1
|
González-Burgos I, Velázquez-Zamora DA, González-Tapia D. Estradiol-mediated modulation of memory and of the underlying dendritic spine plasticity through the life span. Histol Histopathol 2024; 39:411-423. [PMID: 37966087 DOI: 10.14670/hh-18-672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The morphophysiology of the nervous system changes and adapts in response to external environmental inputs and the experiences of individuals throughout their lives. Other changes in the organisms internal environment can also contribute to nervous system restructuring in the form of plastic changes that underlie its capacity to adapt to emerging psychophysiological conditions. These adaptive processes lead to subtle modifications of the organisms internal homeostasis which is closely related with the activity of chemical messengers, such as neurotransmitters and hormones. Hormones reach the brain through the bloodstream, where they activate specific receptors through which certain biochemical, physiological, and morphological changes take place in numerous regions. Fetal development, infancy, puberty, and adulthood are all periods of substantial hormone-mediated brain remodeling in both males and females. Adulthood, specifically, is associated with a broad range of life events, including reproductive cycles in both sexes, and pregnancy and menopause in women. Events of this kind occur concomitantly with eventual modifications in behavioral performance and, especially, in cognitive abilities like learning and memory that underlie, at least in part, plastic changes in the dendritic spines of the neuronal cells in cerebral areas involved in processing cognitive information. Estrogens form a family that consists of three molecules [17β-estradiol (E2), estrone, estriol] which are deeply involved in regulating numerous bodily functions in different stages of the life-cycle, including the modulation of cognitive performance. This review addresses the effects of E2 on the dendritic spine-mediated synaptic organization of cognitive performance throughout the life span.
Collapse
Affiliation(s)
| | | | - David González-Tapia
- Department of Health-disease as an individual and collective process, Health Division, Tlajomulco University Centre, University of Guadalajara, Tlajomulco de Zúñiga, Jalisco, México
| |
Collapse
|
2
|
Begde A, Wilcockson T, Brayne C, Hogervorst E. Visual processing speed and its association with future dementia development in a population-based prospective cohort: EPIC-Norfolk. Sci Rep 2024; 14:5016. [PMID: 38424122 PMCID: PMC10904745 DOI: 10.1038/s41598-024-55637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
Visual processing deficits have frequently been reported when studied in individuals with dementia, which suggests their potential utility in supporting dementia screening. The study uses EPIC-Norfolk Prospective Population Cohort Study data (n = 8623) to investigate the role of visual processing speed assessed by the Visual Sensitivity Test (VST) in identifying the risk of future dementia using Cox regression analyses. Individuals with lower scores on the simple and complex VST had a higher probability of a future dementia diagnosis HR1.39 (95% CI 1.12, 1.67, P < 0.01) and HR 1.56 (95% CI 1.27, 1.90, P < 0.01), respectively. Although other more commonly used cognitive dementia screening tests were better predictors of future dementia risk (HR 3.45 for HVLT and HR 2.66, for SF-EMSE), the complex VST showed greater sensitivity to variables frequently associated with dementia risk. Reduced complex visual processing speed is significantly associated with a high likelihood of a future dementia diagnosis and risk/protective factors in this cohort. Combining visual processing tests with other neuropsychological tests could improve the identification of future dementia risk.
Collapse
Affiliation(s)
- Ahmet Begde
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Thomas Wilcockson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Carol Brayne
- Department of Public Health, University of Cambridge, Cambridge, Cambridgeshire, CB2 1PZ, UK
| | - Eef Hogervorst
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
3
|
Brown A, Gervais NJ, Rieck J, Almey A, Gravelsins L, Reuben R, Karkaby L, Rajah MN, Grady C, Einstein G. Women's Brain Health: Midlife Ovarian Removal Affects Associative Memory. Mol Neurobiol 2023; 60:6145-6159. [PMID: 37423941 PMCID: PMC10533588 DOI: 10.1007/s12035-023-03424-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/04/2023] [Indexed: 07/11/2023]
Abstract
Women with early bilateral salpingo-oophorectomy (BSO; removal of ovaries and fallopian tubes) have greater Alzheimer's disease (AD) risk than women in spontaneous/natural menopause (SM), but early biomarkers of this risk are not well-characterized. Considering associative memory deficits may presage preclinical AD, we wondered if one of the earliest changes might be in associative memory and whether younger women with BSO had changes similar to those observed in SM. Women with BSO (with and without 17β-estradiol replacement therapy (ERT)), their age-matched premenopausal controls (AMC), and older women in SM completed a functional magnetic resonance imaging face-name associative memory task shown to predict early AD. Brain activation during encoding was compared between groups: AMC (n=25), BSO no ERT (BSO; n=15), BSO+ERT (n=16), and SM without hormone therapy (n=16). Region-of-interest analyses revealed AMC did not contribute to functional group differences. BSO+ERT had higher hippocampal activation than BSO and SM. This hippocampal activation correlated positively with urinary metabolite levels of 17β-estradiol. Multivariate partial least squares analyses showed BSO+ERT had a different network-level activation pattern than BSO and SM. Thus, despite being approximately 10 years younger, women with BSO without ERT had similar brain function to those with SM, suggesting early 17β-estradiol loss may lead to an altered functional brain phenotype which could influence late-life AD risk, making face-name encoding a potential biomarker for midlife women with increased AD risk. Despite similarities in activation, BSO and SM groups showed opposite within-hippocampus connectivity, suggesting menopause type is an important consideration when assessing brain function.
Collapse
Affiliation(s)
- Alana Brown
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada.
| | - Nicole J Gervais
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
| | - Jenny Rieck
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
| | - Anne Almey
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laura Gravelsins
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Rebekah Reuben
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - Laurice Karkaby
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
| | - M Natasha Rajah
- Departments of Psychiatry and Douglas Research Centre, McGill University, Montreal, H4H 1R3, Canada
| | - Cheryl Grady
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
- Psychiatry, University of Toronto, Toronto, M5T 1R8, Canada
| | - Gillian Einstein
- Psychology, University of Toronto, 100 St. George Street, Toronto, ON, M5S 3G3, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, M6A 2E1, Canada
- Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
4
|
Itoh N, Itoh Y, Meyer CE, Suen TT, Cortez-Delgado D, Rivera Lomeli M, Wendin S, Somepalli SS, Golden LC, MacKenzie-Graham A, Voskuhl RR. Estrogen receptor beta in astrocytes modulates cognitive function in mid-age female mice. Nat Commun 2023; 14:6044. [PMID: 37758709 PMCID: PMC10533869 DOI: 10.1038/s41467-023-41723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Menopause is associated with cognitive deficits and brain atrophy, but the brain region and cell-specific mechanisms are not fully understood. Here, we identify a sex hormone by age interaction whereby loss of ovarian hormones in female mice at midlife, but not young age, induced hippocampal-dependent cognitive impairment, dorsal hippocampal atrophy, and astrocyte and microglia activation with synaptic loss. Selective deletion of estrogen receptor beta (ERβ) in astrocytes, but not neurons, in gonadally intact female mice induced the same brain effects. RNA sequencing and pathway analyses of gene expression in hippocampal astrocytes from midlife female astrocyte-ERβ conditional knock out (cKO) mice revealed Gluconeogenesis I and Glycolysis I as the most differentially expressed pathways. Enolase 1 gene expression was increased in hippocampi from both astrocyte-ERβ cKO female mice at midlife and from postmenopausal women. Gain of function studies showed that ERβ ligand treatment of midlife female mice reversed dorsal hippocampal neuropathology.
Collapse
Affiliation(s)
- Noriko Itoh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Cassandra E Meyer
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Timothy Takazo Suen
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Diego Cortez-Delgado
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Sophia Wendin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sri Sanjana Somepalli
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lisa C Golden
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Allan MacKenzie-Graham
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rhonda R Voskuhl
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Sharma A, Davies R, Kapoor A, Islam H, Webber L, Jayasena CN. The effect of hormone replacement therapy on cognition and mood. Clin Endocrinol (Oxf) 2023; 98:285-295. [PMID: 36447434 PMCID: PMC11497347 DOI: 10.1111/cen.14856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVES To summarise the available data regarding the effect of hormone replacement therapy (HRT) on cognition and mood in women. BACKGROUND Complaints of impaired cognition and mood are common in the peri-menopausal and menopausal period. There is debate as to whether HRT can ameliorate this phenomenon. DESIGN A literature search of studies using electronic databases was conducted. Both randomised control trials and observational studies were included. PATIENTS Perimenopausal and menopausal women. RESULTS Due to the heterogenicity of results it is challenging to draw firm conclusions. The preparations used in many of the studies are older regimes no longer routinely used clinically. The notion of a 'critical window' for HRT is compelling, suggesting HRT has a positive impact on cognition when administered in the peri-menopausal or early postmenopausal period but may have negative effects on cognition in the older, postmenopausal woman. The evidence would seem to suggest importance of hormonal replacement in woman undergoing a surgical menopause, especially when young. It remains unclear for how long they ought to continue HRT though until at least the natural age of the menopause seems reasonable. Evidence for a positive effect of HRT on mood is more convincing, though possibly more efficacious in the younger age group. The effect of HRT on anxiety is less clear. CONCLUSIONS Further study, particularly focusing on the more contemporaneous HRT preparations, is warranted before evidence-based conclusions can be drawn.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Rhianna Davies
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | | | | | - Lisa Webber
- Department of GynaecologySt. Mary's HospitalLondonUK
| | - Channa N. Jayasena
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| |
Collapse
|
6
|
Abstract
BackgroundWomen in many cohorts have a higher risk for Alzheimer's disease (AD), the most common form of dementia. Sex is a biological construct whereby differences in disease manifestation and prevalence are rooted in genetic differences between XX and XY combinations of chromosomes. This chapter focuses specifically on sex-driven differences in dementia, as opposed to differences driven by gender - a social construct referring to the societal norms that influence people's roles, relationships, and positional power throughout their lifetime.MethodsUsing a narrative review, this chapter explored the characteristics and risk factors for the dementias, alongside a discussion of sex differences including loss of sex steroid hormones in middle-aged women, differences in the prevalence of cardiovascular diseases and engagement in lifestyle protective factors for dementia.ResultsThe sex difference in AD prevalence may exist because of systematic and historic differences in risk and protective factors for dementia, including level of education obtained and socioeconomic status differences, which can impact on health and dementia risk.Levels of sex steroids decline significantly after menopause in women, whereas this is more gradual in men with age. Animal and cell culture studies show strong biological plausibility for sex steroids to protect the ageing brain against dementia. Sex steroid hormone replacement therapy has in some observational studies shown to protect against AD, but treatment studies in humans have mainly shown disappointing results. Cardiovascular disease (CVD) shares midlife medical risk (e.g. hypertension, hyperlipidaemia, obesity etc.) factors with AD and other forms of dementia, but also with related lifestyle risk - and protective factors (e.g. exercise, not smoking etc.). Men tend to die earlier of CVD, so fewer survive to develop AD at an older age. Those who do survive may have healthier lifestyles and fewer risk factors for both CVD and AD. An earlier age at menopause also confers great risk for both without hormone treatment.DiscussionIt could be the case that the decline in sex steroids around the menopause make women more susceptible to lifestyle-related risk factors associated with dementia and CVD, but this remains to be further investigated. Combining hormone treatment with lifestyle changes in midlife (e.g. exercise) could be an important preventative treatment for dementia and CVD in later life, but this also requires further research.
Collapse
|
7
|
Voskuhl R, Itoh Y. The X factor in neurodegeneration. J Exp Med 2022; 219:e20211488. [PMID: 36331399 PMCID: PMC9641640 DOI: 10.1084/jem.20211488] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 07/25/2023] Open
Abstract
Given the aging population, it is important to better understand neurodegeneration in aging healthy people and to address the increasing incidence of neurodegenerative diseases. It is imperative to apply novel strategies to identify neuroprotective therapeutics. The study of sex differences in neurodegeneration can reveal new candidate treatment targets tailored for women and men. Sex chromosome effects on neurodegeneration remain understudied and represent a promising frontier for discovery. Here, we will review sex differences in neurodegeneration, focusing on the study of sex chromosome effects in the context of declining levels of sex hormones during aging.
Collapse
Affiliation(s)
- Rhonda Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
8
|
Graham S, Archer DF, Simon JA, Ohleth KM, Bernick B. Review of menopausal hormone therapy with estradiol and progesterone versus other estrogens and progestins. Gynecol Endocrinol 2022; 38:891-910. [PMID: 36075250 DOI: 10.1080/09513590.2022.2118254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Objective: The objective of the present document was to review/summarize reported outcomes compared between menopausal hormone therapy (MHT) containing estradiol (E2) versus other estrogens and MHT with progesterone (P4) versus progestins (defined as synthetic progestogens).Methods: PubMed and EMBASE were systematically searched through February 2021 for studies comparing oral E2 versus oral conjugated equine estrogens (CEE) or P4 versus progestins for endometrial outcomes, venous thromboembolism (VTE), cardiovascular outcomes, breast outcomes, cognition, and bone outcomes in postmenopausal women.Results: A total of 74 comparative publications were identified/summarized. Randomized studies suggested that P4 and progestins are likely equally effective in preventing endometrial hyperplasia/cancer when used at adequate doses. E2- versus CEE-based MHT had a similar or possibly better risk profile for VTE and cardiovascular outcomes, and P4- versus progestin-based MHT had a similar or possibly better profile for breast cancer and cardiovascular outcomes. E2 may potentially protect better against age-related cognitive decline and bone fractures versus CEE; P4 was similar or possibly better versus progestins for these outcomes. Limitations are that many studies were observational and some were not adequately powered for the reported outcomes.Conclusions: Evidence suggests a differential effect of MHT containing E2 or P4 and those containing CEE or progestins, with some evidence trending to a potentially better safety profile with E2 and/or P4.
Collapse
Affiliation(s)
| | - David F Archer
- Department of Obstetrics and Gynecology, Clinical Research Center, Eastern Virginia Medical School, Norfolk, VA
| | - James A Simon
- School of Medicine, George Washington University, Washington, DC
| | | | | |
Collapse
|
9
|
Lee CC, Chen SY, Lee TM. 17β-Oestradiol facilitates M2 macrophage skewing and ameliorates arrhythmias in ovariectomized female infarcted rats. J Cell Mol Med 2022; 26:3396-3409. [PMID: 35514058 PMCID: PMC9189348 DOI: 10.1111/jcmm.17344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/27/2022] Open
Abstract
Epidemiological studies have suggested a lower incidence of arrhythmia‐induced sudden cardiac death in women than in men. 17β‐oestradiol (E2) has been reported to have a post‐myocardial infarction antiarrhythmic effect, although the mechanisms have yet to be elucidated. We investigated whether E2‐mediated antioxidation regulates macrophage polarization and affects cardiac sympathetic reinnervation in rats after MI. Ovariectomized Wistar rats were randomly assigned to placebo pellets, E2 treatment, or E2 treatment +3‐morpholinosydnonimine (a peroxynitrite generator) and followed for 4 weeks. The infarct sizes were similar among the infarcted groups. At Day 3 after infarction, post‐infarction was associated with increased superoxide levels, which were inhibited by administering E2. E2 significantly increased myocardial IL‐10 levels and the percentage of regulatory M2 macrophages compared with the ovariectomized infarcted alone group as assessed by immunohistochemical staining, Western blot and RT‐PCR. Nerve growth factor colocalized with both M1 and M2 macrophages at the magnitude significantly higher in M1 compared with M2. At Day 28 after infarction, E2 was associated with attenuated myocardial norepinephrine levels and sympathetic hyperinnervation. These effects of E2 were functionally translated in inhibiting fatal arrhythmias. The beneficial effect of E2 on macrophage polarization and sympathetic hyperinnervation was abolished by 3‐morpholinosydnonimine. Our results indicated that E2 polarized macrophages into the M2 phenotype by inhibiting the superoxide pathway, leading to attenuated nerve growth factor‐induced sympathetic hyperinnervation after myocardial infarction.
Collapse
Affiliation(s)
| | - Syue-Yi Chen
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Tsung-Ming Lee
- Cardiovascular Institute, An Nan Hospital, China Medical University, Tainan, Taiwan.,Department of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
10
|
Farzane A, Koushkie Jahromi M. The effect of pilates training on hormonal and psychophysical function in older women. J Sports Med Phys Fitness 2022; 62:110-121. [PMID: 33555671 DOI: 10.23736/s0022-4707.21.12089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND DHEA-S and cortisol and their ratio are important determinants of some physiological and psychological function during aging. The present study aimed to determine the effect of eight weeks of pilates training on diurnal salivary cortisol, dehydroepiandrosterone sulfate (DHEA-S), and cortisol to DHEA-S ratio, cardiorespiratory fitness (CF), and psychological function in older women. METHODS Twenty-seven healthy older women (aged 60-65 years) participated in the study voluntarily and were divided into two groups of pilates training (N.=15) and control (N.=12), randomly. Before and after the experiment, salivary samples (at wake up and 30-min postawakening, midday, 5 p.m., and 9 p.m.) were taken and the participants completed the questionnaires. Cognitive function was assessed by the MMSE questionnaire. Pilates training was performed three times weekly, in non-consecutive days. RESULTS Pilates training increased V̇O2<inf>max</inf> (48%, P<0.001) and cognitive function (73%, P<0.001) and decreased BMI (16%, P=0.042), anxiety (53%, P<0.001) and depression (67%, P<0.001) compared to the control group. Also, in pilates training group, mean cortisol (16%, P=0.039), CAR (24%, P=0.010), fall after peak of cortisol (15%, P=0.50), morning DHEA-S (43%, P<0.001) and mean DHEA-S (34%, P=0.002) increased compared to the control group. CONCLUSIONS This study suggests that pilates training could improve mental and physical function which was accompanied by changes of diurnal cortisol and DHEA as one of the possible effective factors.
Collapse
Affiliation(s)
- Arezu Farzane
- School of Education and Psychology, Department of Sport Sciences, Shiraz University, Shiraz, Iran
| | - Maryam Koushkie Jahromi
- School of Education and Psychology, Department of Sport Sciences, Shiraz University, Shiraz, Iran -
| |
Collapse
|
11
|
Kim YJ, Soto M, Branigan GL, Rodgers K, Brinton RD. Association between menopausal hormone therapy and risk of neurodegenerative diseases: Implications for precision hormone therapy. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2021; 7:e12174. [PMID: 34027024 PMCID: PMC8118114 DOI: 10.1002/trc2.12174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The impact of menopausal hormone therapy (HT) on age-associated Alzheimer's and neurodegenerative diseases (NDDs) remains unresolved. To determine the effect of HT, formulation, type, and duration on risk of NDDs, a retrospective analysis was performed using a 10-year Humana claims dataset. METHODS Study population included women aged 45 years or older with or without claim records of HT medications. Patients diagnosed with NDDs including Alzheimer's disease (AD), Parkinson's disease (PD), dementia, multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) were identified. Relative risk (RR) ratios and 95% confidence intervals (CI) for combined NDDs, or AD, PD, dementia, MS, and ALS were determined. Cumulative hazard ratios were determined to investigate the association between HT and NDDs at different age groups. RESULTS In 379,352 women with or without claim records of HT, use of HT was associated with significantly reduced risk for combined NDDs (RR 0.42, 95% CI 0.40-0.43, P < 0.001). Average follow-up time was 5.1 [2.3] years. Formulations containing natural steroids 17β-estradiol and/or progesterone were associated with greater reduction in NDD risk. Oral- HT users showed significantly reduced RRs (0.42, 0.41-0.44, P < 0.001) for combined NDDs compared to non-HT users. The RRs for transdermal-HT users were significantly decreased for all-cause dementia (0.73, 0.60-0.88, P = 0.001) and MS (0.55, 0.36-0.84, P = 0.005). Greatest reduction in risk of NDD, AD, and dementia emerged in patients aged 65 years or older. Further, the protective effect of long-term therapy (>1 year) on combined NDDs, AD, PD, and dementia was greater compared to short-term therapy (≤1 year). DISCUSSION HT was associated with reduced risk of all NDDs including AD and dementia, with greater duration of therapy and natural steroid formulations associated with greater efficacy. These findings advance precision HT to prevent NDDs including AD.
Collapse
Affiliation(s)
- Yu Jin Kim
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
| | - Maira Soto
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| | - Gregory L Branigan
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
- College of MedicineMD‐PhD Training ProgramUniversity of ArizonaTucsonArizonaUSA
| | - Kathleen Rodgers
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain ScienceUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of PharmacologyUniversity of ArizonaTucsonArizonaUSA
- College of Medicine, Department of NeurologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
12
|
Bimonte-Nelson HA, Bernaud VE, Koebele SV. Menopause, hormone therapy and cognition: maximizing translation from preclinical research. Climacteric 2021; 24:373-381. [PMID: 33977823 DOI: 10.1080/13697137.2021.1917538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Menopause-associated and hormone-associated cognitive research has a rich history built from varied disciplines and species. This review discusses landmark rodent and human work addressing cognitive outcomes associated with varied experiences of menopause and hormone therapy. Critical variables in menopause and cognitive aging research are considered, including menopause etiology, background hormone milieu and parameters of exposure to estrogens and progestogens. Recent preclinical research has identified that menopause and ovarian hormone fluctuations across many neurobiological systems affect cognitive aging, mapping novel avenues for future research. Preclinical models provide insight into complex interdisciplinary relationships in a systematic and highly controlled fashion. We highlight that acknowledging the strengths and weaknesses for both preclinical and clinical research approaches is vital to accurate interpretation, optimal translation and the direction of future research. There is great value in collaboration and communication across preclinical and clinical realms, especially regarding reciprocal feedback of findings to advance preclinical models, improve experimental designs and enrich basic science translation to the clinic. In searching for biological mechanisms underlying the cognitive consequences of menopause and hormone therapies, it is noteworthy that clinical and preclinical scientists are grounded in the same fundamental goal of optimizing health outcomes for women across the lifespan.
Collapse
Affiliation(s)
- H A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - V E Bernaud
- Department of Psychology, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - S V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ, USA.,Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| |
Collapse
|
13
|
Chou HT, Wu PY, Huang JC, Chen SC, Ho WY. Late Menarche, Not Reproductive Period, Is Associated with Poor Cognitive Function in Postmenopausal Women in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2345. [PMID: 33673620 PMCID: PMC7967768 DOI: 10.3390/ijerph18052345] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 01/09/2023]
Abstract
Female sex hormones such as estrogen and progesterone play an important role in the regulation of a woman's body, including cognition and neurogenesis. However, the effects of age at menarche and reproductive period on cognitive function are still controversial. The aim of this study was to investigate the relationships between age at menarche and reproductive period with cognitive impairment. Data were obtained from the Taiwan Biobank. Cognitive function was assessed using the Mini Mental State Examination (MMSE) and its five subdomains. Multivariable linear regression analysis revealed that an old age at menarche (per one year; coefficient β, -0.189; p = 0.020) was significantly associated with a low total MMSE score, whereas reproductive period (p = 0.733) was not significantly associated with total MMSE score. Furthermore, an old age at menarche was significantly associated with low MMSE G2 (registration) (per one year; coefficient β, -0.022; p = 0.035) and G5 (language, construction and obey) scores (per one year; coefficient β, -0.054; p = 0.047). However, age at menarche was not significantly associated with MMSE G1 (orientation), G3 (attention and calculation) and G4 (recall) scores. In addition, reproductive period was not significantly associated with any MMSE subscores. Late menarche was associated with poor cognitive function, including low total MMSE score and low MMSE G2 and G5 scores. However, reproductive period was not associated with cognitive function in postmenopausal women.
Collapse
Affiliation(s)
- Hung-Tse Chou
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Pei-Yu Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (P.-Y.W.); (J.-C.H.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jiun-Chi Huang
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (P.-Y.W.); (J.-C.H.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (P.-Y.W.); (J.-C.H.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wan-Yi Ho
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
14
|
Abstract
Since the introduction of menopausal hormone therapy (MHT) in the 1940s, randomized clinical trials and observational studies have been performed to determine the benefits and risks of MHT. However, MHT therapeutic impact remains under debate as multiple factors including genetic biomarkers and medical history contribute to inter-individual variations in neurodegenerative diseases. Herein, we review the characteristics of women who participated in clinical studies and methodological approaches for study analyses to assess the critical variables influencing an association between MHT and risk of neurodegenerative diseases. Outcomes of the review indicated that: (1) observational studies assessed outcomes of MHT in symptomatic women whereas MHT clinical trials were conducted in asymptomatic postmenopausal women not treated for menopausal symptoms, (2) in asymptomatic postmenopausal women, late MHT intervention was of no benefit, (3) different MHT treatments and regimens between observational studies and clinical trials may impact outcomes, and (4) observational studies may provide greater predictive validity for long-term neurological health outcomes as MHT was introduced in symptomatic women and administered over a long period of time. Going forward, achieving precision hormone therapy will require a priori identification of symptomatic women appropriate for MHT and the type and dose of MHT appropriate for their genetic profile and health risks.
Collapse
Affiliation(s)
- Y J Kim
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA
| | - R D Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
Gilli F, DiSano KD, Pachner AR. SeXX Matters in Multiple Sclerosis. Front Neurol 2020; 11:616. [PMID: 32719651 PMCID: PMC7347971 DOI: 10.3389/fneur.2020.00616] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). An interesting feature that this debilitating disease shares with many other inflammatory disorders is that susceptibility is higher in females than in males, with the risk of MS being three times higher in women compared to men. Nonetheless, while men have a decreased risk of developing MS, many studies suggest that males have a worse clinical outcome. MS exhibits an apparent sexual dimorphism in both the immune response and the pathophysiology of the CNS damage, ultimately affecting disease susceptibility and progression differently. Overall, women are predisposed to higher rates of inflammatory relapses than men, but men are more likely to manifest signs of disease progression and worse CNS damage. The observed sexual dimorphism in MS may be due to sex hormones and sex chromosomes, acting in parallel or combination. In this review, we outline current knowledge on the sexual dimorphism in MS and discuss the interplay of sex chromosomes, sex hormones, and the immune system in driving MS disease susceptibility and progression.
Collapse
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | | | | |
Collapse
|
16
|
Yare K, Woodward M. Hormone Therapy and Effects on Sporadic Alzheimer’s Disease in Postmenopausal Women: Importance of Nomenclature. J Alzheimers Dis 2020; 73:23-37. [DOI: 10.3233/jad-190896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Katrine Yare
- Austin Health, Heidelberg Repatriation Hospital, Victoria, Australia
| | - Michael Woodward
- Austin Health, Heidelberg Repatriation Hospital, Victoria, Australia
| |
Collapse
|
17
|
Postmenopausal hormone treatment alters neural pathways but does not improve verbal cognitive function. Menopause 2019; 25:1424-1431. [PMID: 29994967 DOI: 10.1097/gme.0000000000001157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Cognitive outcomes in trials of postmenopausal hormone treatment have been inconsistent. Differing outcomes may be attributed to hormone formulation, treatment duration and timing, and differential cognitive domain effects. We previously demonstrated treatment benefits on visual cognitive function. In the present study, we describe the effects of hormone treatment on verbal outcomes in the same women, seeking to understand the effects of prior versus current hormone treatment on verbal function. METHODS This is a cross-sectional evaluation of 57 women (38 hormone users [25 prior long-term users and 13 current users] and 19 never-users). Hormone users took identical formulations of estrogen or estrogen + progestin (0.625 mg/d conjugated equine estrogens with or without medroxyprogesterone acetate) for at least 10 years, beginning within 2 years of menopause. Women were evaluated with tests of verbal function and functional magnetic resonance imaging (fMRI) of a verbal discrimination task. RESULTS All women scored similarly on assessments of verbal function (Hopkins Verbal Learning Test and a verbal discrimination task performed during the fMRI scanning session); however, women ever treated with hormones had more left inferior frontal (T = 3.72; P < 0.001) and right prefrontal cortex (T = 3.53; P < 0.001) activation during the verbal task. Hormone-treated women performed slightly worse on the verbal discrimination task (mean accuracy 81.72 ± 11.57 ever-treated, 85.30 ± 5.87 never-treated, P = 0.14), took longer to respond (mean reaction time 1.10 ± 0.17 s ever-treated, 1.02 ± 0.11 never-treated, P = 0.03), and remembered fewer previously viewed words (mean accuracy 62.21 ± 8.73 ever-treated, 65.45 ± 7.49 never-treated, P = 0.18). Increased posterior cingulate activity was associated with longer response times (R = 0.323, P = 0.015) and worse delayed verbal recall (R = -0.328, P = 0.048), suggesting that increased activation was associated with less efficient cognitive processing. We did not detect between group differences in activation in the left prefrontal cortex, superior frontal cortex, thalamus, or occipital/parietal junction. CONCLUSIONS Although current and past hormone treatment was associated with differences in neural pathways used during verbal discrimination, verbal function was not higher than never-users.
Collapse
|
18
|
Dodda BR, Bondi CD, Hasan M, Clafshenkel WP, Gallagher KM, Kotlarczyk MP, Sethi S, Buszko E, Latimer JJ, Cline JM, Witt-Enderby PA, Davis VL. Co-administering Melatonin With an Estradiol-Progesterone Menopausal Hormone Therapy Represses Mammary Cancer Development in a Mouse Model of HER2-Positive Breast Cancer. Front Oncol 2019; 9:525. [PMID: 31355130 PMCID: PMC6636553 DOI: 10.3389/fonc.2019.00525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin has numerous anti-cancer properties reported to influence cancer initiation, promotion, and metastasis. With the need for effective hormone therapies (HT) to treat menopausal symptoms without increasing breast cancer risk, co-administration of nocturnal melatonin with a natural, low-dose HT was evaluated in mice that develop primary and metastatic mammary cancer. Individually, melatonin (MEL) and estradiol-progesterone therapy (EPT) did not significantly affect mammary cancer development through age 14 months, but, when combined, the melatonin-estradiol-progesterone therapy (MEPT) significantly repressed tumor formation. This repression was due to effects on tumor incidence, but not latency. These results demonstrate that melatonin and the HT cooperate to decrease the mammary cancer risk. Melatonin and EPT also cooperate to alter the balance of the progesterone receptor (PR) isoforms by significantly increasing PRA protein expression only in MEPT mammary glands. Melatonin significantly suppressed amphiregulin transcripts in MEL and MEPT mammary glands, suggesting that amphiregulin together with the higher PRA:PRB balance and other factors may contribute to reducing cancer development in MEPT mice. Melatonin supplementation influenced mammary morphology by increasing tertiary branching in the mouse mammary glands and differentiation in human mammary epithelial cell cultures. Uterine weight in the luteal phase was elevated after long-term exposure to EPT, but not to MEPT, indicating that melatonin supplementation may reduce estrogen-induced uterine stimulation. Melatonin supplementation significantly decreased the incidence of grossly-detected lung metastases in MEL mice, suggesting that melatonin delays the formation of metastatic lesions and/or decreases aggressiveness in this model of HER2+ breast cancer. Mammary tumor development was similar in EPT and MEPT mice until age 8.6 months, but after 8.6 months, only MEPT continued to suppress cancer development. These data suggest that melatonin supplementation has a negligible effect in young MEPT mice, but is required in older mice to inhibit tumor formation. Since melatonin binding was significantly decreased in older mammary glands, irrespective of treatment, melatonin supplementation may overcome reduced melatonin responsiveness in the aged MEPT mice. Since melatonin levels are known to decline near menopause, nocturnal melatonin supplementation may also be needed in aging women to cooperate with HT to decrease breast cancer risk.
Collapse
Affiliation(s)
- Balasunder R Dodda
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Corry D Bondi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mahmud Hasan
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - William P Clafshenkel
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Katie M Gallagher
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Mary P Kotlarczyk
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Shalini Sethi
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Ethan Buszko
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jean J Latimer
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - J Mark Cline
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Paula A Witt-Enderby
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.,UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vicki L Davis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Pabbidi MR, Kuppusamy M, Didion SP, Sanapureddy P, Reed JT, Sontakke SP. Sex differences in the vascular function and related mechanisms: role of 17β-estradiol. Am J Physiol Heart Circ Physiol 2018; 315:H1499-H1518. [DOI: 10.1152/ajpheart.00194.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The incidence of cardiovascular disease (CVD) is lower in premenopausal women but increases with age and menopause compared with similarly aged men. Based on the prevalence of CVD in postmenopausal women, sex hormone-dependent mechanisms have been postulated to be the primary factors responsible for the protection from CVD in premenopausal women. Recent Women’s Health Initiative studies, Cochrane Review studies, the Early Versus Late Intervention Trial with Estradiol Study, and the Kronos Early Estrogen Prevention Study have suggested that beneficial effects of hormone replacement therapy (HRT) are seen in women of <60 yr of age and if initiated within <10 yr of menopause. In contrast, the beneficial effects of HRT are not seen in women of >60 yr of age and if commenced after 10 yr of menopause. The higher incidence of CVD and the failure of HRT in postmenopausal aged women could be partly associated with fundamental differences in the vascular structure and function between men and women and in between pre- and postmenopausal women, respectively. In this regard, previous studies from human and animal studies have identified several sex differences in vascular function and associated mechanisms. The female sex hormone 17β-estradiol regulates the majority of these mechanisms. In this review, we summarize the sex differences in vascular structure, myogenic properties, endothelium-dependent and -independent mechanisms, and the role of 17β-estradiol in the regulation of vascular function.
Collapse
Affiliation(s)
- Mallikarjuna R. Pabbidi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Maniselvan Kuppusamy
- Division of Endocrinology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sean P. Didion
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Padmaja Sanapureddy
- Department of Primary Care and Medicine, G. V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, Mississippi
| | - Joey T. Reed
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sumit P. Sontakke
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
20
|
Speth RC, D'Ambra M, Ji H, Sandberg K. A heartfelt message, estrogen replacement therapy: use it or lose it. Am J Physiol Heart Circ Physiol 2018; 315:H1765-H1778. [PMID: 30216118 PMCID: PMC6336974 DOI: 10.1152/ajpheart.00041.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
The issue of cardiovascular and cognitive health in women is complex. During the premenopausal phase of life, women have healthy blood pressure levels that are lower than those of age-matched men, and they have less cardiovascular disease. However, in the postmenopausal stage of life, blood pressure in women increases, and they are increasingly susceptible to cardiovascular disease, cognitive impairments, and dementia, exceeding the incidence in men. The major difference between pre- and postmenopausal women is the loss of estrogen. Thus, it seemed logical that postmenopausal estrogen replacement therapy, with or without progestin, generally referred to as menopausal hormone treatment (MHT), would prevent these adverse sequelae. However, despite initially promising results, a major randomized clinical trial refuted the benefits of MHT, leading to its falling from favor. However, reappraisal of this study in the framework of a "critical window," or "timing hypothesis," has changed our perspective on the benefit-to-risk ratio of MHT, and this review discusses the historical, current, and future approaches to MHT.
Collapse
Affiliation(s)
- Robert C Speth
- College of Pharmacy, Nova Southeastern University , Fort Lauderdale, Florida
- Department of Pharmacology and Physiology, College of Medicine, Georgetown University , Washington, District of Columbia
| | | | - Hong Ji
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University , Washington, District of Columbia
| | | |
Collapse
|
21
|
Dominguez R, Zitting M, Liu Q, Patel A, Babadjouni R, Hodis DM, Chow RH, Mack WJ. Estradiol Protects White Matter of Male C57BL6J Mice against Experimental Chronic Cerebral Hypoperfusion. J Stroke Cerebrovasc Dis 2018; 27:1743-1751. [PMID: 29602614 PMCID: PMC5972054 DOI: 10.1016/j.jstrokecerebrovasdis.2018.01.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 01/03/2018] [Accepted: 01/25/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Estradiol is a sex steroid hormone known to protect the brain against damage related to transient and global cerebral ischemia. In the present study, we leverage an experimental murine model of bilateral carotid artery stenosis (BCAS) to examine the putative effects of estradiol therapy on chronic cerebral hypoperfusion. We hypothesize that long-term estradiol therapy protects against white matter injury and declarative memory deficits associated with chronic cerebral hypoperfusion. METHODS Adult male C57BL/6J mice underwent either surgical BCAS or sham procedures. Two days after surgery, the mice were given oral estradiol (Sham+E, BCAS+E) or placebo (Sham+P, BCAS+P) treatments daily for 31-34 days. All mice underwent Novel Object Recognition (NOR) testing 31-34 days after the start of oral treatments. Following sacrifice, blood was collected and brains fixed, sliced, and prepared for histological examination of white matter injury and extracellular signal-regulated kinase (ERK) expression. RESULTS Animals receiving long-term oral estradiol therapy (BCAS-E2 and Sham-E2) had higher plasma estradiol levels than those receiving placebo treatment (BCAS-P and Sham-P). BCAS-E2 mice demonstrated less white matter injury (Klüver-Barrera staining) and performed better on the NOR task compared to BCAS-P mice. ERK expression in the brain was increased in the BCAS compared to sham cohorts. Among the BCAS mice, the BCAS-E2 cohort had a greater number of ERK + cells. CONCLUSION This study demonstrates a potentially protective role for oral estradiol therapy in the setting of white matter injury and declarative memory deficits secondary to murine chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Reymundo Dominguez
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Madison Zitting
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Qinghai Liu
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Arati Patel
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robin Babadjouni
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Drew M Hodis
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert H Chow
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - William J Mack
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
22
|
Abstract
OBJECTIVE Metabolic syndrome (MetS) is a cluster of risk factors for cardiovascular disease and diabetes. Menopause is associated with an increased risk for MetS. The purpose of this meta-analysis is to better understand the relationship between MetS and menopause. METHODS MEDLINE and EMBASE were searched for all the associated articles on (1) MetS components in postmenopausal women vs. premenopausal women, (2) comparison of MetS incidence between surgical menopause and natural menopause, (3) the effect of hormone therapy (HT) with 17β-estradiol (E2) compared to conjugated equine estrogen (CEE) on MetS components among postmenopausal women. A meta-analysis was applied by Review Manager 5.3 software. RESULTS All comparable indicators were significantly unfavorably changed in postmenopausal women compared to premenopausal women except for high density lipoprotein cholesterol. Women who underwent surgical menopause suffered a 1.51-fold higher risk for MetS compared to those with natural menopause. HT with E2 provided more benefits for levels of triglyceride and diastolic blood, while CEE showed a better effect on both high and low density lipoprotein cholesterol levels. CONCLUSIONS Menopause nearly adversely affects all components of MetS, and surgical menopause may lead to a higher incidence of MetS compared to natural menopause. HT with various preparations may have different effects on MetS components. These results may clarify the management of menopause-related MetS in clinical practice.
Collapse
Affiliation(s)
- D Pu
- a State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology , The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, Nanjing Medical University , Nanjing , China
| | - R Tan
- a State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology , The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, Nanjing Medical University , Nanjing , China
| | - Q Yu
- b Department of Obstetrics and Gynecology , Peking Union Medical College Hospital, Chinese Academy of Medical Sciences , Beijing , China
| | - J Wu
- a State Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology , The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, Nanjing Medical University , Nanjing , China
| |
Collapse
|
23
|
He S, Nelson ER. 27-Hydroxycholesterol, an endogenous selective estrogen receptor modulator. Maturitas 2017; 104:29-35. [PMID: 28923174 DOI: 10.1016/j.maturitas.2017.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
Abstract
Estrogen receptors (ERs) mediate the actions of the steroidal estrogens, and are important for the regulation of several physiological and pathophysiological processes, including reproduction, bone physiology, cardiovascular physiology and breast cancer. The unique pharmacology of the ERs allows for certain ligands, such as tamoxifen, to elicit tissue- and context-specific responses, ligands now referred to as selective estrogen receptor modulators (SERMs). Recently, the cholesterol metabolite 27-hydroxychoelsterol (27HC) has been defined as an endogenous SERM, with activities in atherosclerosis, osteoporosis, breast and prostate cancers, and neural degenerative diseases. Since 27HC concentrations closely mirror those of cholesterol, it is possible that 27HC mediates many of the biological effects of cholesterol. This paper provides an overview of ER pharmacology and summarizes the work to date implicating 27HC in various diseases. Wherever possible, we highlight clinical data in support of a role for 27HC in the diseases discussed.
Collapse
Affiliation(s)
- Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
24
|
Baskaran C, Cunningham B, Plessow F, Singhal V, Woolley R, Ackerman KE, Slattery M, Lee H, Lawson EA, Eddy K, Misra M. Estrogen Replacement Improves Verbal Memory and Executive Control in Oligomenorrheic/Amenorrheic Athletes in a Randomized Controlled Trial. J Clin Psychiatry 2017; 78:e490-e497. [PMID: 28297591 PMCID: PMC6445541 DOI: 10.4088/jcp.15m10544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/01/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Both estrogen and exercise may have cognition enhancing benefits; however, young oligomenorrheic/amenorrheic athletes (OA) with estrogen deficiency have not been evaluated for cognitive deficits. Our objective was to determine whether 6 months of estrogen replacement will impact cognitive domains in OA. We hypothesized that estrogen replacement would improve verbal memory and executive control in OA. METHODS We performed cognitive assessments at baseline and after 6 months in 48 OA (14-25 years) randomized to estrogen (EST+) (oral 30 µg ethinyl estradiol [n = 16] or transdermal 100 µg 17-β-estradiol patch [n = 13]) or no estrogen (EST-) (n = 19) in an ongoing clinical trial. Neurocognitive testing included California Verbal Learning Test-Second Edition (CVLT-II) (for verbal memory) and Delis-Kaplan Executive Function System Color-Word Interference Test (D-KEFS-CWIT) (executive control). RESULTS On average, subjects (mean ± SEM age: 19.9 ± 3.1 years, body mass index: 20.6 ± 2.3 kg/m²) participated in 10.3 ± 5.9 hours per week of weight-bearing activities of their lower limbs. The EST+ group performed better for CVLT-II verbal memory scores for immediate recall over 6 months of therapy compared to EST- (P < .05) even after controlling for baseline scores and age. Changes in D-KEFS-CWIT scores over 6 months did not differ between the groups. However, the EST+ group had greater improvements in inhibition-switching completion time over 6 months compared with the EST- group after controlling for baseline scores and age (P = .01). CONCLUSIONS OA show improvements in verbal memory and executive control following 6 months of estrogen replacement. These findings in athletes, who are in their prime of neurocognitive development, underscore the need for future studies exploring cognition in OA. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT00946192.
Collapse
Affiliation(s)
- Charu Baskaran
- Pediatric Endocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA,,Neuroendocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA
| | - Brooke Cunningham
- Neuroendocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA
| | - Franziska Plessow
- Neuroendocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA
| | - Vibha Singhal
- Pediatric Endocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA,,Neuroendocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA
| | - Ryan Woolley
- Neuroendocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA
| | - Kathryn E. Ackerman
- Neuroendocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA
| | - Meghan Slattery
- Neuroendocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA
| | - Hang Lee
- Department of Biostatistics, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA
| | - Elizabeth A. Lawson
- Neuroendocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA
| | - Kamryn Eddy
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Madhusmita Misra
- Pediatric Endocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA,,Neuroendocrine Unit, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Lan YL, Zou S, Zhang C, Li J, Xu Y, Li S. Update on the effect of estradiol in postmenopause women with Alzheimer's disease: a systematic review. Acta Neurol Belg 2016; 116:249-57. [PMID: 26931740 DOI: 10.1007/s13760-015-0593-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/25/2015] [Indexed: 02/06/2023]
Abstract
Estradiol (E2) has been used in the treatment of Alzheimer's disease (AD) for many years but with various responses. Evidence from clinical studies, randomized clinical trials (RCTs), and observational studies further underscores the importance of E2 in postmenopause women diagnosed with AD. The purpose of this article is to review all clinical trials to date focusing on the E2 in AD patients to explore the evidence regarding use of E2 in AD treatments. To achieve this objective, clinical studies regarding E2 levels in AD patients and RCTs assessing AD treatment in postmenopause women were identified through searches of MEDLINE, The Cochrane Library, EMBASE, Web of Science, Ovid, and Google Scholar. E2 has demonstrated good therapeutic effectiveness in AD patients, however, further larger scale, double-blind RCTs are required before a definitive conclusion can be reached and the results need to be compared with other drugs. This update reviews the newest clinical information regarding the role of E2 in postmenopause women with AD. To our knowledge, this is the only systematic review of this area.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhong Shan Road, Dalian City, 116011, People's Republic of China
- Department of Physiology, Dalian Medical University, 9 Western District, Lvshun South Road, Dalian City, 116044, People's Republic of China
| | - Shuang Zou
- Department of Physiology, Dalian Medical University, 9 Western District, Lvshun South Road, Dalian City, 116044, People's Republic of China
| | - Changfu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhong Shan Road, Dalian City, 116011, People's Republic of China
| | - Jun Li
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhong Shan Road, Dalian City, 116011, People's Republic of China
| | - Yinghui Xu
- Department of Neurosurgery, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhong Shan Road, Dalian City, 116011, People's Republic of China.
| | - Shao Li
- Department of Physiology, Dalian Medical University, 9 Western District, Lvshun South Road, Dalian City, 116044, People's Republic of China.
| |
Collapse
|
26
|
Li C, Zhou C, Li R. Can Exercise Ameliorate Aromatase Inhibitor-Induced Cognitive Decline in Breast Cancer Patients? Mol Neurobiol 2016; 53:4238-4246. [PMID: 26223800 PMCID: PMC5651179 DOI: 10.1007/s12035-015-9341-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Aromatase inhibitors (AIs) have been commonly used as an effective adjuvant therapy in treatment of breast cancer, especially for menopausal women with estrogen receptor-positive breast cancer. Due to the nature of aromatase, the key enzyme for endogenous estrogen synthesis, inhibitory of aromatase-induced side effects, such as cognitive impairment has been reported in both human and animal studies. While extensive evidence suggested that physical exercises can improve learning and memory activity and even prevent age-related cognitive decline, basic research revealed some common pathways between exercise and estrogen signaling that affected cognitive function. This review draws on clinical and basic studies to assess the potential impact of exercise in cognitive function from women treated with AIs for breast cancer and explore the potential mechanism and effects of exercise on estrogen-related cognition.
Collapse
Affiliation(s)
- Cuicui Li
- Department of Sport Psychology, School of Sport Science, Shanghai University of Sport, Shanghai, 200438, China
| | - Chenglin Zhou
- Department of Sport Psychology, School of Sport Science, Shanghai University of Sport, Shanghai, 200438, China.
| | - Rena Li
- Department of Sport Psychology, School of Sport Science, Shanghai University of Sport, Shanghai, 200438, China.
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100012, China.
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL, 34243, USA.
| |
Collapse
|
27
|
Hamson DK, Roes MM, Galea LAM. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning. Compr Physiol 2016; 6:1295-337. [DOI: 10.1002/cphy.c150031] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Wroolie TE, Kenna HA, Williams KE, Rasgon NL. Cognitive Effects of Hormone Therapy Continuation or Discontinuation in a Sample of Women at Risk for Alzheimer Disease. Am J Geriatr Psychiatry 2015; 23. [PMID: 26209223 PMCID: PMC4654994 DOI: 10.1016/j.jagp.2015.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Use of estrogen-based hormone therapy (HT) as a protection from cognitive decline and Alzheimer disease (AD) is controversial, although cumulative data support HT use when initiated close to menopause onset with estrogen formulations containing 17β-estradiol preferable to conjugated equine estrogen formulations. Little is known regarding specific populations of women who may derive benefit from HT. METHODS Women with heightened risk for AD (aged 49-69), all of whom were taking HT for at least 1 year and most of whom initiated HT close to menopause onset, underwent cognitive assessment followed by randomization to continue or discontinue HT. Assessments were repeated at 2 years after randomization. RESULTS Women who continued HT performed better on cognitive domains composed of measures of verbal memory and combined attention, working memory, and processing speed measures. Women who used 17β-estradiol versus conjugated equine estrogen, whether randomized to continue or discontinue HT, showed better verbal memory performance at the 2-year follow-up assessment. An interaction was also found with HT randomization and family history of AD in a first-degree relative. All female offspring of patients with AD declined in verbal memory; however, women who continued HT declined less than women who discontinued HT. Women without a first-degree relative with AD showed verbal memory improvement (likely because of practice effects) with continuance and declined with discontinuance of HT. CONCLUSION Continuation of HT use appears to protect cognition in women with heightened risk for AD when initiated close to menopause onset.
Collapse
Affiliation(s)
- Tonita E. Wroolie
- Stanford Center for Neuroscience in Women's Health, Department of Psychiatry and Behavioral Sciences, 401 Quarry Road, Stanford University School of Medicine, Stanford, CA 94303-5723, USA
| | - Heather A. Kenna
- Stanford Center for Neuroscience in Women's Health, Department of Psychiatry and Behavioral Sciences, 401 Quarry Road, Stanford University School of Medicine, Stanford, CA 94303-5723, USA
| | - Katherine E. Williams
- Stanford Center for Neuroscience in Women's Health, Department of Psychiatry and Behavioral Sciences, 401 Quarry Road, Stanford University School of Medicine, Stanford, CA 94303-5723, USA
| | - Natalie L. Rasgon
- Stanford Center for Neuroscience in Women's Health, Department of Psychiatry and Behavioral Sciences, 401 Quarry Road, Stanford University School of Medicine, Stanford, CA 94303-5723, USA
| |
Collapse
|
29
|
Berent-Spillson A, Briceno E, Pinsky A, Simmen A, Persad CC, Zubieta JK, Smith YR. Distinct cognitive effects of estrogen and progesterone in menopausal women. Psychoneuroendocrinology 2015; 59:25-36. [PMID: 26010861 PMCID: PMC4490102 DOI: 10.1016/j.psyneuen.2015.04.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/03/2015] [Accepted: 04/27/2015] [Indexed: 01/03/2023]
Abstract
The effects of postmenopausal hormone treatment on cognitive outcomes are inconsistent in the literature. Emerging evidence suggests that cognitive effects are influenced by specific hormone formulations, and that progesterone is more likely to be associated with positive outcomes than synthetic progestin. There are very few studies of unopposed progesterone in postmenopausal women, and none that use functional neuroimaging, a sensitive measure of neurobiological function. In this study of 29 recently postmenopausal women, we used functional MRI and neuropsychological measures to separately assess the effects of estrogen or progesterone treatment on visual and verbal cognitive function. Women were randomized to receive 90 days of either estradiol or progesterone counterbalanced with placebo. After each treatment arm, women were given a battery of verbal and visual cognitive function and working memory tests, and underwent functional MRI including verbal processing and visual working memory tasks. We found that both estradiol and progesterone were associated with changes in activation patterns during verbal processing. Compared to placebo, women receiving estradiol treatment had greater activation in the left prefrontal cortex, a region associated with verbal processing and encoding. Progesterone was associated with changes in regional brain activation patterns during a visual memory task, with greater activation in the left prefrontal cortex and right hippocampus compared to placebo. Both treatments were associated with a statistically non-significant increase in number of words remembered following the verbal task performed during the fMRI scanning session, while only progesterone was associated with improved neuropsychological measures of verbal working memory compared to placebo. These results point to potential cognitive benefits of both estrogen and progesterone.
Collapse
Affiliation(s)
- Alison Berent-Spillson
- University of Michigan, Psychiatry Department, MBNI, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | - Emily Briceno
- University of Michigan, Psychiatry Department, Neuropsychology Division, 2101 Commonwealth Blvd, Suite C, Ann Arbor, MI 48105, USA.
| | - Alana Pinsky
- University of Michigan Medical School, 1301 Catherine, Ann Arbor, MI, 48109, USA.
| | - Angela Simmen
- University of Michigan, Obstetrics and Gynecology Department, L4000 Womens SPC, 1500 E. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | - Carol C. Persad
- University of Michigan, Psychiatry Department, Neuropsychology Division, 2101 Commonwealth Blvd, Suite C, Ann Arbor, MI 48105, USA
| | - Jon-Kar Zubieta
- University of Michigan, Psychiatry Department, MBNI, 205 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| | - Yolanda R. Smith
- University of Michigan, Obstetrics and Gynecology Department, L4000 Womens SPC, 1500 E. Medical Center Dr, Ann Arbor, MI 48109, USA,Corresponding author: Alison Berent-Spillson, 1-734-615-4252
| |
Collapse
|
30
|
McCarrey AC, Resnick SM. Postmenopausal hormone therapy and cognition. Horm Behav 2015; 74:167-72. [PMID: 25935728 PMCID: PMC4573348 DOI: 10.1016/j.yhbeh.2015.04.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 01/17/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Prior to the publication of findings from the Women's Health Initiative (WHI) in 2002, estrogen-containing hormone therapy (HT) was used to prevent age-related disease, especially cardiovascular disease, and to treat menopausal symptoms such as hot flushes and sleep disruptions. Some observational studies of HT in midlife and aging women suggested that HT might also benefit cognitive function, but randomized clinical trials have produced mixed findings in terms of health and cognitive outcomes. This review focuses on hormone effects on cognition and risk for dementia in naturally menopausal women as well as surgically induced menopause, and highlights findings from the large-scale WHI Memory Study (WHIMS) which, contrary to expectation, showed increased dementia risk and poorer cognitive outcomes in older postmenopausal women randomized to HT versus placebo. We consider the 'critical window hypothesis', which suggests that a window of opportunity may exist shortly after menopause during which estrogen treatments are most effective. In addition, we highlight emerging evidence that potential adverse effects of HT on cognition are most pronounced in women who have other health risks, such as lower global cognition or diabetes. Lastly, we point towards implications for future research and clinical treatments.
Collapse
Affiliation(s)
- Anna C McCarrey
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD, 21224, USA.
| |
Collapse
|
31
|
Shum C, Macedo SC, Warre-Cornish K, Cocks G, Price J, Srivastava DP. Utilizing induced pluripotent stem cells (iPSCs) to understand the actions of estrogens in human neurons. Horm Behav 2015; 74:228-42. [PMID: 26143621 PMCID: PMC4579404 DOI: 10.1016/j.yhbeh.2015.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/11/2015] [Accepted: 06/25/2015] [Indexed: 01/05/2023]
Abstract
This article is part of a Special Issue "Estradiol and Cognition". Over recent years tremendous progress has been made towards understanding the molecular and cellular mechanism by which estrogens exert enhancing effects on cognition, and how they act as a neuroprotective or neurotrophic agent in disease. Currently, much of this work has been carried out in animal models with only a limited number of studies using native human tissue or cells. Recent advances in stem cell technology now make it possible to reprogram somatic cells from humans into induced pluripotent stem cells (iPSCs), which can subsequently be differentiated into neurons of specific lineages. Importantly, the reprogramming of cells allows for the generation of iPSCs that retain the genetic "makeup" of the donor. Therefore, it is possible to generate iPSC-derived neurons from patients diagnosed with specific diseases, that harbor the complex genetic background associated with the disorder. Here, we review the iPSC technology and how it's currently being used to model neural development and neurological diseases. Furthermore, we explore whether this cellular system could be used to understand the role of estrogens in human neurons, and present preliminary data in support of this. We further suggest that the use of iPSC technology offers a novel system to not only further understand estrogens' effects in human cells, but also to investigate the mechanism by which estrogens are beneficial in disease. Developing a greater understanding of these mechanisms in native human cells will also aid in the development of safer and more effective estrogen-based therapeutics.
Collapse
Affiliation(s)
- Carole Shum
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Sara C Macedo
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK; Faculty of Engineering, Universidade do Porto, 4200-465 Porto, Portugal
| | - Katherine Warre-Cornish
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Graham Cocks
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jack Price
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Cell and Behaviour Unit, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| |
Collapse
|
32
|
Rasgon NL, Kenna HA, Wroolie TE, Williams KE, DeMuth BN, Silverman DHS. Insulin resistance and medial prefrontal gyrus metabolism in women receiving hormone therapy. Psychiatry Res 2014; 223:28-36. [PMID: 24819305 DOI: 10.1016/j.pscychresns.2014.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
Abstract
Insulin resistance (IR) is a putative risk factor for cognitive decline and dementia, and has been shown to impede neuronal glucose metabolism in animal models. This post hoc study focused on metabolic changes in the medial prefrontal region, a brain region exhibiting decline years before documented cognitive changes, relative to high or low IR status in a cohort of postmenopausal women at risk for dementia who were randomized to continue or discontinue existing stable hormone therapy (HT) for 2 years. Subjects were dichotomized into high and low IR groups based on the homeostatic model assessment of insulin resistance, which was within clinically normal limits for the group as a whole at both baseline and 2-year follow-up. Results showed that high and low IR groups showed significant differences in metabolic decline of the medial prefrontal gyrus, regardless of HT randomization group. However, HT randomization was predictive of metabolic decline only in women with low HOMA (homeostatic assessment of insulin resistance). Performance in working memory was consistent with observed metabolic changes. These results suggest IR may be an independent moderator of regional metabolic changes, while protective metabolic effects of HT are most apparent in those at low-end range of IR. If replicated in future studies, these findings will help to better understand the interaction between putative risk and protective factors, and further delineate cohort postmenopausal women who may benefit from HT.
Collapse
Affiliation(s)
- Natalie L Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Heather A Kenna
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tonita E Wroolie
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine E Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Bevin N DeMuth
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel H S Silverman
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Gurney EP, Nachtigall MJ, Nachtigall LE, Naftolin F. The Women's Health Initiative trial and related studies: 10 years later: a clinician's view. J Steroid Biochem Mol Biol 2014; 142:4-11. [PMID: 24172877 DOI: 10.1016/j.jsbmb.2013.10.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 10/10/2013] [Accepted: 10/17/2013] [Indexed: 01/30/2023]
Abstract
The Women's Health Initiative (WHI) assessed the long-term effects of hormone therapy (HT) in postmenopausal women. The WHI started HT treatment on women aged 50-79 years in order to ascertain these effects. The study was ended early, due to findings of increased risk of coronary heart disease, breast cancer, stroke, and thromboembolic complications in women receiving estrogen plus progestin, compared to placebo. An increased risk of thromboembolic complications was also demonstrated in the estrogen only component of the WHI. The WHI results were initially reported for all subjects, and showed little difference when data were not analyzed by age. New WHI sub-analyses stratifying results by age, and an extended follow-up of the WHI offer a more complete picture of the effects of HT, revealing that starting HT in postmenopausal women less than ten years from last menstrual period appears to have less risk. In addition, hysterectomized women treated with estrogen only in the WHI have showed less risk of adverse outcomes than women in the estrogen plus progestin group. In this paper, we review data supporting the use of HT administered to postmenopausal women, showing it to have more benefit than risk for symptom control, prevention of bone mineral loss and fracture, and improvement of the metabolic profile in women who began HT when they were less than 60 years of age and had their last menstrual period less than ten years previous. In hysterectomized women treated with estrogen only, a reduction in breast cancer risk was noted in all age groups. The WHI raised many important questions. Ten years later, some have been answered, including confirmation that HT for most newly menopausal women is safe and effective. The treatment of the aging woman, including hormone treatment after menopause, should remain one of our highest research priorities. This article is part of a Special Issue entitled 'Menopause'.
Collapse
Affiliation(s)
- Elizabeth P Gurney
- Department of Obstetrics and Gynecology and Interdisciplinary Program in Menopausal Medicine, New York University School of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Margaret J Nachtigall
- Department of Obstetrics and Gynecology and Interdisciplinary Program in Menopausal Medicine, New York University School of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Lila E Nachtigall
- Department of Obstetrics and Gynecology and Interdisciplinary Program in Menopausal Medicine, New York University School of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Frederick Naftolin
- Department of Obstetrics and Gynecology and Interdisciplinary Program in Menopausal Medicine, New York University School of Medicine, New York University Langone Medical Center, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
34
|
Continuous-combined oral estradiol/drospirenone has no detrimental effect on cognitive performance and improves estrogen deficiency symptoms in early postmenopausal women: a randomized placebo-controlled trial. Menopause 2014; 20:1020-6. [PMID: 23591255 DOI: 10.1097/gme.0b013e318287474f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to explore the effects of continuous-combined estradiol 1 mg/drospirenone 2 mg (E2D) on cognitive performance in healthy, recently postmenopausal women. METHODS A 6-month randomized, double-blind, placebo-controlled study was carried out in a university research center. Participants were 23 healthy postmenopausal women aged 49 to 55 years. Cognitive performance was assessed with a computerized cognitive battery administered to all participants on 0, 12, and 26 weeks. Functional magnetic resonance imaging was performed on 13 participants before and after treatment using tasks of verbal fluency and mental rotation. RESULTS E2D was not associated with an overall effect on cognitive performance. Functional magnetic resonance imaging results showed no difference between the groups for verbal fluency or mental rotation task performance at baseline. The mental rotation task was associated with increased blood oxygen level-dependent signalling in the placebo group in both occipital lobes and in the left superior parietal lobe after 26 weeks (P < 0.05), with no changes over time seen in the treatment group. The total menopausal symptom and sexual function domain scores improved after treatment in women randomized to E2D compared with the placebo group (both P < 0.05). Similarly, systolic blood pressure, weight, and body mass index were significantly lower in women randomized to E2D at 26 weeks (P < 0.05). CONCLUSIONS E2D has no detrimental effect on cognitive performance in early postmenopausal women. E2D significantly improves menopausal symptoms, sexual function, systolic blood pressure, and weight.
Collapse
|
35
|
Rasgon NL, Geist CL, Kenna HA, Wroolie TE, Williams KE, Silverman DHS. Prospective randomized trial to assess effects of continuing hormone therapy on cerebral function in postmenopausal women at risk for dementia. PLoS One 2014; 9:e89095. [PMID: 24622517 PMCID: PMC3951184 DOI: 10.1371/journal.pone.0089095] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/13/2014] [Indexed: 01/02/2023] Open
Abstract
The objective of this study was to examine the effects of estrogen-based hormone therapy (HT) on regional cerebral metabolism in postmenopausal women (mean age = 58, SD = 5) at risk for development of dementia. The prospective clinical trial design included pre- and post-intervention neuroimaging of women randomized to continue (HT+) or discontinue (HT−) therapy following an average of 10 years of use. The primary outcome measure was change in brain metabolism during the subsequent two years, as assessed with fluorodeoxyglucose-18 positron emission tomography (FDG-PET). Longitudinal FDG-PET data were available for 45 study completers. Results showed that women randomized to continue HT experienced relative preservation of frontal and parietal cortical metabolism, compared with women randomized to discontinue HT. Women who discontinued 17-β estradiol (17βE)-based HT, as well as women who continued conjugated equine estrogen (CEE)-based HT, exhibited significant decline in metabolism of the precuneus/posterior cingulate cortical (PCC) area. Significant decline in PCC metabolism was additionally seen in women taking concurrent progestins (with either 17βE or CEE). Together, these findings suggest that among postmenopausal subjects at risk for developing dementia, regional cerebral cortical metabolism is relatively preserved for at least two years in women randomized to continue HT, compared with women randomized to discontinue HT. In addition, continuing unopposed 17βE therapy is associated specifically with preservation of metabolism in PCC, known to undergo the most significant decline in the earliest stages of Alzheimer's disease. Trial Registration ClinicalTrials.govNCT00097058
Collapse
Affiliation(s)
- Natalie L. Rasgon
- Stanford Center for Neuroscience in Women's Health, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Cheri L. Geist
- UCLA David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Ahmanson Translational Imaging Division, University of California Los Angeles School of Medicine, Los Angeles, California, United States of America
| | - Heather A. Kenna
- Stanford Center for Neuroscience in Women's Health, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tonita E. Wroolie
- Stanford Center for Neuroscience in Women's Health, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Katherine E. Williams
- Stanford Center for Neuroscience in Women's Health, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel H. S. Silverman
- UCLA David Geffen School of Medicine, Department of Molecular and Medical Pharmacology, Ahmanson Translational Imaging Division, University of California Los Angeles School of Medicine, Los Angeles, California, United States of America
| |
Collapse
|
36
|
Hao X, Li X, Li X. 17β-estradiol downregulated the expression of TASK-1 channels in mouse neuroblastoma N2A cells. J Membr Biol 2014; 247:273-9. [PMID: 24435466 DOI: 10.1007/s00232-014-9632-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/06/2014] [Indexed: 01/23/2023]
Abstract
TASK channels, an acid-sensitive subgroup of two pore domain K⁺ (K2P) channels family, were widely expressed in a variety of neural tissues, and exhibited potent functions such as the regulation of membrane potential. The steroid hormone estrogen was able to interact with K⁺ channels, including voltage-gated K⁺ (Kv) and large conductance Ca²⁺-activated (BK) K⁺ channels, in different types of cells like cardiac myocytes and neurons. However, it is unclear about the effects of estrogen on TASK channels. In the present study, the expressions of two members of acid-sensitive TASK channels, TASK-1 and TASK-2, were detected in mouse neuroblastoma N2A cells by RT-PCR. Extracellular acidification (pH 6.4) weakly but statistically significantly inhibited the outward background current by 22.9 % at a holding potential of 0 mV, which inactive voltage-gated K⁺ currents, suggesting that there existed the functional TASK channels in the membrane of N2A cells. Although these currents were not altered by the acute application of 100 nM 17β-estradiol, incubation with 10 nM 17β-estradiol for 48 h reduced the mRNA level of TASK-1 channels by 40.4 % without any effect on TASK-2 channels. The proliferation rates of N2A cells were also increased by treatment with 10 nM 17β-estradiol for 48 h. These data implied that N2A cells expressed functional TASK channels and chronic exposure to 17β-estradiol downregulated the expression of TASK-1 channels and improved cell proliferation. The effect of 17β-estradiol on TASK-1 channels might be an alternative mechanism for the neuroprotective action of 17β-estradiol.
Collapse
Affiliation(s)
- Xuran Hao
- Department of Biomedical Engineering, South-Central University for Nationalities, 182 Minyuan Road, Wuhan, 430074, China
| | | | | |
Collapse
|
37
|
Mott NN, Pak TR. Estrogen signaling and the aging brain: context-dependent considerations for postmenopausal hormone therapy. ISRN ENDOCRINOLOGY 2013; 2013:814690. [PMID: 23936665 PMCID: PMC3725729 DOI: 10.1155/2013/814690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/21/2013] [Indexed: 02/08/2023]
Abstract
Recent clinical studies have spurred rigorous debate about the benefits of hormone therapy (HT) for postmenopausal women. Controversy first emerged based on a sharp increase in the risk of cardiovascular disease in participants of the Women's Health Initiative (WHI) studies, suggesting that decades of empirical research in animal models was not necessarily applicable to humans. However, a reexamination of the data from the WHI studies suggests that the timing of HT might be a critical factor and that advanced age and/or length of estrogen deprivation might alter the body's ability to respond to estrogens. Dichotomous estrogenic effects are mediated primarily by the actions of two high-affinity estrogen receptors alpha and beta (ER α & ER β ). The expression of the ERs can be overlapping or distinct, dependent upon brain region, sex, age, and exposure to hormone, and, during the time of menopause, there may be changes in receptor expression profiles, post-translational modifications, and protein:protein interactions that could lead to a completely different environment for E2 to exert its effects. In this review, factors affecting estrogen-signaling processes will be discussed with particular attention paid to the expression and transcriptional actions of ER β in brain regions that regulate cognition and affect.
Collapse
Affiliation(s)
- Natasha N. Mott
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, 2160 S First Avenue, Maywood, IL 60153, USA
| | - Toni R. Pak
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, 2160 S First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
38
|
Davey DA. Alzheimer's disease, dementia, mild cognitive impairment and the menopause: a 'window of opportunity'? ACTA ACUST UNITED AC 2013; 9:279-90. [PMID: 23638783 DOI: 10.2217/whe.13.22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer's disease (AD) is not an inevitable consequence of aging and may be modified by both adverse and protective factors. The pathological changes of AD commence in midlife and AD has a long preclinical phase that may be diagnosed by biomarkers in the cerebrospinal fluid and by brain MRI. New clinical criteria for the diagnosis of AD dementia and AD mild cognitive impairment (MCI) have been proposed. MCI and dementia are frequently the result of AD and cerebrovascular disease combined. Over the age of 85 years, MCI and dementia are more common in women than in men. Women with a surgical premature menopause have an increased risk of MCI and AD. Menopausal hormone therapy from the menopause to the age of 60 years, when any risks of menopausal hormone therapy are extremely small, may provide a 'window of opportunity' to reduce the risk of MCI and AD in later life. Many measures may help to prevent, delay or minimize AD in both women and men and should be actively encouraged.
Collapse
Affiliation(s)
- Dennis A Davey
- Department of Obstetrics & Gynaecology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, Western Cape, 7925, South Africa.
| |
Collapse
|
39
|
Hogervorst E. Estrogen and the brain: does estrogen treatment improve cognitive function? ACTA ACUST UNITED AC 2013; 19:6-19. [PMID: 27951525 DOI: 10.1177/1754045312473873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 11/15/2022]
Abstract
In this paper we describe potential reasons for the discrepancies between data from basic sciences and observational studies and those of large treatment studies investigating the association between brain function and sex steroids. Observational studies which often showed positive associations between hormone use and cognition can be affected by 'recall bias' and 'healthy user bias', while outcomes of treatment studies were hypothesized to be modified by age at treatment, age at or type of menopause, health status, addition of a progestogen or type of estrogen treatment. However, meta-analyses of data from treatment studies negate many of these hypotheses showing at best mainly short-term (up to 6 months) positive effects of estrogen treatment on cognition regardless of age. This positive effect may reverse, particularly in older women with prolonged hormone treatment, which was predominantly seen after addition of progestogen. Medroxyprogesterone acetate seemed to have worse effects on cognition than other types of progestogen in these long-term studies. Estradiol with or without a progestogen was three times more likely to have positive effects on cognition than conjugated equine estrogens. However, two-thirds of studies showed no associations at all which may be an underestimate given the possibility of publication bias. We briefly review alternative treatments, such as testosterone and soy-derived supplements, but currently insufficient data are available for conclusive comments. Women who have undergone surgical menopause or who undergo natural menopause before age 47 may benefit most from hormone treatment and a special case may need to be made for this group. Long-term safety studies for this group are urgently needed.
Collapse
|
40
|
Li R, He P, Cui J, Staufenbiel M, Harada N, Shen Y. Brain endogenous estrogen levels determine responses to estrogen replacement therapy via regulation of BACE1 and NEP in female Alzheimer's transgenic mice. Mol Neurobiol 2012. [PMID: 23180279 DOI: 10.1007/s12035-012-8377-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Estrogens have been found to improve memory and reduce risk of dementia, although conflicting results such as failure of estrogen replacement therapy for treatment of Alzheimer's disease (AD) also has been reported. Only recently, our published human brain studies showed a depletion of brain estrogen in women with AD, while other studies have demonstrated cognitive impairment believed to be caused by inhibition of endogenous estrogen synthesis in females. To investigate whether the shortage of brain estrogen alters the sensitivity of response to estrogen replacement therapy, we have used genetic and surgical animal models to examine the response of estrogen treatment in AD neuropathology. Our studies have shown that early treatment with 17β-estradiol (E2) or genistein could reduce brain amyloid levels by increasing Aβ clearance in both APP23 mice with genetic deficiency of aromatase (APP/Ar(+/-)), in which the brains contain nondetectable levels of estrogen, and in APP23 mice with an ovariectomy (APP/OVX), in which the brains still contain certain levels of estrogen. However, only APP/Ar(+/-) mice showed a great reduction in brain amyloid plaque formation after E2 or genistein treatment along with downregulation of β-secretase (BACE1) mRNA and protein expression. Our results suggest that early and long-term usage of E2 and/or genistein may prevent AD pathologies in a dependent manner on endogenous brain estrogen levels in aged females.
Collapse
Affiliation(s)
- Rena Li
- Center for Hormone Advanced Science and Education, Roskamp Institute, 2040 Whitfield Ave., Sarasota, FL 34243, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Begemann MJH, Dekker CF, van Lunenburg M, Sommer IE. Estrogen augmentation in schizophrenia: a quantitative review of current evidence. Schizophr Res 2012; 141:179-84. [PMID: 22998932 DOI: 10.1016/j.schres.2012.08.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/03/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Sex differences in the incidence, onset and course of schizophrenia have led to the hypothesis that estrogens play a protective role in the pathophysiology of this disorder. Several trials have assessed the potential of estrogens in reducing schizophrenia symptoms, showing inconsistent results. This quantitative review summarizes available evidence on the efficacy of estrogens in the treatment of schizophrenia. METHODS Only double-blind, placebo-controlled, randomized studies were included. Primary outcome measure was total symptom severity, secondary outcome measures were subscores for positive and negative symptoms. Effect sizes were calculated for individual studies and, if possible, pooled in meta-analyses to obtain combined, weighted effect sizes (Hedges's g). RESULTS Superior efficacy was found for estrogen treatment in female patients (four RCTs, 214 patients) on total symptom severity (Hedges's g=0.66), although heterogeneity was moderate to high. Estrogens were also superior in reducing positive (Hedges's g=0.54) and negative symptoms (Hedges's g=0.34), with low heterogeneity. As the included studies applied different forms of estrogens, a separate analysis was conducted on the trials applying estradiol (three RCTs, 170 patients). Even larger effect sizes were found for total symptom severity (Hedges's g=0.79), positive (Hedges's g=0.57) and negative symptoms (Hedges's g=0.45), with reduced heterogeneity. Estrogen treatment in male patients (one study, 53 patients) was not superior to placebo. CONCLUSIONS Our results suggest that estrogens, especially estradiol, could be an effective augmentation strategy in the treatment of women with schizophrenia. However, future larger trials are needed before recommendations on clinical applications can be made.
Collapse
Affiliation(s)
- Marieke J H Begemann
- Neuroscience Division, University Medical Center Utrecht (UMCU) & Rudolf Magnus Institute for Neuroscience, Heidelberglaan 100, 3485CX Utrecht, Netherlands
| | | | | | | |
Collapse
|
42
|
da Rocha JT, Sampaio TB, Santos Neto JS, Nogueira CW, Zeni G. Cognitive effects of diphenyl diselenide and estradiol treatments in ovariectomized mice. Neurobiol Learn Mem 2012; 99:17-24. [PMID: 23085182 DOI: 10.1016/j.nlm.2012.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 02/09/2023]
Abstract
This study investigated the effects of co-administration of diphenyl diselenide [(PhSe)(2)] and 17β-estradiol (E(2)) on spatial reference, recognition, and working memories in ovariectomized (OVX) female mice. Sixty-day-old female adult Swiss mice were submitted to ovariectomy. From the 30th until 32nd day after ovariectomy, different doses of (PhSe)(2) (0.5-10mg/kg p.o.) were administrated to OVX mice 30min before each training of Morris Water Maze (MWM) test in order to find the highest subeffective dose for this drug. After that, OVX mice were divided into four groups: Oil, (PhSe)(2), E(2), and (PhSe)(2)+E(2). (PhSe)(2) (0.5mg/kg) and E(2) (0.1mg/kg) were administered to OVX mice from 30th to 32nd day after surgery, 30min before the training phases of behavioral tests (Open Field, MWM, Object Recognition, and T-maze). Our results demonstrated that 0.5mg/kg (PhSe)(2) plus 0.1mg/kg E(2) combined treatment improved spatial memory in the MWM test. By contrast, this same co-administration therapy was not effective in ameliorating neither delayed spontaneous alternation in the T-maze test nor object recognition memory deficits in OVX mice, although the dose of 0.5mg/kg (PhSe)(2) enhanced per se the object recognition memory in OVX mice. In conclusion, the current behavioral data suggest that a combination of (PhSe)(2) plus E(2) treatment seems to be a promising alternative to treat the cognitive decline related to menopause. Further studies should be conducted in order to determine an effective dose for (PhSe)(2) plus E(2) therapy on Object Recognition and T-maze tests.
Collapse
Affiliation(s)
- Juliana Trevisan da Rocha
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|
43
|
Hedges VL, Ebner TJ, Meisel RL, Mermelstein PG. The cerebellum as a target for estrogen action. Front Neuroendocrinol 2012; 33:403-11. [PMID: 22975197 PMCID: PMC3496070 DOI: 10.1016/j.yfrne.2012.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 08/20/2012] [Accepted: 08/24/2012] [Indexed: 12/22/2022]
Abstract
This review focuses on the effects of estrogens upon the cerebellum, a brain region long ignored as a site of estrogen action. Highlighted are the diverse effects of estradiol within the cerebellum, emphasizing the importance of estradiol signaling in cerebellar development, modulation of synaptic neurotransmission in the adult, and the potential influence of estrogens on various health and disease states. We also provide new data, consistent with previous studies, in which locally synthesized estradiol modulates cerebellar glutamatergic neurotransmission, providing one underlying mechanism by which the actions of estradiol can affect this brain region.
Collapse
Affiliation(s)
- Valerie L Hedges
- Department of Neuroscience and Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | | | |
Collapse
|
44
|
Hesson J. Cumulative estrogen exposure and prospective memory in older women. Brain Cogn 2012; 80:89-95. [DOI: 10.1016/j.bandc.2012.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 04/30/2012] [Accepted: 05/02/2012] [Indexed: 11/27/2022]
|
45
|
Berent-Spillson A, Persad CC, Love T, Sowers M, Randolph JF, Zubieta JK, Smith YR. Hormonal environment affects cognition independent of age during the menopause transition. J Clin Endocrinol Metab 2012; 97:E1686-94. [PMID: 22730514 PMCID: PMC3431577 DOI: 10.1210/jc.2012-1365] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CONTEXT Cognitive decline is prevalent in aging populations, and cognitive complaints are common during menopause. However, the extent of hormonal influence is unclear, particularly when considered independent of the aging process. OBJECTIVE We sought to determine differences in cognitive function attributable to menopause, hypothesizing that differences would be associated with reproductive rather than chronological age. DESIGN AND SETTING In this cross-sectional study at a university hospital, we combined neuropsychological measures with functional magnetic resonance imaging to comprehensively assess cognitive function. PARTICIPANTS Sixty-seven menopausal women, aged 42-61 yr, recruited from a population-based menopause study, grouped into menopause stages based on hormonal and cycle criteria (premenopause, perimenopause, and postmenopause), participated in the study. MAIN OUTCOME MEASURES Neuropsychological and functional magnetic resonance imaging measures of verbal, visual, and executive cognitive function. RESULTS We found age-independent menopause effects on verbal function. Menopause groups differed in phonemic verbal fluency (F = 3.58, P < 0.019) and regional brain activation (inferior frontal cortex: corrected P < 0.000 right, P < 0.036 left; left prefrontal cortex: P < 0.012); left temporal pole: P < 0.001). Verbal measures correlated with estradiol and FSH (phonemic fluency: R = 0.249, P < 0.047 estradiol, R = -0.275, P < 0.029 FSH; semantic fluency: R = 0.318, P < 0.011 estradiol, R = -0.321, P < 0.010 FSH; right inferior frontal cortex: R = 0.364, P < 0.008 FSH; left inferior frontal cortex: R = -0.431, P < 0.001 estradiol, left prefrontal cortex: R = 0.279, P < 0.045 FSH; left temporal pole: R = -0.310, P < 0.024 estradiol, R = 0.451, P < 0.001 FSH; left parahippocampal gyrus: R = -0.278, P < 0.044 estradiol; left parietal cortex: R = -0.326, P < 0.017 estradiol). CONCLUSIONS Results suggest that verbal fluency mechanisms are vulnerable during the menopausal transition. Targeted intervention may preserve function of this critical cognitive domain.
Collapse
|
46
|
Barha CK, Galea LAM. The hormone therapy, Premarin, impairs hippocampus-dependent spatial learning and memory and reduces activation of new granule neurons in response to memory in female rats. Neurobiol Aging 2012; 34:986-1004. [PMID: 22938820 DOI: 10.1016/j.neurobiolaging.2012.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/29/2012] [Accepted: 07/11/2012] [Indexed: 12/25/2022]
Abstract
Estrogens have been implicated as possible therapeutic agents for improving cognition in postmenopausal women and have been linked to neurodegenerative disorders such as Alzheimer's disease. However, the utility of Premarin (Wyeth Pharmaceuticals, Markham, ON, Canada), a conjugated equine estrogen and the most commonly prescribed hormone therapy, has recently been questioned. The purpose of this study was to investigate the effects of Premarin at 2 different doses (10 or 20 μg) on hippocampus-dependent spatial learning and memory, hippocampal neurogenesis, and new neuronal activation using a rodent model of surgical menopause. Rats were treated daily with subcutaneous injections of Premarin and trained on the spatial working/reference memory version of the radial arm maze. Premarin impaired spatial reference and working learning and memory, increased hippocampal neurogenesis, but either decreased or increased activation of new neurons in response to memory retrieval as indexed by the expression of the immediate early gene product zif268, depending on the maturity of cells examined. This activation of new neurons was related to impaired performance in Premarin-treated but not control-treated female rats. These results indicate that Premarin may be impairing hippocampus-dependent learning and memory by negatively altering the neurogenic environment in the dentate gyrus thus disrupting normal activity of new neurons.
Collapse
Affiliation(s)
- Cindy K Barha
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
47
|
Abstract
Evidence from preclinical studies, randomized clinical trials (RCT), and observational studies underscores the importance of distinguishing among the different forms of estrogen and progestogens when evaluating the cognitive effects of hormone therapy (HT) in women. Despite this evidence, there is a lack of direct comparisons of different HT regimens. To provide insights into the effects of different HT formulations on cognition, this minireview focuses on RCT of verbal memory because evidence indicates that HT affects this cognitive domain more than others and because declines in verbal memory predict later development of Alzheimer's disease. Some observational studies indicate that estradiol confers benefits to verbal memory, whereas conjugated equine estrogens (CEE) confer risks. RCT to date show no negative impact of CEE on verbal memory, including the Women's Health Initiative Study of Cognitive Aging. Similarly, the Women's Health Initiative Memory Study showed no negative impact of CEE on dementia. Transdermal estradiol in younger postmenopausal women improved verbal memory in one small RCT but had no effect in another RCT. RCT of oral estradiol in younger and older postmenopausal women had neutral effects on cognitive function. In contrast, RCT show a negative impact of CEE plus medroxyprogesterone acetate on verbal memory in younger and older postmenopausal women. Small RCT show neutral or beneficial effects of other progestins on memory. Overall, RCT indicate that type of progestogen is a more important determinant of the effects of HT on memory than type of estrogen.
Collapse
Affiliation(s)
- Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago College of Medicine, 912 South Wood Street, Chicago Illinois 60612, USA.
| |
Collapse
|
48
|
Kenna H, Hoeft F, Kelley R, Wroolie T, DeMuth B, Reiss A, Rasgon N. Fasting plasma insulin and the default mode network in women at risk for Alzheimer's disease. Neurobiol Aging 2012; 34:641-9. [PMID: 22770543 DOI: 10.1016/j.neurobiolaging.2012.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/25/2012] [Accepted: 06/07/2012] [Indexed: 01/21/2023]
Abstract
Brain imaging studies in Alzheimer's disease research have demonstrated structural and functional perturbations in the hippocampus and default mode network (DMN). Additional evidence suggests risk for pathological brain aging in association with insulin resistance (IR). This study piloted investigation of associations of IR with DMN-hippocampal functional connectivity among postmenopausal women at risk for Alzheimer's disease. Twenty middle-aged women underwent resting state functional magnetic resonance imaging. Subjects were dichotomized relative to fasting plasma insulin levels (i.e., > 8 μIU/mL [n = 10] and < 8 μIU/mL [n = 10]), and functional connectivity analysis contrasted their respective blood oxygen level-dependent signal correlation between DMN and hippocampal regions. Higher-insulin women had significantly reduced positive associations between the medial prefrontal cortex and bilateral parahippocampal regions extending to the right hippocampus, and conversely, between the left and right hippocampus and medial prefrontal cortex. Neuropsychological data (all within normal ranges) also showed significant differences with respect to executive functioning and global intelligence. The results provide further evidence of deleterious effects of IR on the hippocampus and cognition. Further imaging studies of the IR-related perturbations in DMN-hippocampal functional connectivity are needed.
Collapse
Affiliation(s)
- Heather Kenna
- Stanford Center for Neurosciences in Women's Health, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 95305-5723, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
OBJECTIVE To better understand premenstrual exacerbations of schizophrenia in women and weigh treatment options. METHOD A PubMed literature search was conducted, using the search terms 'schizophrenia', 'psychosis', 'menstrual exacerbation', 'hormones' and assessing relevance to premenstrual exacerbation of schizophrenia symptoms. RESULTS Exacerbations are usually distinguishable from periodic or menstrual psychosis, a relatively rare condition. Controversy continues about whether low estrogen periods of the month lead to an increase in schizophrenia symptoms among women of reproductive age or whether some women suffer from both schizophrenia and premenstrual dysphoric disorder (PMDD). No treatment trials of specific interventions have been conducted so that physicians must decide on a case-by-case basis whether to raise antipsychotic doses premenstrually, try estrogens or estrogen/progesterone combinations or selective estrogen receptor modulators, or target PMDD symptoms. CONCLUSION Clinicians need to be aware of premenstrual symptom aggravation in a large minority of women with schizophrenia. Treatment strategies will depend on the nature of the symptoms that are exacerbated. Optimal treatment needs to be adjusted to the individual woman.
Collapse
Affiliation(s)
- M V Seeman
- Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, ON, Canada.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW It is a well established fact that many serious mental illnesses, in particular psychoses such as schizophrenia, may have a significant hormonal aetiological component. This study aims to discuss the oestrogen protection hypothesis of schizophrenia in particular, with an emphasis on findings from the recent literature in support of this theory. RECENT FINDINGS Epidemiological and life-cycle data point to significant differences in the incidence and course of schizophrenia between men and women, suggesting a protective role of oestrogen. In-vitro and in-vivo preclinical research has confirmed oestradiol's interactions with central neurotransmitter systems implicated in the pathogenesis of schizophrenia, whereas results from randomized controlled trials investigating the antipsychotic potential of oestrogen have been promising. Research into other neuroactive hormones with possible effects on mental state is a field still in its infancy but is evolving rapidly. SUMMARY Schizophrenia and related psychoses are pervasive and debilitating conditions, for which currently available treatments are often only partially effective and entail a high risk of serious side effects. Thus, new therapeutic strategies are needed, and the literature reviewed here suggests that hormones such as oestrogen could be a viable option. It is hoped that, with further research and larger trials, the oestrogen hypothesis can be translated into effective clinical practice.
Collapse
|