1
|
Bai YZ, Zhang Y, Zhang SQ. New horizons for the role of selenium on cognitive function: advances and challenges. Metab Brain Dis 2024; 39:1255-1268. [PMID: 38963634 DOI: 10.1007/s11011-024-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Cognitive deficits associated with oxidative stress and the dysfunction of the central nervous system are present in some neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Selenium (Se), an essential microelement, exhibits cognition-associated functions through selenoproteins mainly owing to its antioxidant property. Due to the disproportionate distribution of Se in the soil, the amount of Se varies greatly in various foods, resulting in a large proportion of people with Se deficiency worldwide. Numerous cell and animal experiments demonstrate Se deficiency-induced cognitive deficits and Se supplementation-improved cognitive performances. However, human studies yield inconsistent results and the mechanism of Se in cognition still remains elusive, which hinder the further exploration of Se in human cognition. To address the urgent issue, the review summarizes Se-contained foods (plant-based foods, animal-based foods, and Se supplements), brain selenoproteins, mechanisms of Se in cognition (improvement of synaptic plasticity, regulation of Zn2+ level, inhibition of ferroptosis, modulation of autophagy and de novo synthesis of L-serine), and effects of Se on cognitive deficits, as well as consequently sheds light on great potentials of Se in the prevention and treatment of cognitive deficits.
Collapse
Affiliation(s)
- Ya-Zhi Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Yongming Zhang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, 2 East Yinghua Road, Beijing, 100029, China
- National Center for Respiratory Diseases, Beijing, 100029, China
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
2
|
Barko K, Shelton M, Xue X, Afriyie-Agyemang Y, Puig S, Freyberg Z, Tseng GC, Logan RW, Seney ML. Brain region- and sex-specific transcriptional profiles of microglia. Front Psychiatry 2022; 13:945548. [PMID: 36090351 PMCID: PMC9448907 DOI: 10.3389/fpsyt.2022.945548] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/15/2022] [Indexed: 02/05/2023] Open
Abstract
Microglia are resident macrophages of the brain, performing roles related to brain homeostasis, including modulation of synapses, trophic support, phagocytosis of apoptotic cells and debris, as well as brain protection and repair. Studies assessing morphological and transcriptional features of microglia found regional differences as well as sex differences in some investigated brain regions. However, markers used to isolate microglia in many previous studies are not expressed exclusively by microglia or cannot be used to identify and isolate microglia in all contexts. Here, fluorescent activated cell sorting was used to isolate cells expressing the microglia-specific marker TMEM119 from prefrontal cortex (PFC), striatum, and midbrain in mice. RNA-sequencing was used to assess the transcriptional profile of microglia, focusing on brain region and sex differences. We found striking brain region differences in microglia-specific transcript expression. Most notable was the distinct transcriptional profile of midbrain microglia, with enrichment for pathways related to immune function; these midbrain microglia exhibited a profile similar to disease-associated or immune-surveillant microglia. Transcripts more highly expressed in PFC isolated microglia were enriched for synapse-related pathways while microglia isolated from the striatum were enriched for pathways related to microtubule polymerization. We also found evidence for a gradient of expression of microglia-specific transcripts across the rostral-to-caudal axes of the brain, with microglia extracted from the striatum exhibiting a transcriptional profile intermediate between that of the PFC and midbrain. We also found sex differences in expression of microglia-specific transcripts in all 3 brain regions, with many selenium-related transcripts more highly expressed in females across brain regions. These results suggest that the transcriptional profile of microglia varies between brain regions under homeostatic conditions, suggesting that microglia perform diverse roles in different brain regions and even based on sex.
Collapse
Affiliation(s)
- Kelly Barko
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Micah Shelton
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Yvette Afriyie-Agyemang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Zachary Freyberg
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Genome Science Institute, Boston University School of Medicine, Boston, MA, United States
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Handy DE, Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic Biol Med 2022; 188:146-161. [PMID: 35691509 PMCID: PMC9586416 DOI: 10.1016/j.freeradbiomed.2022.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023]
Abstract
Glutathione peroxidase 1 (GPx1) is an important cellular antioxidant enzyme that is found in the cytoplasm and mitochondria of mammalian cells. Like most selenoenzymes, it has a single redox-sensitive selenocysteine amino acid that is important for the enzymatic reduction of hydrogen peroxide and soluble lipid hydroperoxides. Glutathione provides the source of reducing equivalents for its function. As an antioxidant enzyme, GPx1 modulates the balance between necessary and harmful levels of reactive oxygen species. In this review, we discuss how selenium availability and modifiers of selenocysteine incorporation alter GPx1 expression to promote disease states. We review the role of GPx1 in cardiovascular and metabolic health, provide examples of how GPx1 modulates stroke and provides neuroprotection, and consider how GPx1 may contribute to cancer risk. Overall, GPx1 is protective against the development and progression of many chronic diseases; however, there are some situations in which increased expression of GPx1 may promote cellular dysfunction and disease owing to its removal of essential reactive oxygen species.
Collapse
Affiliation(s)
- Diane E Handy
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Zhang ZH, Song GL. Roles of Selenoproteins in Brain Function and the Potential Mechanism of Selenium in Alzheimer's Disease. Front Neurosci 2021; 15:646518. [PMID: 33762907 PMCID: PMC7982578 DOI: 10.3389/fnins.2021.646518] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) and its compounds have been reported to have great potential in the prevention and treatment of Alzheimer's disease (AD). However, little is known about the functional mechanism of Se in these processes, limiting its further clinical application. Se exerts its biological functions mainly through selenoproteins, which play vital roles in maintaining optimal brain function. Therefore, selenoproteins, especially brain function-associated selenoproteins, may be involved in the pathogenesis of AD. Here, we analyze the expression and distribution of 25 selenoproteins in the brain and summarize the relationships between selenoproteins and brain function by reviewing recent literature and information contained in relevant databases to identify selenoproteins (GPX4, SELENOP, SELENOK, SELENOT, GPX1, SELENOM, SELENOS, and SELENOW) that are highly expressed specifically in AD-related brain regions and closely associated with brain function. Finally, the potential functions of these selenoproteins in AD are discussed, for example, the function of GPX4 in ferroptosis and the effects of the endoplasmic reticulum (ER)-resident protein SELENOK on Ca2+ homeostasis and receptor-mediated synaptic functions. This review discusses selenoproteins that are closely associated with brain function and the relevant pathways of their involvement in AD pathology to provide new directions for research on the mechanism of Se in AD.
Collapse
Affiliation(s)
- Zhong-Hao Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China
| | - Guo-Li Song
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Shenzhen Bay Laboratory, Shenzhen, China.,Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
5
|
Shao X, Sun D, Zhang B, Cheng L, Yan C, Zhu G. Association between GPx-1 polymorphisms and personality traits in healthy Chinese-Han subjects. Brain Behav 2020; 10:e01897. [PMID: 33070477 PMCID: PMC7749609 DOI: 10.1002/brb3.1897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/22/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES Cloninger developed the three-dimensional personality theory and Tridimensional Personality Questionnaire (TPQ), which shows that some dimensions of personality traits are heritable and related to neurotransmitters including dopamine. glutathione peroxidase 1 (GPx1) plays an important role in metabolic dopamine change and closely relates to neurological and psychiatric disorders. The impact of GPx-1 polymorphisms has been rarely explored in the field of personality traits. We decide to explore the relationships between them in healthy Chinese-Han subjects by using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). METHODS In our study, 493 healthy Chinese-Han participants (male = 234, female = 259) were recruited. 2 ml of EDTA-treated blood from each volunteer was taken; meanwhile, personality traits were assessed by TPQ. We detected the genotypes of selected two polymorphisms through PCR-RFLP after extracting DNA. Finally, the association between different genotypes and TPQ scores was performed using SPSS, p < .05 is seen as significant statistical significance. RESULTS Our data found a correlation between rs1800668 and novelty seeking (NS) subscale NS2 (X2 = 7.392, p = .025). While the results showed the rs1050450 was significantly associated with NS4 (X2 = 6.059, p = .048). Regarding sex stratification, there was a significant difference in the NS2 score (X2 = 8.232, p = .016) among women for rs1800668. No sex effect was observed for either genotype for rs1050450. CONCLUSION GPx-1polymorphism is related to personality traits in healthy Chinese-Han subjects. Our results suggested that GPx-1 may be involved in the biological mechanisms and be a potential gene that influenced personality.
Collapse
Affiliation(s)
- Xiaojun Shao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dongxue Sun
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Bihui Zhang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lingfei Cheng
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ci Yan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China.,Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Chan PHY, Chan KYY, Schooling CM, Hui LL, Chan MHM, Li AM, Cheung RCK, Lam HS. Association between genetic variations in GSH-related and MT genes and low-dose methylmercury exposure in children and women of childbearing age: a pilot study. ENVIRONMENTAL RESEARCH 2020; 187:109703. [PMID: 32480025 DOI: 10.1016/j.envres.2020.109703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Genetic variations in glutathione (GSH)-related and metallothionein (MT) genes, which are involved in producing enzymes in the methylmercury (MeHg) metabolism pathway, have been proposed as one of the reasons for the individual variability in MeHg toxicokinetics. OBJECTIVE To investigate the impact of genetic variations in MT and GSH-related genes on the association of fish consumption with body burden of MeHg, as measured by hair Hg concentrations among young children and women of childbearing age. METHODS A total of 179 unrelated children and 165 mothers with either high or low fish consumption were recruited from the community. Their hair total Hg (tHg) and MeHg levels and genotypes for SNPs located on the GCLC, GCLM, GPX1, GSTA1, GSTP1, MT1A, MT2A, and MT4 genes were determined. Based on their 14-day food records, the amounts of fish consumed and their MeHg intakes were estimated. The impact of genetic variations on hair Hg concentrations was examined by using Mann-Whitney tests and multivariable linear regression analyses. RESULTS The presence of minor alleles of GCLC-129 (rs17883901), GPX1-198 (rs1050450) and MT1M (rs9936741) were associated with significantly lower hair tHg levels in mothers whereas mothers with minor alleles of GSTP1-105(rs1695) and MT1M (rs2270836) have significantly higher hair tHg levels. After adjustment for fish consumption and other confounding factors, apart from MT1M (rs2270836), all of the above SNPs remain significant in the multivariable linear regression models. CONCLUSIONS Our results in a group of children and women show that genetic variants of GSH-related and MT genes are associated with hair Hg concentrations. These genetic variations are likely to significantly affect MeHg metabolism and thus influence the accumulation of Hg in the human body.
Collapse
Affiliation(s)
- Peggy Hiu Ying Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Kathy Yuen Yee Chan
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Catherine Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; CUNY School of Public Health and Health Policy, NY, USA.
| | - Lai Ling Hui
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Michael Ho Ming Chan
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Albert Martin Li
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Robert Chi Keung Cheung
- Department of Chemical Pathology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Hugh Simon Lam
- Department of Paediatrics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
7
|
Shao X, Yan C, Sun D, Fu C, Tian C, Duan L, Zhu G. Association Between Glutathione Peroxidase-1 (GPx-1) Polymorphisms and Schizophrenia in the Chinese Han Population. Neuropsychiatr Dis Treat 2020; 16:2297-2305. [PMID: 33116528 PMCID: PMC7547781 DOI: 10.2147/ndt.s272278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The dopamine and oxidative stress hypotheses are leading theories of the pathoetiology of schizophrenia (SCZ). Glutathione Peroxidase 1 (GPx-1), a major antioxidant enzyme, and the most abundantly expressed member of the GPx family, plays an important role in metabolic dopamine changes, which are closely related to neurological and psychiatric disorders. The impact of GPx-1 polymorphisms has rarely been explored in the field of SCZ. Here, we explored the possible relationship between GPx-1 gene polymorphisms and SCZ in Chinese Han subjects by using the polymerase chain reaction-restriction fragment length polymorphism method. METHODS DNA from 786 patients (360 patients with schizophrenia and 426 healthy controls) was genotyped for the single-nucleotide polymorphisms rs1800668 C/T and rs1050450 C/T in GPx-1 using polymerase chain reaction-restriction fragment length polymorphism analysis. Analysis of the association between GPx-1 and SCZ was performed using SPSS 22.0, while Haploview 4.2 software and SHEsis software were used to perform linkage disequilibrium analysis and haplotype analysis. RESULTS The results indicated that the GPx-1 polymorphisms rs1050450 and rs1800668 were associated with SCZ. We found that the C-allele of rs1800668 C/T may be a protection factor against SCZ in general, but in particular, for males. Furthermore, the CT and TC (GPx-1 rs1800668 C/T and rs1050450 C/T) haplotypes may be susceptible to SCZ in the population. Finally, no significant differences in allelic or genotypic frequencies of rs1050450 were detected between cases and controls from whole or stratification analyses by gender. CONCLUSION GPx-1 polymorphisms are related to SCZ in Chinese Han subjects. Our results suggested that GPx-1 may be a potential gene that influences SCZ.
Collapse
Affiliation(s)
- Xiaojun Shao
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Ci Yan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Dongxue Sun
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Chunfeng Fu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Chunsheng Tian
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Li Duan
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Gang Zhu
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China.,Central Laboratory, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|
8
|
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q, Wang J. Ferroptosis and Its Role in Diverse Brain Diseases. Mol Neurobiol 2018; 56:4880-4893. [PMID: 30406908 DOI: 10.1007/s12035-018-1403-3] [Citation(s) in RCA: 312] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a recently identified, iron-regulated, non-apoptotic form of cell death. It is characterized by cellular accumulation of lipid reactive oxygen species that ultimately leads to oxidative stress and cell death. Although first identified in cancer cells, ferroptosis has been shown to have significant implications in several neurologic diseases, such as ischemic and hemorrhagic stroke, Alzheimer's disease, and Parkinson's disease. This review summarizes current research on ferroptosis, its underlying mechanisms, and its role in the progression of different neurologic diseases. Understanding the role of ferroptosis could provide valuable information regarding treatment and prevention of these devastating diseases.
Collapse
Affiliation(s)
- Abigail Weiland
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xi Lan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Qian Li
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Advanced Innovation Center for Human Brain Protection, Captical Medical University, Beijing, 100069, China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
9
|
Shefa U, Kim MS, Jeong NY, Jung J. Antioxidant and Cell-Signaling Functions of Hydrogen Sulfide in the Central Nervous System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1873962. [PMID: 29507650 PMCID: PMC5817206 DOI: 10.1155/2018/1873962] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
Hydrogen sulfide (H2S), a toxic gaseous molecule, plays a physiological role in regulating homeostasis and cell signaling. H2S is produced from cysteine by enzymes, such as cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), cysteine aminotransferase (CAT), and 3-mercaptopyruvate sulfurtransferase (3MST). These enzymes regulate the overall production of H2S in the body. H2S has a cell-signaling function in the CNS and plays important roles in combating oxidative species such as reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the body. H2S is crucial for maintaining balanced amounts of antioxidants to protect the body from oxidative stress, and appropriate amounts of H2S are required to protect the CNS in particular. The body regulates CBS, 3MST, and CSE levels in the CNS, and higher or lower levels of these enzymes cause various neurodegenerative diseases. This review discusses how H2S protects the CNS by acting as an antioxidant that reduces excessive amounts of ROS and RNS. Additionally, H2S regulates cell signaling to combat neuroinflammation and protect against central neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Ulfuara Shefa
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Min-Sik Kim
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32 Daesingongwon-ro, Seo-gu, Busan 49201, Republic of Korea
| | - Junyang Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
da Rocha TJ, Silva Alves M, Guisso CC, de Andrade FM, Camozzato A, de Oliveira AA, Fiegenbaum M. Association of GPX1 and GPX4 polymorphisms with episodic memory and Alzheimer's disease. Neurosci Lett 2017; 666:32-37. [PMID: 29246792 DOI: 10.1016/j.neulet.2017.12.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 12/28/2022]
Abstract
It is well established that healthy aging, mild cognitive impairment (MCI), and Alzheimer's disease (AD) are associated with substantial declines in episodic memory. However, there is still debate about the roles of GPX1 and GPX4 polymorphisms. The aim of this study was to investigate the association of rs1050450 and rs713041 polymorphisms with memory. This research was composed of a cross-sectional study (334 subjects) and a case-control study (108 healthy controls and 103 with AD-NINCDS/ARDA, DSM-IV-TR criteria). For the association of the genetic polymorphisms with memory or cognitive loss, the phenotypes were analyzed as follows: 1) each memory as a quantitative trait; 2) presence of deficit on a specific memory; 3) presence of MCI; 4) presence of AD. To assess verbal learning and the ability to store new information, we used the Rey Verbal Learning Test. Scores were recorded as a function of age as in the WMS-R testing battery. DNA was obtained from whole blood, and genotypes for GPX1 (rs1050450) and GPX4 (rs713041) were detected by allelic discrimination assay using TaqMan® MGB probes on a real-time PCR system. GPX1 TT homozygotes had lower long-term visual memory scores than CC/CT group (-0.28 ± 1.03 vs. 0.13 ± 1.03, respectively, p = 0.017). For the GPX4 rs713041, the frequency of the TT genotype was higher in the group with normal scores than in the group with long-term visual memory deficits (p = 0.025). In a multivariate logistic regression, GPX1 CC homozygotes had a 2.85 higher chance of developing AD (OR = 2.85, CI95% = 1.04-7.78, p = 0.041) in comparison to the reference genotype. No significant differences were observed regarding the MCI group between genetic variants. This study is one of the first to show that polymorphisms in GPX1 and GPX4 are significantly associated with episodic memory and AD in a South Brazilian population.
Collapse
Affiliation(s)
- Tatiane Jacobsen da Rocha
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Mônica Silva Alves
- Curso de Biomedicina, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Carolina Campelo Guisso
- Curso de Psicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| | | | - Analuiza Camozzato
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alcyr Alves de Oliveira
- Programa de Pós-Graduação em Ciências da Reabilitação, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Marilu Fiegenbaum
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Association between the APOE ε4 Allele and Late-Onset Alzheimer's Disease in an Ecuadorian Mestizo Population. Int J Alzheimers Dis 2017; 2017:1059678. [PMID: 29348964 PMCID: PMC5733981 DOI: 10.1155/2017/1059678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/27/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. It has two main pathological hallmarks: amyloid plaques and neurofibrillary tangles. The APOE ε4 allele has been recognized as the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD) in several populations worldwide, yet the risk varies by region and ethnicity. The aims of this study were to describe APOE allele and genotype frequencies and examine the relationship between the APOE ε4 allele and LOAD risk in an Ecuadorian Mestizo population. We carried out a case-control study comprising 56 individuals clinically diagnosed with probable AD (≥65 years of age) and 58 unrelated healthy control subjects (≥65 years of age). Genotyping was performed using the real-time PCR method. Our data showed that allelic and genotypic frequencies follow the trends observed in most worldwide populations. We also found a high-risk association between APOE ε4 allele carriers and LOAD (OR = 7.286; 95% CI = 2.824–18.799; p < 0.001). Therefore, we concluded that APOE ε4 must be considered an important genetic risk factor for LOAD in the Ecuadorian Mestizo population. Additionally, we suggest that in mixed populations the effects of admixture and ethnic identity should be differentiated when evaluating genetic contributions to Alzheimer's disease risk.
Collapse
|
12
|
Jiao Y, Wang Y, Guo S, Wang G. Glutathione peroxidases as oncotargets. Oncotarget 2017; 8:80093-80102. [PMID: 29108391 PMCID: PMC5668124 DOI: 10.18632/oncotarget.20278] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a disturbance in the equilibrium among free radicals, reactive oxygen species, and endogenous antioxidant defense mechanisms. Oxidative stress is a result of imbalance between the production of reactive oxygen and the biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Mounting evidence has implicated oxidative stress in various physiological and pathological processes, including DNA damage, proliferation, cell adhesion, and survival of cancer cells. Glutathione peroxidases (GPxs) (EC 1.11.1.9) are an enzyme family with peroxidase activity whose main biological roles are to protect organisms from oxidative damage by reducing lipid hydroperoxides as well as free hydrogen peroxide. Currently, 8 sub-members of GPxs have been identified in humans, all capable of reducing H2O2 and soluble fatty acid hydroperoxides. A large number of publications has demonstrated that GPxs have significant roles in different stages of carcinogenesis. In this review, we will update recent progress in the study of the roles of GPxs in cancer. Better mechanistic understanding of GPxs will potentially contribute to the development and advancement of improved cancer treatment models.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, P.R. China
| | - Yirong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
13
|
Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M. Oxidative Stress in Neurodegenerative Diseases. Mol Neurobiol 2016; 53:4094-4125. [PMID: 26198567 PMCID: PMC4937091 DOI: 10.1007/s12035-015-9337-5] [Citation(s) in RCA: 485] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/01/2015] [Indexed: 12/12/2022]
Abstract
The pathophysiologies of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), are far from being fully explained. Oxidative stress (OS) has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders. Clinical and preclinical studies indicate that neurodegenerative diseases are characterized by higher levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain and peripheral tissues. In this article, we review the current knowledge regarding the involvement of OS in neurodegenerative diseases, based on clinical trials and animal studies. In addition, we analyze the effects of the drug-induced modulation of oxidative balance, and we explore pharmacotherapeutic strategies for OS reduction.
Collapse
Affiliation(s)
- Ewa Niedzielska
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Irena Smaga
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Maciej Gawlik
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Andrzej Moniczewski
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Piotr Stankowicz
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Faculty of Medicine, Jagiellonian University, Medical College, Botaniczna 3, 31-503, Krakow, Poland
| | - Małgorzata Filip
- Department of Toxicology, Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland.
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
14
|
Cardoso BR, Busse AL, Hare DJ, Cominetti C, Horst MA, McColl G, Magaldi RM, Jacob-Filho W, Cozzolino SMF. Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake. Food Funct 2016; 7:825-33. [DOI: 10.1039/c5fo01270h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenoproteins play important roles in antioxidant mechanisms, but it is hypothesised that single polymorphism nucleotides (SNPs) may affect their function.
Collapse
Affiliation(s)
- Bárbara R. Cardoso
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
- University of São Paulo
- São Paulo
- Brazil
| | - Alexandre L. Busse
- Geriatrics Division
- Department of Internal Medicine
- University of São Paulo Medical School
- São Paulo
- Brazil
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville
- Australia
- Elemental Bio-imaging Facility
| | | | - Maria A. Horst
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
- University of São Paulo
- São Paulo
- Brazil
| | - Gawain McColl
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville
- Australia
| | - Regina M. Magaldi
- Geriatrics Division
- Department of Internal Medicine
- University of São Paulo Medical School
- São Paulo
- Brazil
| | - Wilson Jacob-Filho
- Geriatrics Division
- Department of Internal Medicine
- University of São Paulo Medical School
- São Paulo
- Brazil
| | - Silvia M. F. Cozzolino
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
- University of São Paulo
- São Paulo
- Brazil
| |
Collapse
|
15
|
Positive Association of the Cathepsin D Ala224Val Gene Polymorphism With the Risk of Alzheimer's Disease. Am J Med Sci 2015; 350:296-301. [PMID: 26351775 DOI: 10.1097/maj.0000000000000555] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of senile dementia. In Ecuador, the number of deaths caused by AD increases each year. Epidemiologically, the Ecuadorian population is composed of a mixture of several genetic backgrounds along with environmental factors, that make it unique and ideal for population studies. The main objective of this study was to determine the prevalence of Cystatin C (CST3), Cathepsin D (CTSD) and Manganese superoxide dismutase (MnSOD) amino acid-altering polymorphisms and their influence on the development of AD in the Ecuadorian population. METHODS This is a case-control study consisting of 56 patients with AD, from the Department of Neurology at Carlos Andrade Marín Hospital. The control group (n = 55) comprised healthy elderly adults. The inclusion period was from January to August of 2012. Peripheral blood was collected from both groups for DNA extraction, polymerase chain reaction and capillary sequencing. RESULTS There was a positive association between a CTSD polymorphism (Ala224Val) and the development of AD (odds ratio = 8.1, 95% confidence interval: 0.9-85.7; P < 0.025). However, the 3 other polymorphisms investigated did not show significant associations with AD. CONCLUSIONS Variations in CTSD and MnSOD showed no association with the development of AD, whereas the presence of the Ala224Val polymorphism in CTSD had a positive association with the development of AD.
Collapse
|
16
|
Paz-Y-Miño C, Guillen Sacoto MJ, Leone PE. Genetics and genomic medicine in Ecuador. Mol Genet Genomic Med 2015; 4:9-17. [PMID: 26788533 PMCID: PMC4707029 DOI: 10.1002/mgg3.192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- César Paz-Y-Miño
- Instituto de Investigaciones Biomédicas Universidad de las Américas Quito Ecuador
| | - María J Guillen Sacoto
- National Human Genome Research Institute National Institutes of Health Bethesda Maryland USA
| | - Paola E Leone
- Instituto de Investigaciones Biomédicas Universidad de las Américas Quito Ecuador
| |
Collapse
|
17
|
Aoyama K, Nakaki T. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules 2015; 20:8742-58. [PMID: 26007177 PMCID: PMC6272787 DOI: 10.3390/molecules20058742] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system’s roles in maintaining redox homeostasis. Especially, glutathione (GSH) is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1) plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.
Collapse
Affiliation(s)
| | - Toshio Nakaki
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-3-3964-3793; Fax: +81-3-3964-0602
| |
Collapse
|
18
|
Velez-Pardo C, Rojas W, Jimenez-Del-Rio M, Bedoya G. Distribution of APOE polymorphism in the "Paisa" population from northwest Colombia (Antioquia). Ann Hum Biol 2014; 42:195-8. [PMID: 25026367 DOI: 10.3109/03014460.2014.932846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The apolipoprotein E (APOE) gene plays a pivotal role in cholesterol metabolism. Since the discovery of the APOE*2 and APOE*4 as the major susceptibility alleles for several diseases including dyslipidemia, atherosclerosis, coronary heart disease, late-onset and early Alzheimer's disease, the APOE genotype might be considered as a potential predictive factor for both epidemiological research and diagnosis. AIM The aim of this study is to report on the polymorphism of the APOE gene in the "Paisa" population from northwest Colombia (Antioquia) to obtain a population baseline of the existing variation in this locus. METHOD One thousand and one healthy voluntaries were genotyped for the APOE polymorphism using polymerase chain reaction-restriction fragment length polymorphism technique. RESULTS The APOE*3/*3 genotype presented the highest frequency (66.33%) and the APOE*4/*4 had the lowest frequency (1.89%). Genotype frequencies comply with Hardy-Weinberg expectations. Allele frequencies obtained for APOE*2, APOE*3 and APOE*4 were 0.075 ± 0.005 (95% CI = 0.063-0.086), 0.814 ± 0.009 (0.797-0.831) and 0.111 ± 0.007 (0.098-0.125), respectively. CONCLUSION Although globally the high-to-low APOE frequency follows the E*3 > E*4 > E*2 trend, the present APOE frequency data is in disagreement with some reports from South-American countries.
Collapse
Affiliation(s)
- Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine and
| | | | | | | |
Collapse
|
19
|
Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 2013; 14:21021-44. [PMID: 24145751 PMCID: PMC3821656 DOI: 10.3390/ijms141021021] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022] Open
Abstract
Glutathione (GSH) was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis. GSH also regulates cell signaling, protein function, gene expression, and cell differentiation/proliferation in the brain. Clinically, inborn errors in GSH-related enzymes are very rare, but disorders of GSH metabolism are common in major neurodegenerative diseases showing GSH depletion and increased levels of oxidative stress in the brain. GSH depletion would precipitate oxidative damage in the brain, leading to neurodegenerative diseases. This review focuses on the significance of GSH function, the synthesis of GSH and its metabolism, and clinical disorders of GSH metabolism. A potential approach to increase brain GSH levels against neurodegeneration is also discussed.
Collapse
Affiliation(s)
- Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
| | | |
Collapse
|
20
|
Abstract
Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer’s, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, and Friedreich’s ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated.
Collapse
|
21
|
Abstract
Alzheimer's disease (AD) is the most common form of dementia in elderly individuals and is associated with progressive neurodegeneration of the human neocortex. Thiamine levels and the activity of thiamine-dependent enzymes are reduced in the brains and peripheral tissues of patients with AD. Genetic studies have provided the opportunity to determine what proteins link thiamine to AD pathology (ie, transketolase, apolipoprotein E, α-1-antitrypsin, pyruvate dehydrogenase complex, p53, glycogen synthetase kinase-3β, c-Fos gene, the Sp1 promoter gene, and the poly(ADP-ribosyl) polymerase-1 gene). We reviewed the association between histopathogenesis and neurotransmitters to understand the relationship between thiamine and AD pathology. Oral thiamine trials have been shown to improve the cognitive function of patients with AD; however, absorption of thiamine is poor in elderly individuals. In the early stage of thiamine-deficient encephalopathy (Wernicke's encephalopathy), however, parental thiamine has been used successfully. Therefore, further studies are needed to determine the benefits of using parental thiamine as a treatment for AD.
Collapse
|
22
|
Lu'o'ng KVQ, Nguyên LTH. The beneficial role of vitamin D in Alzheimer's disease. Am J Alzheimers Dis Other Demen 2011; 26:511-20. [PMID: 22202127 PMCID: PMC10845314 DOI: 10.1177/1533317511429321] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly individuals and is associated with progressive neurodegeneration of the human neocortex. Patients with AD have a high prevalence of vitamin D deficiency, which is also associated with low mood and impaired cognitive performance in older people. Genetic studies have provided the opportunity to determine which proteins link vitamin D to AD pathology (ie, the major histocompatibility complex class II molecules, vitamin D receptor, renin-angiotensin system, apolipoprotein E, liver X receptor, Sp1 promoter gene, and the poly(ADP-ribose) polymerase-1 gene). Vitamin D also exerts its effect on AD through nongenomic factors, that is, L-type voltage-sensitive calcium channels, nerve growth factor, the prostaglandins, cyclooxygenase 2, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D clearly has a beneficial role in AD and improves cognitive function in some patients with AD. Calcitriol, 1 α,25-dihydroxyvitamin D3, is best used for AD because of its active form of vitamin D(3) metabolite and its receptor in the central nervous system.
Collapse
|