID: 35911991 PMCID: PMC9337692 DOI: 10.3389/fnins.2022.907658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Objective To investigate the temporospatial changes in sympathetic skin response (SSR) and electroencephalogram (EEG) under thermal stimuli and to draw a topographic map of SSR threshold temperature of the oral mucosa. Materials and Methods A total of 40 healthy volunteers (24 men, 16 women, mean age of 23 ± 3) were enrolled. Thermal stimuli were applied to the 35 partitions of oral mucosa starting from 36°C at the gradience of 1°C and the lowest temperature evoked SSR was defined as SSR threshold temperature. SSR and EEG signals at 45, 48, 51, and 54°C were then recorded synchronously. Results The SSR threshold temperature increased from the anterior areas to the posterior areas. No significant difference between bilateral corresponding areas or between genders was observed. The SSR amplitude value increased from 45 to 54°C in the same area, while the highest value was recorded on the tip of the tongue and decreased backwardly from the anterior area. There were significant differences in latency of SSR between the tip of the tongue and the molar areas of the oral cavity (p < 0.05). Reduction in the alpha frequency band was observed after thermal stimuli, and there were statistical differences between baseline and thermal stimuli in all four degrees of temperatures (p < 0.05). Conclusion The result of the experiment revealed that the autonomic and central nervous system (CNS) played important roles in thermal perception of oral mucosa and could be helpful for better understanding of pathological mechanism of burning mouth syndrome (BMS).
Collapse
Affiliation(s)
- Hao Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Tianjin Medical University, Tianjin, China
| | - Shengjing Hu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Zhangang Wang
- Changzhou Hospital of Traditional Chinese Medicine, Changzhou, China
| | - Xiang Li
- Department of Oral Surgery, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Suogang Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
- Suogang Wang,
| | - Gang Chen
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Tianjin Medical University, Tianjin, China
- *Correspondence: Gang Chen,
| |
Collapse
|
12
|
Kong Y, Posada-Quintero HF, Chon KH. Multi-level Pain Quantification using a Smartphone and Electrodermal Activity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2475-2478. [PMID: 36085748 DOI: 10.1109/embc48229.2022.9871228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Appropriate prescription of pain medication is challenging because pain is difficult to quantify due to the subjectiveness of pain assessment. Currently, clinicians must entirely rely on pain scales based on patients' assessments. This has been alleged to be one of the causes of drug overdose and addiction, and a contributor to the opioid crisis. Therefore, there is an urgent unmet need for objective pain assessment. Furthermore, as pain can occur anytime and anywhere, ambulatory pain monitoring would be welcomed in practice. In our previous study, we developed electrodermal activity (EDA)-derived indices and implemented them in a smartphone application that can communicate via Bluetooth to an EDA wearable device. While we previously showed high accuracy for high-level pain detection, multi-level pain detection has not been demonstrated. In this paper, we tested our smartphone application with a multi-level pain-induced dataset. The dataset was collected from fifteen subjects who underwent four levels of pain-inducing electrical pulse (EP) stimuli. We then performed statistical analyses and machine-learning techniques to classify multiple pain levels. Significant differences were observed in our EDA-derived indices among no-pain, low-pain, and high-pain segments. A random forest classifier showed 62.6% for the balanced accuracy, and a random forest regressor exhibited 0.441 for the coefficient of determination. Clinical Relevance - This is one of the first studies to present a smartphone application for detecting multiple levels of pain in real time using an EDA wearable device. This work shows the feasibility of ambulatory pain monitoring which can potentially be useful for chronic pain management.
Collapse
|
13
|
MATLAB Analysis of SP Test Results—An Unusual Parasympathetic Nervous System Activity in Low Back Leg Pain: A Case Report. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Skorupska Protocol (SP) test is a new validated tool used to confirm nociplastic pain related to muscles based on a pathological autonomic nervous system (ANS) activity due to muscle nociceptive noxious stimulation analyzed automatically. Two types of amplified vasomotor response are defined as possible: vasodilatation and vasoconstriction. Until now, amplified vasodilatation among low back leg pain and/or sciatica subjects in response to the SP test was confirmed. This case report presents an unusual vasomotor response to the SP test within the pain zone of a sciatica-like case. Conducted twice, the SP test confirmed amplified vasoconstriction within the daily complaint due to noxiously stimulated muscle-referred pain for the first time. Additionally, a new type of the SP test analysis using MATLAB was presented. The SP test supported by MATLAB seems to be an interesting solution to confirm nociplastic pain related to muscles based on the pathological autonomic reactivity within the lower leg back pain zone. Further studies using the SP test supported by MATLAB are necessary to compare the SP test results with the clinical state and other types of nociplastic pain examination.
Collapse
|
14
|
Deak B, Eggert T, Mayr A, Stankewitz A, Filippopulos F, Jahn P, Witkovsky V, Straube A, Schulz E. Intrinsic Network Activity Reflects the Fluctuating Experience of Tonic Pain. Cereb Cortex 2022; 32:4098-4109. [PMID: 35024821 DOI: 10.1093/cercor/bhab468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/14/2022] Open
Abstract
Although we know sensation is continuous, research on long-lasting and continuously changing stimuli is scarce and the dynamic nature of ongoing cortical processing is largely neglected. In a longitudinal study, 38 participants across four sessions were asked to continuously rate the intensity of an applied tonic heat pain for 20 min. Using group-independent component analysis and dual regression, we extracted the subjects' time courses of intrinsic network activity. The relationship between the dynamic fluctuation of network activity with the varying time courses of three pain processing entities was computed: pain intensity, the direction of pain intensity changes, and temperature. We were able to dissociate the spatio-temporal patterns of objective (temperature) and subjective (pain intensity/changes of pain intensity) aspects of pain processing in the human brain. We found two somatosensory networks with distinct functions: one network that encodes the small fluctuations in temperature and consists mainly of bilateral primary somatosensory cortex (SI), and a second right-lateralized network that encodes the intensity of the subjective experience of pain consisting of SI, secondary somatosensory cortex, the posterior cingulate cortex, and the thalamus. We revealed the somatosensory dynamics that build up toward a current subjective percept of pain. The timing suggests a cascade of subsequent processing steps toward the current pain percept.
Collapse
Affiliation(s)
- Bettina Deak
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Thomas Eggert
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Astrid Mayr
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,Department of Radiology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anne Stankewitz
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Filipp Filippopulos
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Pauline Jahn
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Viktor Witkovsky
- Department of Theoretical Methods, Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| | - Andreas Straube
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Enrico Schulz
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.,Department of Medical Psychology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
15
|
Lütolf R, Rosner J, Curt A, Hubli M. Identifying Discomplete Spinal Lesions: New Evidence from Pain-Autonomic Interaction in Spinal Cord Injury. J Neurotrauma 2021; 38:3456-3466. [PMID: 34806429 DOI: 10.1089/neu.2021.0280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The clinical evaluation of spinal afferents is an important diagnostic and prognostic marker for neurological and functional recovery after spinal cord injury (SCI). Particularly important regarding neuropathic pain following SCI is the function of the spinothalamic tract (STT) conveying nociceptive and temperature information. Here, we investigated the added value of neurophysiological methods revealing discomplete STT lesions; that is, residual axonal sparing in clinically complete STT lesions. Specifically, clinical pinprick testing and thermal thresholds were compared with objective contact heat-evoked potentials (CHEPs) and a novel measure of pain-autonomic interaction employing heat-induced sympathetic skin responses (SSR). The test stimuli (i.e., contact heat, pinprick) were applied below the lesion level in 32 subjects with thoracic SCI while corresponding heat-evoked responses (i.e., CHEPs and SSR) were recorded above the lesion (i.e., scalp and hand, respectively). Readouts of STT function were related to neuropathic pain characteristics. In subjects with abolished pinprick sensation, measures of thermosensation (10%), CHEPs (33%), and SSR (48%) revealed residual STT function. Importantly, SSRs can be used as an objective readout and when abolished, no other proxy indicated residual STT function. No relationship was found between STT function readouts and spontaneous neuropathic pain intensity and extent. However, subjects with clinically preserved STT function presented more often with allodynia (54%) than subjects with discomplete (13%) or complete STT lesions (18%). In individuals with absent pinprick sensation, discomplete STT lesions can be revealed employing pain-autonomic measures. The improved sensitivity to discerning STT lesion completeness might support the investigation of its association with neuropathic pain following SCI.
Collapse
Affiliation(s)
- Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Skorupska E, Dybek T, Rychlik M, Jokiel M, Zawadziński J, Dobrakowski P. Amplified Vasodilatation within the Referred Pain Zone of Trigger Points Is Characteristic of Gluteal Syndrome-A Type of Nociplastic Pain Mimicking Sciatica. J Clin Med 2021; 10:jcm10215146. [PMID: 34768666 PMCID: PMC8584656 DOI: 10.3390/jcm10215146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Gluteal syndrome (GS) mimicking sciatica is a new disease that has been recently recognized and included in the International Classification of Diseases, 11th Revision. The present study examines nociplastic pain involvement in GS and sciatica patients using a new Skorupska protocol (SP) test that provokes amplified vasodilatation in the area of expected muscle-referred pain. A positive test is confirmed if there is (i) a development of autonomic referred pain (AURP) and (ii) an increase in the delta of average temperature (Δ₸°) > 0.3 °C at the end of the stimulation and during the observation SP phases. Chronic GS (n = 20) and sciatica (n = 30) patients were examined. The SP test confirmed muscle-referred pain for (i) all GS patients with 90.6% positive thermograms (Δ₸° 0.6 ± 0.8 °C; maximum AURP 8.9 ± 13.6% (both p < 0.05)) and (ii) those sciatica (n = 8) patients who reported pain sensation during the test with 20.6% positive thermograms (Δ₸° 0.7 ± 0.7 °C; maximum AURP 15.1 ± 17.8% (both p < 0.05)). The remaining sciatica (n = 22) patients did not report pain during the test and presented a Δ₸° decrease and the AURP size below 1%. Conclusion: Amplified vasodilatation suggesting nociplastic pain involvement was confirmed for all GS and sciatica patients who reported painful sensations in the zone typical for gluteus minimus referred pain during the test.
Collapse
Affiliation(s)
- Elzbieta Skorupska
- Department of Physiotherapy, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.J.); (J.Z.)
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
- Correspondence:
| | - Tomasz Dybek
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
| | - Michał Rychlik
- Department of Virtual Engineering, Poznan University of Technology, 60-965 Poznan, Poland;
| | - Marta Jokiel
- Department of Physiotherapy, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.J.); (J.Z.)
- Department of Traumatology, Orthopedics and Hand Surgery, Poznan University of Medical Sciences, 60-761 Poznan, Poland
| | - Jarosław Zawadziński
- Department of Physiotherapy, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (M.J.); (J.Z.)
| | - Paweł Dobrakowski
- Psychology Institute, Humanitas University in Sosnowiec, 41-200 Sosnowiec, Poland;
| |
Collapse
|
17
|
Li F, Jackson T. Psychophysiological correlates of pain resilience in anticipating, experiencing, and recovering from pain. Psychophysiology 2021; 59:e13962. [PMID: 34716607 DOI: 10.1111/psyp.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
Although researchers have documented behavioral and brain structure correlates of pain resilience, associated physiological responses have received little consideration. In this study, we assessed psychophysiological differences between high (HPR), moderate (MPR), and low (LPR) pain resilience subgroups during anticipation, experiencing, and recovery from laboratory pain. In an initial pain anticipation task, participants (79 women, 32 man) viewed visual cues to signal possible mild or intense shocks prior to receiving these shocks. Subsequently, in a pain recovery task, participants received uncued mild and intense shocks. Subjective appraisals were assessed during each task in tandem with continuous recording of skin conductance level (SCL), heart rate variability (HRV), and corrugator electromyography (cEMG). On physiological indexes, HPR subgroup members displayed significantly lower SCL than MPR and LPR subgroups did during anticipation and experiencing of pain while no resilience group effects were found for HRV or cEMG. During pain recovery, HPR and LPR subgroups displayed weaker SCL than the MPR subgroup did in the immediate aftermath of shock. However, HPR members continued to display lower SCL than other groups did over an extended recovery period. On self-report measures, the LPR subgroup reported higher levels of anticipatory anxiety and expected pain than HPR and MPR subgroups did during the pain anticipation task. Together, results suggested higher pain resilience is characterized, in part, by comparatively reduced SCL during the course of anticipating, experiencing and recovering from painful shock.
Collapse
Affiliation(s)
- Fenghua Li
- Key Laboratory of Cognition & Personality, Southwest University, Chongqing, China
| | - Todd Jackson
- Key Laboratory of Cognition & Personality, Southwest University, Chongqing, China.,Department of Psychology, University of Macau, Taipa, Macau S.A.R., China
| |
Collapse
|
18
|
Chen ZS. Decoding pain from brain activity. J Neural Eng 2021; 18. [PMID: 34608868 DOI: 10.1088/1741-2552/ac28d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Pain is a dynamic, complex and multidimensional experience. The identification of pain from brain activity as neural readout may effectively provide a neural code for pain, and further provide useful information for pain diagnosis and treatment. Advances in neuroimaging and large-scale electrophysiology have enabled us to examine neural activity with improved spatial and temporal resolution, providing opportunities to decode pain in humans and freely behaving animals. This topical review provides a systematical overview of state-of-the-art methods for decoding pain from brain signals, with special emphasis on electrophysiological and neuroimaging modalities. We show how pain decoding analyses can help pain diagnosis and discovery of neurobiomarkers for chronic pain. Finally, we discuss the challenges in the research field and point to several important future research directions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY 10016, United States of America
| |
Collapse
|
19
|
May ES, Hohn VD, Nickel MM, Tiemann L, Gil Ávila C, Heitmann H, Sauseng P, Ploner M. Modulating Brain Rhythms of Pain Using Transcranial Alternating Current Stimulation (tACS) - A Sham-Controlled Study in Healthy Human Participants. THE JOURNAL OF PAIN 2021; 22:1256-1272. [PMID: 33845173 DOI: 10.1016/j.jpain.2021.03.150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/27/2022]
Abstract
Chronic pain is a major health care problem. A better mechanistic understanding and new treatment approaches are urgently needed. In the brain, pain has been associated with neural oscillations at alpha and gamma frequencies, which can be targeted using transcranial alternating current stimulation (tACS). Thus, we investigated the potential of tACS to modulate pain and pain-related autonomic activity in an experimental model of chronic pain in 29 healthy participants. In 6 recording sessions, participants completed a tonic heat pain paradigm and simultaneously received tACS over prefrontal or somatosensory cortices at alpha or gamma frequencies or sham tACS. Concurrently, pain ratings and autonomic responses were collected. Using the present setup, tACS did not modulate pain or autonomic responses. Bayesian statistics confirmed a lack of tACS effects in most conditions. The only exception was alpha tACS over somatosensory cortex where evidence was inconclusive. Taken together, we did not find significant tACS effects on tonic experimental pain in healthy humans. Based on our present and previous findings, further studies might apply refined stimulation protocols targeting somatosensory alpha oscillations. TRIAL REGISTRATION: The study protocol was pre-registered at ClinicalTrials.gov (NCT03805854). PERSPECTIVE: Modulating brain oscillations is a promising approach for the treatment of pain. We therefore applied transcranial alternating current stimulation (tACS) to modulate experimental pain in healthy participants. However, tACS did not modulate pain, autonomic responses, or EEG oscillations. These findings help to shape future tACS studies for the treatment of pain.
Collapse
Affiliation(s)
- Elisabeth S May
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany
| | - Vanessa D Hohn
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany
| | - Moritz M Nickel
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany
| | - Laura Tiemann
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany
| | - Cristina Gil Ávila
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany
| | - Henrik Heitmann
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany; Center for Interdisciplinary Pain Medicine, School of Medicine, TUM, Munich, Germany
| | - Paul Sauseng
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Ploner
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Munich, Germany; TUM-Neuroimaging Center, School of Medicine, TUM, Munich, Germany; Center for Interdisciplinary Pain Medicine, School of Medicine, TUM, Munich, Germany.
| |
Collapse
|
20
|
Kong Y, Posada-Quintero HF, Chon KH. Sensitive Physiological Indices of Pain Based on Differential Characteristics of Electrodermal Activity. IEEE Trans Biomed Eng 2021; 68:3122-3130. [PMID: 33705307 DOI: 10.1109/tbme.2021.3065218] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Electrodermal activity (EDA) has been widely used to assess human response to stressful stimuli, including pain. Recently, spectral analysis of EDA has been found to be more sensitive and reproducible for assessment of sympathetic arousal than traditional indices (e.g., tonic and phasic components). However, none of the aforementioned analyses incorporate the differential characteristics of EDA, which could be more sensitive to capturing fast-changing dynamics associated with pain responses. METHODS We have tested the feasibility of using the derivative of phasic EDA and the modified time-varying spectral analysis of EDA. Sixteen subjects underwent four levels of pain stimulation using electric stimulation. Five-second segments of EDA were used for each level of stimulation, and pre-stimulation segments were considered stimulation level 0. We used support vector machines with the radial basis function kernel and multi-layer perceptron for three different scenarios of stimulation-level classification tasks: five stimulation levels (four levels of stimulation plus no stimulation); low, medium, and high pain stimulation (stimulation levels 0-1, 2, and 3-4, respectively); and high stimulation levels (stimulation levels 3-4) vs. no stimulation. RESULTS The maximum balanced accuracies were 44% (five stimulation levels), 63% (for low, medium, and high pain stimulation), and 87% (sensitivity 83% and specificity 89%, for high stimulation vs. no stimulation). CONCLUSION The differential characteristics of EDA contributed highly to the accuracy of pain stimulation level detection of the classifiers. The external validity dataset was not considered in the study. SIGNIFICANCE Our approach has the potential for accurate pain quantification using EDA.
Collapse
|
21
|
Skorupska E, Dybek T, Rychlik M, Jokiel M, Dobrakowski P. The Automatization of a New Thermography Method Using Invasive Nociceptive Stimulation to Confirm an Autonomic Phenomenon within a Trigger Point Referred Pain Zone. Brain Sci 2021; 11:brainsci11070893. [PMID: 34356127 PMCID: PMC8301943 DOI: 10.3390/brainsci11070893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
The trigger points (TrPs) related to chronic low back pain that mimic sciatica have been lately recognized and included in the International Classification of Diseases, 11th Revision. This study examined the MATLAB software utility for the objective stratification of low back pain patients using the Minimally Invasive Procedure (MIP). The two diagnostic MIP parameters were: average temperature (ΔTavr) and autonomic referred pain (AURP). Chronic sciatica patients with TrPs (n = 20) and without TrPs (n = 20) were examined using the MIP. A significant increase in both parameters was confirmed for the thigh ROI of the TrP-positive patients, with ΔTavr being the leading parameter (p = 0.016, Exp(β) = 2.603). A continued significance of both parameters was confirmed from 6′00″ to 15′30″ (p < 0.05). The maximum AURP value was confirmed at 13′30″ (p < 0.05) (TrPs(+) 20.4 ± 19.9% vs. TrPs(-) 3.77 ± 9.14%; p = 0.000; CI (0.347,0.348)).
Collapse
Affiliation(s)
- Elżbieta Skorupska
- Department of Physiotherapy, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
- Department of Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
- Correspondence:
| | - Tomasz Dybek
- Department of Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
| | - Michał Rychlik
- Department of Virtual Engineering, Poznan University of Technology, 60-965 Poznań, Poland;
| | - Marta Jokiel
- Department of Physiotherapy, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
- Department of Traumatology, Orthopedics and Hand Surgery, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Paweł Dobrakowski
- Psychology Institute, Humanitas University in Sosnowiec, 41-200 Sosnowiec, Poland;
| |
Collapse
|
22
|
Posada-Quintero HF, Kong Y, Chon KH. Objective pain stimulation intensity and pain sensation assessment using machine learning classification and regression based on electrodermal activity. Am J Physiol Regul Integr Comp Physiol 2021; 321:R186-R196. [PMID: 34133246 DOI: 10.1152/ajpregu.00094.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An objective measure of pain remains an unmet need of people with chronic pain, estimated to be 1/3 of the adult population in the United States. The current gold standard to quantify pain is highly subjective, based upon self-reporting with numerical or visual analog scale (VAS). This subjectivity complicates pain management and exacerbates the epidemic of opioid abuse. We have tested classification and regression machine learning models to objectively estimate pain sensation in healthy subjects using electrodermal activity (EDA). Twenty-three volunteers underwent pain stimulation using thermal grills. Three different "pain stimulation intensities" were induced for each subject, who reported the "pain sensation" right after each stimulus using a VAS (0-10). EDA data were collected throughout the experiment. For machine learning, we computed validated features of EDA based on time-domain decomposition, spectral analysis, and differential features. Models for estimation of pain stimulation intensity and pain sensation achieved maximum macroaveraged geometric mean scores of 69.7% and 69.2%, respectively, when three classes were considered ("No," "Low," and "High"). Regression of levels of stimulation intensity and pain sensation achieved R2 values of 0.357 and 0.47, respectively. Overall, the high variance and inconsistency of VAS scores led to lower performance of pain sensation classification, but regression was better for pain sensation than stimulation intensity. Our results provide that three levels of pain can be quantified with good accuracy and physiological evidence that sympathetic responses recorded by EDA are more correlated to the applied stimuli's intensity than to the pain sensation reported by the subject.
Collapse
Affiliation(s)
| | - Youngsun Kong
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Ki H Chon
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
23
|
Rustamov N, Sharma L, Chiang SN, Burk C, Haroutounian S, Leuthardt EC. Spatial and Frequency-specific Electrophysiological Signatures of Tonic Pain Recovery in Humans. Neuroscience 2021; 465:23-37. [PMID: 33894311 DOI: 10.1016/j.neuroscience.2021.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/19/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
The objective of this study was to comprehensively investigate patterns of brain activities associated with pain recovery following experimental tonic pain in humans. Specific electrophysiological features of pain recovery may either be monitored or be modulated through neurofeedback (NF) as a novel chronic pain treatment. The cold pressor test was applied with simultaneous electroencephalogram (EEG) recording. EEG data were acquired, and analyzed to define: (1) EEG power topography patterns of pain recovery; (2) source generators of pain recovery at cortical level; (3) changes in functional connectivity associated with pain recovery; (4) features of phase-amplitude coupling (PAC) as it relates to pain recovery. The novel finding of this study is that recovery from pain was characterized by significant theta power rebound at the left fronto-central area. The sources of theta power over-recovery were located in the left dorsolateral prefrontal cortex (DLPFC), cingulate cortex, left insula and contralateral sensorimotor cortex. These effects were paralleled by theta band connectivity increase within hemispheres in a prefrontal-somatosensory network and interhemispherically between prefrontal and parietal areas. In addition, this study revealed significant reduction in PAC between theta/alpha and gamma oscillations during recovery period following tonic pain. These findings have largely been replicated across two identical sessions. Our study emphasizes the association between pain recovery and left lateral prefrontal theta power rebound, and significant over-recovery of functional connectivity in prefrontal-sensorimotor neural network synchronized at theta frequencies. These findings may provide basis for chronic pain treatment by modulating neural oscillations at theta frequencies in left prefrontal cortex.
Collapse
Affiliation(s)
- Nabi Rustamov
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lokesh Sharma
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah N Chiang
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA
| | - Carrie Burk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, St. Louis, MO, USA
| | - Simon Haroutounian
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, St. Louis, MO, USA.
| | - Eric C Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA; Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University in St. Louis, Louis, MO, USA
| |
Collapse
|
24
|
Skorupska E, Jokiel M, Rychlik M, Łochowski R, Kotwicka M. Female Overrepresentation in Low Back-Related Leg Pain: A Retrospective Study of the Autonomic Response to a Minimally Invasive Procedure. J Pain Res 2020; 13:3427-3435. [PMID: 33376388 PMCID: PMC7755343 DOI: 10.2147/jpr.s282233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
Background The newly proposed low back pain treatment requires case classification according to the pain mechanism (nociceptive, neuropathic or nociplastic) to determine the most effective therapeutic approach. However, there is a lack of objective tools for distinguishing these pain mechanisms. The aim of the study was to identify which symptoms, signs, and standard diagnostic parameters would allow predicting the nociplastic pain (NP) subtype among low back leg pain (LBLP) patients. Methods A retrospective analysis of an LBLP case–control study database was carried out. The presence of NP was assumed if the patient presented with myofascial pain syndrome (MPS) and developed a short-term intensive vasodilatation reaction in the perceived lower leg pain area after provocation by a minimally invasive procedure. Clinical data and standard LBLP diagnostic parameters were analyzed to classify patients as NP (+) vs NP (-). Next, to predict NP probability, logistic regression analysis and a diagnostic classification tree were constructed. Results NP was confirmed in 43.75% of LBLP patients. Women represented 95.24% of all NP (+) patients. The diagnostic classification tree indicated that NP was highly probable if the LBLP subject was female and the result of a positive straight leg raise (SLR) test was lower than 45 degrees. If the SLR test result was greater than or equal to 45 degrees, a negative result on the Bragard test would have diagnostic value. This classification tree was approved to a certain extent in the logistic regression model (deviance residuals, min: −1.8519; 1Q: −0.5551; median: −0.1907; 3Q: 0.6565 and max: 2.1058) but should be verified in a larger group of subjects. Conclusion Female sex, but not clinical data or standard diagnostic parameters, is indicative of nociplastic pain in LBLP patients. More sophisticated statistical methods, based on directly measurable parameters, should be proposed to distinguish NP involvement in LBLP.
Collapse
Affiliation(s)
- Elzbieta Skorupska
- Department of Physiotherapy, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Jokiel
- Department of Physiotherapy, Poznan University of Medical Sciences, Poznan, Poland.,Department of Orthopedics, Traumatology and Hand Surgery Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Rychlik
- Department of Virtual Engineering, Poznan University of Technology, Poznan, Poland
| | - Rafał Łochowski
- Department of Mathematics and Mathematical Economics, Warsaw School of Economics, Warsaw, Poland
| | - Małgorzata Kotwicka
- Department of Cell Biology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
25
|
Archibald J, MacMillan EL, Graf C, Kozlowski P, Laule C, Kramer JLK. Metabolite activity in the anterior cingulate cortex during a painful stimulus using functional MRS. Sci Rep 2020; 10:19218. [PMID: 33154474 PMCID: PMC7645766 DOI: 10.1038/s41598-020-76263-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023] Open
Abstract
To understand neurochemical brain responses to pain, proton magnetic resonance spectroscopy (1H-MRS) is used in humans in vivo to examine various metabolites. Recent MRS investigations have adopted a functional approach, where acquisitions of MRS are performed over time to track task-related changes. Previous studies suggest glutamate is of primary interest, as it may play a role during cortical processing of noxious stimuli. The objective of this study was to examine the metabolic effect (i.e., glutamate) in the anterior cingulate cortex during noxious stimulation using fMRS. The analysis addressed changes in glutamate and glutamate + glutamine (Glx) associated with the onset of pain, and the degree by which fluctuations in metabolites corresponded with continuous pain outcomes. Results suggest healthy participants undergoing tonic noxious stimulation demonstrated increased concentrations of glutamate and Glx at the onset of pain. Subsequent reports of pain were not accompanied by corresponding changes in glutamate of Glx concentrations. An exploratory analysis on sex revealed large effect size changes in glutamate at pain onset in female participants, compared with medium-sized effects in male participants. We propose a role for glutamate in the ACC related to the detection of a noxious stimulus.
Collapse
Affiliation(s)
- J Archibald
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada.
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada.
| | - E L MacMillan
- Department of Radiology, University of British Columbia, Vancouver, Canada
- ImageTech Lab, Simon Fraser University, Surrey, Canada
- Philips Healthcare Canada, Markham, Canada
| | - C Graf
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - P Kozlowski
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Hughill Center, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
| | - C Laule
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Hughill Center, Vancouver, Canada
- Department of Radiology, University of British Columbia, Vancouver, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
- UBC MRI Research Centre, University of British Columbia, Vancouver, Canada
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - J L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Center for Brain Health (DMCH), Vancouver, Canada
- Hughill Center, Vancouver, Canada
| |
Collapse
|
26
|
Posada-Quintero HF, Kong Y, Nguyen K, Tran C, Beardslee L, Chen L, Guo T, Cong X, Feng B, Chon KH. Using electrodermal activity to validate multilevel pain stimulation in healthy volunteers evoked by thermal grills. Am J Physiol Regul Integr Comp Physiol 2020; 319:R366-R375. [PMID: 32726157 DOI: 10.1152/ajpregu.00102.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have tested the feasibility of thermal grills, a harmless method to induce pain. The thermal grills consist of interlaced tubes that are set at cool or warm temperatures, creating a painful "illusion" (no tissue injury is caused) in the brain when the cool and warm stimuli are presented collectively. Advancement in objective pain assessment research is limited because the gold standard, the self-reporting pain scale, is highly subjective and only works for alert and cooperative patients. However, the main difficulty for pain studies is the potential harm caused to participants. We have recruited 23 subjects in whom we induced electric pulses and thermal grill (TG) stimulation. The TG effectively induced three different levels of pain, as evidenced by the visual analog scale (VAS) provided by the subjects after each stimulus. Furthermore, objective physiological measurements based on electrodermal activity showed a significant increase in levels as stimulation level increased. We found that VAS was highly correlated with the TG stimulation level. The TG stimulation safely elicited pain levels up to 9 out of 10. The TG stimulation allows for extending studies of pain to ranges of pain in which other stimuli are harmful.
Collapse
Affiliation(s)
| | | | | | - Cara Tran
- University of Connecticut, Storrs, Connecticut
| | - Luke Beardslee
- Emory University School of Medicine Department of Surgery, Atlanta, Georgia
| | - Longtu Chen
- University of Connecticut, Storrs, Connecticut
| | | | | | - Bin Feng
- University of Connecticut, Storrs, Connecticut
| | - Ki H Chon
- University of Connecticut, Storrs, Connecticut
| |
Collapse
|
27
|
Self-Compassion Demonstrating a Dual Relationship with Pain Dependent on High-Frequency Heart Rate Variability. Pain Res Manag 2020; 2020:3126036. [PMID: 32148598 PMCID: PMC7049406 DOI: 10.1155/2020/3126036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 01/08/2023]
Abstract
One previous study indicated the significance of trait self-compassion in psychological well-being and adjustment in people with chronic pain. Higher-frequency heart rate variability (HF-HRV) was found to be closely associated with self-compassion and pain coping. The current study was therefore designed to investigate the relationship between self-compassion and experimental pain as well as the impact of HF-HRV. Sixty healthy participants provided self-reported self-compassion and underwent a cold pain protocol during which HF-HRV was evaluated. Results demonstrated a dual relationship between self-compassion and pain, dependent on the level of HF-HRV during pain exposure. Specifically, self-compassion was associated with lower pain in the condition of higher HF-HRV, while there was an inverse relationship between self-compassion and pain when HF-HRV was lower. Our data indicate the significance of HF-HRV in moderating the association between self-compassion and experimental pain.
Collapse
|
28
|
Casiglia E, Finatti F, Tikhonoff V, Stabile MR, Mitolo M, Albertini F, Gasparotti F, Facco E, Lapenta AM, Venneri A. MECHANISMS OF HYPNOTIC ANALGESIA EXPLAINED BY FUNCTIONAL MAGNETIC RESONANCE (fMRI). Int J Clin Exp Hypn 2020; 68:1-15. [PMID: 31914368 DOI: 10.1080/00207144.2020.1685331] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypnotic-focused analgesia (HFA) was produced in 20 highly hypnotizable subjects receiving nociceptive stimulations while undergoing functional magnetic resonance imaging (fMRI). The fMRI pattern in brain cortex activation while receiving a painful stimulus was recorded both during nonhypnosis and during HFA. The scanning protocol included the acquisition of a T1-weighted structural scan, 4 functional scans, a T2-weighted axial scan, and a fluid attenuated inversion recovery (FLAIR) scan. Total imaging time, including localization and structural image acquisitions, was approximately 60 minutes. Without HFA, the subjects reported subjective presence of pain, and the cortex primary sensory areas S1, S2, and S3 were activated. During HFA, the subjects reported complete absence of subjective pain and S1, S2, and S3 were deactivated. The findings suggest that HFA may prevent painful stimuli from reaching the sensory brain cortex, possibly through a gate-control mechanism.
Collapse
Affiliation(s)
- Edoardo Casiglia
- Studium Patavinum, University of Padova, Padova, Italy.,Department of Medicine, University of Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Francesco Finatti
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,School of Pathology, University of Padova, Italy
| | - Valérie Tikhonoff
- Department of Medicine, University of Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Maria R Stabile
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,Department of Neurorehabilitation, Foundation Hospital San Camillo, Venice, Italy
| | - Micaela Mitolo
- Department of Neurorehabilitation, Foundation Hospital San Camillo, Venice, Italy.,Functional Magnetic Resonance Unit, Hospital S. Orsola-Malpighi, Bologna, Italy
| | - Federica Albertini
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,School of Emergency Medicine, University of Padova, Italy
| | - Federica Gasparotti
- Department of Medicine, University of Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Enrico Facco
- Studium Patavinum, University of Padova, Padova, Italy.,Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy.,Department of Neuroscience, University of Padova, Italy
| | - Antonio M Lapenta
- Institute F.Granone, Italian Centre of Clinical and Experimental Hypnosis, Torino, Italy
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Lee IS, Necka EA, Atlas LY. Distinguishing pain from nociception, salience, and arousal: How autonomic nervous system activity can improve neuroimaging tests of specificity. Neuroimage 2020; 204:116254. [PMID: 31604122 PMCID: PMC6911655 DOI: 10.1016/j.neuroimage.2019.116254] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022] Open
Abstract
Pain is a subjective, multidimensional experience that is distinct from nociception. A large body of work has focused on whether pain processing is supported by specific, dedicated brain circuits. Despite advances in human neuroscience and neuroimaging analysis, dissociating acute pain from other sensations has been challenging since both pain and non-pain stimuli evoke salience and arousal responses throughout the body and in overlapping brain circuits. In this review, we discuss these challenges and propose that brain-body interactions in pain can be leveraged in order to improve tests for pain specificity. We review brain and bodily responses to pain and nociception and extant efforts toward identifying pain-specific brain networks. We propose that autonomic nervous system activity should be used as a surrogate measure of salience and arousal to improve these efforts and enable researchers to parse out pain-specific responses in the brain, and demonstrate the feasibility of this approach using example fMRI data from a thermal pain paradigm. This new approach will improve the accuracy and specificity of functional neuroimaging analyses and help to overcome current difficulties in assessing pain specific responses in the human brain.
Collapse
Affiliation(s)
- In-Seon Lee
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A Necka
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD, USA; National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
30
|
Investigating the Influence and a Potential Mechanism of Self-Compassion on Experimental Pain: Evidence From a Compassionate Self-Talk Protocol and Heart Rate Variability. THE JOURNAL OF PAIN 2019; 21:790-797. [PMID: 31760110 DOI: 10.1016/j.jpain.2019.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 09/17/2019] [Accepted: 11/18/2019] [Indexed: 01/03/2023]
Abstract
Previous studies have indicated a positive relationship between self-compassion and psychological and emotional well-being in chronic pain populations. However, evidence on the role and mechanisms of self-compassion in pain perception is largely limited. The current study was designed to investigate the effects and a potential mechanism of self-compassion on experimental pain. Thirty healthy participants underwent a compassionate self-talk protocol, which was followed by cold pain exposure during which high-frequency heart rate variability (HF-HRV) was evaluated. The compassionate self-talk protocol successfully generated compassionate statements among the participants. Our behavioral data showed lower pain ratings in the self-compassion compared to the control condition. Moreover, self-compassion manipulation resulted in higher HF-HRV during pain, which was associated with lower pain ratings. We present interesting findings that a short period of compassionate self-talk may decrease experimental pain as well as mechanistic evidence surrounding bodily control over pain-related arousal indicated by HF-HRV. PERSPECTIVE: This study presents the first line of evidence that a short period of compassionate self-talk may be sufficient to reduce experimental pain. We also demonstrate increased bodily control as a potential mechanism underlying this effect.
Collapse
|
31
|
Nickel MM, Ta Dinh S, May ES, Tiemann L, Hohn VD, Gross J, Ploner M. Neural oscillations and connectivity characterizing the state of tonic experimental pain in humans. Hum Brain Mapp 2019; 41:17-29. [PMID: 31498948 PMCID: PMC7267966 DOI: 10.1002/hbm.24784] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/26/2019] [Accepted: 08/26/2019] [Indexed: 01/07/2023] Open
Abstract
Pain is a complex phenomenon that is served by neural oscillations and connectivity involving different brain areas and frequencies. Here, we aimed to systematically and comprehensively assess the pattern of neural oscillations and connectivity characterizing the state of tonic experimental pain in humans. To this end, we applied 10-min heat pain stimuli consecutively to the right and left hand of 39 healthy participants and recorded electroencephalography. We systematically analyzed global and local measures of oscillatory brain activity, connectivity, and graph theory-based network measures during tonic pain and compared them to a nonpainful control condition. Local measures showed suppressions of oscillatory activity at alpha frequencies together with stronger connectivity at alpha and beta frequencies in sensorimotor areas during tonic pain. Furthermore, sensorimotor areas contralateral to stimulation showed significantly increased connectivity to a common area in the medial prefrontal cortex at alpha frequencies. Together, these observations indicate that the state of tonic experimental pain is associated with a sensorimotor-prefrontal network connected at alpha frequencies. These findings represent a step further toward understanding the brain mechanisms underlying long-lasting pain states in health and disease.
Collapse
Affiliation(s)
- Moritz M Nickel
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Son Ta Dinh
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Elisabeth S May
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Tiemann
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Vanessa D Hohn
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Joachim Gross
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.,Institute for Biomagnetism and Biosignalanalysis, University of Münster, Münster, Germany
| | - Markus Ploner
- Department of Neurology and TUM-Neuroimaging Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
32
|
From correlation towards causality: modulating brain rhythms of pain using transcranial alternating current stimulation. Pain Rep 2019; 4:e723. [PMID: 31579843 PMCID: PMC6727992 DOI: 10.1097/pr9.0000000000000723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
Introduction Accumulating evidence suggests that neural oscillations at different frequencies and their synchrony between brain regions play a crucial role in the processing of nociceptive input and the emergence of pain. Most findings are limited by their correlative nature, however, which impedes causal inferences. Objective To move from correlative towards causal evidence, methods that allow to experimentally manipulate oscillatory brain activity are needed. Results Transcranial alternating current stimulation (tACS) is a noninvasive brain stimulation technique designed to modulate neural oscillations in a frequency specific manner and as such a suitable method to investigate the contribution of oscillatory brain activity to pain. Despite its appeal, tACS has been barely applied in the field of pain research. In the present review, we address this issue and discuss how tACS can be used to gather mechanistic evidence for the relationship between pain and neural oscillations in humans. Conclusions Transcranial alternating current stimulation holds great potential for the investigation of the neural mechanisms underlying pain and the development of new treatment approaches for chronic pain if necessary methodological precautions are taken.
Collapse
|
33
|
Perceptual and motor responses directly and indirectly mediate the effects of noxious stimuli on autonomic responses. Pain 2019; 160:2811-2818. [DOI: 10.1097/j.pain.0000000000001661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Pain or nociception? Subjective experience mediates the effects of acute noxious heat on autonomic responses - corrected and republished. Pain 2019; 160:1469-1481. [PMID: 31107415 DOI: 10.1097/j.pain.0000000000001573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nociception reliably elicits an autonomic nervous system (ANS) response. Because pain and ANS circuitry interact on multiple spinal, subcortical, and cortical levels, it remains unclear whether autonomic responses are simply a reflexive product of noxious stimulation regardless of how stimulation is consciously perceived or whether the experience of pain mediates ANS responses to noxious stimulation. To test these alternative predictions, we examined the relative contribution of noxious stimulation and individual pain experience to ANS responses in healthy volunteers who underwent 1 or 2 pain assessment tasks. Participants received 8 seconds of thermal stimulation of varied temperatures and judged pain intensity on every trial. Skin conductance responses and pupil dilation responses to stimulation served as measures of the heat-evoked autonomic response. We used multilevel modelling to examine trial-by-trial relationships between heat, pain, and ANS response. Although both pain and noxious heat stimulation predicted skin conductance response and pupil dilation response in separate analyses, the individual pain experience statistically mediated effects of noxious heat on both outcomes. Furthermore, moderated mediation revealed that evidence for this process was stronger when stimulation was perceived as painful compared with when stimulation was perceived as nonpainful, although this difference emerged late, in the 4-second period after thermal stimulation. These findings suggest that pain appraisal regulates the heat-evoked autonomic response to noxious stimulation, documenting the flexibility of the autonomic pain response to adjust to perceived or actual changes in environmental affordances above and beyond nociceptive input.
Collapse
|
35
|
Pain or nociception? Subjective experience mediates the effects of acute noxious heat on autonomic responses. Pain 2019; 159:699-711. [PMID: 29251663 DOI: 10.1097/j.pain.0000000000001132] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nociception reliably elicits an autonomic nervous system (ANS) response. Because pain and ANS circuitry interact on multiple spinal, subcortical, and cortical levels, it remains unclear whether autonomic responses are simply a reflexive product of noxious stimulation regardless of how stimulation is consciously perceived or whether the experience of pain mediates ANS responses to noxious stimulation. To test these alternative predictions, we examined the relative contribution of noxious stimulation and individual pain experience to ANS responses in healthy volunteers who underwent 1 or 2 pain assessment tasks. Participants received 8 seconds of thermal stimulation of varied temperatures and judged pain intensity on every trial. Skin conductance responses and pupil dilation responses to stimulation served as measures of the heat-evoked autonomic response. We used multilevel modelling to examine trial-by-trial relationships between heat, pain, and ANS response. Although both pain and noxious heat stimulation predicted skin conductance response and pupil dilation response in separate analyses, the individual pain experience statistically mediated effects of noxious heat on both outcomes. Furthermore, moderated mediation revealed that evidence for this process was stronger when stimulation was perceived as painful compared with when stimulation was perceived as nonpainful. These findings suggest that pain appraisal regulates the heat-evoked autonomic response to noxious stimulation, documenting the flexibility of the autonomic pain response to adjust to perceived or actual changes in environmental affordances above and beyond nociceptive input.
Collapse
|
36
|
Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nat Commun 2019; 10:983. [PMID: 30816113 PMCID: PMC6395755 DOI: 10.1038/s41467-019-08873-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/04/2019] [Indexed: 12/21/2022] Open
Abstract
In humans, gamma-band oscillations in the primary somatosensory cortex (S1) correlate with subjective pain perception. However, functional contributions to pain and the nature of underlying circuits are unclear. Here we report that gamma oscillations, but not other rhythms, are specifically strengthened independently of any motor component in the S1 cortex of mice during nociception. Moreover, mice with inflammatory pain show elevated resting gamma and alpha activity and increased gamma power in response to sub-threshold stimuli, in association with behavioral nociceptive hypersensitivity. Inducing gamma oscillations via optogenetic activation of parvalbumin-expressing inhibitory interneurons in the S1 cortex enhances nociceptive sensitivity and induces aversive avoidance behavior. Activity mapping identified a network of prefrontal cortical and subcortical centers whilst morphological tracing and pharmacological studies demonstrate the requirement of descending serotonergic facilitatory pathways in these pain-related behaviors. This study thus describes a mechanistic framework for modulation of pain by specific activity patterns in the S1 cortex. Gamma oscillations in somatosensory areas in humans correlate with pain perception and pain stimulus intensity, but could also reflect cognitive processes such as attention. Here the authors provide evidence in mice that these oscillations causally contribute to pain perception.
Collapse
|
37
|
Fernandez A, Kirsch I, Noël L, Rodondi PY, Kaptchuk TJ, Suter MR, Décosterd I, Berna C. A test of positive suggestions about side effects as a way of enhancing the analgesic response to NSAIDs. PLoS One 2019; 14:e0209851. [PMID: 30605458 PMCID: PMC6317829 DOI: 10.1371/journal.pone.0209851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Side effects are frequent in pharmacological pain management, potentially preceding analgesia and limiting drug tolerability. Discussing side effects is part of informed consent, yet can favor nocebo effects. This study aimed to test whether a positive suggestion regarding side effects, which could act as reminders of the medication having been absorbed, might favor analgesia in a clinical interaction model. Sixty-six healthy males participated in a study "to validate pupillometry as an objective measure of analgesia". Participants were unknowingly randomized double-blind to positive vs control information about side effects embedded in a video regarding the study drugs. Sequences of moderately painful heat stimuli applied before and after treatment with diclofenac and atropine served to evaluate analgesia. Atropine was deceptively presented as a co-analgesic, but used to induce side effects. Adverse events (AE) were collected with the General Assessment of Side Effects (GASE) questionnaire prior to the second induced pain sequence. Debriefing fully informed participants regarding the purpose of the study and showed them the two videos.The combination of medication led to significant analgesia, without a between-group difference. Positive information about side effects increased the attribution of AE to the treatment compared to the control information. The total GASE score was correlated with analgesia, i.e., the more AEs reported, the stronger the analgesia. Interestingly, there was a significant between-groups difference on this correlation: the GASE score and analgesia correlated only in the positive information group. This provides evidence for a selective link between AEs and pain relief in the group who received the suggestion that AEs could be taken as a sign "that help was on the way". During debriefing, 65% of participants said they would prefer to receive the positive message in a clinical context. Although the present results cannot be translated immediately to clinical pain conditions, they do indicate the importance of testing this type of modulation in a clinical context.
Collapse
Affiliation(s)
- Aurore Fernandez
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Irving Kirsch
- Program in Placebo Studies, Harvard Medical School, Boston, MA, United States of America
| | - Louis Noël
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Pierre Yves Rodondi
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Ted J. Kaptchuk
- Program in Placebo Studies, Harvard Medical School, Boston, MA, United States of America
| | - Marc R. Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Isabelle Décosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Chantal Berna
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
- Program in Placebo Studies, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
38
|
Pain-autonomic relationships: implications for experimental design and the search for an “objective marker” for pain. Pain 2017; 158:2064-2065. [DOI: 10.1097/j.pain.0000000000001035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|