1
|
Gálvez R, Mayoral V, Cebrecos J, Medel FJ, Morte A, Sust M, Vaqué A, Montes‐Pérez A, Neira‐Reina F, Cánovas L, Margarit C, Bouhassira D. E-52862-A selective sigma-1 receptor antagonist, in peripheral neuropathic pain: Two randomized, double-blind, phase 2 studies in patients with chronic postsurgical pain and painful diabetic neuropathy. Eur J Pain 2025; 29:10.1002/ejp.4755. [PMID: 39629978 PMCID: PMC11616472 DOI: 10.1002/ejp.4755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND We report the efficacy and safety of E-52862-a selective, sigma-1 receptor antagonist-from phase 2, randomized, proof-of-concept studies in patients with moderate-to-severe, neuropathic, chronic postsurgical pain (CPSP) and painful diabetic neuropathy (PDN). METHODS Adult patients (CPSP [N = 116]; PDN [N = 163]) were randomized at a 1:1 ratio to 4 weeks of treatment with E-52862 (CPSP [n = 55]; PDN [n = 85]) or placebo (CPSP [n = 61]; PDN [n = 78]) orally once daily. Pain intensity scores were measured using a numerical pain rating scale from 0 (no pain) to 10 (worst pain imaginable). The primary analysis population comprised patients who received study drug with ≥1 baseline and on-treatment observation (full analysis set). RESULTS In CPSP, mean baseline average pain was 6.2 for E-52862 vs. 6.5 for placebo. Week 4 mean change from baseline (CFB) for average pain was -1.6 for E-52862 vs. -0.9 for placebo (least squares mean difference [LSMD]: -0.9; p = 0.029). In PDN, mean baseline average pain was 5.3 for E-52862 vs. 5.4 for placebo. Week 4 mean CFB for average pain was -2.2 for E-52862 vs. -2.1 for placebo (LSMD: -0.1; p = 0.766). Treatment-emergent adverse events (TEAEs) were reported in 90.9% of E-52862-treated patients vs. 76.7% of placebo-treated patients in CPSP and 34.1% vs. 26.9% in PDN. Serious TEAEs occurred in CPSP only: E-52862: 5.5%; placebo: 6.7%. CONCLUSIONS E-52862 demonstrated superior relief of CPSP vs. placebo after 4 weeks. Reductions in pain intensity were seen in PDN with E-52862; high placebo response rates may have prevented differentiation between treatments. E-52862 had acceptable tolerability in both populations. SIGNIFICANCE STATEMENT These proof-of-concept studies validate the mode of action of E-52862, a selective sigma-1 receptor antagonist. In CPSP, E-52862 resulted in clinically meaningful pain relief. In PDN, reductions in pain intensity were seen with E-52862; high placebo response rates may have prevented differentiation between E-52862 and placebo. These findings are clinically relevant given that neuropathic pain is highly incapacitating, lacking effective treatments and representing a significant unmet medical need, and support further development of sigma-1 receptor antagonists for peripheral neuropathic pain.
Collapse
Affiliation(s)
- Rafael Gálvez
- Pain ClinicVirgen de Las Nieves University HospitalGranadaSpain
| | - Victor Mayoral
- Bellvitge University HospitalL'Hospitalet de LlobregatBarcelonaSpain
| | | | | | | | | | - Anna Vaqué
- ESTEVE Pharmaceuticals S.A.BarcelonaSpain
| | | | | | - Luz Cánovas
- Pain ClinicOurense University Hospital Complex (CHUO)OurenseSpain
| | - César Margarit
- Pain UnitAlicante University General HospitalAlicanteSpain
| | - Didier Bouhassira
- Inserm U987, UVSQParis‐Saclay University, Ambroise‐Paré HospitalBoulogne‐BillancourtFrance
| |
Collapse
|
2
|
Pinto LG, Vilar B, McNaughton PA. PGE 2 and HCN2 ion channels are critical mediators of pain initiated by angiotensin II. Brain Behav Immun 2024; 125:268-279. [PMID: 39736364 DOI: 10.1016/j.bbi.2024.12.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025] Open
Abstract
Angiotensin II is well known to have an important influence on blood pressure, mediated via the angiotensin II type 1 receptor (AT1R), but more recent studies have shown that angiotensin II may play an important additional role in eliciting pain via a distinct action at the angiotensin II type 2 receptor (AT2R). Signalling pathways that link activation of AT2R to a sensation of pain are, however, incompletely understood. Here we use rodent inflammatory pain models to confirm that selective activation of AT2R triggers aversive responses, and that these are abolished by either antagonism or genetic deletion of AT2R. Pain induced by AT2R activation is abolished by pharmacological block or genetic deletion of the HCN2 ion channel, which other studies have implicated in several distinct pain modalities. We found, however, no evidence for direct activation of isolated nociceptive neurons by AT2R agonists. In agreement, the effect of AT2R agonists was completely abolished by the cyclooxygenase (COX) inhibitor indomethacin or by selective antagonism of the EP4 receptor for PGE2, showing that PGE2 is a critical extracellular mediator that transmits the signal from AT2R to nociceptive neurons and causes activation of HCN2 ion channels. When inflammatory pain was induced by injection of carrageenan, pharmacological inhibition or genetic deletion of AT2R gave near-complete pain relief, together with a reduction in chemokine and PGE2 release. This study shows that angiotensin II is an important pro-inflammatory mediator that causes pain indirectly by activating AT2 receptors on non-neuronal cells, stimulating the release of PGE2 that mediates activation of HCN2 ion channels in nociceptive neurons.
Collapse
Affiliation(s)
- Larissa Garcia Pinto
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Bruno Vilar
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK
| | - Peter A McNaughton
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK.
| |
Collapse
|
3
|
Kontor EK, Wellan C, Maaz HM, Muhammad DG, Al-Qiami A, Sharifan A, Kumah J, Lacey H, Siddiq A, Jain N. Emerging Therapeutic Modalities and Pharmacotherapies in Neuropathic Pain Management: A Systematic Review and Meta-Analysis of Parallel Randomized Controlled Trials. Pain Res Manag 2024; 2024:6782574. [PMID: 39748928 PMCID: PMC11695085 DOI: 10.1155/prm/6782574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/23/2024] [Indexed: 01/04/2025]
Abstract
Background: Neuropathic pain (NP) is a chronic condition caused by abnormal neuronal excitability in the nervous system. Current treatments for NP are often ineffective or poorly tolerated. Hence, we reviewed the efficacy and safety of novel drugs or devices that target neuronal excitability in NP patients compared with placebo, sham, or usual care interventions. Methods: Six databases were searched for parallel randomized controlled trials (RCTs) reporting novel devices (rTMS, SCS, and TENS) or drugs (EMA401, capsaicin 8% patch, and Sativex) for NP. Data were extracted and quality was assessed using the ROB2 tool. The random-effects inverse variance method was used for analysis. Results: In our review of 30 RCTs with 4251 participants, device-based interventions were found to be more effective in reducing pain scores than control interventions (SMD = -1.27, 95% CI: -1.92 to -0.62). However, high heterogeneity was seen (p < 0.01, I 2 = 91%), attributable to the etiology of NP (R 2 = 58.84%) and year of publication (R 2 = 49.49%). Funding source and type of control comparator were ruled out as cause of heterogeneity. Although drug interventions did not differ from placebo interventions in absolute pain reduction (SMD = -1.21, 95% CI: -3.55 to 1.13), when comparing relative change in pain intensity from baseline, drug interventions were found to be effective (SMD = 0.29, 95% CI: 0.04-0.55). Asymmetry in the funnel plot was visualized, suggesting publication bias. Certainty of evidence was very low according to GRADE assessment. Conclusions: Our review indicates that device-based interventions are more effective than control interventions in reducing pain intensity in NP. Nevertheless, available evidence is limited due to heterogeneity and publication bias, prompting the need for more high-quality RCTs to confirm the efficacy and safety of these interventions.
Collapse
Affiliation(s)
- Ernest Kissi Kontor
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Daha Garba Muhammad
- Department of Physiotherapy, Bauchi State Ministry of Health, Bauchi, Nigeria
| | - Almonzer Al-Qiami
- Faculty of Medicine, Kassala University, P.O. Box 1115, Kassala, Sudan
| | - Amin Sharifan
- Department for Evidence-Based Medicine and Evaluation, Universität für Weiterbildung Krems, Dr. Karl Dorrekstrasse 30, Krems 3500, Austria
| | - Jessica Kumah
- Department of Occupational and Environmental Public Health, University of Toronto, Toronto, Canada
| | - Hester Lacey
- Faculty of Medicine, Brighton and Sussex Medical School, University of Sussex, 94 N-S Rd, Falmer, Brighton BN1 9PX, UK
| | | | - Nityanand Jain
- Statistics Unit, Riga Stradinš University, 16 Dzirciema Street, Riga LV-1007, Latvia
| |
Collapse
|
4
|
Asiri YI, Moni SS, Ramar M, Chidambaram K. Advancing Pain Understanding and Drug Discovery: Insights from Preclinical Models and Recent Research Findings. Pharmaceuticals (Basel) 2024; 17:1439. [PMID: 39598351 PMCID: PMC11597627 DOI: 10.3390/ph17111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Despite major advancements in our understanding of its fundamental causes, pain-both acute and chronic-remains a serious health concern. Various preclinical investigations utilizing diverse animal, cellular, and alternative models are required and frequently demanded by regulatory approval bodies to bridge the gap between the lab and the clinic. Investigating naturally occurring painful disorders can speed up medication development at the preclinical and clinical levels by illuminating molecular pathways. A wide range of animal models related to pain have been developed to elucidate pathophysiological mechanisms and aid in identifying novel targets for treatment. Pain sometimes drugs fail clinically, causing high translational costs due to poor selection and the use of preclinical tools and reporting. To improve the study of pain in a clinical context, researchers have been creating innovative models over the past few decades that better represent pathological pain conditions. In this paper, we provide a summary of traditional animal models, including rodents, cellular models, human volunteers, and alternative models, as well as the specific characteristics of pain diseases they model. However, a more rigorous approach to preclinical research and cutting-edge analgesic technologies may be necessary to successfully create novel analgesics. The research highlights from this review emphasize new opportunities to develop research that includes animals and non-animals using proven methods pertinent to comprehending and treating human suffering. This review highlights the value of using a variety of modern pain models in animals before human trials. These models can help us understand the different mechanisms behind various pain types. This will ultimately lead to the development of more effective pain medications.
Collapse
Affiliation(s)
- Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| |
Collapse
|
5
|
Røikjer J, Borbjerg MK, Andresen T, Giordano R, Hviid CVB, Mørch CD, Karlsson P, Klonoff DC, Arendt-Nielsen L, Ejskjaer N. Diabetic Peripheral Neuropathy: Emerging Treatments of Neuropathic Pain and Novel Diagnostic Methods. J Diabetes Sci Technol 2024:19322968241279553. [PMID: 39282925 PMCID: PMC11571639 DOI: 10.1177/19322968241279553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a prevalent and debilitating complication of diabetes, often leading to severe neuropathic pain. Although other diabetes-related complications have witnessed a surge of emerging treatments in recent years, DPN has seen minimal progression. This stagnation stems from various factors, including insensitive diagnostic methods and inadequate treatment options for neuropathic pain. METHODS In this comprehensive review, we highlight promising novel diagnostic techniques for assessing DPN, elucidating their development, strengths, and limitations, and assessing their potential as future reliable clinical biomarkers and endpoints. In addition, we delve into the most promising emerging pharmacological and mechanistic treatments for managing neuropathic pain, an area currently characterized by inadequate pain relief and a notable burden of side effects. RESULTS Skin biopsies, corneal confocal microscopy, transcutaneous electrical stimulation, blood-derived biomarkers, and multi-omics emerge as some of the most promising new techniques, while low-dose naltrexone, selective sodium-channel blockers, calcitonin gene-related peptide antibodies, and angiotensin type 2 receptor antagonists emerge as some of the most promising new drug candidates. CONCLUSION Our review concludes that although several promising diagnostic modalities and emerging treatments exist, an ongoing need persists for the further development of sensitive diagnostic tools and mechanism-based, personalized treatment approaches.
Collapse
Affiliation(s)
- Johan Røikjer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| | - Mette Krabsmark Borbjerg
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
| | - Trine Andresen
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Rocco Giordano
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Claus Vinter Bødker Hviid
- Department of Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Integrative Neuroscience, Aalborg University, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
| | - Pall Karlsson
- Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lars Arendt-Nielsen
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Center for Neuroplasticity and Pain, Aalborg University, Aalborg, Denmark
- Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Ejskjaer
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Aalborg, Denmark
- Department Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
6
|
Spagna A, Attal N. Pharmacotherapy and noninvasive neurostimulation for neuropathic pain. Presse Med 2024; 53:104233. [PMID: 38636787 DOI: 10.1016/j.lpm.2024.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
Neuropathic pain poses a significant challenge due to its complex mechanisms, necessitating specific treatments. In recent decades, significant progress has been made in the clinical research of neuropathic pain, marking a shift from empirical strategies to evidence-based medicine in its management. This review outlines both pharmacological and non-pharmacological interventions. Antidepressants (tricyclic and serotonin-noradrenaline reuptake inhibitors), antiepileptics (gabapentin, pregabalin), and topical agents constitute the main pharmacological treatments. These approaches target peripheral or central mechanisms associated with neuropathic pain. Noninvasive neurostimulation, including transcutaneous electrical nerve stimulation (TENS) and repetitive transcranial magnetic stimulation (rTMS), provides non-pharmacological alternatives. However, challenges persist in effectively targeting existing medications and developing drugs that act on novel targets, necessitating innovative therapeutic strategies.
Collapse
Affiliation(s)
- Annachiara Spagna
- CETD, Ambroise Pare Hospital, APHP, 92100 Boulogne-Billancourt, France
| | - Nadine Attal
- CETD, Ambroise Pare Hospital, APHP, 92100 Boulogne-Billancourt, France; Inserm U987, UVSQ-Paris-Saclay University, Ambroise Pare Hospital, APHP, 92100 Boulogne-Billancourt, France.
| |
Collapse
|
7
|
Bader M, Steckelings UM, Alenina N, Santos RA, Ferrario CM. Alternative Renin-Angiotensin System. Hypertension 2024; 81:964-976. [PMID: 38362781 PMCID: PMC11023806 DOI: 10.1161/hypertensionaha.123.21364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The renin-angiotensin system is the most important peptide hormone system in the regulation of cardiovascular homeostasis. Its classical arm consists of the enzymes, renin, and angiotensin-converting enzyme, generating angiotensin II from angiotensinogen, which activates its AT1 receptor, thereby increasing blood pressure, retaining salt and water, and inducing cardiovascular hypertrophy and fibrosis. However, angiotensin II can also activate a second receptor, the AT2 receptor. Moreover, the removal of the C-terminal phenylalanine from angiotensin II by ACE2 (angiotensin-converting enzyme 2) yields angiotensin-(1-7), and this peptide interacts with its receptor Mas. When the aminoterminal Asp of angiotensin-(1-7) is decarboxylated, alamandine is generated, which activates the Mas-related G-protein-coupled receptor D, MrgD (Mas-related G-protein-coupled receptor type D). Since Mas, MrgD, and the AT2 receptor have opposing effects to the classical AT1 receptor, they and the enzymes and peptides activating them are called the alternative or protective arm of the renin-angiotensin system. This review will cover the historical aspects and the current standing of this recent addition to the biology of the renin-angiotensin system.
Collapse
Affiliation(s)
- Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité - University Medicine, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - U. Muscha Steckelings
- Institute for Molecular Medicine, Dept. of Cardiovascular & Renal Research, University of Southern Denmark, Odense, Denmark
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Robson A.S. Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar) - Department of Physiology and Biophysics, Institute of Biological Sciences - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos M. Ferrario
- Laboratory of Translational Hypertension, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
8
|
Mallick-Searle T, Adler JA. Update on Treating Painful Diabetic Peripheral Neuropathy: A Review of Current US Guidelines with a Focus on the Most Recently Approved Management Options. J Pain Res 2024; 17:1005-1028. [PMID: 38505500 PMCID: PMC10949339 DOI: 10.2147/jpr.s442595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Painful diabetic peripheral neuropathy (DPN) is a highly prevalent and disabling complication of diabetes that is often misdiagnosed and undertreated. The management of painful DPN involves treating its underlying cause via lifestyle modifications and intensive glucose control, targeting its pathogenesis, and providing symptomatic pain relief, thereby improving patient function and health-related quality of life. Four pharmacologic options are currently approved by the US Food and Drug Administration (FDA) to treat painful DPN. These include three oral medications (duloxetine, pregabalin, and tapentadol extended release) and one topical agent (capsaicin 8% topical system). More recently, the FDA approved several spinal cord stimulation (SCS) devices to treat refractory painful DPN. Although not FDA-approved specifically to treat painful DPN, tricyclic antidepressants, serotonin/norepinephrine reuptake inhibitors, gabapentinoids, and sodium channel blockers are common first-line oral options in clinical practice. Other strategies may be used as part of individualized comprehensive pain management plans. This article provides an overview of the most recent US guidelines for managing painful DPN, with a focus on the two most recently approved treatment options (SCS and capsaicin 8% topical system), as well as evidence for using FDA-approved and guideline-supported drugs and devices. Also discussed are unmet needs for this patient population, and evidence for potential future treatments for painful DPN, including drugs with novel mechanisms of action, electrical stimulation devices, and nutraceuticals.
Collapse
|
9
|
Wannberg J, Gising J, Henriksson M, Vo DD, Sävmarker J, Sallander J, Gutiérrez-de-Terán H, Larsson J, Hamid S, Ablahad H, Spizzo I, Gaspari TA, Widdop RE, Grönbladh A, Petersen NN, Backlund M, Hallberg M, Larhed M. N-(Heteroaryl)thiophene sulfonamides as angiotensin AT2 receptor ligands. Eur J Med Chem 2024; 265:116122. [PMID: 38199164 DOI: 10.1016/j.ejmech.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Two series of N-(heteroaryl)thiophene sulfonamides, encompassing either a methylene imidazole group or a tert-butylimidazolylacetyl group in the meta position of the benzene ring, have been synthesized. An AT2R selective ligand with a Ki of 42 nM was identified in the first series and in the second series, six AT2R selective ligands with significantly improved binding affinities and Ki values of <5 nM were discovered. The binding modes to AT2R were explored by docking calculations combined with molecular dynamics simulations. Although some of the high affinity ligands exhibited fair stability in human liver microsomes, comparable to that observed with C21 undergoing clinical trials, most ligands displayed a very low metabolic stability with t½ of less than 10 min in human liver microsomes. The most promising ligand, with an AT2R Ki value of 4.9 nM and with intermediate stability in human hepatocytes (t½ = 77 min) caused a concentration-dependent vasorelaxation of pre-contracted mouse aorta.
Collapse
Affiliation(s)
- Johan Wannberg
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Johan Gising
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Martin Henriksson
- Drug Discovery and Development Platform, Science for Life Laboratory, Department of Organic Chemistry, Stockholm University, Solna, Sweden
| | - Duc Duy Vo
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Jonas Sävmarker
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Jessica Sallander
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, BMC, Box 596, Uppsala University, SE-751 24, Uppsala, Sweden
| | - Johanna Larsson
- Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 574, SE-751 23, Uppsala, Sweden
| | - Selin Hamid
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden; Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Hanin Ablahad
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden; Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Iresha Spizzo
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Tracey A Gaspari
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Robert E Widdop
- Department of Pharmacology and Biomedicine Discovery Institute, Monash University, Clayton, 3800, VIC, Australia
| | - Alfhild Grönbladh
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Nadia N Petersen
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Maria Backlund
- Department of Pharmacy, Uppsala University, Uppsala, Sweden and Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Science for Life Laboratory, Uppsala, Sweden
| | - Mathias Hallberg
- The Beijer Laboratory, Department of Pharmaceutical Biosciences, Neuropharmacology and Addiction Research, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden
| | - Mats Larhed
- The Beijer Laboratory, Department of Medicinal Chemistry, Science for Life Laboratory, BMC, Uppsala University, Box 591, 751 24, Uppsala, Sweden.
| |
Collapse
|
10
|
Iwane S, Nemoto W, Miyamoto T, Hayashi T, Tanaka M, Uchitani K, Muranaka T, Fujitani M, Koizumi Y, Hirata A, Tsubota M, Sekiguchi F, Tan-No K, Kawabata A. Clinical and preclinical evidence that angiotensin-converting enzyme inhibitors and angiotensin receptor blockers prevent diabetic peripheral neuropathy. Sci Rep 2024; 14:1039. [PMID: 38200077 PMCID: PMC10781693 DOI: 10.1038/s41598-024-51572-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024] Open
Abstract
Given possible involvement of the central and peripheral angiotensin system in pain processing, we conducted clinical and preclinical studies to test whether pharmacological inhibition of the angiotensin system would prevent diabetic peripheral neuropathy (DPN) accompanying type 2 diabetes mellitus (T2DM). In the preclinical study, the nociceptive sensitivity was determined in leptin-deficient ob/ob mice, a T2DM model. A clinical retrospective cohort study was conducted, using the medical records of T2DM patients receiving antihypertensives at three hospitals for nearly a decade. In the ob/ob mice, daily treatment with perindopril, an angiotensin-converting enzyme inhibitor (ACEI), or telmisartan, an angiotensin receptor blocker (ARB), but not amlodipine, an L-type calcium channel blocker (CaB), significantly inhibited DPN development without affecting the hyperglycemia. In the clinical study, the enrolled 7464 patients were divided into three groups receiving ACEIs, ARBs and the others (non-ACEI, non-ARB antihypertensives). Bonferroni's test indicated significantly later DPN development in the ARB and ACEI groups than the others group. The multivariate Cox proportional analysis detected significant negative association of the prescription of ACEIs or ARBs and β-blockers, but not CaBs or diuretics, with DPN development. Thus, our study suggests that pharmacological inhibition of the angiotensin system is beneficial to prevent DPN accompanying T2DM.
Collapse
Affiliation(s)
- Shiori Iwane
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Tomoyoshi Miyamoto
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
- School of Pharmacy, Hyogo Medical University, Kobe, 650-8530, Japan
| | - Tomonori Hayashi
- Department of Pharmacy, Kindai University Nara Hospital, Ikoma, 630-0293, Japan
| | - Masayuki Tanaka
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Kazuki Uchitani
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Tatsuya Muranaka
- Department of Pharmacy, Kansai Medical University Hospital, Hirakata, 573-1191, Japan
| | - Masanori Fujitani
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, 594-0076, Japan
| | - Yuichi Koizumi
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, 594-0076, Japan
| | - Atsushi Hirata
- Department of Pharmacy, Kindai University Nara Hospital, Ikoma, 630-0293, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
11
|
Park KD, Son JY, Kim HK, Kim YM, Ju JS, Jo MJ, Park MK, Lee MK, Ahn DK. Differential Regulation of Intracisternally Injected Angiotensin II-Induced Mechanical Allodynia and Thermal Hyperalgesia in Rats. Biomedicines 2023; 11:3279. [PMID: 38137500 PMCID: PMC10741042 DOI: 10.3390/biomedicines11123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The present study examined the underlying mechanisms of mechanical allodynia and thermal hyperalgesia induced by the intracisternal injection of angiotensin (Ang) II. Intracisternal Ang II injection decreased the air puff threshold and head withdrawal latency. To determine the operative receptors for each distinct type of pain behavior, we intracisternally injected Ang II receptor antagonists 2 h after Ang II injection. Losartan, an Ang II type 1 receptor (AT1R) antagonist, alleviated mechanical allodynia. Conversely, PD123319, an Ang II type 1 receptor (AT2R) antagonist, blocked only thermal hyperalgesia. Immunofluorescence analyses revealed the co-localization of AT1R with the astrocyte marker GFAP in the trigeminal subnucleus caudalis and co-localization of AT2R with CGRP-positive neurons in the trigeminal ganglion. Intracisternal pretreatment with minocycline, a microglial inhibitor, did not affect Ang II-induced mechanical allodynia, whereas L-α-aminoadipate, an astrocyte inhibitor, significantly inhibited Ang II-induced mechanical allodynia. Furthermore, subcutaneous pretreatment with botulinum toxin type A significantly alleviated Ang II-induced thermal hyperalgesia, but not Ang II-induced mechanical allodynia. These results indicate that central Ang II-induced nociception is differentially regulated by AT1R and AT2R. Thus, distinct therapeutic targets must be regulated to overcome pain symptoms caused by multiple underlying mechanisms.
Collapse
Affiliation(s)
- Ki-Don Park
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Jo-Young Son
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Hak-Kyun Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Yu-Mi Kim
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Jin-Sook Ju
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Min-Jeong Jo
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| | - Min-Kyoung Park
- Department of Dental Hygiene, Kyung-Woon University, Gumi 39160, Republic of Korea;
| | - Min-Kyung Lee
- Department of Dental Hygiene, Dong-Eui University, Busan 47340, Republic of Korea;
| | - Dong-Kuk Ahn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; (K.-D.P.); (J.-Y.S.); (H.-K.K.); (Y.-M.K.); (J.-S.J.); (M.-J.J.)
| |
Collapse
|
12
|
Uniyal A, Tiwari V, Tsukamoto T, Dong X, Guan Y, Raja SN. Targeting sensory neuron GPCRs for peripheral neuropathic pain. Trends Pharmacol Sci 2023; 44:1009-1027. [PMID: 37977131 PMCID: PMC10657387 DOI: 10.1016/j.tips.2023.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023]
Abstract
Despite the high prevalence of peripheral neuropathic pain (NP) conditions and significant progress in understanding its underlying mechanisms, the management of peripheral NP remains inadequate. Existing pharmacotherapies for NP act primarily on the central nervous system (CNS) and are often associated with CNS-related adverse effects, limiting their clinical effectiveness. Mounting preclinical evidence indicates that reducing the heightened activity in primary sensory neurons by targeting G-protein-coupled receptors (GPCRs), without activating these receptors in the CNS, relieves pain without central adverse effects. In this review, we focus on recent advancements in GPCR-mediated peripheral pain relief and discuss strategies to advance the development of more effective and safer therapies for peripheral NP by shifting from traditional CNS modulatory approaches toward selective targeting of GPCRs on primary sensory neurons.
Collapse
Affiliation(s)
- Ankit Uniyal
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U), Varanasi, India
| | - Takashi Tsukamoto
- Department of Neurology and Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinzhong Dong
- Department of Neuroscience, The Johns Hopkins University, Baltimore, MD, USA
| | - Yun Guan
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurological Surgery, The Johns Hopkins University, Baltimore, MD, USA
| | - Srinivasa N Raja
- Division of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University, Baltimore, MD, USA; Department of Neurology and Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Shepherd AJ, Rice AS, Smith MT. Angiotensin II type 2 receptor signalling as a pain target: Bench, bedside and back-translation. Curr Opin Pharmacol 2023; 73:102415. [PMID: 38041933 PMCID: PMC11789660 DOI: 10.1016/j.coph.2023.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 12/04/2023]
Abstract
Translating promising preclinical pain relief data for novel molecules from drug discovery to positive clinical trial outcomes is challenging. The angiotensin II type 2 (AT2) receptor is a clinically-validated target based upon positive proof-of-concept clinical trial data in patients with post-herpetic neuralgia. This trial was conducted because AT2 receptor antagonists evoked pain relief in rodent models of neuropathic pain. EMA401 was selected as the drug candidate based upon its suitable preclinical toxicity and safety profile and good pharmacokinetics. Herein, we provide an overview of the discovery, preclinical and clinical development of EMA401, for the alleviation of peripheral neuropathic pain.
Collapse
Affiliation(s)
- Andrew J Shepherd
- The MD Anderson Pain Research Consortium and the Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Sc Rice
- Pain Research, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Maree T Smith
- School of Biomedical Sciences, The University of Queensland, St Lucia Campus, Brisbane, Queensland, Australia.
| |
Collapse
|
14
|
Peluso AA, Souza-Silva IM, Villela DC, Hansen PBL, Hallberg A, Bader M, Santos R, Sumners C, Steckelings UM. Functional assay for assessment of agonistic or antagonistic activity of angiotensin AT 2 receptor ligands reveals that EMA401 and PD123319 have agonistic properties. Biochem Pharmacol 2023; 216:115793. [PMID: 37689272 DOI: 10.1016/j.bcp.2023.115793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
With the discovery of the protective arm of the renin-angiotensin system (RAS), interest has grown in protective RAS-related receptors such as the angiotensin AT2-receptor [AT2R] as potential new drug targets. While it is known that AT2R couple to Gi, it is also apparent that they do not signal via inhibition of adenylyl cyclase/decrease in cAMP, as do many Gi-coupled receptors. Thus, standard commercially-available assays cannot be applied to test for agonistic or antagonistic properties of AT2R ligands. This lack of standard assays has hampered the development of new drugs targeting the AT2R. Therefore, we aimed at developing a reliable, technically easy assay for the determination of intrinsic activity of AT2R ligands, primarily for distinguishing between AT2R agonists and antagonists. We found that measurement of NO release by DAF-FM fluorescence in primary human aortic endothelial cells (HAEC) or in AT2R-transfected CHO cells is a reliable assay for the characterization of AT2R ligands. While testing the assay, we made several novel findings, including: a) C21 is a full agonist at the AT2R (with the same efficacy as angiotensin II); b) C21 has no intrinsic activity at the receptor Mas; c) AT2R-transfected HEK-293 cells are unresponsive to AT2R stimulation; d) EMA401 and PD123319, which are commonly regarded as AT2R antagonists, are partial agonists at the AT2R. Collectively, we have developed and tested an assay based on the measurement and quantification of NO release in HAEC or in AT2R-CHO cells that is suitable for the characterisation of novel and established AT2R ligands.
Collapse
Affiliation(s)
- A Augusto Peluso
- IMM - Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Igor M Souza-Silva
- IMM - Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Daniel C Villela
- Faculty of Medicine, University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, Brazil
| | - Pernille B L Hansen
- IMM - Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Anders Hallberg
- Department of Medicinal Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin, Germany; Charité-Universitätsmedizin Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Institute for Biology, University of Lübeck, Germany
| | - Robson Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Colin Sumners
- Department of Physiology and Aging, University of Florida, Gainesville, USA
| | - U Muscha Steckelings
- IMM - Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
15
|
Huerta MÁ, Garcia MM, García-Parra B, Serrano-Afonso A, Paniagua N. Investigational Drugs for the Treatment of Postherpetic Neuralgia: Systematic Review of Randomized Controlled Trials. Int J Mol Sci 2023; 24:12987. [PMID: 37629168 PMCID: PMC10455720 DOI: 10.3390/ijms241612987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The pharmacological treatment of postherpetic neuralgia (PHN) is unsatisfactory, and there is a clinical need for new approaches. Several drugs under advanced clinical development are addressed in this review. A systematic literature search was conducted in three electronic databases (Medline, Web of Science, Scopus) and in the ClinicalTrials.gov register from 1 January 2016 to 1 June 2023 to identify Phase II, III and IV clinical trials evaluating drugs for the treatment of PHN. A total of 18 clinical trials were selected evaluating 15 molecules with pharmacological actions on nine different molecular targets: Angiotensin Type 2 Receptor (AT2R) antagonism (olodanrigan), Voltage-Gated Calcium Channel (VGCC) α2δ subunit inhibition (crisugabalin, mirogabalin and pregabalin), Voltage-Gated Sodium Channel (VGSC) blockade (funapide and lidocaine), Cyclooxygenase-1 (COX-1) inhibition (TRK-700), Adaptor-Associated Kinase 1 (AAK1) inhibition (LX9211), Lanthionine Synthetase C-Like Protein (LANCL) activation (LAT8881), N-Methyl-D-Aspartate (NMDA) receptor antagonism (esketamine), mu opioid receptor agonism (tramadol, oxycodone and hydromorphone) and Nerve Growth Factor (NGF) inhibition (fulranumab). In brief, there are several drugs in advanced clinical development for treating PHN with some of them reporting promising results. AT2R antagonism, AAK1 inhibition, LANCL activation and NGF inhibition are considered first-in-class analgesics. Hopefully, these trials will result in a better clinical management of PHN.
Collapse
Affiliation(s)
- Miguel Á. Huerta
- Department of Pharmacology, University of Granada, 18016 Granada, Spain;
- Biosanitary Research Institute ibs.GRANADA, 18012 Granada, Spain
| | - Miguel M. Garcia
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain;
- High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), 28922 Alcorcón, Spain
| | - Beliu García-Parra
- Clinical Neurophysiology Section—Neurology Service, Hospital Universitari de Bellvitge, Universitat de Barcelona-Health Campus, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
| | - Ancor Serrano-Afonso
- Department of Anesthesia, Reanimation and Pain Clinic, Hospital Universitari de Bellvitge, Universitat de Barcelona-Health Campus, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain;
| | - Nancy Paniagua
- Area of Pharmacology, Nutrition and Bromatology, Department of Basic Health Sciences, Unidad Asociada I+D+i Instituto de Química Médica (IQM) CSIC-URJC, Universidad Rey Juan Carlos, 28922 Alcorcón, Spain;
- High Performance Experimental Pharmacology Research Group, Universidad Rey Juan Carlos (PHARMAKOM), 28922 Alcorcón, Spain
| |
Collapse
|
16
|
Abstract
Distal symmetric diabetic peripheral polyneuropathy (DPN) is the most common form of neuropathy in the world, affecting 30 to 50% of diabetic individuals and resulting in significant morbidity and socioeconomic costs. This review summarizes updates in the diagnosis and management of DPN. Recently updated clinical criteria facilitate bedside diagnosis, and a number of new technologies are being explored for diagnostic confirmation in specific settings and for use as surrogate measures in clinical trials. Evolving literature indicates that distinct but overlapping mechanisms underlie neuropathy in type 1 versus type 2 diabetes, and there is a growing focus on the role of metabolic factors in the development and progression of DPN. Exercise-based lifestyle interventions have shown therapeutic promise. A variety of potential disease-modifying and symptomatic therapies are in development. Innovations in clinical trial design include the incorporation of detailed pain phenotyping and biomarkers for central sensitization.
Collapse
Affiliation(s)
- Qihua Fan
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - A Gordon Smith
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
17
|
Fan Q, Gordon Smith A. Recent updates in the treatment of diabetic polyneuropathy. Fac Rev 2022. [PMID: 36311537 DOI: 10.1270/r/11-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Distal symmetric diabetic peripheral polyneuropathy (DPN) is the most common form of neuropathy in the world, affecting 30 to 50% of diabetic individuals and resulting in significant morbidity and socioeconomic costs. This review summarizes updates in the diagnosis and management of DPN. Recently updated clinical criteria facilitate bedside diagnosis, and a number of new technologies are being explored for diagnostic confirmation in specific settings and for use as surrogate measures in clinical trials. Evolving literature indicates that distinct but overlapping mechanisms underlie neuropathy in type 1 versus type 2 diabetes, and there is a growing focus on the role of metabolic factors in the development and progression of DPN. Exercise-based lifestyle interventions have shown therapeutic promise. A variety of potential disease-modifying and symptomatic therapies are in development. Innovations in clinical trial design include the incorporation of detailed pain phenotyping and biomarkers for central sensitization.
Collapse
Affiliation(s)
- Qihua Fan
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - A Gordon Smith
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
18
|
Király K, Karádi DÁ, Zádor F, Mohammadzadeh A, Galambos AR, Balogh M, Riba P, Tábi T, Zádori ZS, Szökő É, Fürst S, Al-Khrasani M. Shedding Light on the Pharmacological Interactions between μ-Opioid Analgesics and Angiotensin Receptor Modulators: A New Option for Treating Chronic Pain. Molecules 2021; 26:6168. [PMID: 34684749 PMCID: PMC8537077 DOI: 10.3390/molecules26206168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
The current protocols for neuropathic pain management include µ-opioid receptor (MOR) analgesics alongside other drugs; however, there is debate on the effectiveness of opioids. Nevertheless, dose escalation is required to maintain their analgesia, which, in turn, contributes to a further increase in opioid side effects. Finding novel approaches to effectively control chronic pain, particularly neuropathic pain, is a great challenge clinically. Literature data related to pain transmission reveal that angiotensin and its receptors (the AT1R, AT2R, and MAS receptors) could affect the nociception both in the periphery and CNS. The MOR and angiotensin receptors or drugs interacting with these receptors have been independently investigated in relation to analgesia. However, the interaction between the MOR and angiotensin receptors has not been excessively studied in chronic pain, particularly neuropathy. This review aims to shed light on existing literature information in relation to the analgesic action of AT1R and AT2R or MASR ligands in neuropathic pain conditions. Finally, based on literature data, we can hypothesize that combining MOR agonists with AT1R or AT2R antagonists might improve analgesia.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Chronic Pain/drug therapy
- Humans
- Neuralgia/drug therapy
- Nociception/drug effects
- Pain Management/methods
- Proto-Oncogene Mas
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| |
Collapse
|
19
|
Moisset X, Bouhassira D, Attal N. French guidelines for neuropathic pain: An update and commentary. Rev Neurol (Paris) 2021; 177:834-837. [PMID: 34332778 DOI: 10.1016/j.neurol.2021.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/08/2021] [Indexed: 12/01/2022]
Abstract
Neuropathic pain remains a significant unmet need. French recommendations were updated in 2020. The goal of this minireview is to provide an update on these published guidelines. Despite newer relevant studies, our proposed algorithm remains relevant. First-line treatments include serotonin-noradrenaline reuptake inhibitors (duloxetine and venlafaxine), gabapentin and tricyclic antidepressants, topical lidocaine and transcutaneous electrical nerve stimulation being specifically proposed for focal peripheral neuropathic pain. Second-line treatments include pregabalin (such position being confirmed by newer studies), tramadol, combinations and psychotherapy as add on, high-concentration capsaicin patches and botulinum toxin A being proposed specifically for focal peripheral neuropathic pain. Third-line treatments include high-frequency repetitive transcranial magnetic stimulation of the motor cortex, spinal cord stimulation and strong opioids (in the lack of alternative). Disseminating these recommendations and ensuring that they are well accepted by French practitioners will be necessary to optimize neuropathic pain management in real life.
Collapse
Affiliation(s)
- X Moisset
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, 63000 Clermont-Ferrand, France.
| | - D Bouhassira
- Inserm U987, AP-HP, CHU Ambroise Paré hospital, UVSQ, Paris-Saclay University, 92100 Boulogne-Billancourt, France
| | - N Attal
- Inserm U987, AP-HP, CHU Ambroise Paré hospital, UVSQ, Paris-Saclay University, 92100 Boulogne-Billancourt, France
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Neuropathic pain remains difficult to treat. This review provides an update regarding recent advances in therapeutic management, particularly with regards to newer drugs, neurostimulation techniques and original study designs. RECENT FINDINGS Although the mainstay of neuropathic pain management is still represented by drug therapy, particularly antidepressants and antiepileptics, the place of nonpharmacological therapy including in particular brain neuromodulation techniques has substantially increased in recent years. Newer study designs are also increasingly implemented, based on in depth phenotypic profiling to achieve more individualized therapy, or on screening strategies to decrease placebo effect and contribute to increase assay sensitivity. These approaches are now considered the most promising to decrease therapeutic failures in neuropathic pain. SUMMARY Neuropathic pain management should not be restricted to pharmacotherapy but now encompasses multiple approaches including particularly neuromodulation techniques. Multimodal assessment can also help identify predictors of the response in clinical trials in order to ensure appropriate management.
Collapse
|
21
|
Guo Y, Huang X, Liao W, Meng L, Xu D, Ye C, Chen L, Hu T. Discovery and Optimization of Highly Potent and Selective AT 2R Antagonists to Relieve Peripheral Neuropathic Pain. ACS OMEGA 2021; 6:15412-15420. [PMID: 34151119 PMCID: PMC8210434 DOI: 10.1021/acsomega.1c01866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/10/2021] [Indexed: 05/08/2023]
Abstract
The angiotensin II type 2 receptor (AT2R) has attracted much attention as a potential target for the relief of neuropathic pain, which represents an area of unmet clinical need. A series of 1,2,3,4-tetrahydroisoquinolines with a benzoxazole side-chain were discovered as potent AT2R antagonists. Rational optimization resulted in compound 15, which demonstrated both excellent antagonistic activity against AT2R in vitro and analgesic efficacy in a rat chronic constriction injury model. Its favorable physicochemical properties and oral bioavailability make it a promising therapeutic candidate for neuropathic pain.
Collapse
Affiliation(s)
- Yanghui Guo
- Shanghai
Institute of Drug Discovery, Zhejiang Hisun
Pharmaceutical Co., Ltd., Building 25, 301 Minqiang Road, Shanghai 201612, China
| | - Xiangui Huang
- Shanghai
Institute of Drug Discovery, Zhejiang Hisun
Pharmaceutical Co., Ltd., Building 25, 301 Minqiang Road, Shanghai 201612, China
| | - Weiwei Liao
- Shanghai
Institute of Drug Discovery, Zhejiang Hisun
Pharmaceutical Co., Ltd., Building 25, 301 Minqiang Road, Shanghai 201612, China
| | - Lichen Meng
- Shanghai
Institute of Drug Discovery, Zhejiang Hisun
Pharmaceutical Co., Ltd., Building 25, 301 Minqiang Road, Shanghai 201612, China
| | - Daiwang Xu
- Shanghai
Institute of Drug Discovery, Zhejiang Hisun
Pharmaceutical Co., Ltd., Building 25, 301 Minqiang Road, Shanghai 201612, China
| | - Cheng Ye
- Shanghai
Institute of Drug Discovery, Zhejiang Hisun
Pharmaceutical Co., Ltd., Building 25, 301 Minqiang Road, Shanghai 201612, China
| | - Lei Chen
- Shanghai
Institute of Drug Discovery, Zhejiang Hisun
Pharmaceutical Co., Ltd., Building 25, 301 Minqiang Road, Shanghai 201612, China
- Zhejiang
Hisun Pharmaceutical Co., Ltd., 46 Waisha Road, Taizhou, Zhejiang 318000, China
| | - Taishan Hu
- Shanghai
Institute of Drug Discovery, Zhejiang Hisun
Pharmaceutical Co., Ltd., Building 25, 301 Minqiang Road, Shanghai 201612, China
| |
Collapse
|
22
|
Obeng S, Hiranita T, León F, McMahon LR, McCurdy CR. Novel Approaches, Drug Candidates, and Targets in Pain Drug Discovery. J Med Chem 2021; 64:6523-6548. [PMID: 33956427 DOI: 10.1021/acs.jmedchem.1c00028] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.8 have been targeted to develop novel analgesics. Several enzymes, such as soluble epoxide hydrolase, sepiapterin reductase, and MAGL/FAAH, have also been targeted to develop novel analgesics. In this review, old and recent targets involved in pain signaling and compounds acting at these targets are summarized. In addition, strategies employed to reduce side effects, increase potency, and efficacy of opioids are also elaborated. This review should aid in propelling drug discovery efforts to discover novel analgesics.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Takato Hiranita
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia 29208, United States
| | - Lance R McMahon
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|