1
|
Emmert ME, Emmert AS, Goh Q, Cornwall R. Sexual dimorphisms in skeletal muscle: current concepts and research horizons. J Appl Physiol (1985) 2024; 137:274-299. [PMID: 38779763 PMCID: PMC11343095 DOI: 10.1152/japplphysiol.00529.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
The complex compositional and functional nature of skeletal muscle makes this organ an essential topic of study for biomedical researchers and clinicians. An additional layer of complexity is added with the consideration of sex as a biological variable. Recent research advances have revealed sexual dimorphisms in developmental biology, muscle homeostasis, adaptive responses, and disorders relating to skeletal muscle. Many of the observed sex differences have hormonal and molecular mechanistic underpinnings, whereas others have yet to be elucidated. Future research is needed to investigate the mechanisms dictating sex-based differences in the various aspects of skeletal muscle. As such, it is necessary that skeletal muscle biologists ensure that both female and male subjects are represented in biomedical and clinical studies to facilitate the successful testing and development of therapeutics for all patients.
Collapse
Affiliation(s)
- Marianne E Emmert
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Andrew S Emmert
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Qingnian Goh
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Roger Cornwall
- Division of Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Orthopaedic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
2
|
Carroll CC, Campbell NW, Lewis RL, Preston SE, Garrett CM, Winstone HM, Barker AC, Vanos JM, Stouder LS, Reyes C, Fortino MA, Goergen CJ, Hass ZJ, Campbell WW. Greater Protein Intake Emphasizing Lean Beef Does Not Affect Resistance Training-Induced Adaptations in Skeletal Muscle and Tendon of Older Women: A Randomized Controlled Feeding Trial. J Nutr 2024; 154:1803-1814. [PMID: 38604504 DOI: 10.1016/j.tjnut.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Although experimental research supports that resistance training (RT), especially with greater dietary protein intake, improves muscle mass and strength in older adults, comparable research on tendons is needed. OBJECTIVES We assessed the effects of a protein-rich diet emphasizing lean beef, compared with 2 control diets, on RT-induced changes in skeletal muscle and tendon size and strength in older women. METHODS We randomly assigned women [age: 66 ± 1 y, body mass index (BMI): 28 ± 1] to groups that consumed 1) 0.8 g total protein/kg body weight/day from mixed food sources (normal protein control, n = 16); 2) 1.4 g/kg/d protein from mixed food sources (high protein control, n = 17); or 3) 1.4 g/kg/d protein emphasizing unprocessed lean beef (high protein experimental group, n = 16). Participants were provided with all foods and performed RT 3 times/wk, 70% of 1-repetition maximum for 12 wk. We measured quadriceps muscle volume via magnetic resonance imaging (MRI). We estimated patellar tendon biomechanical properties and cross-sectional area (CSA) using ultrasound and MRI. RESULTS Dietary intake did not influence RT-induced increases in quadriceps strength (P < 0.0001) or muscle volume (P < 0.05). We noted a trend for an RT effect on mean tendon CSA (P = 0.07), with no differences among diets (P > 0.05). Proximal tendon CSA increased with RT (P < 0.05) with no difference between dietary groups (P > 0.05). Among all participants, midtendon CSA increased with RT (P ≤ 0.05). We found a decrease in distal CSA in the 0.8 g group (P < 0.05) but no change in the 1.4 g group (P > 0.05). Patellar tendon MRI signal or biomechanical properties were unchanged. CONCLUSIONS Our findings indicated that greater daily protein intake, emphasizing beef, did not influence RT-induced changes in quadriceps muscle strength or muscle volume of older women. Although we noted trends in tendon CSA, we did not find a statistically significant impact of greater daily protein intake from beef on tendon outcomes. This trial was registered at clinicaltrials.gov as NCT04347447.
Collapse
Affiliation(s)
- Chad C Carroll
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States.
| | - Nathan Wc Campbell
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Rebecca L Lewis
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Sarah E Preston
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Chloe M Garrett
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Hannah M Winstone
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Anna C Barker
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Johnny M Vanos
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Lucas S Stouder
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Camila Reyes
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Matthew A Fortino
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Craig J Goergen
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Zachary J Hass
- School of Nursing, Purdue University, West Lafayette, IN, United States; School of Industrial Engineering, Purdue University, West Lafayette, IN, United States; Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN, United States
| | - Wayne W Campbell
- Department of Nutrition Science, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Liu R, Gao XY, Wang L. Network meta-analysis of the intervention effects of different exercise measures on Sarcopenia in cancer patients. BMC Public Health 2024; 24:1281. [PMID: 38730397 PMCID: PMC11083843 DOI: 10.1186/s12889-024-18493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/31/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE This study aims to investigate the impact of four exercise modes (aerobic exercise, resistance exercise, aerobic combined with resistance multimodal exercise, and stretching) on the physical performance of cancer patients. METHODS Randomized controlled trials (RCTs) were exclusively collected from PubMed, EMBASE, Web of Science, and The Cochrane Library, with a search deadline of April 30, 2023. Different exercise interventions on the physical performance of cancer patients were studied, and the Cochrane risk of bias assessment tool was employed to evaluate the quality of the included literature. Data analysis was conducted using STATA 15.1 software. RESULTS This study included ten randomized controlled trials with a combined sample size of 503 participants. Network meta-analysis results revealed that aerobic combined with resistance multimodal exercise could reduce fat mass in cancer patients (SUCRA: 92.3%). Resistance exercise could improve lean mass in cancer patients (SUCRA: 95.7%). Furthermore, resistance exercise could enhance leg extension functionality in cancer patients with sarcopenia (SUCRA: 83.0%). CONCLUSION This study suggests that resistance exercise may be more beneficial for cancer-related sarcopenia.In clinical practice, exercise interventions should be tailored to the individual patients' circumstances. REGISTRATION NUMBER This review was registered on INPLASY2023110025; DOI number is https://doi.org/10.37766/inplasy2023.11.0025 .
Collapse
Affiliation(s)
- Rui Liu
- Department of Special Medical Care, Cancer Hospital, Chinese Academy of Medical Sciences, Chaoyang district, 100021, Beijing, China
| | - X Y Gao
- Department of Special Medical Care, Cancer Hospital, Chinese Academy of Medical Sciences, Chaoyang district, 100021, Beijing, China
| | - Li Wang
- Department of Special Medical Care, Cancer Hospital, Chinese Academy of Medical Sciences, Chaoyang district, 100021, Beijing, China.
| |
Collapse
|
4
|
George A, Holderread BM, Lambert BS, Harris JD, McCulloch PC. Post-operative protein supplementation following orthopaedic surgery: A systematic review. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:16-24. [PMID: 38463662 PMCID: PMC10918348 DOI: 10.1016/j.smhs.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 03/12/2024] Open
Abstract
Decreased mechanical loading after orthopaedic surgery predisposes patients to develop muscle atrophy. The purpose of this review was to assess whether the evidence supports oral protein supplementation can help decrease postoperative muscle atrophy and/or improve patient outcomes following orthopaedic surgery. A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). PubMed (MEDLINE), Embase, Scopus, and Web of Science were searched for randomized controlled trials that assessed protein or amino acid supplementation in patients undergoing orthopaedic surgery. Two investigators independently conducted the search using relevant Boolean operations. Primary outcomes included functional or physiologic measures of muscle atrophy or strength. Fourteen studies including 611 patients (224 males, 387 females) were analyzed. Three studies evaluated protein supplementation after ACL reconstruction (ACLR), 3 after total hip arthroplasty (THA), 5 after total knee arthroplasty (TKA), and 3 after surgical treatment of hip fracture. Protein supplementation showed beneficial effects across all types of surgery. The primary benefit was a decrease in muscle atrophy compared to placebo as measured by muscle cross sectional area. Multiple authors also demonstrated improved functional measures and quicker achievement of rehabilitation benchmarks. Protein supplementation has beneficial effects on mitigating muscle atrophy in the postoperative period following ACLR, THA, TKA, and surgical treatment of hip fracture. These effects often correlate with improved functional measures and quicker achievement of rehabilitation benchmarks. Further research is needed to evaluate long-term effects of protein supplementation and to establish standardized population-specific regimens that maximize treatment efficacy in the postoperative period.
Collapse
Affiliation(s)
- Andrew George
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
| | - Brendan M. Holderread
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
| | - Bradley S. Lambert
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
- Houston Methodist Orthopedic Biomechanics Research Laboratory, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Joshua D. Harris
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
| | - Patrick C. McCulloch
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
- Houston Methodist Orthopedic Biomechanics Research Laboratory, 6670 Bertner Ave, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Whaikid P, Piaseu N. The effectiveness of protein supplementation combined with resistance exercise programs among community-dwelling older adults with sarcopenia: a systematic review and meta-analysis. Epidemiol Health 2024; 46:e2024030. [PMID: 38374703 PMCID: PMC11369567 DOI: 10.4178/epih.e2024030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024] Open
Abstract
OBJECTIVES The combination of protein supplementation and resistance exercise shows promise for improving and maintaining muscle mass, strength, and performance in older adults with sarcopenia. This systematic review aimed to evaluate the effects of this combination on muscle mass, muscle strength, and physical performance in community-dwelling older adults with sarcopenia. METHODS We conducted a comprehensive search of 4 electronic databases: PubMed, Scopus, Embase, and the MEDLINE Library. The search covered literature from January 2013 to January 2023 and followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Two independent reviewers assessed the methodological quality of each study using the standard critical appraisal tool from the Joanna Briggs Institute (JBI). Meta-analysis was performed with the JBI Sumari program. RESULTS The review included 7 randomized controlled trials and 1 quasi-experimental study, encompassing a total of 854 participants aged 60 years and above. The study durations ranged from 10 weeks to 24 weeks. An analysis of standardized mean differences (SMDs) showed that protein supplementation combined with resistance exercise significantly increased muscle mass (SMD, 0.95; 95% confidence interval [CI], 0.13 to 1.78; p<0.05) and muscle strength (SMD, 0.32; 95% CI, 0.08 to 0.56; p<0.05). CONCLUSIONS Although the limited number of randomized controlled trials restricts the robustness of our conclusions, the evidence suggests that protein supplementation combined with resistance exercise is effective in enhancing muscle mass and strength in community-dwelling older adults with sarcopenia.
Collapse
Affiliation(s)
- Phatcharaphon Whaikid
- Ramathibodi School of Nursing, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Noppawan Piaseu
- Ramathibodi School of Nursing, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
小山 真, 山田 実. [Strength training for older adults]. Nihon Ronen Igakkai Zasshi 2024; 61:271-278. [PMID: 39261094 DOI: 10.3143/geriatrics.61.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
|
7
|
Wilkinson K, Koscien CP, Monteyne AJ, Wall BT, Stephens FB. Association of postprandial postexercise muscle protein synthesis rates with dietary leucine: A systematic review. Physiol Rep 2023; 11:e15775. [PMID: 37537134 PMCID: PMC10400406 DOI: 10.14814/phy2.15775] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Dietary protein ingestion augments post (resistance) exercise muscle protein synthesis (MPS) rates. It is thought that the dose of leucine ingested within the protein (leucine threshold hypothesis) and the subsequent plasma leucine variables (leucine trigger hypothesis; peak magnitude, rate of rise, and total availability) determine the magnitude of the postprandial postexercise MPS response. METHODS A quantitative systematic review was performed extracting data from studies that recruited healthy adults, applied a bout of resistance exercise, ingested a bolus of protein within an hour of exercise, and measured plasma leucine concentrations and MPS rates (delta change from basal). RESULTS Ingested leucine dose was associated with the magnitude of the MPS response in older, but not younger, adults over acute (0-2 h, r2 = 0.64, p = 0.02) and the entire postprandial (>2 h, r2 = 0.18, p = 0.01) period. However, no single plasma leucine variable possessed substantial predictive capacity over the magnitude of MPS rates in younger or older adults. CONCLUSION Our data provide support that leucine dose provides predictive capacity over postprandial postexercise MPS responses in older adults. However, no threshold in older adults and no plasma leucine variable was correlated with the magnitude of the postexercise anabolic response.
Collapse
Affiliation(s)
- Kiera Wilkinson
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Christopher P. Koscien
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Alistair J. Monteyne
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Benjamin T. Wall
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| | - Francis B. Stephens
- Nutritional Physiology Research Group, Public Health and Sport Sciences, Faculty of Health and Life SciencesUniversity of ExeterExeterUK
| |
Collapse
|
8
|
Uemichi K, Shirai T, Matsuno R, Iwata T, Tanimura R, Takemasa T. The role of the mechanistic target of rapamycin complex 1 in the regulation of mitochondrial adaptation during skeletal muscle atrophy under denervation or calorie restriction in mice. Appl Physiol Nutr Metab 2023; 48:241-255. [PMID: 36786420 DOI: 10.1139/apnm-2022-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) is a protein complex that regulates skeletal muscle protein synthesis and hypertrophy. mTORC1-mediated signaling activities are activated during denervation-induced skeletal muscle atrophy and suppressed during calorie restriction-induced atrophy. Mitochondria control the qualitative plasticity of skeletal muscles primarily through biogenesis, fusion, and fission. We recently showed that mTORC1 activation contributes toward mitochondrial homeostasis. In this study, we examined the role of mTORC1 in mitochondrial adaptation during denervation- or calorie restriction-induced skeletal muscle atrophy. Seven-week-old Institute of Cancer Research mice were subjected to 14 days of denervation or calorie restriction combined with the administration of the mTORC1 inhibitor-"rapamycin". Our results showed that although mTORC1 inhibition did not alter mitochondrial biogenesis, content and enzyme activity, it suppressed the activation of dynamin-related protein 1 (DRP1), a mitochondrial fission-related protein in denervated muscle, and reduced DRP1 expression in calorie-restricted muscle. Furthermore, calorie restriction-induced mitochondrial fragmentation was partially suppressed by mTORC1 inhibition. Taken together, our results indicate that mTORC1 activation upon denervation and inhibition upon calorie restriction contributes to qualitative changes in muscle plasticity by at least partially regulating the mitochondrial fission response.
Collapse
Affiliation(s)
- Kazuki Uemichi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takanaga Shirai
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan.,Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryunosuke Matsuno
- School of Physical Education, Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan.,Terumo Corporation, Tokyo, Japan
| | - Tomohiro Iwata
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Riku Tanimura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tohru Takemasa
- Faculty of Health and Sports Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Molfenter SM. The relationship between sarcopenia, dysphagia, malnutrition, and frailty: making the case for proactive swallowing exercises to promote healthy aging. Curr Opin Otolaryngol Head Neck Surg 2022; 30:400-405. [PMID: 36004774 DOI: 10.1097/moo.0000000000000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize current evidence regarding the relationship between sarcopenia of the swallowing muscles, dysphagia, malnutrition, and frailty in the context of aging. Further, this review will provide preliminary support for proactive swallowing exercises to reverse and/or prevent sarcopenia of the swallowing muscles. RECENT FINDINGS Recent studies lend support to a cyclic relationship between sarcopenia of the swallowing muscles, dysphagia, malnutrition, and frailty. Unfortunately, all studies are limited by their study design and lack instrumental imaging of swallowing function. Research (in the limbs) supports the use of proactive exercises and protein supplementation to reverse sarcopenia, especially in prefrail individuals. This provides a foundation to design and test similar preventive exercises for the swallowing muscles. SUMMARY As the population is rapidly aging, it is vital to understand how the natural loss of muscle in aging impacts swallowing function and the downstream impact on nutritional and physical function. Prospective, longitudinal research with sophisticated outcome measures are required to fully understand this cycle and provide an opportunity to test methods for interrupting the cycle.
Collapse
Affiliation(s)
- Sonja M Molfenter
- Communicative Sciences and Disorders, NYU Steinhardt, Rusk Rehabilitation, NYU Langone Health, New York, USA
| |
Collapse
|
10
|
Mey GM, Mey JT. Emerging Nutrition Approaches to Support the Mind and Muscle for Healthy Aging. RECENT PROGRESS IN NUTRITION 2022; 2:10.21926/rpn.2204022. [PMID: 36686500 PMCID: PMC9850802 DOI: 10.21926/rpn.2204022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This narrative review highlights recent advances and ongoing trials using nutrition approaches for healthy aging. Focus will be placed on nutrition therapies that target cognition ("the mind") and mobility ("the muscle"), both critical components to maintaining a high quality of life for older adults. For "the mind," two seemingly incongruent therapies are being investigated to improve cognition-the MIND diet (high in carbohydrates and anti-oxidant fruits and vegetables) and the ketogenic diet (low in carbohydrates, high in fats). For "the muscle," a focus on protein and energy intake has dominated the literature, yet a recent clinical trial supports the use of whole-grains as a tool to improve whole-body protein turnover-a primary regulator of lean body mass and muscle. Finally, emerging data and clinical trials on caloric restriction have solidified this strategy as the only nutritional approach to slow intrinsic factors of whole-body aging, which may positively impact both "the mind" and "the muscle."
Collapse
Affiliation(s)
- Gabrielle M Mey
- Lerner Research Institute, Department of Neurosciences, Cleveland Clinic, Cleveland, OH, 44195 USA
| | - Jacob T Mey
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808 USA
| |
Collapse
|
11
|
Yeung SSY, Woo J. Association of Plant Protein Intake with Change in Physical Performance in Chinese Community-Dwelling Older Adults. Nutrients 2022; 14:4534. [PMID: 36364795 PMCID: PMC9658403 DOI: 10.3390/nu14214534] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2023] Open
Abstract
(1) Background: Dietary protein intake might be beneficial in optimizing physical performance, yet whether this is dependent on protein source and sex is unclear. We examined the association between dietary protein intake and change in physical performance among Chinese community-dwelling older adults. (2) Methods: This prospective study included older Chinese adults (≥65 years) in Hong Kong. Total, plant and animal protein intakes at baseline were assessed using a food frequency questionnaire. Physical performance at baseline and 4-year follow-up were assessed by the time to complete a 6-m walking test. Adjusted linear regression examined the association between total, plant and animal protein intakes (g/kg of body weight (BW)) and 4-year change in physical performance. (3) Results: 3133 participants (49.8% males) aged 71.8 ± 4.9 years were included. In males, total, plant and animal protein intakes were not associated with a change in physical performance. In females, higher plant protein intake was associated with less decline in physical performance (β 0.723, SE 0.288, p = 0.012). No associations were observed for total animal protein intakes. (4) Conclusion: In Chinese community-dwelling older adults, total and animal protein intakes were not associated with a 4-year change in physical performance. Higher plant protein intake was associated with less decline in physical performance in females.
Collapse
Affiliation(s)
- Suey S. Y. Yeung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Jockey Club Institute of Ageing, The Chinese University of Hong Kong, Hong Kong, China
| | - Jean Woo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Jockey Club Institute of Ageing, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Nutritional Studies, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Frontera WR. Rehabilitation of Older Adults with Sarcopenia: From Cell to Functioning. Prog Rehabil Med 2022; 7:20220044. [PMID: 36118146 PMCID: PMC9437741 DOI: 10.2490/prm.20220044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022] Open
Abstract
The 20th and 21st centuries have witnessed a substantial increase in human life expectancy and in the number of men and women aged 60 years and older. Aging is associated with a large number of health conditions, including sarcopenia, which has been the subject of important research in the past 30 years. Sarcopenia is characterized by an age-related loss of muscle mass, weakness, and impaired physical performance. The condition can be diagnosed with a combination of measurements of these three elements. The precise definition of sarcopenia and the selection of optimal assessment methods have changed significantly in the past 20 years; nonetheless, the prevalence of sarcopenia in the general older population is in the range of 5-15%. Molecular and cellular events at the muscle cell level impact the size and quality of muscles (force adjusted for size). The active and passive mechanical properties of single muscle fibers are altered by changes in the structure and function of various cellular elements. Systemic factors such as inflammation, loss of hormonal influence, and deleterious lifestyle choices also contribute to sarcopenia. The consequences of sarcopenia include many adverse effects such as impairments in activities of daily living, falls, loss of independence, and increased mortality. Several rehabilitative interventions have been tested, and the safest and most effective is the use of progressive resistance exercise. An increase in dietary protein intake has synergistic effects. Future research should focus on a consensus definition of sarcopenia, identification of the best assessment methods, understanding of biological mechanisms, and testing of innovative interventions.
Collapse
Affiliation(s)
- Walter R. Frontera
- Department of Physical Medicine, Rehabilitation, and Sports
Medicine/Department of Physiology, University of Puerto Rico School of Medicine, San Juan,
Puerto Rico, USA
| |
Collapse
|
13
|
Hedge ET, Patterson CA, Mastrandrea CJ, Sonjak V, Hajj-Boutros G, Faust A, Morais JA, Hughson RL. Implementation of exercise countermeasures during spaceflight and microgravity analogue studies: Developing countermeasure protocols for bedrest in older adults (BROA). Front Physiol 2022; 13:928313. [PMID: 36017336 PMCID: PMC9395735 DOI: 10.3389/fphys.2022.928313] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022] Open
Abstract
Significant progress has been made in the development of countermeasures to attenuate the negative consequences of prolonged exposure to microgravity on astronauts’ bodies. Deconditioning of several organ systems during flight includes losses to cardiorespiratory fitness, muscle mass, bone density and strength. Similar deconditioning also occurs during prolonged bedrest; any protracted time immobile or inactive, especially for unwell older adults (e.g., confined to hospital beds), can lead to similar detrimental health consequences. Due to limitations in physiological research in space, the six-degree head-down tilt bedrest protocol was developed as ground-based analogue to spaceflight. A variety of exercise countermeasures have been tested as interventions to limit detrimental changes and physiological deconditioning of the musculoskeletal and cardiovascular systems. The Canadian Institutes of Health Research and the Canadian Space Agency recently provided funding for research focused on Understanding the Health Impact of Inactivity to study the efficacy of exercise countermeasures in a 14-day randomized clinical trial of six-degree head-down tilt bedrest study in older adults aged 55–65 years old (BROA). Here we will describe the development of a multi-modality countermeasure protocol for the BROA campaign that includes upper- and lower-body resistance exercise and head-down tilt cycle ergometry (high-intensity interval and continuous aerobic exercise training). We provide reasoning for the choice of these modalities following review of the latest available information on exercise as a countermeasure for inactivity and spaceflight-related deconditioning. In summary, this paper sets out to review up-to-date exercise countermeasure research from spaceflight and head-down bedrest studies, whilst providing support for the proposed research countermeasure protocols developed for the bedrest study in older adults.
Collapse
Affiliation(s)
- Eric T. Hedge
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | | | | | - Vita Sonjak
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Guy Hajj-Boutros
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Andréa Faust
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - José A. Morais
- Research Institute of McGill University Health Centre, McGill University, Montréal, QC, Canada
- Division of Geriatric Medicine, McGill University Health Centre, McGill University, Montréal, QC, Canada
| | - Richard L. Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada
- *Correspondence: Richard L. Hughson,
| |
Collapse
|
14
|
Wang H, Wang N, Wang Y, Li H. Association between sarcopenia and osteoarthritis: A protocol for meta-analysis. PLoS One 2022; 17:e0272284. [PMID: 35921336 PMCID: PMC9348705 DOI: 10.1371/journal.pone.0272284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background
Sarcopenia, a relatively new syndrome referring to the age-related decline of muscle strength and degenerative loss of skeletal muscle mass and function, often resulting in frailty, disability, and mortality. Osteoarthritis, as a prevalent joint degenerative disease, is affecting over 250 million patients worldwide, and it is the fifth leading cause of disability. Despite the high prevalence of osteoarthritis, there are still lack of efficient treatment potions in clinics, partially due to the heterogeneous and complexity of osteoarthritis pathology. Previous studies revealed the association between sarcopenia and osteoarthritis, but the conclusions remain controversial and the prevalence of sarcopenia within osteoarthritis patients still needs to be elucidated. To identify the current evidence on the prevalence of sarcopenia and its association with osteoarthritis across studies, we performed this systematic review and meta-analysis that would help us to further confirm the association between these two diseases.
Methods and analysis
Electronic sources including PubMed, Embase, and Web of Science will be searched systematically following appropriate strategies to identify relevant studies from inception up to 28 February 2022 with no language restriction. Two investigators will evaluate the preselected studies independently for inclusion, data extraction and quality assessment using a standardized protocol. Meta-analysis will be performed to pool the estimated effect using studies assessing an association between sarcopenia and osteoarthritis. Subgroup analyses will also be performed when data are sufficient. Heterogeneity and publication bias of included studies will be investigated.
PROSPERO registration number
CRD42020155694.
Collapse
Affiliation(s)
- Haochen Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ning Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yilun Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
15
|
Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells 2022; 11:2293. [PMID: 35892590 PMCID: PMC9332174 DOI: 10.3390/cells11152293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
Significant loss of muscle mass may occur in cachexia and sarcopenia, which are major causes of mortality and disability. Cachexia represents a complex multi-organ syndrome associated with cancer and chronic diseases. It is often characterized by body weight loss, inflammation, and muscle and adipose wasting. Progressive muscle loss is also a hallmark of healthy aging, which is emerging worldwide as a main demographic trend. A great challenge for the health care systems is the age-related decline in functionality which threatens the independence and quality of life of elderly people. This biological decline can also be associated with functional muscle loss, known as sarcopenia. Previous studies have shown that microRNAs (miRNAs) play pivotal roles in the development and progression of muscle wasting in both cachexia and sarcopenia. These small non-coding RNAs, often carried in extracellular vesicles, inhibit translation by targeting messenger RNAs, therefore representing potent epigenetic modulators. The molecular mechanisms behind cachexia and sarcopenia, including the expression of specific miRNAs, share common and distinctive trends. The aim of the present review is to compile recent evidence about shared and divergent epigenetic mechanisms, particularly focusing on miRNAs, between cachexia and sarcopenia to understand a facet in the underlying muscle wasting associated with these morbidities and disclose potential therapeutic interventions.
Collapse
Affiliation(s)
- Laura Yedigaryan
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Martina Gatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Vittoria Marini
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (M.G.); (T.M.)
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; (L.Y.); (V.M.)
- Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
16
|
Bernier M, Enamorado IN, Gómez-Cabrera MC, Calvo-Rubio M, González-Reyes JA, Price NL, Cortés-Rodríguez AB, Rodríguez-Aguilera JC, Rodríguez-López S, Mitchell SJ, Murt KN, Kalafut K, Williams KM, Ward CW, Stains JP, Brea-Calvo G, Villalba JM, Cortassa S, Aon MA, de Cabo R. Age-dependent impact of two exercise training regimens on genomic and metabolic remodeling in skeletal muscle and liver of male mice. NPJ AGING 2022; 8:8. [PMID: 35927269 PMCID: PMC9237062 DOI: 10.1038/s41514-022-00089-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022]
Abstract
Skeletal muscle adapts to different exercise training modalities with age; however, the impact of both variables at the systemic and tissue levels is not fully understood. Here, adult and old C57BL/6 male mice were assigned to one of three groups: sedentary, daily high-intensity intermittent training (HIIT), or moderate intensity continuous training (MICT) for 4 weeks, compatible with the older group's exercise capacity. Improvements in body composition, fasting blood glucose, and muscle strength were mostly observed in the MICT old group, while effects of HIIT training in adult and old animals was less clear. Skeletal muscle exhibited structural and functional adaptations to exercise training, as revealed by electron microscopy, OXPHOS assays, respirometry, and muscle protein biomarkers. Transcriptomics analysis of gastrocnemius muscle combined with liver and serum metabolomics unveiled an age-dependent metabolic remodeling in response to exercise training. These results support a tailored exercise prescription approach aimed at improving health and ameliorating age-associated loss of muscle strength and function in the elderly.
Collapse
Affiliation(s)
- Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Ignacio Navas Enamorado
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
- Translational Medicine Section, Akouos, Inc., 645 Summer St, Boston, MA, 02210, USA
| | - Mari Carmen Gómez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, and CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Miguel Calvo-Rubio
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - Jose Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - Nathan L Price
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | | | | | - Sandra Rodríguez-López
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - Sarah J Mitchell
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Kelsey N Murt
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Krystle Kalafut
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Katrina M Williams
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher W Ward
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joseph P Stains
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide - CSIC - JA, Sevilla, 41013, Spain
| | - Jose M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Campus de Excelencia Internacional Agroalimentario, ceiA3, Universidad de Córdoba, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - Sonia Cortassa
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Miguel A Aon
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, NIH, Baltimore, MD, 21224, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
17
|
Watanabe S, Tsujino S. Applications of Medium-Chain Triglycerides in Foods. Front Nutr 2022; 9:802805. [PMID: 35719157 PMCID: PMC9203050 DOI: 10.3389/fnut.2022.802805] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
In the 1950s, the production of processed fats and oils from coconut oil was popular in the United States. It became necessary to find uses for the medium-chain fatty acids (MCFAs) that were byproducts of the process, and a production method for medium-chain triglycerides (MCTs) was established. At the time of this development, its use as a non-fattening fat was being studied. In the early days MCFAs included fatty acids ranging from hexanoic acid (C6:0) to dodecanoic acid (C12:0), but today their compositions vary among manufacturers and there seems to be no clear definition. MCFAs are more polar than long-chain fatty acids (LCFAs) because of their shorter chain length, and their hydrolysis and absorption properties differ greatly. These differences in physical properties have led, since the 1960s, to the use of MCTs to improve various lipid absorption disorders and malnutrition. More than half a century has passed since MCTs were first used in the medical field. It has been reported that they not only have properties as an energy source, but also have various physiological effects, such as effects on fat and protein metabolism. The enhancement of fat oxidation through ingestion of MCTs has led to interest in the study of body fat reduction and improvement of endurance during exercise. Recently, MCTs have also been shown to promote protein anabolism and inhibit catabolism, and applied research has been conducted into the prevention of frailty in the elderly. In addition, a relatively large ingestion of MCTs can be partially converted into ketone bodies, which can be used as a component of "ketone diets" in the dietary treatment of patients with intractable epilepsy, or in the nutritional support of terminally ill cancer patients. The possibility of improving cognitive function in dementia patients and mild cognitive impairment is also being studied. Obesity due to over-nutrition and lack of exercise, and frailty due to under-nutrition and aging, are major health issues in today's society. MCTs have been studied in relation to these concerns. In this paper we will introduce the results of applied research into the use of MCTs by healthy subjects.
Collapse
|
18
|
Smith C, Woessner MN, Sim M, Levinger I. Sarcopenia definition: Does it really matter? Implications for resistance training. Ageing Res Rev 2022; 78:101617. [PMID: 35378297 DOI: 10.1016/j.arr.2022.101617] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 12/13/2022]
Abstract
The loss of muscle mass, strength and function, known as sarcopenia, is common in older adults, and is associated with falls, fractures, cardiometabolic diseases, and lower quality of life. Sarcopenia can also occur secondarily to chronic diseases. Recently, sarcopenia was recognized as a disease with an International Classification of Disease (ICD) code, yet, at least five definitions for its clinical identification exist. Most definitions include three themes: low muscle mass, strength and physical performance. However, the definitions vary by the number of themes needed to diagnose sarcopenia and, within each theme various parameters and cut-off levels exist. The lack of consensus on what constitutes a diagnosis can create confusion and hesitation in sarcopenia diagnosis. Currently, no pharmacological treatment exists for sarcopenia. Resistance training (RT) is safe and effective to improve muscle mass, strength and physical performance in older adults and clinical populations. Based on current guidelines, whether an individual is defined as "sarcopenic", or not, does not change the way RT is prescribed. Here, we present evidence and the inconsistencies in sarcopenia definitions and recommend that focus should be on optimizing ways to prescribe RT and increase long-term adherence, rather than on slight modifications to sarcopenia definitions.
Collapse
Affiliation(s)
- Cassandra Smith
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Mary N Woessner
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia
| | - Marc Sim
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia; Medical School, Royal Perth Hospital Unit, The University of Western Australia, Perth, WA, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), University of Melbourne and Western Health, St Albans, VIC, Australia; Western Health and the University of Melbourne, Department of Medicine, Footscray, VIC, Australia.
| |
Collapse
|
19
|
Inoue T, Iida Y, Takahashi K, Shirado K, Nagano F, Miyazaki S, Takeuchi I, Yoshimura Y, Momosaki R, Maeda K, Wakabayashi H. Nutrition and Physical Therapy: A Position Paper by the Physical Therapist Section of the Japanese Association of Rehabilitation Nutrition (Secondary Publication). JMA J 2022; 5:243-251. [PMID: 35611222 PMCID: PMC9090552 DOI: 10.31662/jmaj.2021-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Several patients undergoing physical therapy have nutritional problems. Knowledge of nutrition is necessary for addressing nutritional problems, such as malnutrition, sarcopenia, frailty, and cachexia. However, the relationship between physical therapy and nutrition is not fully understood. Physical therapy plays an important role in nutritional management, and evaluations, such as muscle strength and muscle mass evaluations, play an important role in nutritional screening and diagnosis. Exercise, as the core of physical therapy, is essential for nutritional interventions. Several recent studies have suggested that a combination of nutrition and physical therapy interventions can maximize the function, activity, participation, and quality of life of patients. The combination of nutrition and physical therapy interventions is key to addressing the needs of modern and diverse populations. This position paper was developed by the Physical Therapist Section of the Japanese Association of Rehabilitation Nutrition in consultation with the Japanese Society of Nutrition and Swallowing Physical Therapy.
Collapse
Affiliation(s)
- Tatsuro Inoue
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Yuki Iida
- Department of Physical Therapy, Toyohashi SOZO University School of Health Sciences, Aichi, Japan
| | - Kohei Takahashi
- Department of Rehabilitation, Tamura Surgical Hospital, Kanagawa, Japan
| | - Kengo Shirado
- Department of Rehabilitation, Iizuka Hospital, Fukuoka, Japan
| | - Fumihiko Nagano
- Department of Rehabilitation, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | | | - Izumi Takeuchi
- Department of Rehabilitation, Suizenji Tohya Hospital, Kumamoto, Japan
| | - Yoshihiro Yoshimura
- Center for Sarcopenia and Malnutrition Research, Kumamoto Rehabilitation Hospital, Kumamoto, Japan
| | - Ryo Momosaki
- Department of Rehabilitation Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Keisuke Maeda
- Department of Geriatric Medicine, Hospital, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Hidetaka Wakabayashi
- Department of Rehabilitation Medicine, Tokyo Women's Medical University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Effects of alpha-linolenic acid and essential amino acids on the proliferation and differentiation of C2C12 myoblasts. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2022. [DOI: 10.12750/jarb.37.1.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
21
|
Córdova-Martínez A, Caballero-García A, Bello HJ, Pons-Biescas A, Noriega DC, Roche E. l-Arginine and Beetroot Extract Supplementation in the Prevention of Sarcopenia. Pharmaceuticals (Basel) 2022; 15:ph15030290. [PMID: 35337088 PMCID: PMC8954952 DOI: 10.3390/ph15030290] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with a significant decline in neuromuscular function, leading to a reduction in muscle mass and strength. The aim of the present report was to evaluate the effect of supplementation with nitric oxide precursors (l-arginine and beetroot extract) in muscular function during a training period of 6 weeks in elderly men and women. The study (double-blind, placebo-controlled) involved 66 subjects randomly divided into three groups: placebo, arginine-supplemented and beetroot extract-supplemented. At the end of this period, no changes in anthropometric parameters were observed. Regarding other circulating parameters, urea levels were significantly (p < 0.05) lower in women of the beetroot-supplemented group (31.6 ± 5.9 mg/dL) compared to placebo (41.3 ± 8.5 mg/dL) after 6 weeks of training. In addition, the circulating creatine kinase activity, as an index of muscle functionality, was significantly (p < 0.05) higher in women of the arginine- (214.1 ± 162.2 mIU/L) compared to the beetroot-supplemented group (84.4 ± 36.8 mIU/L) at the end of intervention. No significant effects were noticed with l-arginine or beetroot extract supplementation regarding strength, endurance and SPPB index. Only beetroot extract supplementation improved physical fitness significantly (p < 0.05) in the sprint exercise in men after 6 weeks (2.33 ± 0.59 s) compared to the baseline (2.72 ± 0.41 s). In conclusion, beetroot seems to be more efficient during short-term training while supplementing, preserving muscle functionality in women (decreased levels of circulating creatine kinase) and with modest effects in men.
Collapse
Affiliation(s)
- Alfredo Córdova-Martínez
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain
- Correspondence: (A.C.-M.); (E.R.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain;
| | - Hugo J. Bello
- Department of Mathematics, School of Forestry, Agronomy and Bioenergy Engineering, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain;
| | - Antoni Pons-Biescas
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, 07122 Palma de Mallorca, Balearic Islands, Spain;
| | - David C. Noriega
- Department of Surgery, Ophthalmology, Otorhinolaryngology and Physiotherapy, Faculty of Medicine, Hospital Clínico Universitario de Valladolid, 03010 Valladolid, Spain;
| | - Enrique Roche
- Department of Mathematics, School of Forestry, Agronomy and Bioenergy Engineering, GIR Physical Exercise and Aging, University of Valladolid, Campus Los Pajaritos, 42004 Soria, Spain;
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL Foundation), 03010 Alicante, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (A.C.-M.); (E.R.)
| |
Collapse
|
22
|
Lee D, Kuroki T, Nagai T, Kawano K, Higa K, Kurogi S, Hamanaka H, Chosa E. Sarcopenia, Ectopic Fat Infiltration Into the Lumbar Paravertebral Muscles, and Lumbo-Pelvic Deformity in Older Adults Undergoing Lumbar Surgery. Spine (Phila Pa 1976) 2022; 47:E46-E57. [PMID: 34269762 PMCID: PMC8658966 DOI: 10.1097/brs.0000000000004175] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A retrospective analysis of a prospective, non-randomized cohort dataset. OBJECTIVE To cross-sectionally examine the prevalence of sarcopenia and the association between spine-pelvic deformity and skeletal muscle volume loss and ectopic fat infiltration into lumbar paravertebral muscles (PVMs) in patients who underwent lumbar surgery. SUMMARY OF BACKGROUND DATA Muscle quality deterioration has been considered the main pathology of sarcopenia, reducing muscle strength directly. The qualitative deterioration as well as volume loss in PVM, which contributes significantly to core body extension, might cause aging-related spine deformity. METHODS In total, 184 patients were included. Sarcopenia was diagnosed at baseline, and all patients underwent whole-body X-ray. The amount of fat in lumbar PVM was evaluated with the Goutallier classification in magnetic resonance imaging findings. The expression of adipogenesis- and atrophy-promoting factors in PVM was evaluated with quantitative polymerase chain reaction. RESULTS In total, 36.1% of adults aged ≥60 years were diagnosed with sarcopenia. The values of skeletal muscle indexes of the limb and trunk were inversely correlated with the sagittal vertical axis, pelvic tilt (PT), and pelvic incidence minus lumbar lordosis (PI-LL) values. The PT and PI-LL were greater, PVM area was smaller, and Goutallier grade was greater in sarcopenic adults than in non-sarcopenic older adults. Additionally, the PVM area correlated with the LL value, and Goutallier's grade correlated with the PT and PI-LL values. Moreover, the amount of ectopic fat in PVMs inversely correlated with skeletal muscle indexes. The expression levels of atrophy gene-1 and muscle ring-finger protein-1 did not differ between the groups and did not correlate with the PVM area. In contrast, the expression of Pparg and Cebpa was upregulated in sarcopenic older adults, where it correlated with Goutallier's grade. CONCLUSION The volume loss of skeletal muscle, including lumbar PVM, and ectopic fat infiltration into the PVM, may cause the lumbo-pelvic deformity.Level of Evidence: 3.
Collapse
Affiliation(s)
- Deokcheol Lee
- Department of Orthopaedic Surgery, University of Miyazaki, Miyazaki, Japan
- Emergency Medicine, Acute Critical Care Center, University of Miyazaki Hospital, Miyazaki, Japan
| | - Tomofumi Kuroki
- Department of Orthopaedic Surgery, University of Miyazaki, Miyazaki, Japan
| | - Takuya Nagai
- Department of Orthopaedic Surgery, University of Miyazaki, Miyazaki, Japan
| | - Keisuke Kawano
- Department of Orthopaedic Surgery, Miyazaki Prefectural Nobeoka Hospital, Nobeoka, Japan
| | - Kiyoshi Higa
- Department of Orthopaedic Surgery, University of Miyazaki, Miyazaki, Japan
| | - Syuji Kurogi
- Department of Orthopaedic Surgery, University of Miyazaki, Miyazaki, Japan
| | - Hideaki Hamanaka
- Department of Orthopaedic Surgery, University of Miyazaki, Miyazaki, Japan
| | - Etsuo Chosa
- Department of Orthopaedic Surgery, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
23
|
Mey JT, Godin JP, Scelsi AR, Kullman EL, Malin SK, Yang S, Floyd ZE, Poulev A, Fielding RA, Ross AB, Kirwan JP. A Whole-Grain Diet Increases Whole-Body Protein Balance Compared with a Macronutrient-Matched Refined-Grain Diet. Curr Dev Nutr 2021; 5:nzab121. [PMID: 34805723 PMCID: PMC8598768 DOI: 10.1093/cdn/nzab121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There are limited data from randomized control trials to support or refute the contention that whole-grains can enhance protein metabolism in humans. OBJECTIVES To examine: 1) the clinical effects of a whole-grain diet on whole-body protein turnover; 2) the cellular effects of whole-grains on protein synthesis in skeletal muscle cells; and 3) the population effects of whole-grain intake on age-related muscle loss. METHODS Adults with overweight/obesity (n = 14; age = 40 ± 7 y; BMI = 33 ± 5 kg/m2) were recruited into a crossover, randomized controlled trial (NCT01411540) in which isocaloric, macronutrient-matched whole-grain and refined-grain diets were fully provisioned for two 8-wk periods. Diets differed only in the presence of whole-grains (50 g/1000 kcal). Whole-body protein kinetics were assessed at baseline and after each diet in the fasted-state (13C-leucine) and integrated over 24 h (15N-glycine). In vitro studies using C2C12 cells assessed global protein synthesis by surface sensing of translation and anabolic signaling by Western blot. Complementary epidemiological assessments using the NHANES database assessed the effect of whole-grain intake on muscle function assessed by gait speed in older adults (n = 2783). RESULTS Integrated 24-h net protein balance was 3-fold higher on a whole-grain diet compared with a refined-grain diet (P = 0.04). A whole-grain wheat extract increased submaximal rates of global protein synthesis (27%, P < 0.05) in vitro. In a large sample of older adults, whole-grain intake was associated with greater muscle function (OR = 0.92; 95% CI: 0.86, 0.98). CONCLUSIONS Consuming 50 g/1000 kcal whole-grains per day promotes greater protein turnover and enhances net protein balance in adults. Whole-grains impact skeletal muscle at the cellular level, and are associated with greater muscle function in older adults. Collectively, these data point to a new mechanism whereby whole-grain consumption favorably enhances protein turnover and improves health outcomes.This clinical trial is registered on clinicaltrials.gov (identifier: NCT01411540).
Collapse
Affiliation(s)
- Jacob T Mey
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Jean-Philippe Godin
- Nestlé Research, Institute of Food Safety and Analytical Sciences, Lausanne, Switzerland
| | - Amanda R Scelsi
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Emily L Kullman
- Health and Human Performance, Cleveland State University,
Cleveland, OH, USA
| | - Steven K Malin
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA
| | - Shengping Yang
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Alexander Poulev
- Department of Kinesiology and Health, Rutgers University, New Brunswick, NJ, USA
| | - Roger A Fielding
- Jean Mayer USDA Human Nutrition Research Center on Aging, Boston, MA, USA
| | | | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| |
Collapse
|
24
|
Adding Branched-Chain Amino Acids to an Enhanced Standard-of-Care Treatment Improves Muscle Mass of Cirrhotic Patients With Sarcopenia: A Placebo-Controlled Trial. Am J Gastroenterol 2021; 116:2241-2249. [PMID: 34074812 DOI: 10.14309/ajg.0000000000001301] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The effect of branched-chain amino acid (BCAA) supplementation on muscle mass in patients with cirrhosis and sarcopenia is unknown. METHODS This is a pilot, prospective, randomized, and double-blind study of a cohort of 32 patients with cirrhosis and sarcopenia diagnosed by computed tomography scan who underwent a nutritional and physical activity intervention for 12 weeks. They were divided into 2 groups (placebo: 17 patients; BCAA: 15 patients). The study protocol was registered at ClinicalTrials.gov (NCT04073693). RESULTS Baseline characteristics were similar in both groups. After treatment, only the BCAA group presented a significant improvement in muscle mass (43.7 vs 46 cm2/m2; P = 0.023). Seventeen patients (63%) presented improvement in muscle mass overall, which was more frequent in the BCAA group (83.3 vs 46.7%; P = 0.056). Regarding frailty, there was a significant improvement in the Liver Frailty Index in the global cohort (n = 32) after the 12 weeks (4.2 vs 3.9; P < 0.001). This difference was significant in both groups: in the placebo group (4.2 vs 3.8; P < 0.001) and in the BCAA group (4.2 vs 3.9; P < 0.001). After treatment, the BCAA group had a higher increase in zinc levels than the placebo group (Δzinc: 12.3 vs 5.5; P = 0.026). In addition, there was a trend for greater improvement of albumin levels in the BCAA group (Δalbumin: 0.19 vs 0.04; P = 0.091). DISCUSSION BCAA supplementation improves muscle mass in cirrhotic patients with sarcopenia.
Collapse
|
25
|
Rivas DA, Peng F, Benard T, Ramos da Silva AS, Fielding RA, Margolis LM. miR-19b-3p is associated with a diametric response to resistance exercise in older adults and regulates skeletal muscle anabolism via PTEN inhibition. Am J Physiol Cell Physiol 2021; 321:C977-C991. [PMID: 34705586 PMCID: PMC8714992 DOI: 10.1152/ajpcell.00190.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Understanding paradoxical responses to anabolic stimulation and identifying the mechanisms for this inconsistency in mobility-limited older adults may provide new targets for the treatment of sarcopenia. Our laboratory has discovered that dysregulation in microRNA (miRNA) that target anabolic pathways is a potential mechanism resulting in age-associated decreases in skeletal muscle mass and function (sarcopenia). The objective of the current study was to assess circulating miRNA expression profiles in diametric response of leg lean mass in mobility-limited older individuals after a 6-mo progressive resistance exercise training intervention (PRET) and determine the influence of differentially expressing miRNA on regulation of skeletal muscle mass. Participants were dichotomized by gain (Gainers; mean +561.4 g, n = 33) or loss (Losers; mean −589.8 g, n = 40) of leg lean mass after PRET. Gainers significantly increased fat-free mass 2.4% vs. −0.4% for Losers. Six miRNA (miR-1-3p, miR-19b-3p, miR-92a, miR-126, miR-133a-3p, and miR-133b) were significantly identified to be differentially expressed between Gainers and Losers, with miR-19b-3p being the miRNA most highly associated with increases in fat-free mass. Using an aging mouse model, we then assessed if miR-19b-3p expression was different in young mice with larger muscle mass compared with older mice. Circulating and skeletal muscle miR-19b-3p expression was higher in young compared with old mice and was positively associated with muscle mass and grip strength. We then used a novel integrative approach to determine if differences in circulating miR-19b-3p potentially translate to augmented anabolic response in human skeletal muscle cells in vitro. Results from this analysis identified that overexpression of miR-19b-3p targeted and downregulated PTEN by 64% to facilitate significant ∼50% increase in muscle protein synthetic rate as measured with SUnSET. The combine results of these three models identify miR-19b-3p as a potent regulator of muscle anabolism that may contribute to an inter-individual response to PRET in mobility-limited older adults.
Collapse
Affiliation(s)
- Donato A Rivas
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Fei Peng
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Townsend Benard
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Adelino Sanchez Ramos da Silva
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - Roger A Fielding
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Lee M Margolis
- Nutrition, Exercise Physiology and Sarcopenia Laboratory; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States
| |
Collapse
|
26
|
Moritani T. Electrical muscle stimulation: Application and potential role in aging society. J Electromyogr Kinesiol 2021; 61:102598. [PMID: 34560440 DOI: 10.1016/j.jelekin.2021.102598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023] Open
Abstract
Neurodegenerative diseases and sarcopenia become more prevalent as individuals age and, therefore, represent a serious issue for the healthcare system. Several studies have reported the relationship between physical activity and reduced incidence of dementia or cognitive deterioration. Thus, exercise and strength training are most recommended treatments, but it is proving difficult to engage individuals to initiate exercise and strength training. Electrical muscle stimulation (EMS) may provide an alternative and more efficient solution. Although EMS has undergone a decline in use, mainly because of stimulation discomfort, new technologies allow painless application of strong contractions. Such activation can be applied in higher exercise dosages and more efficiently than people are likely to achieve with exercise. Unlike orderly recruitment of motor units (MUs) during low intensity voluntary exercise, EMS activates large fast-twitch MUs with glycolytic fibers preferentially and this could have benefit for prevention and treatment of diabetes and chronic diseases associated with muscle atrophy that ultimately lead to bed-ridden conditions. Recent evidence highlights the potential for EMS to make a major impact on these and other lifestyle related diseases and its role as a useful modality for orthopedic and cardiac rehabilitation. This paper will discuss the potential for EMS to break new ground in effective interventions in these frontiers of medical science.
Collapse
Affiliation(s)
- Toshio Moritani
- Professor Emeritus, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto and Visiting Professor, Graduate School of Sports Science, Chukyo University, Toyota, Japan.
| |
Collapse
|
27
|
Sarcopenia predicts adverse outcomes in an elderly population with coronary artery disease: a systematic review and meta-analysis. BMC Geriatr 2021; 21:493. [PMID: 34521369 PMCID: PMC8439080 DOI: 10.1186/s12877-021-02438-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Background The development of sarcopenia is attributed to normal aging and factors like type 2 diabetes, obesity, inactivity, reduced testosterone levels, and malnutrition, which are factors of poor prognosis in patients with coronary artery disease (CAD). This study aimed to perform a meta-analysis to assess whether preoperative sarcopenia can be used to predict the outcomes after cardiac surgery in elderly patients with CAD. Methods PubMed, Embase, the Cochrane library, and Web of Science were searched for available papers published up to December 2020. The primary outcome was major adverse cardiovascular outcomes (MACE). The secondary outcomes were mortality and heart failure (HF)-related hospitalization. The random-effects model was used. Hazard ratios (HRs) with 95% confidence intervals (95%CIs) were estimated. Results Ten studies were included, with 3707 patients followed for 6 months to 4.5 ± 2.3 years. The sarcopenia population had a higher rate of MACE compared to the non-sarcopenia population (HR = 2.27, 95%CI: 1.58–3.27, P < 0.001; I2 = 60.0%, Pheterogeneity = 0.02). The association between sarcopenia and MACE was significant when using the psoas muscle area index (PMI) to define sarcopenia (HR = 2.86, 95%CI: 1.84–4.46, P < 0.001; I2 = 0%, Pheterogeneity = 0.604). Sarcopenia was not associated with higher late mortality (HR = 2.15, 95%CI: 0.89–5.22, P = 0.090; I2 = 91.0%, Pheterogeneity < 0.001), all-cause mortality (HR = 1.35, 95%CI: 0.14–12.84, P = 0.792; I2 = 90.5%, Pheterogeneity = 0.001), and death, HF-related hospitalization (HR = 1.37, 95%CI: 0.59–3.16, P = 0.459; I2 = 62.0%, Pheterogeneity = 0.105). The sensitivity analysis revealed no outlying study in the analysis of the association between sarcopenia and MACE after coronary intervention. Conclusion Sarcopenia is associated with poor MACE outcomes in patients with CAD. The results could help determine subpopulations of patients needing special monitoring after CAD surgery. The present study included several kinds of participants; although non-heterogeneity was found, interpretation should be cautious. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-021-02438-w.
Collapse
|
28
|
Ahn J, Kim MJ, Yoo A, Ahn J, Ha TY, Jung CH, Seo HD, Jang YJ. Identifying Codium fragile extract components and their effects on muscle weight and exercise endurance. Food Chem 2021; 353:129463. [PMID: 33743428 DOI: 10.1016/j.foodchem.2021.129463] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 01/29/2023]
Abstract
Codium fragile (CF) is a type of green algae consumed as kimchi in Asia. UPLC-QTOF-MS/MS analysis showed that CF contain lysophosphatidyl choline, canthaxanthin, retinoic acid, α-tocopherol, and unsaturated fatty acids, which reportedly improve skeletal muscle health. However, the effect of CF on skeletal muscle mass and function remains to be elucidated. In mice fed with CF extracts, exercise endurance and muscle weight increased. CF extracts enhanced protein synthesis and myogenic differentiation through the mTORC1 pathway. CF extracts also promoted oxidative muscle fiber formation and mitochondrial biogenesis through the PGC-1α-related signaling pathway. Upregulation of PGC-1α by CF extracts was abolished by EX527 SIRT1 inhibitor treatment. Changed signaling molecules in the CF extracts were partially regulated by canthaxanthin, a new compound in CF extracts, suggesting that canthaxanthin contribute synergistically to the effect of CF extracts. Therefore, CF is a potential food source for sport nutrition or prevention of sarcopenia.
Collapse
Affiliation(s)
- Jisong Ahn
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Department of Food Science and Technology, Chonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Min Jung Kim
- Healthcare Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Ahyoung Yoo
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiyun Ahn
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Tae Youl Ha
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Chang Hwa Jung
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyo Deok Seo
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea
| | - Young Jin Jang
- Natural Materials and Metabolism Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Republic of Korea.
| |
Collapse
|
29
|
Malnutrition in Older Adults-Recent Advances and Remaining Challenges. Nutrients 2021; 13:nu13082764. [PMID: 34444924 PMCID: PMC8399049 DOI: 10.3390/nu13082764] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Malnutrition in older adults has been recognised as a challenging health concern associated with not only increased mortality and morbidity, but also with physical decline, which has wide ranging acute implications for activities of daily living and quality of life in general. Malnutrition is common and may also contribute to the development of the geriatric syndromes in older adults. Malnutrition in the old is reflected by either involuntary weight loss or low body mass index, but hidden deficiencies such as micronutrient deficiencies are more difficult to assess and therefore frequently overlooked in the community-dwelling old. In developed countries, the most cited cause of malnutrition is disease, as both acute and chronic disorders have the potential to result in or aggravate malnutrition. Therefore, as higher age is one risk factor for developing disease, older adults have the highest risk of being at nutritional risk or becoming malnourished. However, the aetiology of malnutrition is complex and multifactorial, and the development of malnutrition in the old is most likely also facilitated by ageing processes. This comprehensive narrative review summarizes current evidence on the prevalence and determinants of malnutrition in old adults spanning from age-related changes to disease-associated risk factors, and outlines remaining challenges in the understanding, identification as well as treatment of malnutrition, which in some cases may include targeted supplementation of macro- and/or micronutrients, when diet alone is not sufficient to meet age-specific requirements.
Collapse
|
30
|
Dobrowolny G, Barbiera A, Sica G, Scicchitano BM. Age-Related Alterations at Neuromuscular Junction: Role of Oxidative Stress and Epigenetic Modifications. Cells 2021; 10:1307. [PMID: 34074012 PMCID: PMC8225025 DOI: 10.3390/cells10061307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
With advancing aging, a decline in physical abilities occurs, leading to reduced mobility and loss of independence. Although many factors contribute to the physio-pathological effects of aging, an important event seems to be related to the compromised integrity of the neuromuscular system, which connects the brain and skeletal muscles via motoneurons and the neuromuscular junctions (NMJs). NMJs undergo severe functional, morphological, and molecular alterations during aging and ultimately degenerate. The effect of this decline is an inexorable decrease in skeletal muscle mass and strength, a condition generally known as sarcopenia. Moreover, several studies have highlighted how the age-related alteration of reactive oxygen species (ROS) homeostasis can contribute to changes in the neuromuscular junction morphology and stability, leading to the reduction in fiber number and innervation. Increasing evidence supports the involvement of epigenetic modifications in age-dependent alterations of the NMJ. In particular, DNA methylation, histone modifications, and miRNA-dependent gene expression represent the major epigenetic mechanisms that play a crucial role in NMJ remodeling. It is established that environmental and lifestyle factors, such as physical exercise and nutrition that are susceptible to change during aging, can modulate epigenetic phenomena and attenuate the age-related NMJs changes. This review aims to highlight the recent epigenetic findings related to the NMJ dysregulation during aging and the role of physical activity and nutrition as possible interventions to attenuate or delay the age-related decline in the neuromuscular system.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (DAHFMO)-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy;
| | - Alessandra Barbiera
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Gigliola Sica
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| |
Collapse
|
31
|
Amirato GR, Borges JO, Marques DL, Santos JMB, Santos CAF, Andrade MS, Furtado GE, Rossi M, Luis LN, Zambonatto RF, da Silva EB, Poma SO, de Almeida MM, Pelaquim RL, dos Santos-Oliveira LC, Diniz VLS, Passos MEP, Levada-Pires AC, Gorjão R, Barros MP, Bachi ALL, Pithon-Curi TC. L-Glutamine Supplementation Enhances Strength and Power of Knee Muscles and Improves Glycemia Control and Plasma Redox Balance in Exercising Elderly Women. Nutrients 2021; 13:nu13031025. [PMID: 33809996 PMCID: PMC8004646 DOI: 10.3390/nu13031025] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
We investigated the effects of oral L-glutamine (Gln) supplementation, associated or not with physical exercises, in control of glycemia, oxidative stress, and strength/power of knee muscles in elderly women. Physically active (n = 21) and sedentary (n = 23) elderly women aged 60 to 80 years were enrolled in the study. Plasma levels of D-fructosamine, insulin, reduced (GSH) and oxidized (GSSG) glutathione, iron, uric acid, and thiobarbituric acid-reactive substances (TBARs) (lipoperoxidation product), as well as knee extensor/flexor muscle torque peak and average power (isokinetic test), were assessed pre- and post-supplementation with Gln or placebo (30 days). Higher plasma D-fructosamine, insulin, and iron levels, and lower strength/power of knee muscles were found pre-supplementation in the NPE group than in the PE group. Post-supplementation, Gln subgroups showed higher levels of GSH, GSSG, and torque peak, besides lower D-fructosamine than pre-supplementation values. Higher muscle average power and plasma uric acid levels were reported in the PE + Gln group, whereas lower insulin levels were found in the NPE + Gln than pre-supplementation values. TBARs levels were diminished post-supplementation in all groups. Gln supplementation, mainly when associated with physical exercises, improves strength and power of knee muscles and glycemia control, besides boosting plasma antioxidant capacity of elderly women.
Collapse
Affiliation(s)
- Gislene R. Amirato
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Juliana O. Borges
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Daniella L. Marques
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Juliana M. B. Santos
- Post-Graduation Program in Science of Human and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP 11015-020, Brazil;
| | - Carlos A. F. Santos
- Department of Medicine (Geriatrics and Gerontology), Federal University of São Paulo (UNIFESP), São Paulo, SP 04020-050, Brazil;
| | - Marilia S. Andrade
- Department of Physiology, Federal University of São Paulo (UNIFESP), São Paulo, SP 04023-901, Brazil;
| | - Guilherme E. Furtado
- Health Sciences Research Unit: Nursing (UICISA:E), Nursing School of Coimbra (ESEnfC), 3000-232 Coimbra, Portugal;
| | - Marcelo Rossi
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, SP 04829-300, Brazil; (M.R.); (A.L.L.B.)
| | - Lais N. Luis
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Raquel F. Zambonatto
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Eliane B. da Silva
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Sarah O. Poma
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Mariana M. de Almeida
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Renato L. Pelaquim
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Laiane C. dos Santos-Oliveira
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Vinicius L. Sousa Diniz
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Maria E. P. Passos
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Adriana C. Levada-Pires
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| | - Marcelo P. Barros
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
- Correspondence: ; Tel.: +55-11-3385-3103
| | - André L. L. Bachi
- Post-Graduation Program in Health Sciences, Santo Amaro University (UNISA), São Paulo, SP 04829-300, Brazil; (M.R.); (A.L.L.B.)
- ENT Lab, Department of Otorhinolaryngology, Federal University of São Paulo (UNIFESP), São Paulo, SP 04023-062, Brazil
| | - Tania C. Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, São Paulo, SP 01506-000, Brazil; (G.R.A.); (J.O.B.); (D.L.M.); (L.N.L.); (R.F.Z.); (E.B.d.S.); (S.O.P.); (M.M.d.A.); (R.L.P.); (L.C.d.S.-O.); (V.L.S.D.); (M.E.P.P.); (A.C.L.-P.); (R.G.); (T.C.P.-C.)
| |
Collapse
|
32
|
Watanabe K, Holobar A, Uchida K, Mita Y. Fish Protein Ingestion Induces Neural, but Not Muscular Adaptations, Following Resistance Training in Young Adults. Front Nutr 2021; 8:645747. [PMID: 33777994 PMCID: PMC7993090 DOI: 10.3389/fnut.2021.645747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: Nutritional supplementation in conjunction with exercise is of interest for the prevention or improvement of declines in motor performances in older adults. An understanding of the effects on both young and older adults contributes to its effective application. We investigated the effect of fish protein ingestion with resistance training on neural and muscular adaptations in young adults using interventions and assessments that have already been tested in older adults. Methods: Eighteen young adults underwent 8 weeks of isometric knee extension training. During the intervention, nine participants ingested 5 g of fish protein (n = 9, Alaska pollack protein, APP), and the other nine participants ingested casein as a control (n = 9, CAS) in addition to daily meals. Before, during, and after the intervention, the isometric knee extension force, lower extremity muscle mass, and motor unit firing pattern of knee extensor muscles were measured. Results: Maximum voluntary contraction (MVC) was significantly increased in both APP and CAS groups from 0 weeks to 4, 6, and 8 weeks of intervention (p < 0.001), but there were no significant differences between the groups (p = 0.546–0.931). Muscle mass was not significantly changed during the intervention in either group (p = 0.250–0.698). Significant changes in motor unit firing rates (p = 0.02 and 0.029 for motor units recruited at 20–40% of MVC and at 40–60%) were observed following the intervention in the APP but not CAS (p = 0.120–0.751) group. Conclusions: These results suggest that dietary fish protein ingestion changes motor unit adaptations following resistance training in young adults.
Collapse
Affiliation(s)
- Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, Faculty of Liberal Arts and Sciences and School of International Liberal Studies, Chukyo University, Nagoya, Japan
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | | | - Yukiko Mita
- Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, Nagoya, Japan
| |
Collapse
|
33
|
Watanabe K, Holobar A, Mita Y, Tomita A, Yoshiko A, Kouzaki M, Uchida K, Moritani T. Modulation of Neural and Muscular Adaptation Processes During Resistance Training by Fish Protein Ingestions in Older Adults. J Gerontol A Biol Sci Med Sci 2021; 75:867-874. [PMID: 31596471 PMCID: PMC7164534 DOI: 10.1093/gerona/glz215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
Assessments of both neural and muscular adaptations during interventions would provide valuable information for developing countermeasures to age-related muscle dysfunctions. We investigated the effect of fish protein ingestion on training-induced neural and muscular adaptations in older adults. Twenty older adults participated 8 weeks of isometric knee extension training intervention. The participants were divided into two groups who took fish protein (n = 10, Alaska pollack protein, APP) or casein (n = 10, CAS). Maximal muscle strength during knee extension, lower extremity muscle mass (body impedance method), and motor unit firing pattern of knee extensor muscle (high-density surface electromyography) were measured before, during, and after the intervention. Muscle strength were significantly increased in both CAS (124.7 ± 5.8%) and APP (117.1 ± 4.4%) after intervention (p < .05), but no significant differences between the groups were observed (p > .05). Significant increases in lower extremity muscle mass from 0 to 8 weeks were demonstrated only for APP (102.0 ± 3.2, p < .05). Greater changes in motor unit firing pattern following intervention were represented in CAS more than in APP. These results suggest that nutritional supplementations could modulate neural and muscular adaptations following resistance training and fish protein ingestion preferentially induces muscular adaptation without the detectable neural adaptation in older adults.
Collapse
Affiliation(s)
- Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of International Liberal Studies, Chukyo University, Nagoya, Japan
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Slovenia
| | - Yukiko Mita
- Department of Human Nutrition, School of Life Studies, Sugiyama Jogakuen University, Nagoya, Japan
| | - Aya Tomita
- Laboratory of Neuromuscular Biomechanics, School of International Liberal Studies, Chukyo University, Nagoya, Japan
| | - Akito Yoshiko
- School of International Liberal Studies, Chukyo University, Nagoya, Japan
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Japan
| | | | - Toshio Moritani
- Faculty of Sociology, Kyoto Sangyo University, Japan.,School of Health and Sport Sciences, Chukyo University, Nagoya, Japan
| |
Collapse
|
34
|
Siriguleng S, Koike T, Natsume Y, Jiang H, Mu L, Oshida Y. Eicosapentaenoic acid enhances skeletal muscle hypertrophy without altering the protein anabolic signaling pathway. Physiol Res 2021; 70:55-65. [PMID: 33453714 DOI: 10.33549/physiolres.934534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study aimed to examine the effect of eicosapentaenoic acid (EPA) on skeletal muscle hypertrophy induced by muscle overload and the associated intracellular signaling pathways. Male C57BL/6J mice were randomly assigned to oral treatment with either EPA or corn oil for 6 weeks. After 4 weeks of treatment, the gastrocnemius muscle of the right hindlimb was surgically removed to overload the plantaris and soleus muscles for 1 or 2 weeks. We examined the effect of EPA on the signaling pathway associated with protein synthesis using the soleus muscles. According to our analysis of the compensatory muscle growth, EPA administration enhanced hypertrophy of the soleus muscle but not hypertrophy of the plantaris muscle. Nevertheless, EPA administration did not enhance the expression or phosphorylation of Akt, mechanistic target of rapamycin (mTOR), or S6 kinase (S6K) in the soleus muscle. In conclusion, EPA enhances skeletal muscle hypertrophy, which can be independent of changes in the AKT-mTOR-S6K pathway.
Collapse
Affiliation(s)
- S Siriguleng
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Xie WQ, Men C, He M, Li YS, Lv S. The Effect of MicroRNA-Mediated Exercise on Delaying Sarcopenia in Elderly Individuals. Dose Response 2020; 18:1559325820974543. [PMID: 33293908 PMCID: PMC7705785 DOI: 10.1177/1559325820974543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 11/24/2022] Open
Abstract
Sarcopenia is often regarded as an early sign of weakness and is the core element
of muscle weakness in elderly individuals. Sarcopenia is closely related to the
reduction of exercise, and elderly individuals often suffer from decreased
muscle mass and function due to a lack of exercise. At present, studies have
confirmed that resistance and aerobic exercise are related to muscle mass,
strength and fiber type and to the activation and proliferation of muscle stem
cells (MuSCs). Increasing evidence shows that microRNAs (miRNAs) play an
important role in exercise-related changes in the quantity, composition and
function of skeletal muscle. At the cellular level, miRNAs have been shown to
regulate the proliferation and differentiation of muscle cells. In addition,
miRNAs are related to the composition and transformation of muscle fibers and
involved in the transition of MuSCs from the resting state to the activated
state. Therefore, exercise may delay sarcopenia in elderly individuals by
regulating miRNAs in skeletal muscle. In future miRNA-focused treatment
strategies, these studies will provide valuable information for the formulation
of exercise methods and will provide useful and targeted exercise programs for
elderly individuals with sarcopenia.
Collapse
Affiliation(s)
- Wen-Qing Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Men
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Miao He
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan Lv
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Exercise as a therapy for cancer-induced muscle wasting. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:186-194. [PMID: 35782998 PMCID: PMC9219331 DOI: 10.1016/j.smhs.2020.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a progressive disorder characterized by body weight, fat, and muscle loss. Cachexia induces metabolic disruptions that can be analogous and distinct from those observed in cancer, obscuring both diagnosis and treatment options. Inflammation, hypogonadism, and physical inactivity are widely investigated as systemic mediators of cancer-induced muscle wasting. At the cellular level, dysregulation of protein turnover and energy metabolism can negatively impact muscle mass and function. Exercise is well known for its anti-inflammatory effects and potent stimulation of anabolic signaling. Emerging evidence suggests the potential for exercise to rescue muscle's sensitivity to anabolic stimuli, reduce wasting through protein synthesis modulation, myokine release, and subsequent downregulation of proteolytic factors. To date, there is no recommendation for exercise in the management of cachexia. Given its complex nature, a multimodal approach incorporating exercise offers promising potential for cancer cachexia treatment. This review's primary objective is to summarize the growing body of research examining exercise regulation of cancer cachexia. Furthermore, we will provide evidence for exercise interactions with established systemic and cellular regulators of cancer-induced muscle wasting.
Collapse
|
37
|
Pascual-Fernández J, Fernández-Montero A, Córdova-Martínez A, Pastor D, Martínez-Rodríguez A, Roche E. Sarcopenia: Molecular Pathways and Potential Targets for Intervention. Int J Mol Sci 2020; 21:ijms21228844. [PMID: 33266508 PMCID: PMC7700275 DOI: 10.3390/ijms21228844] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022] Open
Abstract
Aging is associated with sarcopenia. The loss of strength results in decreased muscle mass and motor function. This process accelerates the progressive muscle deterioration observed in older adults, favoring the presence of debilitating pathologies. In addition, sarcopenia leads to a decrease in quality of life, significantly affecting self-sufficiency. Altogether, these results in an increase in economic resources from the National Health Systems devoted to mitigating this problem in the elderly, particularly in developed countries. Different etiological determinants are involved in the progression of the disease, including: neurological factors, endocrine alterations, as well as nutritional and lifestyle changes related to the adoption of more sedentary habits. Molecular and cellular mechanisms have not been clearly characterized, resulting in the absence of an effective treatment for sarcopenia. Nevertheless, physical activity seems to be the sole strategy to delay sarcopenia and its symptoms. The present review intends to bring together the data explaining how physical activity modulates at a molecular and cellular level all factors that predispose or favor the progression of this deteriorating pathology.
Collapse
Affiliation(s)
| | | | - Alfredo Córdova-Martínez
- Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, GIR Physical Exercise and Aging, University of Valladolid, Campus Duques de Soria, 42004 Soria, Spain;
| | - Diego Pastor
- Department of Sport Sciences, University Miguel Hernández (Elche), 03202 Alicante, Spain;
| | - Alejandro Martínez-Rodríguez
- Department of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Sciences, University of Alicante, 3690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
| | - Enrique Roche
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain
- Department of Applied Biology-Nutrition, Institute of Bioengineering, University Miguel Hernández, 03202 Elche, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-965222029
| |
Collapse
|
38
|
Nilsson MI, Mikhail A, Lan L, Di Carlo A, Hamilton B, Barnard K, Hettinga BP, Hatcher E, Tarnopolsky MG, Nederveen JP, Bujak AL, May L, Tarnopolsky MA. A Five-Ingredient Nutritional Supplement and Home-Based Resistance Exercise Improve Lean Mass and Strength in Free-Living Elderly. Nutrients 2020; 12:nu12082391. [PMID: 32785021 PMCID: PMC7468764 DOI: 10.3390/nu12082391] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Old age is associated with lower physical activity levels, suboptimal protein intake, and desensitization to anabolic stimuli, predisposing for age-related muscle loss (sarcopenia). Although resistance exercise (RE) and protein supplementation partially protect against sarcopenia under controlled conditions, the efficacy of home-based, unsupervised RE (HBRE) and multi-ingredient supplementation (MIS) is largely unknown. In this randomized, placebo-controlled and double-blind trial, we examined the effects of HBRE/MIS on muscle mass, strength, and function in free-living, older men. Thirty-two sedentary men underwent twelve weeks of home-based resistance band training (3 d/week), in combination with daily intake of a novel five-nutrient supplement (‘Muscle5’; M5, n = 16, 77.4 ± 2.8 y) containing whey, micellar casein, creatine, vitamin D, and omega-3 fatty acids, or an isocaloric/isonitrogenous placebo (PLA; n = 16, 74.4 ± 1.3 y), containing collagen and sunflower oil. Appendicular and total lean mass (ASM; +3%, TLM; +2%), lean mass to fat ratios (ASM/% body fat; +6%, TLM/% body fat; +5%), maximal strength (grip; +8%, leg press; +17%), and function (5-Times Sit-to-Stand time; −9%) were significantly improved in the M5 group following HBRE/MIS therapy (pre vs. post tests; p < 0.05). Fast-twitch muscle fiber cross-sectional areas of the quadriceps muscle were also significantly increased in the M5 group post intervention (Type IIa; +30.9%, Type IIx, +28.5%, p < 0.05). Sub-group analysis indicated even greater gains in total lean mass in sarcopenic individuals following HBRE/MIS therapy (TLM; +1.65 kg/+3.4%, p < 0.05). We conclude that the Muscle5 supplement is a safe, well-tolerated, and effective complement to low-intensity, home-based resistance exercise and improves lean mass, strength, and overall muscle quality in old age.
Collapse
Affiliation(s)
- Mats I. Nilsson
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (B.P.H.); (A.L.B.)
| | - Andrew Mikhail
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
- Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Lucy Lan
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Alessia Di Carlo
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Bethanie Hamilton
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Kristin Barnard
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Bart P. Hettinga
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (B.P.H.); (A.L.B.)
| | - Erin Hatcher
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Milla G. Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Joshua P. Nederveen
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Adam L. Bujak
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (B.P.H.); (A.L.B.)
| | - Linda May
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
| | - Mark A. Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (M.I.N.); (A.M.); (L.L.); (A.D.C.); (B.H.); (K.B.); (E.H.); (M.G.T.); (J.P.N.); (L.M.)
- Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada; (B.P.H.); (A.L.B.)
- Correspondence: ; Tel.: +905-521-2100 (ext. 76593); Fax: +905-577-8380
| |
Collapse
|
39
|
Pu Z, Yue S, Yan H, Tang Y, Chen Y, Tan Y, Shi X, Zhu Z, Tao H, Chen J, Zhou G, Huang S, Peng G, Su S, Duan J. Analysis and evaluation of nucleosides, nucleobases, and amino acids in safflower from different regions based on ultra high performance liquid chromatography coupled with triple‐quadrupole linear ion‐trap tandem mass spectrometry. J Sep Sci 2020; 43:3170-3182. [DOI: 10.1002/jssc.202000180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Zong‐Jin Pu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibilityand State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Researchand Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources IndustrializationShaanxi University of Chinese Medicine Xi'an Shaanxi Province P. R. China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| | - Shi‐Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibilityand State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Researchand Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources IndustrializationShaanxi University of Chinese Medicine Xi'an Shaanxi Province P. R. China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| | - Yu‐Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibilityand State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Researchand Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources IndustrializationShaanxi University of Chinese Medicine Xi'an Shaanxi Province P. R. China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| | - Yan‐Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibilityand State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation)and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Researchand Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources IndustrializationShaanxi University of Chinese Medicine Xi'an Shaanxi Province P. R. China
| | - Ya‐Jie Tan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| | - Xu‐Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| | - Zhen‐Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| | - Hui‐Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| | - Jia‐Qian Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| | - Gui‐Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| | - Sheng‐Liang Huang
- Jiangsu Rongyu Pharmaceutical Co., Ltd. Huaian Jiangsu Province P. R. China
| | - Guo‐Ping Peng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| | - Shu‐Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| | - Jin‐Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM Formulaeand National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative MedicineNanjing University of Chinese Medicine Nanjing Jiangsu Province P. R. China
| |
Collapse
|
40
|
Yuan M, Pickering RT, Bradlee ML, Mustafa J, Singer MR, Moore LL. Animal protein intake reduces risk of functional impairment and strength loss in older adults. Clin Nutr 2020; 40:919-927. [PMID: 32753351 DOI: 10.1016/j.clnu.2020.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Protein intake has been shown to lower risk of aging-related functional decline. The goal of this study was to assess long-term effects of weight-adjusted animal (AP) and plant protein (PP) intakes on aging-related change in functional status and grip strength. METHODS Framingham Offspring Study participants (n = 1896, 891 men and 1005 women), ≥age 50, were followed for an average of 14.4 years. Protein intake derived from two sets of 3-day diet records (exams 3 and 5) was expressed as both weight-adjusted intake (from residuals) and per kilogram of body weight (g/kg/d). Seven tasks from two standardized assessments (Nagi and the Rosow-Breslau scales) were selected to determine functional status at exams 5-9. Functional impairment was defined as failure to complete (or having a lot of difficulty completing) a given task. Grip strength was assessed by dynamometer at exams 7-9. RESULTS Participants with higher (vs. lower) weight-adjusted intakes of AP and PP maintained higher functional scores (p = 0.001 and p < 0.001, respectively). After accounting for baseline skeletal muscle mass (SMM) and physical activity, only AP was linked with lower risks of functional impairment. Higher AP intake among sedentary individuals led to 29% (95% CI: 0.51-1.00) reduced risks of impairment; among subjects with lower SMM, higher AP was associated with 30% (95% CI: 0.49-0.98) reduced risks. Physical activity and SMM were independently associated with reduced risks of functional impairment, regardless of protein intake. Finally, higher AP intake led to 34% and 48% greater preservation of grip strength in men (p = 0.012) and women (p = 0.034). Results were similar for protein intake expressed as g/kg/d. CONCLUSIONS Higher AP intake and higher levels of physical activity and SMM were independently associated with lower risks of functional impairment and greater preservation of grip strength in adults over the age of 50 years.
Collapse
Affiliation(s)
- Mengjie Yuan
- Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - R Taylor Pickering
- Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - M Loring Bradlee
- Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jabed Mustafa
- Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Martha R Singer
- Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lynn L Moore
- Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
41
|
Watanabe K, Holobar A, Tomita A, Mita Y. Effect of milk fat globule membrane supplementation on motor unit adaptation following resistance training in older adults. Physiol Rep 2020; 8:e14491. [PMID: 32597035 PMCID: PMC7322501 DOI: 10.14814/phy2.14491] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 11/24/2022] Open
Abstract
This study aimed to investigate the effect of milk fat globule membrane (MFGM) supplementation on motor unit adaptation following resistance training in older adults. Twenty-five older males and females took MFGM (n = 12) or a placebo (PLA; n = 12) while performing 8 weeks of isometric knee extension training. During the training, the motor unit firing pattern during submaximal contractions, muscle thickness, and maximal muscle strength of knee extensor muscles were measured every 2 weeks. None of the measurements showed significant differences in muscle thickness or maximal muscle strength (MVC) between the two groups (p > .05). Significant decreases in motor unit firing rate following the intervention were observed in PLA, that is, 14.1 ± 2.7 pps at 0 weeks to 13.0 ± 2.4 pps at 4 weeks (p = .003), but not in MFGM (14.4 ± 2.5 pps to 13.8 ± 1.9 pps). Motor unit firing rates in MFGM were significantly higher than those in PLA at 2, 4, 6, and 8 weeks of the intervention, that is, 15.1 ± 2.3 pps in MFGM and 14.5 ± 3.3 pps in PLA at 70% of MVC for motor units recruited at 40% of MVC at 6 weeks (p = .034). Significant differences in firing rates among motor units with different recruitment thresholds were newly observed following the resistance training intervention in MFGM, indicating that motor unit firing pattern is changed in this group. These results suggest that motor unit adaptation following resistance training is modulated by MFGM supplementation in older adults.
Collapse
Affiliation(s)
- Kohei Watanabe
- Laboratory of Neuromuscular BiomechanicsSchool of International Liberal StudiesChukyo UniversityNagoyaJapan
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer ScienceUniversity of MariborMariborSlovenia
| | - Aya Tomita
- Laboratory of Neuromuscular BiomechanicsSchool of International Liberal StudiesChukyo UniversityNagoyaJapan
| | - Yukiko Mita
- Department of Human NutritionSchool of Life StudiesSugiyama Jogakuen UniversityNagoyaJapan
| |
Collapse
|
42
|
Sjöblom S, Sirola J, Rikkonen T, Erkkilä AT, Kröger H, Qazi SL, Isanejad M. Interaction of recommended levels of physical activity and protein intake is associated with greater physical function and lower fat mass in older women: Kuopio Osteoporosis Risk Factor- (OSTPRE) and Fracture-Prevention Study. Br J Nutr 2020; 123:826-839. [PMID: 31910914 PMCID: PMC7054249 DOI: 10.1017/s0007114520000045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/08/2019] [Accepted: 12/20/2019] [Indexed: 11/07/2022]
Abstract
The aim of the study was to investigate whether the interaction of physical activity (PA) and protein intake is associated with physical function (PF). The women from the Osteoporosis Risk Factor and Fracture Prevention Study (n 610) completed a questionnaire on lifestyle factors and PA and underwent PF and body composition measurements at baseline (BL) and over 3 years of follow-up (3y-FU). PA was categorised according to WHO cut-off PA = 0, 0 < PA < 2·5 and PA ≥ 2·5 h/week. Protein intake was calculated from the 3-d food record at baseline and categorised according to the Nordic Nutrition Recommendations <1·1 and ≥1·1 g/kg body weight (BW). The results showed in univariate ANOVA at the baseline and at the 3-year follow-up, women with high PA ≥ 2·5 h/week and protein intake ≥ 1·1 g/kg BW had higher grip strength adjusted for BMI, higher mean number of chair rises, faster mean walking speed, higher modified mean short physical performance battery score and lower mean fat mass compared with other interaction groups. High PA and protein intake were associated with lower BMI despite significantly higher energy intake. In conclusion, higher PA and protein intake interaction was associated with greater PF and lower fat mass, but the association with relative skeletal muscle index and muscle mass was inconclusive. The present study gives noteworthy information for preventing sarcopenia.
Collapse
Affiliation(s)
- Samu Sjöblom
- Kuopio Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland
| | - Joonas Sirola
- Kuopio Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland
- Department of Orthopedics and Traumatology, Kuopio University Hospital, Kuopio, Finland
| | - Toni Rikkonen
- Kuopio Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland
| | - Arja T. Erkkilä
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Heikki Kröger
- Kuopio Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland
- Department of Orthopedics and Traumatology, Kuopio University Hospital, Kuopio, Finland
| | - Sarang L. Qazi
- Kuopio Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland
| | - Masoud Isanejad
- Kuopio Musculoskeletal Research Unit, University of Eastern Finland, Kuopio, Finland
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
43
|
Deutz NEP, Ashurst I, Ballesteros MD, Bear DE, Cruz-Jentoft AJ, Genton L, Landi F, Laviano A, Norman K, Prado CM. The Underappreciated Role of Low Muscle Mass in the Management of Malnutrition. J Am Med Dir Assoc 2020; 20:22-27. [PMID: 30580819 DOI: 10.1016/j.jamda.2018.11.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023]
Abstract
Preserving muscle is not only crucial for maintaining proper physical movement, but also for its many metabolic and homeostatic roles. Low muscle mass has been shown to adversely affect health outcomes in a variety of disease states (eg, chronic obstructive pulmonary disease, cancer, cardiovascular disease) and leads to an increased risk for readmission and mortality in hospitalized patients. Low muscle mass is now included in the most recent diagnostic criteria for malnutrition. Current management strategies for malnutrition may not prioritize the maintenance and restoration of muscle mass. This likely reflects the challenge of identifying and measuring this body composition compartment in clinical practice and the lack of awareness by health care professionals of the importance that muscle plays in patient health outcomes. As such, we provide a review of current approaches and make recommendations for managing low muscle mass and preventing muscle loss in clinical practice. Recommendations to assist the clinician in the optimal management of patients at risk of low muscle mass include the following: (1) place muscle mass at the core of nutritional assessment and management strategies; (2) identify and assess low muscle mass; (3) develop a management pathway for patients at risk of low muscle mass; (4) optimize nutrition to focus on muscle mass gain versus weight gain alone; and (5) promote exercise and/or rehabilitation therapy to help maintain and build muscle mass. The need to raise awareness of the importance of screening and managing 'at risk' patients so it becomes routine is imperative for change to occur. Health systems need to drive clinicians to treat patients with this focused approach, and the economic benefits need to be communicated to payers. Lastly, further focused research in the area of managing patients with low muscle mass is warranted.
Collapse
Affiliation(s)
- Nicolaas E P Deutz
- Center for Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, TX.
| | - Ione Ashurst
- Department of Nutrition & Dietetics, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Maria D Ballesteros
- Servicio de Endocrinología y Nutrición, Complejo Asistencial Universitario de León, Altos de Nava, León, Spain
| | - Danielle E Bear
- Department of Nutrition and Dietetics, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | | | - Laurence Genton
- Clinical Nutrition, Hôpitaux Universitaires de Genève Unité de nutrition Geneva, Switzerland
| | - Francesco Landi
- Istituto di Medicina Interna e Geriatria, Università Cattolica del Sacro Cuore, Roma, Italy
| | | | - Kristina Norman
- Department of Nutrition and Gerontology, German Institute of Human Nutrition, Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Carla M Prado
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
44
|
A focused review of myokines as a potential contributor to muscle hypertrophy from resistance-based exercise. Eur J Appl Physiol 2020; 120:941-959. [PMID: 32144492 DOI: 10.1007/s00421-020-04337-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Resistance exercise induces muscle growth and is an important treatment for age-related losses in muscle mass and strength. Myokines are hypothesized as a signal conveying physiological information to skeletal muscle, possibly to "fine-tune" other regulatory pathways. While myokines are released from skeletal muscle following contraction, their role in increasing muscle mass and strength in response to resistance exercise or training is not established. Recent research identified both local and systemic release of myokines after an acute bout of resistance exercise. However, it is not known whether myokines with putative anabolic function are mechanistically involved in producing muscle hypertrophy after resistance exercise. Further, nitric oxide (NO), an important mediator of muscle stem cell activation, upregulates the expression of certain myokine genes in skeletal muscle. METHOD In the systemic context of complex hypertrophic signaling, this review: (1) summarizes literature on several well-recognized, representative myokines with anabolic potential; (2) explores the potential mechanistic role of myokines in skeletal muscle hypertrophy; and (3) identifies future research required to advance our understanding of myokine anabolism specifically in skeletal muscle. RESULT This review establishes a link between myokines and NO production, and emphasizes the importance of considering systemic release of potential anabolic myokines during resistance exercise as complementary to other signals that promote hypertrophy. CONCLUSION Investigating adaptations to resistance exercise in aging opens a novel avenue of interdisciplinary research into myokines and NO metabolites during resistance exercise, with the longer-term goal to improve muscle health in daily living, aging, and rehabilitation.
Collapse
|
45
|
Abstract
Bone and skeletal muscle are integrated organs and their coupling has been considered mainly a mechanical one in which bone serves as attachment site to muscle while muscle applies load to bone and regulates bone metabolism. However, skeletal muscle can affect bone homeostasis also in a non-mechanical fashion, i.e., through its endocrine activity. Being recognized as an endocrine organ itself, skeletal muscle secretes a panel of cytokines and proteins named myokines, synthesized and secreted by myocytes in response to muscle contraction. Myokines exert an autocrine function in regulating muscle metabolism as well as a paracrine/endocrine regulatory function on distant organs and tissues, such as bone, adipose tissue, brain and liver. Physical activity is the primary physiological stimulus for bone anabolism (and/or catabolism) through the production and secretion of myokines, such as IL-6, irisin, IGF-1, FGF2, beside the direct effect of loading. Importantly, exercise-induced myokine can exert an anti-inflammatory action that is able to counteract not only acute inflammation due to an infection, but also a condition of chronic low-grade inflammation raised as consequence of physical inactivity, aging or metabolic disorders (i.e., obesity, type 2 diabetes mellitus). In this review article, we will discuss the effects that some of the most studied exercise-induced myokines exert on bone formation and bone resorption, as well as a brief overview of the anti-inflammatory effects of myokines during the onset pathological conditions characterized by the development a systemic low-grade inflammation, such as sarcopenia, obesity and aging.
Collapse
Affiliation(s)
- Marta Gomarasca
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Gdańsk University of Physical Education & Sport, Gdańsk, Pomorskie, Poland.
| |
Collapse
|
46
|
Azzolino D, Passarelli PC, De Angelis P, Piccirillo GB, D’Addona A, Cesari M. Poor Oral Health as a Determinant of Malnutrition and Sarcopenia. Nutrients 2019; 11:E2898. [PMID: 31795351 PMCID: PMC6950386 DOI: 10.3390/nu11122898] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Aging is accompanied by profound changes in many physiological functions, leading to a decreased ability to cope with stressors. Many changes are subtle, but can negatively affect nutrient intake, leading to overt malnutrition. Poor oral health may affect food selection and nutrient intake, leading to malnutrition and, consequently, to frailty and sarcopenia. On the other hand, it has been highlighted that sarcopenia is a whole-body process also affecting muscles dedicated to chewing and swallowing. Hence, muscle decline of these muscle groups may also have a negative impact on nutrient intake, increasing the risk for malnutrition. The interplay between oral diseases and malnutrition with frailty and sarcopenia may be explained through biological and environmental factors that are linked to the common burden of inflammation and oxidative stress. The presence of oral problems, alone or in combination with sarcopenia, may thus represent the biological substratum of the disabling cascade experienced by many frail individuals. A multimodal and multidisciplinary approach, including personalized dietary counselling and oral health care, may thus be helpful to better manage the complexity of older people. Furthermore, preventive strategies applied throughout the lifetime could help to preserve both oral and muscle function later in life. Here, we provide an overview on the relevance of poor oral health as a determinant of malnutrition and sarcopenia.
Collapse
Affiliation(s)
- Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Pier Carmine Passarelli
- Department of Head and Neck, Oral Surgery and Implantology Unit, Institute of Clinical Dentistry, Catholic University of Sacred Hearth, Fondazione Policlinico Universitario Gemelli, 00168 Rome, Italy; (P.C.P.); (P.D.A.); (G.B.P.); (A.D.)
| | - Paolo De Angelis
- Department of Head and Neck, Oral Surgery and Implantology Unit, Institute of Clinical Dentistry, Catholic University of Sacred Hearth, Fondazione Policlinico Universitario Gemelli, 00168 Rome, Italy; (P.C.P.); (P.D.A.); (G.B.P.); (A.D.)
| | - Giovan Battista Piccirillo
- Department of Head and Neck, Oral Surgery and Implantology Unit, Institute of Clinical Dentistry, Catholic University of Sacred Hearth, Fondazione Policlinico Universitario Gemelli, 00168 Rome, Italy; (P.C.P.); (P.D.A.); (G.B.P.); (A.D.)
| | - Antonio D’Addona
- Department of Head and Neck, Oral Surgery and Implantology Unit, Institute of Clinical Dentistry, Catholic University of Sacred Hearth, Fondazione Policlinico Universitario Gemelli, 00168 Rome, Italy; (P.C.P.); (P.D.A.); (G.B.P.); (A.D.)
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
47
|
Liu Z, Gao J, Gong H. Effects of treadmill with different intensities on bone quality and muscle properties in adult rats. Biomed Eng Online 2019; 18:107. [PMID: 31718665 PMCID: PMC6852718 DOI: 10.1186/s12938-019-0728-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Bone is a dynamically hierarchical material that can be divided into length scales of several orders of magnitude. Exercise can cause bone deformation, which in turn affects bone mass and structure. This study aimed to study the effects of treadmill running with different intensities on the long bone integrity and muscle biomechanical properties of adult male rats. METHODS Forty-eight 5-month-old male SD rats were randomly divided into 4 groups: i.e., sedentary group (SED), exercise with speed of 12 m/min group (EX12), 16 m/min group (EX16), and 20 m/min group (EX20). The exercise was carried out for 30 min every day, 5 days a week for 4 weeks. The femurs were examined using three-point bending test, microcomputer tomography scanning and nanoindentation test; the soleus muscle was dissected for tensile test; ALP and TRACP concentrations were measured by serum analysis. RESULTS The failure load was significantly increased by the EX12 group, whereas the elastic modulus was not significantly changed. The microstructure and mineral densities of the trabecular and cortical bone were significantly improved by the EX12 group. The mechanical properties of the soleus muscle were significantly increased by treadmill exercise. Bone formation showed significant increase by the EX12 group. Statistically higher nanomechanical properties of cortical bone were detected in the EX12 group. CONCLUSION The speed of 12 m/min resulted in significant changes in the microstructure and biomechanical properties of bone; besides, it significantly increased the ultimate load of the soleus muscle. The different intensities of treadmill running in this study provide an experimental basis for the selection of exercise intensity for adult male rats.
Collapse
Affiliation(s)
- Zhehao Liu
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - Jiazi Gao
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China
| | - He Gong
- Department of Engineering Mechanics, Jilin University, Changchun, 130022, People's Republic of China.
| |
Collapse
|
48
|
Moro T, Brightwell CR, Phalen DE, McKenna CF, Lane SJ, Porter C, Volpi E, Rasmussen BB, Fry CS. Low skeletal muscle capillarization limits muscle adaptation to resistance exercise training in older adults. Exp Gerontol 2019; 127:110723. [PMID: 31518665 DOI: 10.1016/j.exger.2019.110723] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/06/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Adequate muscle perfusion supports the transport of nutrients, oxygen and hormones into muscle fibers. Aging is associated with a substantial decrease in skeletal muscle capillarization, fiber size and oxidative capacity, which may be improved with regular physical activity. The aim of this study was to investigate the relationship between muscle capillarization and indices of muscle hypertrophy (i.e. lean mass; fiber cross sectional area (CSA)) in older adults before and after 12 weeks of progressive resistance exercise training (RET). DESIGN Interventional study SETTING AND PARTICIPANTS: 19 subjects (10 male and 9 female; 71.1 ± 4.3 years; 27.6 ± 3.2 BMI) were enrolled in the study and performed a whole body RET program for 12 weeks. Subjects where then retrospectively divided into a LOW or HIGH group, based on their pre-RET capillary-to-fiber perimeter exchange index (CFPE). Physical activity level, indices of capillarization (capillaries-to-fiber ratio, C:Fi; CFPE index and capillary-to-fiber interface, LC-PF index), muscle hypertrophy, muscle protein turnover and mitochondrial function were assessed before and after RET. RESULTS Basal capillarization (C:Fi; CFPE and LP-CF index) correlates with daily physical activity level (C:Fi, r = 0.57, p = 0.019; CFPE index, r = 0.55, p = 0.024; LC-PF index, r = 0.56, p = 0.022) and CFPE and LC-PF indices were also positively associated with oxidative capacity (respectively r = 0.45, p = 0.06; r = 0.67, p = 0.004). Following RET, subjects in the HIGH group underwent hypertrophy with significant improvements in muscle protein synthesis and muscle fiber CSA (p < 0.05). However, RET did not promote muscle hypertrophy in the LOW group, but RET significantly increased muscle capillary density (p < 0.05). CONCLUSION/IMPLICATIONS Muscle fiber capillarization before starting an exercise training program may be predictive of the muscle hypertrophic response to RET in older adults. Increases in muscle fiber size following RET appear to be blunted when muscle capillarization is low, suggesting that an adequate initial capillarization is critical to achieve a meaningful degree of muscle adaptation to RET.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Camille R Brightwell
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Danielle E Phalen
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Colleen F McKenna
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Samantha J Lane
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA
| | - Craig Porter
- Metabolism Unit, Shriners Hospitals for Children, Galveston, TX, USA; Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Elena Volpi
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA; Department of Internal Medicine/Geriatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Blake B Rasmussen
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA
| | - Christopher S Fry
- Department of Nutrition & Metabolism, School of Health Professions, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
49
|
Damanti S, Azzolino D, Roncaglione C, Arosio B, Rossi P, Cesari M. Efficacy of Nutritional Interventions as Stand-Alone or Synergistic Treatments with Exercise for the Management of Sarcopenia. Nutrients 2019; 11:E1991. [PMID: 31443594 PMCID: PMC6770476 DOI: 10.3390/nu11091991] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is an age-related and accelerated process characterized by a progressive loss of muscle mass and strength/function. It is a multifactorial process associated with several adverse outcomes including falls, frailty, functional decline, hospitalization, and mortality. Hence, sarcopenia represents a major public health problem and has become the focus of intense research. Unfortunately, no pharmacological treatments are yet available to prevent or treat this age-related condition. At present, the only strategies for the management of sarcopenia are mainly based on nutritional and physical exercise interventions. The purpose of this review is, thus, to provide an overview on the role of proteins and other key nutrients, alone or in combination with physical exercise, on muscle parameters.
Collapse
Affiliation(s)
- Sarah Damanti
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Phd Course in Nutritional Sciences, University of Milan, 20122 Milan, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy.
- Phd Course in Nutritional Sciences, University of Milan, 20122 Milan, Italy.
| | - Carlotta Roncaglione
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Paolo Rossi
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Matteo Cesari
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|
50
|
Moro T, Brightwell CR, Velarde B, Fry CS, Nakayama K, Sanbongi C, Volpi E, Rasmussen BB. Whey Protein Hydrolysate Increases Amino Acid Uptake, mTORC1 Signaling, and Protein Synthesis in Skeletal Muscle of Healthy Young Men in a Randomized Crossover Trial. J Nutr 2019; 149:1149-1158. [PMID: 31095313 PMCID: PMC7443767 DOI: 10.1093/jn/nxz053] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/12/2018] [Accepted: 03/04/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Muscle protein synthesis (MPS) can be stimulated by ingestion of protein sources, such as whey, casein, or soy. Protein supplementation can enhance muscle protein synthesis after exercise and may preserve skeletal muscle mass and function in aging adults. Therefore, identifying protein sources with higher anabolic potency is of high significance. OBJECTIVE The aim of this study was to determine the anabolic potency and efficacy of a novel whey protein hydrolysate mixture (WPH) on mechanistic target of rapamycin complex 1 (mTORC1) signaling and skeletal MPS in healthy young subjects. METHODS Ten young men (aged 28.7 ± 3.6 y, 25.2 ± 2.9 kg/m2 body mass index [BMI]) were recruited into a double-blind two-way crossover trial. Subjects were randomized to receive either 0.08 g/kg of body weight (BW) of WPH or an intact whey protein (WHEY) mixture during stable isotope infusion experiments. Fractional synthetic rate, leucine and phenylalanine kinetics, and markers of amino acid sensing were assessed as primary outcomes before and 1-3 h after protein ingestion using a repeated measures mixed model. RESULTS Blood leucine concentration, delivery of leucine to muscle, transport of leucine from blood into muscle and intracellular muscle leucine concentration significantly increased to a similar extent 1 h after ingestion of both mixtures (P < 0.05). Phosphorylation of S6K1 (i.e. a marker of mTORC1 activation) increased equally by ∼20% 1-h postingestion (P < 0.05). Ingestion of WPH and WHEY increased mixed MPS similarly in both groups by ∼43% (P < 0.05); however, phenylalanine utilization for synthesis increased in both treatments 1-h postingestion but remained elevated 3-h postingestion only in the WPH group (P < 0.05). CONCLUSIONS We conclude that a small dose of WPH effectively increases leucine transport into muscle, activating mTORC1 and stimulating MPS in young men. WPH anabolic potency and efficacy for promoting overall muscle protein anabolism is similar to WHEY, an intact protein source. This trial was registered at clinicaltrials.gov as NCT03313830.
Collapse
Affiliation(s)
- Tatiana Moro
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | | | | | - Christopher S Fry
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | - Kyosuke Nakayama
- Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Tokyo, Japan
| | - Chiaki Sanbongi
- Food Science & Technology Research Laboratories, R&D Division, Meiji Co., Ltd., Tokyo, Japan
| | - Elena Volpi
- Department of Internal Medicine/Geriatrics,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX
| | - Blake B Rasmussen
- Department of Nutrition & Metabolism,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX,Address correspondence to BBR (e-mail: )
| |
Collapse
|