1
|
Wang Q, Stone KL, Lu Z, Tian S, Zheng Y, Zhao B, Bao Y, Shi L, Lu L. Associations between longitudinal changes in sleep stages and risk of cognitive decline in older men. Sleep 2024; 47:zsae125. [PMID: 38829819 DOI: 10.1093/sleep/zsae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
STUDY OBJECTIVES To investigate the relationships between longitudinal changes in sleep stages and the risk of cognitive decline in older men. METHODS This study included 978 community-dwelling older men who participated in the first (2003-2005) and second (2009-2012) sleep ancillary study visits of the Osteoporotic Fractures in Men Study. We examined the longitudinal changes in sleep stages at the initial and follow-up visits, and the association with concurrent clinically relevant cognitive decline during the 6.5-year follow-up. RESULTS Men with low to moderate (quartile 2, Q2) and moderate increase (Q3) in N1 sleep percentage had a reduced risk of cognitive decline on the modified mini-mental state examination compared to those with a substantial increase (Q4) in N1 sleep percentage. Additionally, men who experienced a low to moderate (Q2) increase in N1 sleep percentage had a lower risk of cognitive decline on the Trails B compared with men in the reference group (Q4). Furthermore, men with the most pronounced reduction (Q1) in N2 sleep percentage had a significantly higher risk of cognitive decline on the Trails B compared to those in the reference group (Q4). No significant association was found between changes in N3 and rapid eye movement sleep and the risk of cognitive decline. CONCLUSIONS Our results suggested that a relatively lower increase in N1 sleep showed a reduced risk of cognitive decline. However, a pronounced decrease in N2 sleep was associated with concurrent cognitive decline. These findings may help identify older men at risk of clinically relevant cognitive decline.
Collapse
Affiliation(s)
- Qianwen Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Katie L Stone
- Department of Research Institute, California Pacific Medical Center, San Francisco, CA, USA
| | - Zhengan Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Shanshan Tian
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Yongbo Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA,USA
| | - Yanping Bao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Le Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
2
|
Carbone J, Bibian C, Born J, Forcato C, Diekelmann S. Comparing targeted memory reactivation during slow wave sleep and sleep stage 2. Sci Rep 2024; 14:9057. [PMID: 38643331 PMCID: PMC11032354 DOI: 10.1038/s41598-024-59696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/15/2024] [Indexed: 04/22/2024] Open
Abstract
Sleep facilitates declarative memory consolidation, which is assumed to rely on the reactivation of newly encoded memories orchestrated by the temporal interplay of slow oscillations (SO), fast spindles and ripples. SO as well as the number of spindles coupled to SO are more frequent during slow wave sleep (SWS) compared to lighter sleep stage 2 (S2). But, it is unclear whether memory reactivation is more effective during SWS than during S2. To test this question, we applied Targeted Memory Reactivation (TMR) in a declarative memory design by presenting learning-associated sound cues during SWS vs. S2 in a counterbalanced within-subject design. Contrary to our hypothesis, memory performance was not significantly better when cues were presented during SWS. Event-related potential (ERP) amplitudes were significantly higher for cues presented during SWS than S2, and the density of SO and SO-spindle complexes was generally higher during SWS than during S2. Whereas SO density increased during and after the TMR period, SO-spindle complexes decreased. None of the parameters were associated with memory performance. These findings suggest that the efficacy of TMR does not depend on whether it is administered during SWS or S2, despite differential processing of memory cues in these sleep stages.
Collapse
Affiliation(s)
- Julia Carbone
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - Carlos Bibian
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
| | - Cecilia Forcato
- Laboratorio de Sueño y Memoria, Depto. de Ciencias de La Vida, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
| | - Susanne Diekelmann
- Institute of Medical Psychology and Behavioral Neurobiology, Tübingen, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
3
|
Bender AC, Jaleel A, Pellerin KR, Moguilner S, Sarkis RA, Cash SS, Lam AD. Altered Sleep Microarchitecture and Cognitive Impairment in Patients With Temporal Lobe Epilepsy. Neurology 2023; 101:e2376-e2387. [PMID: 37848332 PMCID: PMC10752648 DOI: 10.1212/wnl.0000000000207942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVES To investigate the spatiotemporal characteristics of sleep waveforms in temporal lobe epilepsy (TLE) and examine their association with cognition. METHODS In this retrospective, cross-sectional study, we examined overnight EEG data from adult patients with TLE and nonepilepsy comparisons (NECs) admitted to the epilepsy monitoring unit at Mass General Brigham hospitals. Automated algorithms were used to characterize sleep macroarchitecture (sleep stages) and microarchitecture (spindles, slow oscillations [SOs]) on scalp EEG and to detect hippocampal interictal epileptiform discharges (hIEDs) from foramen ovale electrodes simultaneously recorded in a subset of patients with TLE. We examined the association of sleep features and hIEDs with memory and executive function from clinical neuropsychological evaluations. RESULTS A total of 81 adult patients with TLE and 28 NEC adult patients were included with similar mean ages. There were no significant differences in sleep macroarchitecture between groups, including relative time spent in each sleep stage, sleep efficiency, and sleep fragmentation. By contrast, the spatiotemporal characteristics of sleep microarchitecture were altered in TLE compared with NEC and were associated with cognitive impairments. Specifically, we observed a ∼30% reduction in spindle density in patients with TLE compared with NEC, which was significantly associated with worse memory performance. Spindle-SO coupling strength was also reduced in TLE and, in contrast to spindles, was associated with diminished executive function. We found no significant association between sleep macroarchitectural and microarchitectural parameters and hIEDs. DISCUSSION There is a fundamental alteration of sleep microarchitecture in TLE, characterized by a reduction in spindle density and spindle-SO coupling, and these changes may contribute to neurocognitive comorbidity in this disorder.
Collapse
Affiliation(s)
- Alex C Bender
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA.
| | - Afareen Jaleel
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Kyle R Pellerin
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Sebastian Moguilner
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Rani A Sarkis
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Sydney S Cash
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| | - Alice D Lam
- From the Epilepsy Service (A.C.B., A.J., K.R.P., S.M., S.S.C., A.D.L.), Department of Neurology, Massachusetts General Hospital & Harvard Medical School, Boston; and Epilepsy Service (R.A.S.), Department of Neurology, Brigham and Women's Hospital & Harvard Medical School, Boston, MA
| |
Collapse
|
4
|
Associations between objectively measured sleep parameters and cognition in healthy older adults: A meta-analysis. Sleep Med Rev 2023; 67:101734. [PMID: 36577339 DOI: 10.1016/j.smrv.2022.101734] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/03/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Multiple studies have examined associations between sleep and cognition in older adults, but a majority of these depend on self-reports on sleep and utilize cognitive tests that assess overall cognitive function. The current meta-analysis involved 72 independent studies and sought to quantify associations between objectively measured sleep parameters and cognitive performance in healthy older adults. Both sleep macrostructure (e.g., sleep duration, continuity, and stages) and microstructure (e.g., slow wave activity and spindle activity) were evaluated. For macrostructure, lower restlessness at night was associated with better memory performance (r = 0.43, p = 0.02), while lower sleep onset latency was associated with better executive functioning (r = 0.28, p = 0.03). Greater relative amount of N2 and REM sleep, but not N3, positively correlated with cognitive performance. The association between microstructure and cognition in older adults was marginally significant. This relationship was moderated by age (z = 0.07, p < 0.01), education (z = 0.26, p = 0.03), and percentage of female participants (z = 0.01, p < 0.01). The current meta-analysis emphasizes the importance of considering objective sleep measures to understand the relationship between sleep and cognition in healthy older adults. These results also form a base from which researchers using wearable sleep technology and measuring behavior through computerized testing tools can evaluate their findings.
Collapse
|
5
|
Petit JM, Strippoli MPF, Stephan A, Ranjbar S, Haba-Rubio J, Solelhac G, Heinzer R, Preisig M, Siclari F, Do KQ. Sleep spindles in people with schizophrenia, schizoaffective disorders or bipolar disorders: a pilot study in a general population-based cohort. BMC Psychiatry 2022; 22:758. [PMID: 36463186 PMCID: PMC9719140 DOI: 10.1186/s12888-022-04423-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Sleep spindles have been involved in sleep stabilization and sleep-related memory mechanisms and their deficit emerged as possible biomarker in schizophrenia. However, whether this sleep phenotype is also present in other disorders that share psychotic symptoms remains unclear. To address this gap, we assessed sleep spindles in participants of a prospective population-based cohort who underwent psychiatric assessment (CoLaus|PsyCoLaus) and polysomnographic recording (HypnoLaus). METHODS Sleep was recorded using ambulatory polysomnography in participants (N = 1037) to the PsyCoLaus study. Sleep spindle parameters were measured in people with a lifelong diagnosis of schizophrenia (SZ), schizoaffective depressive (SAD), schizoaffective manic (SAM), bipolar disorder type I (BP-I) and type II (BP-II). The associations between lifetime diagnostic status (independent variables, SZ, SAD, SAM, BPD-I, BPD-II, controls) and spindle parameters (dependent variables) including density, duration, frequency and maximum amplitude, for all (slow and fast), slow- and fast-spindle were assessed using linear mixed models. Pairwise comparisons of the different spindle parameters between the SZ group and each of the other psychiatric groups was performed using a contrast testing framework from our multiple linear mixed models. RESULTS Our results showed a deficit in the density and duration of sleep spindles in people with SZ. They also indicated that participants with a diagnosis of SAD, SAM, BP-I and BP-II exhibited different sleep spindle phenotypes. Interestingly, spindle densities and frequencies were different in people with a history of manic symptoms (SAM, BP-I, and BP-II) from those without (SZ, SAD). CONCLUSIONS Although carried out on a very small number of participants due to the low prevalence of these disorders in general population, this pilot study brought new elements that argued in favor of a deficit of sleep spindles density and duration in people with schizophrenia. In addition, while we could expect a gradual change in intensity of the same sleep spindle parameters through psychotic diagnoses, our results seem to indicate a more complex situation in which the frequency of sleep spindles might be more impacted by diagnoses including a history of mania or hypomania. Further studies with a larger number of participants are required to confirm these effects.
Collapse
Affiliation(s)
- Jean-Marie Petit
- Center for Psychiatric Neuroscience (CNP), CHUV, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery 11c, CH-1008, Prilly, Switzerland.
| | - Marie-Pierre F. Strippoli
- grid.9851.50000 0001 2165 4204Center for Psychiatric Epidemiology and Psychopathology (CEPP), Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Aurélie Stephan
- grid.8515.90000 0001 0423 4662Center for Sleep Research and Investigation (CIRS), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Serateh Ranjbar
- grid.9851.50000 0001 2165 4204Center for Psychiatric Epidemiology and Psychopathology (CEPP), Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - José Haba-Rubio
- grid.8515.90000 0001 0423 4662Center for Sleep Research and Investigation (CIRS), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Geoffroy Solelhac
- grid.8515.90000 0001 0423 4662Center for Sleep Research and Investigation (CIRS), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphaël Heinzer
- grid.8515.90000 0001 0423 4662Center for Sleep Research and Investigation (CIRS), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martin Preisig
- grid.9851.50000 0001 2165 4204Center for Psychiatric Epidemiology and Psychopathology (CEPP), Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Prilly, Switzerland
| | - Francesca Siclari
- grid.8515.90000 0001 0423 4662Center for Sleep Research and Investigation (CIRS), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kim Q. Do
- grid.414250.60000 0001 2181 4933Center for Psychiatric Neuroscience (CNP), CHUV, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery 11c, CH-1008 Prilly, Switzerland
| |
Collapse
|
6
|
Iotchev IB, Reicher V, Kovács E, Kovács T, Kis A, Gácsi M, Kubinyi E. Averaging sleep spindle occurrence in dogs predicts learning performance better than single measures. Sci Rep 2020; 10:22461. [PMID: 33384457 PMCID: PMC7775433 DOI: 10.1038/s41598-020-80417-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/17/2020] [Indexed: 11/12/2022] Open
Abstract
Although a positive link between sleep spindle occurrence and measures of post-sleep recall (learning success) is often reported for humans and replicated across species, the test–retest reliability of the effect is sometimes questioned. The largest to date study could not confirm the association, however methods for automatic spindle detection diverge in their estimates and vary between studies. Here we report that in dogs using the same detection method across different learning tasks is associated with observing a positive association between sleep spindle density (spindles/minute) and learning success. Our results suggest that reducing measurement error by averaging across measurements of density and learning can increase the visibility of this effect, implying that trait density (estimated through averaged occurrence) is a more reliable predictor of cognitive performance than estimates based on single measures.
Collapse
Affiliation(s)
| | - Vivien Reicher
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary.,MTA-ELTE Comparative Ethology Research Group, 1117, Budapest, Hungary
| | - Enikő Kovács
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Tímea Kovács
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Márta Gácsi
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary.,MTA-ELTE Comparative Ethology Research Group, 1117, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, 1117, Budapest, Hungary
| |
Collapse
|
7
|
Muehlroth BE, Rasch B, Werkle-Bergner M. Episodic memory consolidation during sleep in healthy aging. Sleep Med Rev 2020; 52:101304. [DOI: 10.1016/j.smrv.2020.101304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 11/29/2022]
|
8
|
Romanella SM, Roe D, Paciorek R, Cappon D, Ruffini G, Menardi A, Rossi A, Rossi S, Santarnecchi E. Sleep, Noninvasive Brain Stimulation, and the Aging Brain: Challenges and Opportunities. Ageing Res Rev 2020; 61:101067. [PMID: 32380212 PMCID: PMC8363192 DOI: 10.1016/j.arr.2020.101067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
As we age, sleep patterns undergo severe modifications of their micro and macrostructure, with an overall lighter and more fragmented sleep structure. In general, interventions targeting sleep represent an excellent opportunity not only to maintain life quality in the healthy aging population, but also to enhance cognitive performance and, when pathology arises, to potentially prevent/slow down conversion from e.g. Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Sleep abnormalities are, in fact, one of the earliest recognizable biomarkers of dementia, being also partially responsible for a cascade of cortical events that worsen dementia pathophysiology, including impaired clearance systems leading to build-up of extracellular amyloid-β (Aβ) peptide and intracellular hyperphosphorylated tau proteins. In this context, Noninvasive Brain Stimulation (NiBS) techniques, such as transcranial electrical stimulation (tES) and transcranial magnetic stimulation (TMS), may help investigate the neural substrates of sleep, identify sleep-related pathology biomarkers, and ultimately help patients and healthy elderly individuals to restore sleep quality and cognitive performance. However, brain stimulation applications during sleep have so far not been fully investigated in healthy elderly cohorts, nor tested in AD patients or other related dementias. The manuscript discusses the role of sleep in normal and pathological aging, reviewing available evidence of NiBS applications during both wakefulness and sleep in healthy elderly individuals as well as in MCI/AD patients. Rationale and details for potential future brain stimulation studies targeting sleep alterations in the aging brain are discussed, including enhancement of cognitive performance, overall quality of life as well as protein clearance.
Collapse
Affiliation(s)
- Sara M Romanella
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Daniel Roe
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachel Paciorek
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Davide Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Arianna Menardi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Padova Neuroscience Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandro Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Siena Robotics and Systems Lab (SIRS-Lab), Engineering and Mathematics Department, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Iotchev IB, Szabó D, Kis A, Kubinyi E. Possible association between spindle frequency and reversal-learning in aged family dogs. Sci Rep 2020; 10:6505. [PMID: 32300165 PMCID: PMC7162895 DOI: 10.1038/s41598-020-63573-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
In both humans and dogs sleep spindle occurrence between acquisition and recall of a specific memory correlate with learning performance. However, it is not known whether sleep spindle characteristics are also linked to performance beyond the span of a day, except in regard to general mental ability in humans. Such a relationship is likely, as both memory and spindle expression decline with age in both species (in dogs specifically the density and amplitude of slow spindles). We investigated if spindle amplitude, density (spindles/minute) and/or frequency (waves/second) correlate with performance on a short-term memory and a reversal-learning task in old dogs (> 7 years), when measurements of behavior and EEG were on average a month apart. Higher frequencies of fast (≥ 13 Hz) spindles on the frontal and central midline electrodes, and of slow spindles (≤ 13 Hz) on the central midline electrode were linked to worse performance on a reversal-learning task. The present findings suggest a role for spindle frequency as a biomarker of cognitive aging across species: Changes in spindle frequency are associated with dementia risk and onset in humans and declining learning performance in the dog.
Collapse
Affiliation(s)
| | - Dóra Szabó
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
10
|
Muehlroth BE, Sander MC, Fandakova Y, Grandy TH, Rasch B, Shing YL, Werkle-Bergner M. Precise Slow Oscillation-Spindle Coupling Promotes Memory Consolidation in Younger and Older Adults. Sci Rep 2019; 9:1940. [PMID: 30760741 PMCID: PMC6374430 DOI: 10.1038/s41598-018-36557-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/25/2018] [Indexed: 01/17/2023] Open
Abstract
Memory consolidation during sleep relies on the precisely timed interaction of rhythmic neural events. Here, we investigate differences in slow oscillations (SO; 0.5-1 Hz), sleep spindles (SP), and their coupling across the adult human lifespan and ask whether observed alterations relate to the ability to retain associative memories across sleep. We demonstrate that older adults do not show the fine-tuned coupling of fast SPs (12.5-16 Hz) to the SO peak present in younger adults but, instead, are characterized most by a slow SP power increase (9-12.5 Hz) at the end of the SO up-state. This slow SP power increase, typical for older adults, coincides with worse memory consolidation in young age already, whereas the tight precision of SO-fast SP coupling promotes memory consolidation across younger and older adults. Crucially, brain integrity in source regions of SO and SP generation, including the medial prefrontal cortex, thalamus, hippocampus and entorhinal cortex, reinforces this beneficial SO-SP coupling in old age. Our results reveal that cognitive functioning is not only determined by maintaining structural brain integrity across the adult lifespan, but also by the preservation of precisely timed neural interactions during sleep that enable the consolidation of declarative memories.
Collapse
Affiliation(s)
- Beate E Muehlroth
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| | - Myriam C Sander
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Thomas H Grandy
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Björn Rasch
- Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Yee Lee Shing
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Department of Developmental Psychology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
11
|
Gagnon JF, Lafrenière A, Rauchs G, Petit D, Carrier J. Sleep in Normal Aging, Alzheimer's Disease, and Mild Cognitive Impairment. HANDBOOK OF SLEEP RESEARCH 2019. [DOI: 10.1016/b978-0-12-813743-7.00045-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Baker FC, Sattari N, de Zambotti M, Goldstone A, Alaynick WA, Mednick SC. Impact of sex steroids and reproductive stage on sleep-dependent memory consolidation in women. Neurobiol Learn Mem 2018; 160:118-131. [PMID: 29574082 DOI: 10.1016/j.nlm.2018.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 01/29/2023]
Abstract
Age and sex are two of the three major risk factors for Alzheimer's disease (ApoE-e4 allele is the third), with women having a twofold greater risk for Alzheimer's disease after the age of 75 years. Sex differences have been shown across a wide range of cognitive skills in young and older adults, and evidence supports a role for sex steroids, especially estradiol, in protecting against the development of cognitive decline in women. Sleep may also be a protective factor against age-related cognitive decline, since specific electrophysiological sleep events (e.g. sleep spindle/slow oscillation coupling) are critical for offline memory consolidation. Furthermore, studies in young women have shown fluctuations in sleep events and sleep-dependent memory consolidation during different phases of the menstrual cycle that are associated with the levels of sex steroids. An under-appreciated possibility is that there may be an important interaction between these two protective factors (sex steroids and sleep) that may play a role in daily fluctuations in cognitive processing, in particular memory, across a woman's lifespan. Here, we summarize the current knowledge of sex steroid-dependent influences on sleep and cognition across the lifespan in women, with special emphasis on sleep-dependent memory processing. We further indicate gaps in knowledge that require further experimental examination in order to fully appreciate the complex and changing landscape of sex steroids and cognition. Lastly, we propose a series of testable predictions for how sex steroids impact sleep events and sleep-dependent cognition across the three major reproductive stages in women (reproductive years, menopause transition, and post-menopause).
Collapse
Affiliation(s)
- Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA; Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Negin Sattari
- UC Irvine, Department of Cognitive Sciences, Irvine, CA 92697, USA
| | | | - Aimee Goldstone
- Center for Health Sciences, SRI International, Menlo Park, CA 94025, USA
| | | | - Sara C Mednick
- UC Irvine, Department of Cognitive Sciences, Irvine, CA 92697, USA.
| |
Collapse
|
13
|
Karageorgiou E, Vossel KA. Brain rhythm attractor breakdown in Alzheimer's disease: Functional and pathologic implications. Alzheimers Dement 2017; 13:1054-1067. [PMID: 28302453 DOI: 10.1016/j.jalz.2017.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
Abstract
This perspective binds emerging evidence on the bidirectional relationship between Alzheimer's disease (AD) and sleep disorders through a model of brain rhythm attractor breakdown. This approach explains behavioral-cognitive changes in AD across the sleep-wake cycle and supports a causal association between early brainstem tau pathology and subsequent cortical amyloid β accumulation. Specifically, early tau dysregulation within brainstem-hypothalamic nuclei leads to breakdown of sleep-wake attractor networks, with patients displaying an attenuated range of behavioral and electrophysiological activity patterns, a "twilight zone" of constant activity between deep rest and full alertness. This constant cortical activity promotes activity-dependent amyloid β accumulation in brain areas that modulate their activity across sleep-wake states, especially the medial prefrontal cortex. In addition, the accompanying breakdown of hippocampal-medial prefrontal cortex interplay across sleep stages could explain deficient memory consolidation through dysregulation of synaptic plasticity. Clinical implications include the potential therapeutic benefit of attractor consolidation (e.g., slow-wave sleep enhancers) in delaying AD progression.
Collapse
Affiliation(s)
- Elissaios Karageorgiou
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA; Neurological Institute of Athens, Athens, Greece.
| | - Keith A Vossel
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA; Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| |
Collapse
|
14
|
Lajnef T, O’Reilly C, Combrisson E, Chaibi S, Eichenlaub JB, Ruby PM, Aguera PE, Samet M, Kachouri A, Frenette S, Carrier J, Jerbi K. Meet Spinky: An Open-Source Spindle and K-Complex Detection Toolbox Validated on the Open-Access Montreal Archive of Sleep Studies (MASS). Front Neuroinform 2017; 11:15. [PMID: 28303099 PMCID: PMC5332402 DOI: 10.3389/fninf.2017.00015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/01/2017] [Indexed: 12/02/2022] Open
Abstract
Sleep spindles and K-complexes are among the most prominent micro-events observed in electroencephalographic (EEG) recordings during sleep. These EEG microstructures are thought to be hallmarks of sleep-related cognitive processes. Although tedious and time-consuming, their identification and quantification is important for sleep studies in both healthy subjects and patients with sleep disorders. Therefore, procedures for automatic detection of spindles and K-complexes could provide valuable assistance to researchers and clinicians in the field. Recently, we proposed a framework for joint spindle and K-complex detection (Lajnef et al., 2015a) based on a Tunable Q-factor Wavelet Transform (TQWT; Selesnick, 2011a) and morphological component analysis (MCA). Using a wide range of performance metrics, the present article provides critical validation and benchmarking of the proposed approach by applying it to open-access EEG data from the Montreal Archive of Sleep Studies (MASS; O'Reilly et al., 2014). Importantly, the obtained scores were compared to alternative methods that were previously tested on the same database. With respect to spindle detection, our method achieved higher performance than most of the alternative methods. This was corroborated with statistic tests that took into account both sensitivity and precision (i.e., Matthew's coefficient of correlation (MCC), F1, Cohen κ). Our proposed method has been made available to the community via an open-source tool named Spinky (for spindle and K-complex detection). Thanks to a GUI implementation and access to Matlab and Python resources, Spinky is expected to contribute to an open-science approach that will enhance replicability and reliable comparisons of classifier performances for the detection of sleep EEG microstructure in both healthy and patient populations.
Collapse
Affiliation(s)
- Tarek Lajnef
- Psychology Department, University of MontrealMontreal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de MontréalMontreal, QC, Canada
| | - Christian O’Reilly
- Blue Brain Project, École Polytechnique Fédérale de LausanneGeneve, Switzerland
| | - Etienne Combrisson
- Psychology Department, University of MontrealMontreal, QC, Canada
- Inter-University Laboratory of Human Movement Biology, University Claude Bernard Lyon 1Villeurbanne, France
- DYCOG Lab, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University Lyon ILyon, France
| | - Sahbi Chaibi
- LETI Lab Sfax National Engineering School (ENIS), University of SfaxSfax, Tunisia
| | - Jean-Baptiste Eichenlaub
- Department of Neurology, Massachusetts General Hospital (MGH), Harvard Medical SchoolBoston, MA, USA
| | - Perrine M. Ruby
- DYCOG Lab, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University Lyon ILyon, France
| | - Pierre-Emmanuel Aguera
- DYCOG Lab, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University Lyon ILyon, France
| | - Mounir Samet
- LETI Lab Sfax National Engineering School (ENIS), University of SfaxSfax, Tunisia
| | - Abdennaceur Kachouri
- LETI Lab Sfax National Engineering School (ENIS), University of SfaxSfax, Tunisia
| | - Sonia Frenette
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de MontréalMontreal, QC, Canada
| | - Julie Carrier
- Psychology Department, University of MontrealMontreal, QC, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de MontréalMontreal, QC, Canada
| | - Karim Jerbi
- Psychology Department, University of MontrealMontreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM)Montréal, QC, Canada
- Centre de Recherche En Neuropsychologie Et Cognition (CERNEC), Psychology Department, Université de MontréalMontréal, QC, Canada
- BRAMS, International Laboratory for Research on Brain, Music, and SoundMontreal, QC, Canada
| |
Collapse
|
15
|
Atherton KE, Nobre AC, Lazar AS, Wulff K, Whittaker RG, Dhawan V, Lazar ZI, Zeman AZ, Butler CR. Slow wave sleep and accelerated forgetting. Cortex 2016; 84:80-89. [PMID: 27710778 PMCID: PMC5084685 DOI: 10.1016/j.cortex.2016.08.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/04/2016] [Accepted: 08/29/2016] [Indexed: 12/12/2022]
Abstract
We investigated whether the benefit of slow wave sleep (SWS) for memory consolidation typically observed in healthy individuals is disrupted in people with accelerated long-term forgetting (ALF) due to epilepsy. SWS is thought to play an active role in declarative memory in healthy individuals and, furthermore, electrographic epileptiform activity is often more prevalent during SWS than during wakefulness or other sleep stages. We studied the relationship between SWS and the benefit of sleep for memory retention using a word-pair associates task. In both the ALF and the healthy control groups, sleep conferred a memory benefit. However, the relationship between the amount of SWS and sleep-related memory benefits differed significantly between the groups. In healthy participants, the amount of SWS correlated positively with sleep-related memory benefits. In stark contrast, the more SWS, the smaller the sleep-related memory benefit in the ALF group. Therefore, contrary to its role in healthy people, SWS-associated brain activity appears to be deleterious for memory in patients with ALF.
Collapse
Affiliation(s)
- Kathryn E Atherton
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | - Alpar S Lazar
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Katharina Wulff
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Vandana Dhawan
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Zsolt I Lazar
- Department of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Adam Z Zeman
- Cognitive and Behavioural Neurology, Peninsular Medical School, University of Exeter, UK
| | - Christopher R Butler
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
16
|
Lajnef T, Chaibi S, Eichenlaub JB, Ruby PM, Aguera PE, Samet M, Kachouri A, Jerbi K. Sleep spindle and K-complex detection using tunable Q-factor wavelet transform and morphological component analysis. Front Hum Neurosci 2015; 9:414. [PMID: 26283943 PMCID: PMC4516876 DOI: 10.3389/fnhum.2015.00414] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022] Open
Abstract
A novel framework for joint detection of sleep spindles and K-complex events, two hallmarks of sleep stage S2, is proposed. Sleep electroencephalography (EEG) signals are split into oscillatory (spindles) and transient (K-complex) components. This decomposition is conveniently achieved by applying morphological component analysis (MCA) to a sparse representation of EEG segments obtained by the recently introduced discrete tunable Q-factor wavelet transform (TQWT). Tuning the Q-factor provides a convenient and elegant tool to naturally decompose the signal into an oscillatory and a transient component. The actual detection step relies on thresholding (i) the transient component to reveal K-complexes and (ii) the time-frequency representation of the oscillatory component to identify sleep spindles. Optimal thresholds are derived from ROC-like curves (sensitivity vs. FDR) on training sets and the performance of the method is assessed on test data sets. We assessed the performance of our method using full-night sleep EEG data we collected from 14 participants. In comparison to visual scoring (Expert 1), the proposed method detected spindles with a sensitivity of 83.18% and false discovery rate (FDR) of 39%, while K-complexes were detected with a sensitivity of 81.57% and an FDR of 29.54%. Similar performances were obtained when using a second expert as benchmark. In addition, when the TQWT and MCA steps were excluded from the pipeline the detection sensitivities dropped down to 70% for spindles and to 76.97% for K-complexes, while the FDR rose up to 43.62 and 49.09%, respectively. Finally, we also evaluated the performance of the proposed method on a set of publicly available sleep EEG recordings. Overall, the results we obtained suggest that the TQWT-MCA method may be a valuable alternative to existing spindle and K-complex detection methods. Paths for improvements and further validations with large-scale standard open-access benchmarking data sets are discussed.
Collapse
Affiliation(s)
- Tarek Lajnef
- LETI Lab, Sfax National Engineering School, University of SfaxSfax, Tunisia
| | - Sahbi Chaibi
- LETI Lab, Sfax National Engineering School, University of SfaxSfax, Tunisia
| | | | - Perrine M. Ruby
- DYCOG Lab, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University Lyon ILyon, France
| | - Pierre-Emmanuel Aguera
- DYCOG Lab, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University Lyon ILyon, France
| | - Mounir Samet
- LETI Lab, Sfax National Engineering School, University of SfaxSfax, Tunisia
| | - Abdennaceur Kachouri
- LETI Lab, Sfax National Engineering School, University of SfaxSfax, Tunisia
- Electrical Engineering Department, Higher Institute of Industrial Systems of Gabes, University of GabesGabes, Tunisia
| | - Karim Jerbi
- DYCOG Lab, Lyon Neuroscience Research Center, INSERM U1028, UMR 5292, University Lyon ILyon, France
- Psychology Department, University of MontrealMontreal, QC, Canada
| |
Collapse
|
17
|
Pace-Schott EF, Spencer RMC. Sleep-dependent memory consolidation in healthy aging and mild cognitive impairment. Curr Top Behav Neurosci 2015; 25:307-330. [PMID: 24652608 DOI: 10.1007/7854_2014_300] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sleep quality and architecture as well as sleep's homeostatic and circadian controls change with healthy aging. Changes include reductions in slow-wave sleep's (SWS) percent and spectral power in the sleep electroencephalogram (EEG), number and amplitude of sleep spindles, rapid eye movement (REM) density and the amplitude of circadian rhythms, as well as a phase advance (moved earlier in time) of the brain's circadian clock. With mild cognitive impairment (MCI) there are further reductions of sleep quality, SWS, spindles, and percent REM, all of which further diminish, along with a profound disruption of circadian rhythmicity, with the conversion to Alzheimer's disease (AD). Sleep disorders may represent risk factors for dementias (e.g., REM Behavior Disorder presages Parkinson's disease) and sleep disorders are themselves extremely prevalent in neurodegenerative diseases. Working memory , formation of new episodic memories, and processing speed all decline with healthy aging whereas semantic, recognition, and emotional declarative memory are spared. In MCI, episodic and working memory further decline along with declines in semantic memory. In young adults, sleep-dependent memory consolidation (SDC) is widely observed for both declarative and procedural memory tasks. However, with healthy aging, although SDC for declarative memory is preserved, certain procedural tasks, such as motor-sequence learning, do not show SDC. In younger adults, fragmentation of sleep can reduce SDC, and a normative increase in sleep fragmentation may account for reduced SDC with healthy aging. Whereas sleep disorders such as insomnia, obstructive sleep apnea, and narcolepsy can impair SDC in the absence of neurodegenerative changes, the incidence of sleep disorders increases both with normal aging and, further, with neurodegenerative disease. Specific features of sleep architecture, such as sleep spindles and SWS are strongly linked to SDC. Diminution of these features with healthy aging and their further decline with MCI may account for concomitant declines in SDC. Notably these same sleep features further markedly decline, in concert with declining cognitive function, with the progression to AD. Therefore, progressive changes in sleep quality, architecture, and neural regulation may constitute a contributing factor to cognitive decline that is seen both with healthy aging and, to a much greater extent, with neurodegenerative disease.
Collapse
Affiliation(s)
- Edward F Pace-Schott
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA,
| | | |
Collapse
|
18
|
Scullin MK, Bliwise DL. Sleep, cognition, and normal aging: integrating a half century of multidisciplinary research. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2015; 10:97-137. [PMID: 25620997 PMCID: PMC4302758 DOI: 10.1177/1745691614556680] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sleep is implicated in cognitive functioning in young adults. With increasing age, there are substantial changes to sleep quantity and quality, including changes to slow-wave sleep, spindle density, and sleep continuity/fragmentation. A provocative question for the field of cognitive aging is whether such changes in sleep physiology affect cognition (e.g., memory consolidation). We review nearly a half century of research across seven diverse correlational and experimental domains that historically have had little crosstalk. Broadly speaking, sleep and cognitive functions are often related in advancing age, though the prevalence of null effects in healthy older adults (including correlations in the unexpected, negative direction) indicates that age may be an effect modifier of these associations. We interpret the literature as suggesting that maintaining good sleep quality, at least in young adulthood and middle age, promotes better cognitive functioning and serves to protect against age-related cognitive declines.
Collapse
Affiliation(s)
- Michael K Scullin
- Department of Psychology and Neuroscience, Baylor University Department of Neurology, Emory University School of Medicine
| | | |
Collapse
|
19
|
Abstract
STUDY OBJECTIVES To investigate the effects of post-learning sleep and sleep architecture on false memory in healthy older adults. DESIGN Balanced, crossover design. False memory was induced using the Deese-Roediger-McDermott (DRM) paradigm and assessed following nocturnal sleep and following a period of daytime wakefulness. Post-learning sleep structure was evaluated using polysomnography (PSG). SETTING Sleep research laboratory. PARTICIPANTS Fourteen healthy older adults from the Singapore-Longitudinal Aging Brain Study (mean age ± standard deviation = 66.6 ± 4.1 y; 7 males). MEASUREMENTS AND RESULTS At encoding, participants studied lists of words that were semantically related to non-presented critical lures. At retrieval, they made "remember"/"know" and "new" judgments. Compared to wakefulness, post-learning sleep was associated with reduced "remember" responses, but not "know" responses to critical lures. In contrast, there were no significant differences in the veridical recognition of studied words, false recognition of unrelated distractors, discriminability, or response bias between the sleep and the wake conditions. More post-learning slow wave sleep was associated with greater reduction in false memory. CONCLUSIONS In healthy older adults, sleep facilitates the reduction in false memory without affecting veridical memory. This benefit correlates with the amount of slow wave sleep in the post-learning sleep episode.
Collapse
Affiliation(s)
- June C Lo
- Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Sam K Y Sim
- Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Michael W L Chee
- Centre for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
20
|
Lafortune M, Gagnon JF, Martin N, Latreille V, Dubé J, Bouchard M, Bastien C, Carrier J. Sleep spindles and rapid eye movement sleep as predictors of next morning cognitive performance in healthy middle-aged and older participants. J Sleep Res 2013; 23:159-67. [DOI: 10.1111/jsr.12108] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/11/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Marjolaine Lafortune
- Center for Advanced Research in Sleep Medicine; Hôpital du Sacré-Coeur de Montréal; Montreal QC Canada
- Centre de recherche; Institut Universitaire de Gériatrie de Montréal; Montréal QC Canada
- Département de psychologie; Université de Montréal; Montréal QC Canada
| | - Jean-François Gagnon
- Center for Advanced Research in Sleep Medicine; Hôpital du Sacré-Coeur de Montréal; Montreal QC Canada
- Centre de recherche; Institut Universitaire de Gériatrie de Montréal; Montréal QC Canada
- Département de psychologie; Université du Québec à Montréal; Montréal QC Canada
| | - Nicolas Martin
- Center for Advanced Research in Sleep Medicine; Hôpital du Sacré-Coeur de Montréal; Montreal QC Canada
- Centre de recherche; Institut Universitaire de Gériatrie de Montréal; Montréal QC Canada
- Département de psychologie; Université de Montréal; Montréal QC Canada
| | - Véronique Latreille
- Center for Advanced Research in Sleep Medicine; Hôpital du Sacré-Coeur de Montréal; Montreal QC Canada
- Département de psychologie; Université de Montréal; Montréal QC Canada
| | - Jonathan Dubé
- Center for Advanced Research in Sleep Medicine; Hôpital du Sacré-Coeur de Montréal; Montreal QC Canada
- Département de psychologie; Université de Montréal; Montréal QC Canada
| | - Maude Bouchard
- Center for Advanced Research in Sleep Medicine; Hôpital du Sacré-Coeur de Montréal; Montreal QC Canada
- Département de psychologie; Université de Montréal; Montréal QC Canada
| | - Célyne Bastien
- École de psychologie; Université Laval; Québec QC Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine; Hôpital du Sacré-Coeur de Montréal; Montreal QC Canada
- Centre de recherche; Institut Universitaire de Gériatrie de Montréal; Montréal QC Canada
- Département de psychologie; Université de Montréal; Montréal QC Canada
| |
Collapse
|
21
|
Plante D, Goldstein M, Landsness E, Peterson M, Riedner B, Ferrarelli F, Wanger T, Guokas J, Tononi G, Benca R. Topographic and sex-related differences in sleep spindles in major depressive disorder: a high-density EEG investigation. J Affect Disord 2013; 146:120-5. [PMID: 22974470 PMCID: PMC3648867 DOI: 10.1016/j.jad.2012.06.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 06/13/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Sleep spindles are believed to mediate several sleep-related functions including maintaining disconnection from the external environment during sleep, cortical development, and sleep-dependent memory consolidation. Prior studies that have examined sleep spindles in major depressive disorder (MDD) have not demonstrated consistent differences relative to control subjects, which may be due to sex-related variation and limited spatial resolution of spindle detection. Thus, this study sought to characterize sleep spindles in MDD using high-density electroencephalography (hdEEG) to examine the topography of sleep spindles across the cortex in MDD, as well as sex-related variation in spindle topography in the disorder. METHODS All-night hdEEG recordings were collected in 30 unipolar MDD participants (19 women) and 30 age and sex-matched controls. Topography of sleep spindle density, amplitude, duration, and integrated spindle activity (ISA) were assessed to determine group differences. Spindle parameters were compared between MDD and controls, including analysis stratified by sex. RESULTS As a group, MDD subjects demonstrated significant increases in frontal and parietal spindle density and ISA compared to controls. When stratified by sex, MDD women demonstrated increases in frontal and parietal spindle density, amplitude, duration, and ISA; whereas MDD men demonstrated either no differences or decreases in spindle parameters. LIMITATIONS Given the number of male subjects, this study may be underpowered to detect differences in spindle parameters in male MDD participants. CONCLUSIONS This study demonstrates topographic and sex-related differences in sleep spindles in MDD. Further research is warranted to investigate the role of sleep spindles and sex in the pathophysiology of MDD.
Collapse
Affiliation(s)
- D.T. Plante
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
,
Corresponding author at: Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd. Madison, WI 53719, USA. Tel.: +1 608 232 3328; fax: +1 608 231 9011. .
| | - M.R. Goldstein
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - E.C. Landsness
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - M.J. Peterson
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - B.A. Riedner
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - F. Ferrarelli
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
,Department of Clinical Sciences, “Luigi Sacco,” Universita degli Studi di Milano, Milan, Italy
| | - T. Wanger
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J.J. Guokas
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - G. Tononi
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - R.M. Benca
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
22
|
Scullin MK. Sleep, memory, and aging: the link between slow-wave sleep and episodic memory changes from younger to older adults. Psychol Aging 2013; 28:105-14. [PMID: 22708533 PMCID: PMC3532961 DOI: 10.1037/a0028830] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In younger adults, recently learned episodic memories are reactivated and consolidated during slow-wave sleep (SWS). It is interesting that SWS declines across the life span, but little research has examined whether sleep-dependent memory consolidation occurs in older adults. In this study, younger adults and healthy older adults encoded word pairs in the morning or evening and then returned following a sleep or no-sleep interval. Sleep-stage scoring was obtained by using a home sleep-stage monitoring system. In the younger adult group, there was a positive correlation between word retention and amount of SWS during the retention interval. In contrast, the older adults demonstrated no significant positive correlations but one significant negative correlation between memory and SWS. These findings suggest that the link between episodic memory and SWS that is typically observed in younger adults may be weakened or otherwise changed in the healthy older adult population.
Collapse
|
23
|
Fogel S, Martin N, Lafortune M, Barakat M, Debas K, Laventure S, Latreille V, Gagnon JF, Doyon J, Carrier J. NREM Sleep Oscillations and Brain Plasticity in Aging. Front Neurol 2012; 3:176. [PMID: 23248614 PMCID: PMC3522106 DOI: 10.3389/fneur.2012.00176] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 11/29/2012] [Indexed: 02/06/2023] Open
Abstract
The human electroencephalogram (EEG) during non-rapid eye movement sleep (NREM) is characterized mainly by high-amplitude (>75 μV), slow-frequency (<4 Hz) waves (slow waves), and sleep spindles (∼11-15 Hz; >0.25 s). These NREM oscillations play a crucial role in brain plasticity, and importantly, NREM sleep oscillations change considerably with aging. This review discusses the association between NREM sleep oscillations and cerebral plasticity as well as the functional impact of age-related changes on NREM sleep oscillations. We propose that age-related reduction in sleep-dependent memory consolidation may be due in part to changes in NREM sleep oscillations.
Collapse
Affiliation(s)
- Stuart Fogel
- Department of Psychology, Université de Montréal Montréal, QC, Canada ; Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal Montréal, QC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|