1
|
LaSarge CL, McCoy C, Namboodiri DV, Hartings JA, Danzer SC, Batie MR, Skoch J. Spatial and Temporal Comparisons of Calcium Channel and Intrinsic Signal Imaging During in Vivo Cortical Spreading Depolarizations in Healthy and Hypoxic Brains. Neurocrit Care 2023; 39:655-668. [PMID: 36539593 DOI: 10.1007/s12028-022-01660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spreading depolarizations (SDs) can be viewed at a cellular level using calcium imaging (CI), but this approach is limited to laboratory applications and animal experiments. Optical intrinsic signal imaging (OISI), on the other hand, is amenable to clinical use and allows viewing of large cortical areas without contrast agents. A better understanding of the behavior of OISI-observed SDs under different brain conditions is needed. METHODS We performed simultaneous calcium and OISI of SDs in GCaMP6f mice. SDs propagate through the cortex as a pathological wave and trigger a neurovascular response that can be imaged with both techniques. We imaged both mechanically stimulated SDs (sSDs) in healthy brains and terminal SDs (tSDs) induced by system hypoxia and cardiopulmonary failure. RESULTS We observed a lag in the detection of SDs in the OISI channels compared with CI. sSDs had a faster velocity than tSDs, and tSDs had a greater initial velocity for the first 400 µm when observed with CI compared with OISI. However, both imaging methods revealed similar characteristics, including a decrease in the sSD (but not tSD) velocities as the wave moved away from the site of initial detection. CI and OISI also showed similar spatial propagation of the SD throughout the image field. Importantly, only OISI allowed regional ischemia to be detected before tSDs occurred. CONCLUSIONS Altogether, data indicate that monitoring either neural activity or intrinsic signals with high-resolution optical imaging can be useful to assess SDs, but OISI may be a clinically applicable way to predict, and therefore possibly mitigate, hypoxic-ischemic tSDs.
Collapse
Affiliation(s)
- Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carlie McCoy
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Devi V Namboodiri
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Anesthesia, University of Cincinnati, Cincinnati, OH, USA
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew R Batie
- Clinical Engineering, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jesse Skoch
- Center for Pediatric Neuroscience, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Mehra A, Gomez F, Bischof H, Diedrich D, Laudanski K. Cortical Spreading Depolarization and Delayed Cerebral Ischemia; Rethinking Secondary Neurological Injury in Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:9883. [PMID: 37373029 DOI: 10.3390/ijms24129883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Poor outcomes in Subarachnoid Hemorrhage (SAH) are in part due to a unique form of secondary neurological injury known as Delayed Cerebral Ischemia (DCI). DCI is characterized by new neurological insults that continue to occur beyond 72 h after the onset of the hemorrhage. Historically, it was thought to be a consequence of hypoperfusion in the setting of vasospasm. However, DCI was found to occur even in the absence of radiographic evidence of vasospasm. More recent evidence indicates that catastrophic ionic disruptions known as Cortical Spreading Depolarizations (CSD) may be the culprits of DCI. CSDs occur in otherwise healthy brain tissue even without demonstrable vasospasm. Furthermore, CSDs often trigger a complex interplay of neuroinflammation, microthrombi formation, and vasoconstriction. CSDs may therefore represent measurable and modifiable prognostic factors in the prevention and treatment of DCI. Although Ketamine and Nimodipine have shown promise in the treatment and prevention of CSDs in SAH, further research is needed to determine the therapeutic potential of these as well as other agents.
Collapse
Affiliation(s)
- Ashir Mehra
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Francisco Gomez
- Department of Neurology, University of Missouri, Columbia, MO 65212, USA
| | - Holly Bischof
- Penn Presbyterian Medical Center, Philadelphia, PA 19104, USA
| | - Daniel Diedrich
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Oka F, Sadeghian H, Yaseen MA, Fu B, Kura S, Qin T, Sakadžić S, Sugimoto K, Inoue T, Ishihara H, Nomura S, Suzuki M, Ayata C. Intracranial pressure spikes trigger spreading depolarizations. Brain 2021; 145:194-207. [PMID: 34245240 PMCID: PMC9126007 DOI: 10.1093/brain/awab256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 01/09/2023] Open
Abstract
Spreading depolarizations are highly prevalent and spatiotemporally punctuated events worsening the outcome of brain injury. Trigger factors are poorly understood but may be linked to sudden worsening in supply-demand mismatch in compromised tissue. Sustained or transient elevations in intracranial pressure are also prevalent in the injured brain. Here, using a mouse model of large hemispheric ischaemic stroke, we show that mild and brief intracranial pressure elevations (20 or 30 mmHg for just 3 min) potently trigger spreading depolarizations in ischaemic penumbra (4-fold increase in spreading depolarization occurrence). We also show that 30 mmHg intracranial pressure spikes as brief as 30 s are equally effective. In contrast, sustained intracranial pressure elevations to the same level for 30 min do not significantly increase the spreading depolarization rate, suggesting that an abrupt disturbance in the steady state equilibrium is required to trigger a spreading depolarization. Laser speckle flowmetry consistently showed a reduction in tissue perfusion, and two-photon pO2 microscopy revealed a drop in venous pO2 during the intracranial pressure spikes suggesting increased oxygen extraction fraction, and therefore, worsening supply-demand mismatch. These haemodynamic changes during intracranial pressure spikes were associated with highly reproducible increases in extracellular potassium levels in penumbra. Consistent with the experimental data, a higher rate of intracranial pressure spikes was associated with spreading depolarization clusters in a retrospective series of patients with aneurysmal subarachnoid haemorrhage with strong temporal correspondence. Altogether, our data show that intracranial pressure spikes, even when mild and brief, are capable of triggering spreading depolarizations. Aggressive prevention of intracranial pressure spikes may help reduce spreading depolarization occurrence and improve outcomes after brain injury.
Collapse
Affiliation(s)
- Fumiaki Oka
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA,Department of Neurosurgery, Yamaguchi Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan,Correspondence to: Fumiaki Oka, MD, PhD Department of Neurosurgery, Yamaguchi Graduate School of Medicine 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan E-mail:
| | - Homa Sadeghian
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Mohammad A Yaseen
- Optics Division, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Buyin Fu
- Optics Division, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Sreekanth Kura
- Optics Division, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Tao Qin
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Sava Sakadžić
- Optics Division, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Kazutaka Sugimoto
- Department of Neurosurgery, Yamaguchi Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Takao Inoue
- Department of Advanced ThermoNeuroBiology, Yamaguchi Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Hideyuki Ishihara
- Department of Neurosurgery, Yamaguchi Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Sadahiro Nomura
- Department of Neurosurgery, Yamaguchi Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Michiyasu Suzuki
- Department of Advanced ThermoNeuroBiology, Yamaguchi Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA,Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA,Correspondence may also be addressed to: Cenk Ayata, MD, PhD Massachusetts General Hospital, 149 13th street, Room 6408, Charlestown, MA 02129, USA E-mail:
| |
Collapse
|
4
|
Jaquins-Gerstl A, Michael AC. Dexamethasone-Enhanced Microdialysis and Penetration Injury. Front Bioeng Biotechnol 2020; 8:602266. [PMID: 33364231 PMCID: PMC7752925 DOI: 10.3389/fbioe.2020.602266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/11/2020] [Indexed: 01/25/2023] Open
Abstract
Microdialysis probes, electrochemical microsensors, and neural prosthetics are often used for in vivo monitoring, but these are invasive devices that are implanted directly into brain tissue. Although the selectivity, sensitivity, and temporal resolution of these devices have been characterized in detail, less attention has been paid to the impact of the trauma they inflict on the tissue or the effect of any such trauma on the outcome of the measurements they are used to perform. Factors affecting brain tissue reaction to the implanted devices include: the mechanical trauma during insertion, the foreign body response, implantation method, and physical properties of the device (size, shape, and surface characteristics. Modulation of the immune response is an important step toward making these devices with reliable long-term performance. Local release of anti-inflammatory agents such as dexamethasone (DEX) are often used to mitigate the foreign body response. In this article microdialysis is used to locally deliver DEX to the surrounding brain tissue. This work discusses the immune response resulting from microdialysis probe implantation. We briefly review the principles of microdialysis and the applications of DEX with microdialysis in (i) neuronal devices, (ii) dopamine and fast scan cyclic voltammetry, (iii) the attenuation of microglial cells, (iv) macrophage polarization states, and (v) spreading depolarizations. The difficulties and complexities in these applications are herein discussed.
Collapse
|
5
|
Gregori-Pla C, Delgado-Mederos R, Cotta G, Giacalone G, Maruccia F, Avtzi S, Prats-Sánchez L, Martínez-Domeño A, Camps-Renom P, Martí-Fàbregas J, Durduran T, Mayos M. Microvascular cerebral blood flow fluctuations in association with apneas and hypopneas in acute ischemic stroke. NEUROPHOTONICS 2019; 6:025004. [PMID: 31037244 PMCID: PMC6477863 DOI: 10.1117/1.nph.6.2.025004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
In a pilot study on acute ischemic stroke (AIS) patients, unexpected periodic fluctuations in microvascular cerebral blood flow (CBF) had been observed. Motivated by the relative lack of information about the impact of the emergence of breathing disorders in association with stroke on cerebral hemodynamics, we hypothesized that these fluctuations are due to apneic and hypopneic events. A total of 28 patients were screened within the first week after stroke with a pulse oximeter. Five (18%) showed fluctuations of arterial blood oxygen saturation ( ≥ 3 % ) and were included in the study. Near-infrared diffuse correlation spectroscopy (DCS) was utilized bilaterally to measure the frontal lobe CBF alongside respiratory polygraphy. Biphasic CBF fluctuations were observed with a bilateral increase of 27.1 % ± 17.7 % and 29.0 % ± 17.4 % for the ipsilesional and contralesional hemispheres, respectively, and a decrease of - 19.3 % ± 9.1 % and - 21.0 % ± 8.9 % for the ipsilesional and contralesional hemispheres, respectively. The polygraph revealed that, in general, the fluctuations were associated with apneic and hypopneic events. This study motivates us to investigate whether the impact of altered respiratory patterns on cerebral hemodynamics can be detrimental in AIS patients.
Collapse
Affiliation(s)
- Clara Gregori-Pla
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Raquel Delgado-Mederos
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Neurology (Stroke Unit), Barcelona, Spain
| | - Gianluca Cotta
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Giacomo Giacalone
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- San Raffaele Scientific Institute, Milan, Italy
| | - Federica Maruccia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Universitat Autònoma de Barcelona, Neurotraumatology and Neurosurgery Research Unit, Vall d’Hebron University Research Institute, Barcelona, Spain
| | - Stella Avtzi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
| | - Luís Prats-Sánchez
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Neurology (Stroke Unit), Barcelona, Spain
| | - Alejandro Martínez-Domeño
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Neurology (Stroke Unit), Barcelona, Spain
| | - Pol Camps-Renom
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Neurology (Stroke Unit), Barcelona, Spain
| | - Joan Martí-Fàbregas
- Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Neurology (Stroke Unit), Barcelona, Spain
| | - Turgut Durduran
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Mercedes Mayos
- Hospital de la Santa Creu i Sant Pau, Sleep Unit, Department of Respiratory Medicine, Barcelona, Spain
- CIBER Enfermedades Respiratorias (CB06/06), Madrid, Spain
| |
Collapse
|
6
|
Taş YÇ, Solaroğlu İ, Gürsoy-Özdemir Y. Spreading Depolarization Waves in Neurological Diseases: A Short Review about its Pathophysiology and Clinical Relevance. Curr Neuropharmacol 2019; 17:151-164. [PMID: 28925885 PMCID: PMC6343201 DOI: 10.2174/1570159x15666170915160707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/03/2017] [Accepted: 09/09/2017] [Indexed: 02/05/2023] Open
Abstract
Lesion growth following acutely injured brain tissue after stroke, subarachnoid hemorrhage and traumatic brain injury is an important issue and a new target area for promising therapeutic interventions. Spreading depolarization or peri-lesion depolarization waves were demonstrated as one of the significant contributors of continued lesion growth. In this short review, we discuss the pathophysiology for SD forming events and try to list findings detected in neurological disorders like migraine, stroke, subarachnoid hemorrhage and traumatic brain injury in both human as well as experimental studies. Pharmacological and non-pharmacological treatment strategies are highlighted and future directions and research limitations are discussed.
Collapse
Affiliation(s)
| | | | - Yasemin Gürsoy-Özdemir
- Address correspondence to these authors at the Department of Neurosurgery, School of Medicine, Koç University, İstanbul, Turkey; Tel: +90 850 250 8250; E-mails: ,
| |
Collapse
|
7
|
Carlson AP, William Shuttleworth C, Mead B, Burlbaw B, Krasberg M, Yonas H. Cortical spreading depression occurs during elective neurosurgical procedures. J Neurosurg 2017; 126:266-273. [DOI: 10.3171/2015.11.jns151871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Cortical spreading depression (CSD) has been observed with relatively high frequency in the period following human brain injury, including traumatic brain injury and ischemic/hemorrhagic stroke. These events are characterized by loss of ionic gradients through massive cellular depolarization, neuronal dysfunction (depression of electrocorticographic [ECoG] activity) and slow spread (2–5 mm/min) across the cortical surface. Previous data obtained in animals have suggested that even in the absence of underlying injury, neurosurgical manipulation can induce CSD and could potentially be a modifiable factor in neurosurgical injury. The authors report their initial experience with direct intraoperative ECoG monitoring for CSD.
METHODS
The authors prospectively enrolled patients undergoing elective craniotomy for supratentorial lesions in cases in which the surgical procedure was expected to last > 2 hours. These patients were monitored for CSD from the time of dural opening through the time of dural closure, using a standard 1 × 6 platinum electrode coupled with an AC or full-spectrum DC amplifier. The data were processed using standard techniques to evaluate for slow potential changes coupled with suppression of high-frequency ECoG propagating across the electrodes. Data were compared with CSD validated in previous intensive care unit (ICU) studies, to evaluate recording conditions most likely to permit CSD detection, and identify likely events during the course of neurosurgical procedures using standard criteria.
RESULTS
Eleven patients underwent ECoG monitoring during elective neurosurgical procedures. During the periods of monitoring, 2 definite CSDs were observed to occur in 1 patient and 8 suspicious events were detected in 4 patients. In other patients, either no events were observed or artifact limited interpretation of the data. The DC-coupled amplifier system represented an improvement in stability of data compared with AC-coupled systems. Compared with more widely used postoperative ICU monitoring, there were additional challenges with artifact from saturation during bipolar cautery as well as additional noise peaks detected.
CONCLUSIONS
CSD can occur during elective neurosurgical procedures even in brain regions distant from the immediate operative site. ECoG monitoring with a DC-coupled full-spectrum amplifier seemed to provide the most stable signal despite significant challenges to the operating room environment. CSD may be responsible for some cases of secondary surgical injury. Though further studies on outcome related to the occurrence of these events is needed, efforts to decrease the occurrence of CSD by modification of anesthetic regimen may represent a novel target for study to increase the safety of neurosurgical procedures.
Collapse
|
8
|
Chung DY, Oka F, Ayata C. Spreading Depolarizations: A Therapeutic Target Against Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. J Clin Neurophysiol 2016; 33:196-202. [PMID: 27258442 PMCID: PMC4894342 DOI: 10.1097/wnp.0000000000000275] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Delayed cerebral ischemia is the most feared cause of secondary injury progression after subarachnoid hemorrhage. Initially thought to be a direct consequence of large artery spasm and territorial ischemia, recent data suggests that delayed cerebral ischemia represents multiple concurrent and synergistic mechanisms, including microcirculatory dysfunction, inflammation, and microthrombosis. Among these mechanisms, spreading depolarizations (SDs) are arguably the most elusive and underappreciated in the clinical setting. Although SDs have been experimentally detected and examined since the late 1970s, their widespread occurrence in human brain was not unequivocally demonstrated until relatively recently. We now know that SDs occur with very high incidence in human brain after ischemic or hemorrhagic stroke and trauma, and worsen outcomes by increasing metabolic demand, decreasing blood supply, predisposing to seizure activity, and possibly worsening brain edema. In this review, we discuss the causes and consequences of SDs in injured brain. Although much of our mechanistic knowledge comes from experimental models of focal cerebral ischemia, clinical data suggest that the same principles apply regardless of the mode of injury (i.e., ischemia, hemorrhage, or trauma). The hope is that a better fundamental understanding of SDs will lead to novel therapeutic interventions to prevent SD occurrence and its adverse consequences contributing to injury progression in subarachnoid hemorrhage and other forms of acute brain injury.
Collapse
Affiliation(s)
- David Y. Chung
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Fumiaki Oka
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials 2016; 87:157-169. [PMID: 26923363 PMCID: PMC4866508 DOI: 10.1016/j.biomaterials.2016.02.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/07/2016] [Indexed: 12/19/2022]
Abstract
Intracortical neural probes enable researchers to measure electrical and chemical signals in the brain. However, penetration injury from probe insertion into living brain tissue leads to an inflammatory tissue response. In turn, microglia are activated, which leads to encapsulation of the probe and release of pro-inflammatory cytokines. This inflammatory tissue response alters the electrical and chemical microenvironment surrounding the implanted probe, which may in turn interfere with signal acquisition. Dexamethasone (Dex), a potent anti-inflammatory steroid, can be used to prevent and diminish tissue disruptions caused by probe implantation. Herein, we report retrodialysis administration of dexamethasone while using in vivo two-photon microscopy to observe real-time microglial reaction to the implanted probe. Microdialysis probes under artificial cerebrospinal fluid (aCSF) perfusion with or without Dex were implanted into the cortex of transgenic mice that express GFP in microglia under the CX3CR1 promoter and imaged for 6 h. Acute morphological changes in microglia were evident around the microdialysis probe. The radius of microglia activation was 177.1 μm with aCSF control compared to 93.0 μm with Dex perfusion. T-stage morphology and microglia directionality indices were also used to quantify the microglial response to implanted probes as a function of distance. Dexamethasone had a profound effect on the microglia morphology and reduced the acute activation of these cells.
Collapse
Affiliation(s)
- Takashi D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; Neurotech Center of the University of Pittsburgh Brain Institute, United States.
| | | | - Alberto L Vazquez
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; Radiology, University of Pittsburgh, United States
| | | | - X Tracy Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| |
Collapse
|
10
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
11
|
Abstract
Neurostimulation as a therapeutic tool has been developed and used for a range of different diseases such as Parkinson's disease, epilepsy, and migraine. However, it is not known why the efficacy of the stimulation varies dramatically across patients or why some patients suffer from severe side effects. This is largely due to the lack of mechanistic understanding of neurostimulation. Hence, theoretical computational approaches to address this issue are in demand. This chapter provides a review of mechanistic computational modeling of brain stimulation. In particular, we will focus on brain diseases, where mechanistic models (e.g., neural population models or detailed neuronal models) have been used to bridge the gap between cellular-level processes of affected neural circuits and the symptomatic expression of disease dynamics. We show how such models have been, and can be, used to investigate the effects of neurostimulation in the diseased brain. We argue that these models are crucial for the mechanistic understanding of the effect of stimulation, allowing for a rational design of stimulation protocols. Based on mechanistic models, we argue that the development of closed-loop stimulation is essential in order to avoid inference with healthy ongoing brain activity. Furthermore, patient-specific data, such as neuroanatomic information and connectivity profiles obtainable from neuroimaging, can be readily incorporated to address the clinical issue of variability in efficacy between subjects. We conclude that mechanistic computational models can and should play a key role in the rational design of effective, fully integrated, patient-specific therapeutic brain stimulation.
Collapse
|
12
|
McGinn MJ, Povlishock JT. Cellular and molecular mechanisms of injury and spontaneous recovery. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:67-87. [PMID: 25702210 DOI: 10.1016/b978-0-444-52892-6.00005-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Until recently, most have assumed that traumatic brain injury (TBI) was singularly associated with the overt destruction of brain tissue resulting in subsequent morbidity or death. More recently, experimental and clinical studies have shown that the pathobiology of TBI is more complex, involving a host of cellular and subcellular changes that impact on neuronal function and viability while also affecting vascular reactivity and the activation of multiple biological response pathways. Here we review the brain's response to injury, examining both focal and diffuse changes and their implications for post-traumatic brain dysfunction and recovery. TBI-induced neuronal dysfunction and death as well as the diffuse involvement of multiple fiber projections are discussed together with considerations of how local axonal membrane changes or channelopathy translate into local ionic dysregulation and axonal disconnection. Concomitant changes in the cerebral microcirculation are also discussed and their relationship with the parallel changes in the brain's metabolism is considered. These cellular and subcellular events occurring within neurons and their blood supply are correlated with multiple biological response modifiers evoked by generalized post-traumatic inflammation and the parallel activation of oxidative stress processes. The chapter closes with considerations of recovery following focal or diffuse injury. Evidence for dynamic brain reorganization/repair is presented, with considerations of traumatically induced circuit disruption and their progression to either adaptive or in some cases, maladaptive reorganization.
Collapse
Affiliation(s)
- Melissa J McGinn
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
13
|
Klychnikova EV, Tazina EV, Kordonskii AY, Trifonov IS, Godkov MA, Krylov VV. The changes in the indices of oxidative stress and the levels of nitric oxide and glucose in patients with craniocerebral trauma of moderate severity. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Bothe MK, Stover JF. Monitoring of acute traumatic brain injury in adults to prevent secondary brain damage. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.13.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Traumatic brain injury is typically characterized by the primary injury initiating a cascade of pathologic changes that then lead to secondary brain injury. Secondary brain injury is amenable to different therapeutic options. Monitoring of otherwise occult pathologic changes involving oxygenation and metabolism is crucial for treatment decisions. Currently, decision-making is mainly based on measuring intracranial pressure and cerebral perfusion pressure. Importantly, extending neuromonitoring by including parameters reflecting cerebral perfusion, oxygenation and metabolism may improve treatment of traumatic brain injury patients by detecting neuronal damage despite optimal intracranial pressure or cerebral perfusion pressure and preventing unnecessarily aggressive treatment potentially causing local and systemic harm. In this review, the authors describe the advantages and disadvantages of contemporary, extended neuromonitoring methods in traumatic brain injury patients aimed at unmasking secondary brain damage as early as possible.
Collapse
Affiliation(s)
- Melanie K Bothe
- Fresenius Kabi Deutschland GmbH, Rathausplatz 3, 61348 Bad Homburg, Germany
| | - John F Stover
- Fresenius Kabi Deutschland GmbH, Rathausplatz 3, 61348 Bad Homburg, Germany
| |
Collapse
|
15
|
Rayhan RU, Ravindran MK, Baraniuk JN. Migraine in gulf war illness and chronic fatigue syndrome: prevalence, potential mechanisms, and evaluation. Front Physiol 2013; 4:181. [PMID: 23898301 PMCID: PMC3721020 DOI: 10.3389/fphys.2013.00181] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/25/2013] [Indexed: 01/13/2023] Open
Abstract
Objective: To assess the prevalence of headache subtypes in Gulf War Illness (GWI) and Chronic Fatigue Syndrome (CFS) compared to controls. Background: Approximately, 25% of the military personnel who served in the 1990–1991 Persian Gulf War have developed GWI. Symptoms of GWI and CFS have considerable overlap, including headache complaints. Migraines are reported in CFS. The type and prevalence of headaches in GWI have not been adequately assessed. Methods: 50 GWI, 39 CFS and 45 controls had structured headache evaluations based on the 2004 International Headache Society criteria. All subjects had history and physical examinations, fatigue and symptom related questionnaires, measurements of systemic hyperalgesia (dolorimetry), and assessments for exclusionary conditions. Results: Migraines were detected in 64% of GWI (odds ratio = 11.6 [4.1–32.5]) (mean [±95% CI]) and 82% of CFS subjects (odds ratio = 22.5 [7.8–64.8]) compared to only 13% of controls. There was a predominance of females in the CFS compared to GWI and controls. However, migraine status was independent of gender in GWI and CFS groups (x2 = 2.7; P = 0.101). Measures of fatigue, pain, and other ancillary criteria were comparable between GWI and CFS subjects with and without headache. Conclusion: The high prevalence of migraine in CFS was confirmed and extended to GWI subjects. GWI and CFS may share dysfunctional central pathophysiological pathways that contribute to migraine and subjective symptoms. The high migraine prevalence warrants the inclusion of a structured headache evaluation in GWI and CFS subjects, and treatment when present.
Collapse
Affiliation(s)
- Rakib U Rayhan
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Georgetown University Washington, DC, USA
| | | | | |
Collapse
|
16
|
Kumaria A, Tolias CM. Is there a role for vagus nerve stimulation therapy as a treatment of traumatic brain injury? Br J Neurosurg 2012; 26:316-20. [PMID: 22404761 DOI: 10.3109/02688697.2012.663517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This paper aims to review the current literature on vagus nerve stimulation (VNS) use in animal models of traumatic brain injury (TBI) and explore its potential role in treatment of human TBI. A MEDLINE search yielded four primary papers from the same group that demonstrated VNS mediated improvement following fluid percussion models of TBI in rats, seen as motor and cognitive improvements, reduction of cortical oedema and neuroprotective effects. The underlying mechanisms are elusive and authors attribute these to attenuation of post traumatic seizures, a noradrenergic mechanism and as yet undetermined mechanisms. Reviewing and elaborating on these ideas, we speculate other potential mechanisms including attenuation of peri-infarct depolarisations, attenuation of glutamate mediated excitotoxicity, stabilisation of intracranial pressure, enhancement of synaptic plasticity, upregulation of endogenous neurogenesis and anti-inflammatory effects may have a role. Although this data unequivocally shows that VNS improves outcome from TBI in animal models, it remains to be determined if these findings translate clinically. Further studies are warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Wessex Neurological Centre, Southampton, UK.
| | | |
Collapse
|
17
|
Eikermann-Haerter K, Can A, Ayata C. Pharmacological targeting of spreading depression in migraine. Expert Rev Neurother 2012; 12:297-306. [PMID: 22364328 PMCID: PMC3321647 DOI: 10.1586/ern.12.13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Migraine, particularly with aura, is a genetically heterogeneous disorder of ion channels, pumps or transporters associated with increased cortical excitability. Spreading depression, as one reflection of hyperexcitability, is the electrophysiological event underlying aura symptoms and a trigger for headache. Endogenous (e.g., genes and hormones) and exogenous factors (e.g., drugs) modulating migraine susceptibility have also been shown to modulate spreading depression susceptibility concordantly, suggesting that spreading depression can be a relevant therapeutic target in migraine. In support of this, several migraine prophylactic drugs used in clinical practice have been shown to suppress spreading depression susceptibility as a probable mechanism of action, despite belonging to widely different pharmacological classes. Hence, susceptibility to spreading depression can be a useful preclinical model with good positive and negative predictive value for drug screening.
Collapse
Affiliation(s)
- Katharina Eikermann-Haerter
- Neurovascular Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charleston, MA 02129, USA.
| | | | | |
Collapse
|
18
|
Carlson AP, Carter RE, Shuttleworth CW. Vascular, electrophysiological, and metabolic consequences of cortical spreading depression in a mouse model of simulated neurosurgical conditions. Neurol Res 2012; 34:223-31. [PMID: 22449775 DOI: 10.1179/1743132811y.0000000077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Cortical spreading depression (CSD) is a metabolically taxing wave of cellular depolarization that propagates slowly across the brain. Though CSD is known to occur after brain injury in humans, it is unknown if CSD occurs during neurosurgical procedures. This study evaluates CSD in a mouse model of simulated neurosurgical conditions. METHODS Mice were intubated and ventilated, maintained at ~37°C, an arterial line placed to monitor mean arterial pressure and maintain pCO(2) ~30 mmHg. Mice were given simulated neuroanesthesia (fentanyl, propofol, and isofluorane). Burrholes and craniotomies were made to record the response to cortical bipolar cauterization. Separate sets of experiments (three animals each) examined electrocorticographic (ECoG) activity, optical measures of blood volume and vascular diameters (540 nm absorbance), and autofluorescence attributed to NADH (750 nm, two-photon excitation). RESULTS Ipsilateral cauterization invariably resulted in a propagating CSD wave identified by slow DC potential shifts (2·8±0·2 mm/minute, n = 6) and suppression of ECoG activity (range 0·5-7·3 minutes, n = 10). Each CSD was associated with an initial arteriolar constriction and decreased blood volume, followed by a longer-lasting vasodilation and increased blood volume. Tissue oxygenation, assessed indirectly by NADH imaging, was consistent with demand on oxidative metabolism following each CSD. Repetitive SDs resulted in loss of tissue autofluorescence, suggestive of tissue compromise. CONCLUSIONS CSD is consistently elicited by simulated neurosurgical stimuli under simulated intraoperative conditions in mice. These events caused ECoG depression, transient vasoconstriction, and metabolic demand that propagated from the manipulation site. It is likely that CSD occurs during neurosurgery and may contribute to surgical brain injuries otherwise poorly explained.
Collapse
Affiliation(s)
- Andrew P Carlson
- Department of Neurological Surgery, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
19
|
Stover JF. Contemporary view on neuromonitoring following severe traumatic brain injury. World J Crit Care Med 2012; 1:15-22. [PMID: 24701397 PMCID: PMC3956064 DOI: 10.5492/wjccm.v1.i1.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/27/2011] [Accepted: 12/21/2011] [Indexed: 02/06/2023] Open
Abstract
Evolving brain damage following traumatic brain injury (TBI) is strongly influenced by complex pathophysiologic cascades including local as well as systemic influences. To successfully prevent secondary progression of the primary damage we must actively search and identify secondary insults e.g. hypoxia, hypotension, uncontrolled hyperventilation, anemia, and hypoglycemia, which are known to aggravate existing brain damage. For this, we must rely on specific cerebral monitoring. Only then can we unmask changes which otherwise would remain hidden, and prevent adequate intensive care treatment. Apart from intracranial pressure (ICP) and calculated cerebral perfusion pressure (CPP), extended neuromonitoring (SjvO2, ptiO2, microdialysis, transcranial Doppler sonography, electrocorticography) also allows us to define individual pathologic ICP and CPP levels. This, in turn, will support our therapeutic decision-making and also allow a more individualized and flexible treatment concept for each patient. For this, however, we need to learn to integrate several dimensions with their own possible treatment options into a complete picture. The present review summarizes the current understanding of extended neuromonitoring to guide therapeutic interventions with the aim of improving intensive care treatment following severe TBI, which is the basis for ameliorated outcome.
Collapse
Affiliation(s)
- John F Stover
- John F Stover, Surgical Intensive Care Medicine, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| |
Collapse
|
20
|
Yuzawa I, Sakadžić S, Srinivasan VJ, Shin HK, Eikermann-Haerter K, Boas DA, Ayata C. Cortical spreading depression impairs oxygen delivery and metabolism in mice. J Cereb Blood Flow Metab 2012; 32:376-86. [PMID: 22008729 PMCID: PMC3272607 DOI: 10.1038/jcbfm.2011.148] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/26/2011] [Accepted: 09/20/2011] [Indexed: 01/28/2023]
Abstract
Cortical spreading depression (CSD) is associated with severe hypoperfusion in mice. Using minimally invasive multimodal optical imaging, we show that severe flow reductions during and after spreading depression are associated with a steep decline in cerebral metabolic rate of oxygen. Concurrent severe hemoglobin desaturation suggests that the oxygen metabolism becomes at least in part supply limited, and the decrease in cortical blood volume implicates vasoconstriction as the mechanism. In support of oxygen supply-demand mismatch, cortical nicotinamide adenine dinucleotide (NADH) fluorescence increases during spreading depression for at least 5 minutes, particularly away from parenchymal arterioles. However, modeling of tissue oxygen delivery shows that cerebral metabolic rate of oxygen drops more than predicted by a purely supply-limited model, raising the possibility of a concurrent reduction in oxygen demand during spreading depression. Importantly, a subsequent spreading depression triggered within 15 minutes evokes a monophasic flow increase superimposed on the oligemic baseline, which markedly differs from the response to the preceding spreading depression triggered in naive cortex. Altogether, these data suggest that CSD is associated with long-lasting oxygen supply-demand mismatch linked to severe vasoconstriction in mice.
Collapse
Affiliation(s)
- Izumi Yuzawa
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Sava Sakadžić
- Optics Division, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Vivek J Srinivasan
- Optics Division, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hwa Kyoung Shin
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Katharina Eikermann-Haerter
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - David A Boas
- Optics Division, MGH/MIT/HMS Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Cenk Ayata
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Eikermann-Haerter K, Lee JH, Yuzawa I, Liu CH, Zhou Z, Shin HK, Zheng Y, Qin T, Kurth T, Waeber C, Ferrari MD, van den Maagdenberg AMJM, Moskowitz MA, Ayata C. Migraine mutations increase stroke vulnerability by facilitating ischemic depolarizations. Circulation 2011; 125:335-45. [PMID: 22144569 DOI: 10.1161/circulationaha.111.045096] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Migraine is an independent risk factor for stroke. Mechanisms underlying this association are unclear. Familial hemiplegic migraine (FHM), a migraine subtype that also carries an increased stroke risk, is a useful model for common migraine phenotypes because of shared aura and headache features, trigger factors, and underlying glutamatergic mechanisms. METHODS AND RESULTS Here, we show that FHM type 1 (FHM1) mutations in Ca(V)2.1 voltage-gated Ca(2+) channels render the brain more vulnerable to ischemic stroke. Compared with wild-type mice, 2 FHM1 mutant mouse strains developed earlier onset of anoxic depolarization and more frequent peri-infarct depolarizations associated with rapid expansion of infarct core on diffusion-weighted magnetic resonance imaging and larger perfusion deficits on laser speckle flowmetry. Cerebral blood flow required for tissue survival was higher in the mutants, leading to infarction with milder ischemia. As a result, mutants developed larger infarcts and worse neurological outcomes after stroke, which were selectively attenuated by a glutamate receptor antagonist. CONCLUSIONS We propose that enhanced susceptibility to ischemic depolarizations akin to spreading depression predisposes migraineurs to infarction during mild ischemic events, thereby increasing the stroke risk.
Collapse
Affiliation(s)
- Katharina Eikermann-Haerter
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Traumatic brain injury presents a significant impact on patients in terms of morbidity and mortality. Pathology is heterogeneous and is often associated with secondary deterioration. This paper reviews both clinical and research modes of monitoring to detect deterioration and compares what is available to the ideal. Intracranial pressure measurement, jugular venous oxygen saturation, microdialysis and cerebral oxygen monitoring are among the variables described and future research-based modalities are explored.
Collapse
Affiliation(s)
- Steven D Vidgeon
- Specialist Registrar, Anaesthetics and Intensive Care, Academic Neurosciences Centre, Institute of Psychiatry, King's College London. Intensive Care Unit, King's College Hospital, London
| | - Anthony J Strong
- Emeritus Professor of Neurosurgery, King's College London, Academic Neurosciences Centre, Institute of Psychiatry
| |
Collapse
|
23
|
Leistner S, Sander-Thoemmes T, Wabnitz H, Moeller M, Wachs M, Curio G, Macdonald R, Trahms L, Mackert BM. Non-invasive simultaneous recording of neuronal and vascular signals in subacute ischemic stroke. ACTA ACUST UNITED AC 2011; 56:85-90. [DOI: 10.1515/bmt.2011.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Krajewski KL, Orakcioglu B, Haux D, Hertle DN, Santos E, Kiening KL, Unterberg AW, Sakowitz OW. Cerebral microdialysis in acutely brain-injured patients with spreading depolarizations. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 110:125-30. [PMID: 21116927 DOI: 10.1007/978-3-7091-0353-1_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Multimodal cerebral monitoring was utilized to examine the relationship between pathological changes in microdialysis parameters and the occurrence of spreading depolarizations (SD) in brain-injured patients. SD are a relatively newly discovered phenomenon in man found to be linked to secondary insults and infarct growth and they can be detected via electrocorticography (ECoG). A total of 24 brain-injured patients (mean age: 52±11 years) requiring craniotomy took part in this prospective observational study. Each patient was monitored with a linear strip electrode for ECoG data and a cerebral microdialysis probe. SD were detected in 13 of the 24 patients. Pathological concentrations of glucose and lactate in brain parenchyma were significantly correlated with various time points prior to and/or immediately following the SD. Severe systemic hyperglycemia and systemic hypoglycemia were also found to be correlated with the occurrence of SD. The present study shows a clear relationship between SD and pathological changes in cerebral metabolism; further studies are needed to elucidate these complex interactions with the ultimate goal of developing therapeutic strategies for improving outcome in brain-injured patients.
Collapse
Affiliation(s)
- K L Krajewski
- Department of Neurosurgery, University of Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
More than 60 years ago Aristides Leão coined the term spreading depression (SD) to describe a transient "depression" of electrocorticographic activity that lasts up to several minutes and slowly "spreads" in all directions in cortex by way of gray matter contiguity.(1) Today we know that SD is an intrinsic electrophysiological property of central nervous systems, evolutionarily preserved from locust to man.(2-7) Largely based on the similarities between the symptomatology of migraine aura and the electrophysiological features of SD, a causal relationship between the two has long been hypothesized.(8-10) Recently, the SD theory of migraine gained momentum by evidence emerging from both clinical and experimental studies despite being challenged by alternative mechanisms and hypotheses. Here, I will review the accumulated evidence supporting a causal relationship between SD and migraine aura and headache, and discuss the contested notion that SD may also be involved in migraine attacks without a "perceived" aura.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Bosche B, Graf R, Ernestus RI, Dohmen C, Reithmeier T, Brinker G, Strong AJ, Dreier JP, Woitzik J. Recurrent spreading depolarizations after subarachnoid hemorrhage decreases oxygen availability in human cerebral cortex. Ann Neurol 2010; 67:607-17. [PMID: 20437558 PMCID: PMC2883076 DOI: 10.1002/ana.21943] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2009] [Revised: 11/25/2009] [Accepted: 11/30/2009] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Delayed ischemic neurological deficit (DIND) contributes to poor outcome in subarachnoid hemorrhage (SAH) patients. Because there is continuing uncertainty as to whether proximal cerebral artery vasospasm is the only cause of DIND, other processes should be considered. A potential candidate is cortical spreading depolarization (CSD)-induced hypoxia. We hypothesized that recurrent CSDs influence cortical oxygen availability. METHODS Centers in the Cooperative Study of Brain Injury Depolarizations (COSBID) recruited 9 patients with severe SAH, who underwent open neurosurgery. We used simultaneous, colocalized recordings of electrocorticography and tissue oxygen pressure (p(ti)O(2)) in human cerebral cortex. We screened for delayed cortical infarcts by using sequential brain imaging and investigated cerebral vasospasm by angiography or time-of-flight magnetic resonance imaging. RESULTS In a total recording time of 850 hours, 120 CSDs were found in 8 of 9 patients. Fifty-five CSDs ( approximately 46%) were found in only 2 of 9 patients, who later developed DIND. Eighty-nine ( approximately 75%) of all CSDs occurred between the 5th and 7th day after SAH, and 96 (80%) arose within temporal clusters of recurrent CSD. Clusters of CSD occurred simultaneously, with mainly biphasic CSD-associated p(ti)O(2) responses comprising a primary hypoxic and a secondary hyperoxic phase. The frequency of CSD correlated positively with the duration of the hypoxic phase and negatively with that of the hyperoxic phase. Hypoxic phases significantly increased stepwise within CSD clusters; particularly in DIND patients, biphasic p(ti)O(2) responses changed to monophasic p(ti)O(2) decreases within these clusters. Monophasic hypoxic p(ti)O(2) responses to CSD were found predominantly in DIND patients. INTERPRETATION We attribute these clinical p(ti)O(2) findings mainly to changes in local blood flow in the cortical microcirculation but also to augmented metabolism. Besides classical contributors like proximal cerebral vasospasm, CSD clusters may reduce O(2) supply and increase O(2) consumption, and thereby promote DIND.
Collapse
Affiliation(s)
- Bert Bosche
- Department of Neurosurgery, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kumaria A, Tolias CM. Normobaric hyperoxia therapy for traumatic brain injury and stroke: a review. Br J Neurosurg 2010; 23:576-84. [PMID: 19922270 DOI: 10.3109/02688690903050352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Traumatic brain injury (TBI) and acute ischaemic stroke are major causes of mortality and morbidity and there is an urgent demand for new neuroprotective strategies following the translational failure of neuroprotective drug trials. Oxygen therapy--especially normobaric, may offer a simple and effective therapeutic strategy which we review in this paper. Firstly we review mechanisms underlying the therapeutic effects of hyperoxia (both normobaric and hyperbaric) including mitochondrial rescue, stabilisation of intracranial pressure, attenuation of cortical spreading depression and inducing favourable endothelial-leukocyte interactions, all effects of which are postulated to decrease secondary injury. Next we survey studies using hyperbaric oxygen therapy for TBI and stroke, which formed the basis for early studies on normobaric hyperoxia. Thirdly, we present clinical studies of the efficacy of normobaric hyperoxia on TBI and stroke, emphasising their safety, efficacy and practicality. Finally we consider safety concerns and side effects, particularly pulmonary pathology, respiratory failure and theoretical risks in paediatric patients. A neuroprotective role of normobaric hyperoxia is extremely promising and further studies are warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, King's College Hospital, London, UK.
| | | |
Collapse
|
28
|
Meierhans R, Béchir M, Ludwig S, Sommerfeld J, Brandi G, Haberthür C, Stocker R, Stover JF. Brain metabolism is significantly impaired at blood glucose below 6 mM and brain glucose below 1 mM in patients with severe traumatic brain injury. Crit Care 2010; 14:R13. [PMID: 20141631 PMCID: PMC2875528 DOI: 10.1186/cc8869] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/20/2009] [Accepted: 02/08/2010] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The optimal blood glucose target following severe traumatic brain injury (TBI) must be defined. Cerebral microdialysis was used to investigate the influence of arterial blood and brain glucose on cerebral glucose, lactate, pyruvate, glutamate, and calculated indices of downstream metabolism. METHODS In twenty TBI patients, microdialysis catheters inserted in the edematous frontal lobe were dialyzed at 1 microl/min, collecting samples at 60 minute intervals. Occult metabolic alterations were determined by calculating the lactate- pyruvate (L/P), lactate- glucose (L/Glc), and lactate- glutamate (L/Glu) ratios. RESULTS Brain glucose was influenced by arterial blood glucose. Elevated L/P and L/Glc were significantly reduced at brain glucose above 1 mM, reaching lowest values at blood and brain glucose levels between 6-9 mM (P < 0.001). Lowest cerebral glutamate was measured at brain glucose 3-5 mM with a significant increase at brain glucose below 3 mM and above 6 mM. While L/Glu was significantly increased at low brain glucose levels, it was significantly decreased at brain glucose above 5 mM (P < 0.001). Insulin administration increased brain glutamate at low brain glucose, but prevented increase in L/Glu. CONCLUSIONS Arterial blood glucose levels appear to be optimal at 6-9 mM. While low brain glucose levels below 1 mM are detrimental, elevated brain glucose are to be targeted despite increased brain glutamate at brain glucose >5 mM. Pathogenity of elevated glutamate appears to be relativized by L/Glu and suggests to exclude insulin- induced brain injury.
Collapse
Affiliation(s)
- Roman Meierhans
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Markus Béchir
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Silke Ludwig
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Jutta Sommerfeld
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Giovanna Brandi
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
- Ospedale Maggiore Policlinico Milano, Via Francesco Sforza, 28, I-20122 Milano, Italy
| | - Christoph Haberthür
- Surgical Intensive Care, Luzerner Kantonsspital, 6000 Luzern 16, Switzerland
| | - Reto Stocker
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - John F Stover
- Surgical Intensive Care, University Hospital Zürich, Rämistrasse 100, 8091 Zürich, Switzerland
| |
Collapse
|
29
|
Xue JH, Yanamoto H, Nakajo Y, Tohnai N, Nakano Y, Hori T, Iihara K, Miyamoto S. Induced Spreading Depression Evokes Cell Division of Astrocytes in the Subpial Zone, Generating Neural Precursor-Like Cells and New Immature Neurons in the Adult Cerebral Cortex. Stroke 2009; 40:e606-13. [DOI: 10.1161/strokeaha.109.560334] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jing-Hui Xue
- From the Lab for Cerebrovascular Disorders (J.-H.X., H.Y., Y. Nakajo, N.T., Y. Nakano, T.H.), Research Institute of National Cardio-Vascular Center (NCVC), Suita, Osaka, Japan; the Department of Cerebrovascular Surgery (H.Y., K.I., S.M.), NCVC, Suita, Osaka, Japan; the Research Laboratory (Y. Nakano), Rakuwakai Otowa Hospital, Kyoto, Japan; the Department of Neurosurgery (J.-H.X.), First Affiliated Hospital, General Hospitals of PLA, Beijing, PR China; Hakuju (T.H.), Institute for Health Science,
| | - Hiroji Yanamoto
- From the Lab for Cerebrovascular Disorders (J.-H.X., H.Y., Y. Nakajo, N.T., Y. Nakano, T.H.), Research Institute of National Cardio-Vascular Center (NCVC), Suita, Osaka, Japan; the Department of Cerebrovascular Surgery (H.Y., K.I., S.M.), NCVC, Suita, Osaka, Japan; the Research Laboratory (Y. Nakano), Rakuwakai Otowa Hospital, Kyoto, Japan; the Department of Neurosurgery (J.-H.X.), First Affiliated Hospital, General Hospitals of PLA, Beijing, PR China; Hakuju (T.H.), Institute for Health Science,
| | - Yukako Nakajo
- From the Lab for Cerebrovascular Disorders (J.-H.X., H.Y., Y. Nakajo, N.T., Y. Nakano, T.H.), Research Institute of National Cardio-Vascular Center (NCVC), Suita, Osaka, Japan; the Department of Cerebrovascular Surgery (H.Y., K.I., S.M.), NCVC, Suita, Osaka, Japan; the Research Laboratory (Y. Nakano), Rakuwakai Otowa Hospital, Kyoto, Japan; the Department of Neurosurgery (J.-H.X.), First Affiliated Hospital, General Hospitals of PLA, Beijing, PR China; Hakuju (T.H.), Institute for Health Science,
| | - Norimitsu Tohnai
- From the Lab for Cerebrovascular Disorders (J.-H.X., H.Y., Y. Nakajo, N.T., Y. Nakano, T.H.), Research Institute of National Cardio-Vascular Center (NCVC), Suita, Osaka, Japan; the Department of Cerebrovascular Surgery (H.Y., K.I., S.M.), NCVC, Suita, Osaka, Japan; the Research Laboratory (Y. Nakano), Rakuwakai Otowa Hospital, Kyoto, Japan; the Department of Neurosurgery (J.-H.X.), First Affiliated Hospital, General Hospitals of PLA, Beijing, PR China; Hakuju (T.H.), Institute for Health Science,
| | - Yoshikazu Nakano
- From the Lab for Cerebrovascular Disorders (J.-H.X., H.Y., Y. Nakajo, N.T., Y. Nakano, T.H.), Research Institute of National Cardio-Vascular Center (NCVC), Suita, Osaka, Japan; the Department of Cerebrovascular Surgery (H.Y., K.I., S.M.), NCVC, Suita, Osaka, Japan; the Research Laboratory (Y. Nakano), Rakuwakai Otowa Hospital, Kyoto, Japan; the Department of Neurosurgery (J.-H.X.), First Affiliated Hospital, General Hospitals of PLA, Beijing, PR China; Hakuju (T.H.), Institute for Health Science,
| | - Takuya Hori
- From the Lab for Cerebrovascular Disorders (J.-H.X., H.Y., Y. Nakajo, N.T., Y. Nakano, T.H.), Research Institute of National Cardio-Vascular Center (NCVC), Suita, Osaka, Japan; the Department of Cerebrovascular Surgery (H.Y., K.I., S.M.), NCVC, Suita, Osaka, Japan; the Research Laboratory (Y. Nakano), Rakuwakai Otowa Hospital, Kyoto, Japan; the Department of Neurosurgery (J.-H.X.), First Affiliated Hospital, General Hospitals of PLA, Beijing, PR China; Hakuju (T.H.), Institute for Health Science,
| | - Koji Iihara
- From the Lab for Cerebrovascular Disorders (J.-H.X., H.Y., Y. Nakajo, N.T., Y. Nakano, T.H.), Research Institute of National Cardio-Vascular Center (NCVC), Suita, Osaka, Japan; the Department of Cerebrovascular Surgery (H.Y., K.I., S.M.), NCVC, Suita, Osaka, Japan; the Research Laboratory (Y. Nakano), Rakuwakai Otowa Hospital, Kyoto, Japan; the Department of Neurosurgery (J.-H.X.), First Affiliated Hospital, General Hospitals of PLA, Beijing, PR China; Hakuju (T.H.), Institute for Health Science,
| | - Susumu Miyamoto
- From the Lab for Cerebrovascular Disorders (J.-H.X., H.Y., Y. Nakajo, N.T., Y. Nakano, T.H.), Research Institute of National Cardio-Vascular Center (NCVC), Suita, Osaka, Japan; the Department of Cerebrovascular Surgery (H.Y., K.I., S.M.), NCVC, Suita, Osaka, Japan; the Research Laboratory (Y. Nakano), Rakuwakai Otowa Hospital, Kyoto, Japan; the Department of Neurosurgery (J.-H.X.), First Affiliated Hospital, General Hospitals of PLA, Beijing, PR China; Hakuju (T.H.), Institute for Health Science,
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW This review highlights recent advances in cerebral microdialysis for investigational and clinical neurochemical monitoring in patients with critical neurological conditions. RECENT FINDINGS Use of microdialysis with other methods, including PET, electrophysiological monitoring and brain tissue oximetry in traumatic brain injury, subarachnoid hemorrhage with vasospasm, and infarction with refractory increased intracranial pressure have been reported. Potentially adverse neurochemical effects of nonconvulsive status epilepticus and cortical slow depolarization waves, both of which are increasingly recognized in traumatic brain injury and stroke patients, have been reported. The explosive growth in the use of cerebral oximetry with targeted management of brain tissue oxygen levels is leading to greater understanding of derangements of cerebral bioenergetics in the critically ill brain, but there remain unresolved basic issues. Understanding of the analytes that are measurable at the bedside - glucose, lactate, pyruvate, glutamate and glycerol - continues to evolve with glucose, lactate, pyruvate and the lactate-pyruvate ratio taking center stage. Analytes including inflammatory biomarkers such as cytokines and metabolites of nitric oxide are presently investigational, but hold promise for future application in advancing our understanding of basic pathophysiology, therapeutic target selection and prognostication. Growing consensus on indications for use of clinical microdialysis and advances in commercially available equipment continue to make microdialysis increasingly 'ready for prime time.' SUMMARY Cerebral microdialysis is an established tool for neurochemical research in the ICU. This technique cannot be fruitfully used in isolation, but when combined with other monitoring methods provides unique insights into the biochemical and physiological derangements in the injured brain.
Collapse
|
31
|
Metzger JC, Eastman AL, Pepe PE. Year in review 2008: Critical Care--trauma. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2009; 13:226. [PMID: 19863766 PMCID: PMC2784337 DOI: 10.1186/cc7960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Eleven papers on trauma published in Critical Care during 2008 addressed traumatic brain injury (TBI), burns, diagnostic concerns and immunosuppression. In regard to TBI, preliminary results indicate the utility of either magnetic resonance imaging (MRI) or ultrasound in measuring optic nerve sheath diameter to identify elevated intracranial pressure (ICP) as well as the potential benefit of thiopental for refractory ICP. Another investigaticc7960on demonstrated that early extubation of TBI patients whose Glasgow Coma Scale score was 8 or less did not result in additional incidence of nosocomial pneumonia. Another study indicated that strict glucose control resulted in worse outcomes during the first week after TBI, but improved outcomes after the second week. Another paper showed the prolonged neuroprotective advantages of proges-terone administration in TBI patients. There was also guidance on improved classifications of renal complications in burn patients. Another study found that patients with inhalation injuries and increased interleukin-6 (IL-6) and IL-10 and decreased IL-7 had increased mortality rates. One literature review described the disadvantages of prolonged immobilization or additional use of MRI for ruling out cervical spine injuries in obtunded TBI patients already cleared by computerized tomography scans. Other investigators found that higher N-terminal pro B-type natriuretic peptide (NT-proBNP) levels may be useful markers for post-traumatic cardiac impairment. Finally, an experimental model showed that both splenic apoptosis and lymphocytopenia may occur shortly after severe hemorrhage, thus increasing the threat of immunosuppression in those with severe blood loss.
Collapse
Affiliation(s)
- Jeffery C Metzger
- Department of Surgery, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Mail Code 8579, Dallas, TX 75390-8579, USA.
| | | | | |
Collapse
|
32
|
Prager O, Chassidim Y, Klein C, Levi H, Shelef I, Friedman A. Dynamic in vivo imaging of cerebral blood flow and blood-brain barrier permeability. Neuroimage 2009; 49:337-44. [PMID: 19682584 DOI: 10.1016/j.neuroimage.2009.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/01/2009] [Accepted: 08/05/2009] [Indexed: 12/19/2022] Open
Abstract
The brain is characterized by an extremely rich blood supply, regulated by changes in blood vessel diameter and blood flow, depending on metabolic demands. The blood-brain barrier (BBB)-a functional and structural barrier separating the intravascular and neuropil compartments-characterizes the brain's vascular bed and is essential for normal brain functions. Disruptions to the regional cerebral blood supply, to blood drainage and to BBB properties have been described in most common neurological disorders, but there is a lack of quantitative methods for assessing blood flow dynamics and BBB permeability in small blood vessels under both physiological and pathological conditions. Here, we present a quantitative image analysis approach that allows the characterization of relative changes in the regional cerebral blood flow (rCBF) and BBB properties in small surface cortical vessels. In experiments conducted using the open window technique in rats, a fluorescent tracer was injected into the tail vein, and images of the small vessels at the surface of the cortex were taken using a fast CCD camera. Pixel-based image analysis included registration and characterization of the changes in fluorescent intensity, followed by cluster analysis. This analysis enabled the characterization of rCBF in small arterioles and venules and changes in BBB permeability. The method was implemented successfully under experimental conditions, including increased rCBF induced by neural stimulation, bile salt-induced BBB breakdown, and photothrombosis-mediated local ischemia. The new approach may be used to study changes in rCBF, neurovascular coupling and BBB permeability under normal and pathological brain conditions.
Collapse
Affiliation(s)
- Ofer Prager
- Department of Physiology, Soroka University Medical Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | |
Collapse
|
33
|
Dietz RM, Weiss JH, Shuttleworth CW. Contributions of Ca2+ and Zn2+ to spreading depression-like events and neuronal injury. J Neurochem 2009; 109 Suppl 1:145-52. [PMID: 19393021 DOI: 10.1111/j.1471-4159.2009.05853.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The phenomenon of spreading depression (SD) involves waves of profound neuronal and glial depolarization that spread throughout brain tissue. Under many conditions, tissue recovers full function after SD has occurred, but SD-like events are also associated with spread of injury following ischemia or trauma. Initial large cytosolic Ca2+ increases accompany all forms of SD, but persistently elevated Ca2+ loading is likely responsible for neuronal injury following SD in tissues where metabolic capacity is insufficient to restore ionic gradients. Ca2+ channels are also involved in the propagation of SD, but the channel subtypes and cation fluxes differ significantly when SD is triggered by different types of stimuli. Ca2+ influx via P/Q type channels is important for SD generated by localized application of high K+ solutions. In contrast, SD-like events recorded in in vitro ischemia models are not usually prevented by Ca2+ removal, but under some conditions, Zn2+ influx via L-type channels contributes to SD initiation. This review addresses different roles of Ca2+ in the initiation and consequences of SD, and discusses recent evidence that selective chelation of Zn2+ can be sufficient to prevent SD under circumstances that may have relevance for ischemic injury.
Collapse
Affiliation(s)
- Robert M Dietz
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131-0001, USA
| | | | | |
Collapse
|
34
|
Leistner S, Sander T, Wachs M, Burghoff M, Curio G, Trahms L, Mackert BM. Differential infraslow (<0.1 Hz) cortical activations in the affected and unaffected hemispheres from patients with subacute stroke demonstrated by noninvasive DC-magnetoencephalography. Stroke 2009; 40:1683-6. [PMID: 19299639 DOI: 10.1161/strokeaha.108.536110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND PURPOSE Sustained mass depolarization of neurons, termed cortical spreading depolarization, is one electrophysiological correlate of the ischemic injury of neurons. Cortical spreading depolarizations spread in the gray matter at a rate of approximately 3 mm/min and are associated with large infraslow extracellular potential changes (<0.05 Hz). Moreover, smaller infraslow potential changes accompany functional activation and might help to assess neuronal repair after stroke. The objective of the present pilot study was to investigate whether it is feasible to apply noninvasive near-DC-magnetoencephalography to detect and monitor infraslow field changes in patients with acute stroke. METHODS A simple motor condition was used to induce physiological cortical infraslow field changes. Five patients in a subacute state after ischemic stroke performed self-paced simple finger movements (30-second periods of finger movements, always separated by 30-second periods of rest, for a total of 15 minutes). Near-DC-magnetoencephalography signals were recorded over the contralateral primary motor cortex for the affected and unaffected hemisphere, respectively. RESULTS In all patients, the time courses of the contralateral cortical field amplitudes in the infraslow frequency range followed closely the motor task cycles revealing statistically significant differences between finger movement and rest periods. In 4 of 5 patients, infraslow field amplitudes were significantly stronger over the unaffected hemisphere compared with the affected hemisphere. CONCLUSIONS This study demonstrates that cortical infraslow activity can be recorded noninvasively in patients in the subacute state after ischemic stroke. It is suggested that near-DC-magnetoencephalography is a promising tool to also detect cortical spreading depolarization noninvasively.
Collapse
Affiliation(s)
- Stefanie Leistner
- Department of Neurology, Campus Benjamin Franklin, Charite-Universitaetsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Holbein M, Béchir M, Ludwig S, Sommerfeld J, Cottini SR, Keel M, Stocker R, Stover JF. Differential influence of arterial blood glucose on cerebral metabolism following severe traumatic brain injury. Crit Care 2009; 13:R13. [PMID: 19196488 PMCID: PMC2688130 DOI: 10.1186/cc7711] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/01/2008] [Accepted: 02/06/2009] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Maintaining arterial blood glucose within tight limits is beneficial in critically ill patients. Upper and lower limits of detrimental blood glucose levels must be determined. METHODS In 69 patients with severe traumatic brain injury (TBI), cerebral metabolism was monitored by assessing changes in arterial and jugular venous blood at normocarbia (partial arterial pressure of carbon dioxide (paCO2) 4.4 to 5.6 kPa), normoxia (partial arterial pressure of oxygen (paO2) 9 to 20 kPa), stable haematocrit (27 to 36%), brain temperature 35 to 38 degrees C, and cerebral perfusion pressure (CPP) 70 to 90 mmHg. This resulted in a total of 43,896 values for glucose uptake, lactate release, oxygen extraction ratio (OER), carbon dioxide (CO2) and bicarbonate (HCO3) production, jugular venous oxygen saturation (SjvO2), oxygen-glucose index (OGI), lactate-glucose index (LGI) and lactate-oxygen index (LOI). Arterial blood glucose concentration-dependent influence was determined retrospectively by assessing changes in these parameters within pre-defined blood glucose clusters, ranging from less than 4 to more than 9 mmol/l. RESULTS Arterial blood glucose significantly influenced signs of cerebral metabolism reflected by increased cerebral glucose uptake, decreased cerebral lactate production, reduced oxygen consumption, negative LGI and decreased cerebral CO2/HCO3 production at arterial blood glucose levels above 6 to 7 mmol/l compared with lower arterial blood glucose concentrations. At blood glucose levels more than 8 mmol/l signs of increased anaerobic glycolysis (OGI less than 6) supervened. CONCLUSIONS Maintaining arterial blood glucose levels between 6 and 8 mmol/l appears superior compared with lower and higher blood glucose concentrations in terms of stabilised cerebral metabolism. It appears that arterial blood glucose values below 6 and above 8 mmol/l should be avoided. Prospective analysis is required to determine the optimal arterial blood glucose target in patients suffering from severe TBI.
Collapse
Affiliation(s)
- Monika Holbein
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Markus Béchir
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Silke Ludwig
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Jutta Sommerfeld
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Silvia R Cottini
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Marius Keel
- Department of Surgery, Division of Trauma Surgery, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - Reto Stocker
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| | - John F Stover
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, Zuerich, 8091, Switzerland
| |
Collapse
|
36
|
|
37
|
Busija DW, Bari F, Domoki F, Horiguchi T, Shimizu K. Mechanisms involved in the cerebrovascular dilator effects of cortical spreading depression. Prog Neurobiol 2008; 86:379-95. [PMID: 18835324 PMCID: PMC2615412 DOI: 10.1016/j.pneurobio.2008.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/23/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
Cortical spreading depression (CSD) leads to dramatic changes in cerebral hemodynamics. However, mechanisms involved in promoting and counteracting cerebral vasodilator responses are unclear. Here we review the development and current status of this important field of research especially with respect to the role of perivascular nerves and nitric oxide (NO). It appears that neurotransmitters released from the sensory and the parasympathetic nerves associated with cerebral arteries, and NO released from perivascular nerves and/or parenchyma, promote cerebral hyperemia during CSD. However, the relative contributions of each of these factors vary according to species studied. Related to CSD, axonal and reflex responses involving trigeminal afferents on the pial surface lead to increased blood flow and inflammation of the overlying dura mater. Counteracting the cerebral vascular dilation is the production and release of constrictor prostaglandins, at least in some species, and other possibly yet unknown agents from the vascular wall. The cerebral blood flow response in healthy human cortex has not been determined, and thus it is unclear whether the cerebral oligemia associated with migraines represents the normal physiological response to a CSD-like event or represents a pathological response. In addition to promoting cerebral hyperemia, NO produced during CSD appears to initiate signaling events which lead to protection of the brain against subsequent ischemic insults. In summary, the cerebrovascular response to CSD involves multiple dilator and constrictor factors produced and released by diverse cells within the neurovascular unit, with the contribution of each of these factors varying according to the species examined.
Collapse
Affiliation(s)
- David W Busija
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | |
Collapse
|
38
|
Richter F, Lehmenkühler A. [Cortical spreading depression (CSD): a neurophysiological correlate of migraine aura]. Schmerz 2008; 22:544-6, 548-50. [PMID: 18483750 DOI: 10.1007/s00482-008-0653-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cortical spreading depression (CSD) is a transient (60-120 s) and at 3-5 mm/min propagating depolarization wave of cortical neurons and glial cells and is characterized by a DC shift of 20-35 mV. It is accompanied by massive redistribution of ions between extracellular and intracellular compartments and by a water influx into the cells. Extracellular potassium ion concentration increases up to 60 mM/l. Potassium ions and the excitatory neurotransmitter glutamate essentially contribute to the initiation and propagation of CSD. Both depolarization and disturbance of brain ion homeostasis regenerate within a few minutes while enhancing energy metabolism, but do not cause damage to normally perfused brain tissue. The similar propagation velocity of CSD and visual scotoma during migraine aura led to the assumption that CSD could be the underlying mechanism of migraine aura. The observation of CSD waves in migraine aura patients with the magnet encephalogram (MEG) technique confirmed this theory. Although many data support the relationship between CSD and aura phase in migraine, the role of CSD in migraine headache is still disputed.
Collapse
Affiliation(s)
- F Richter
- Institut für Physiologie I/Neurophysiologie, Friedrich-Schiller-Universität Jena, Teichgraben 8, 07740 Jena, Deutschland.
| | | |
Collapse
|
39
|
Richter F, Bauer R, Lehmenkühler A, Schaible HG. Spreading depression in the brainstem of the adult rat: electrophysiological parameters and influences on regional brainstem blood flow. J Cereb Blood Flow Metab 2008; 28:984-94. [PMID: 18059430 DOI: 10.1038/sj.jcbfm.9600594] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cortical spreading depression is a pathophysiological excitation wave that occurs during pathophysiological brain conditions such as ischemic brain infarction, migraine aura, and others. Judged from experiments in rodents, the brainstem is thought to be comparatively resistant to the generation of spreading depression. However, because spreading depression can be elicited in the brainstem of rat pups after superfusing the brainstem with solutions enhancing excitability, we reinvestigated spreading depression in the brainstem of the adult rat. Based on theoretical predictions indicating a major role of extracellular potassium in susceptibility to spreading depression, we used conditioning solutions in which chloride ions were replaced by acetate and tetraethylammonium chloride and a small amount of KCl were added. Under these conditions, spreading depression was reproducibly elicited in the brainstem either by topical application of KCl crystals to the brainstem surface or by local microinjection of KCl into the brainstem. The direct current shifts so elicited were accompanied by typical elevation of extracellular potassium ions, propagated in the brainstem, and were prevented by MK-801, an N-methyl D-aspartate blocker. During spreading depression, the regional blood flow in the brainstem was transiently increased. In addition, systemic arterial blood pressure, but not the heart rate, was transiently enhanced. In the nonconditioned brainstem, KCl stimulation neither elicited spreading depression nor induced changes in regional blood flow and blood pressure. These data show that proper conditioning renders the brainstem susceptible to spreading depression, and that spreading depression at this site elicits changes in local circulation and systemic blood pressure.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology I/Neurophysiology, Friedrich Schiller University Jena, Jena, Germany.
| | | | | | | |
Collapse
|
40
|
Sarrafzadeh AS, Kaisers U, Boemke W. [Aneurysmal subarachnoid hemorrhage. Significance and complications]. Anaesthesist 2008; 56:957-66; quiz 967. [PMID: 17879106 DOI: 10.1007/s00101-007-1244-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Despite substantial improvement in the management of patients with aneurysmal subarachnoid hemorrhage (SAH), including early aneurysm occlusion by endovascular techniques and surgical procedures, a significant percentage of patients with SAH still experience serious sequelae of neurological or cognitive deficits as a result of primary hemorrhage and/or secondary brain damage. Available neuromonitoring methods for early recognition of ischemia include, among others, measurement of brain tissue O(2) partial pressure, brain metabolism with microdialysis and monitoring of regional blood flow. The triple-H therapy (arterial hypertension, hypervolemia and hemodilution) is the treatment of choice of a symptomatic vasospasm and leads to an enduring recession of ischemic symptoms, if initiated early after the onset of a vasospasm-linked ischemic neurological deficit. Further promising therapy approaches are the administration of highly selective ET(A) receptor antagonists and intracisternal administration of vasodilators in depot form. This review summarizes the major neurological and non-neurological complications following aneurysm occlusion. Possible neuromonitoring techniques to improve diagnosis and therapy for treatment of symptomatic vasospasm as well as extracranial complications are discussed.
Collapse
Affiliation(s)
- A S Sarrafzadeh
- Campus Virchow-Klinikum, Klinik für Neurochirurgie, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin.
| | | | | |
Collapse
|
41
|
Meier R, Béchir M, Ludwig S, Sommerfeld J, Keel M, Steiger P, Stocker R, Stover JF. Differential temporal profile of lowered blood glucose levels (3.5 to 6.5 mmol/l versus 5 to 8 mmol/l) in patients with severe traumatic brain injury. Crit Care 2008; 12:R98. [PMID: 18680584 PMCID: PMC2575586 DOI: 10.1186/cc6974] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/14/2008] [Accepted: 08/04/2008] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Hyperglycaemia is detrimental, but maintaining low blood glucose levels within tight limits is controversial in patients with severe traumatic brain injury, because decreased blood glucose levels can induce and aggravate underlying brain injury. METHODS In 228 propensity matched patients (age, sex and injury severity) treated in our intensive care unit (ICU) from 2000 to 2004, we retrospectively evaluated the influence of different predefined blood glucose targets (3.5 to 6.5 versus 5 to 8 mmol/l) on frequency of hypoglycaemic and hyperglycaemic episodes, insulin and norepinephrine requirement, changes in intracranial pressure and cerebral perfusion pressure, mortality and length of stay on the ICU. RESULTS Mortality and length of ICU stay were similar in both blood glucose target groups. Blood glucose values below and above the predefined levels were significantly increased in the 3.5 to 6.5 mmol/l group, predominantly during the first week. Insulin and norepinephrine requirements were markedly increased in this group. During the second week, the incidences of intracranial pressure exceeding 20 mmHg and infectious complications were significantly decreased in the 3.5 to 6.5 mmol/l group. CONCLUSION Maintaining blood glucose within 5 to 8 mmol/l appears to yield greater benefit during the first week. During the second week, 3.5 to 6.5 mmol/l is associated with beneficial effects in terms of reduced intracranial hypertension and decreased rate of pneumonia, bacteraemia and urinary tract infections. It remains to be determined whether patients might profit from temporally adapted blood glucose limits, inducing lower values during the second week, and whether concomitant glucose infusion to prevent hypoglycaemia is safe in patients with post-traumatic oedema.
Collapse
Affiliation(s)
- Regula Meier
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, CH 8091 Zuerich, Switzerland
| | - Markus Béchir
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, CH 8091 Zuerich, Switzerland
| | - Silke Ludwig
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, CH 8091 Zuerich, Switzerland
| | - Jutta Sommerfeld
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, CH 8091 Zuerich, Switzerland
| | - Marius Keel
- Department of Surgery, Division of Trauma Surgery, University Hospital Zuerich, Raemistrasse 100, CH 8091 Zuerich, Switzerland
| | - Peter Steiger
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, CH 8091 Zuerich, Switzerland
| | - Reto Stocker
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, CH 8091 Zuerich, Switzerland
| | - John F Stover
- Surgical Intensive Care Medicine, University Hospital Zuerich, Raemistrasse 100, CH 8091 Zuerich, Switzerland
| |
Collapse
|