1
|
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS, Cahill KN, Bastarache JA. Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L368-L384. [PMID: 37489855 PMCID: PMC10639010 DOI: 10.1152/ajplung.00041.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023] Open
Abstract
There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle Riedmann
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Gonski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Cai J, Tang D, Hao X, Liu E, Li W, Shi J. Mesenchymal stem cell-derived exosome alleviates sepsis- associated acute liver injury by suppressing MALAT1 through microRNA-26a-5p: an innovative immunopharmacological intervention and therapeutic approach for sepsis. Front Immunol 2023; 14:1157793. [PMID: 37398640 PMCID: PMC10310917 DOI: 10.3389/fimmu.2023.1157793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Background Sepsis is a syndrome with the disturbed host response to severe infection and is a major health problem worldwide. As the front line of infection defense and drug metabolism, the liver is vulnerable to infection- or drug-induced injury. Acute liver injury (ALI) is thus common in patients with sepsis and is significantly associated with poor prognosis. However, there are still few targeted drugs for the treatment of this syndrome in clinics. Recent studies have reported that mesenchymal stem cells (MSCs) show potential for the treatment of various diseases, while the molecular mechanisms remain incompletely characterized. Aims and Methods Herein, we used cecal ligation puncture (CLP) and lipopolysaccharide (LPS) plus D-galactosamine (D-gal) as sepsis-induced ALI models to investigate the roles and mechanisms of mesenchymal stem cells (MSCs) in the treatment of ALI in sepsis. Results We found that either MSCs or MSC-derived exosome significantly attenuated ALI and consequent death in sepsis. miR-26a-5p, a microRNA downregulated in septic mice, was replenished by MSC-derived exosome. Replenishment of miR-26a-5p protected against hepatocyte death and liver injury caused by sepsis through targeting Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1), a long non-coding RNA highly presented in hepatocyte and liver under sepsis and inhibiting anti-oxidant system. Conclusion Taken together, the results of the current study revealed the beneficial effects of MSC, exosome or miR-26a-5p on ALI, and determined the potential mechanisms of ALI induced by sepsis. MALAT1 would be a novel target for drug development in the treatment of this syndrome.
Collapse
Affiliation(s)
- Jizhen Cai
- Department of Critical Care Medicine and Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Da Tang
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Hao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha, China
| | - Wenbo Li
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jian Shi
- Department of Critical Care Medicine and Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Foo W, Cseresnyés Z, Rössel C, Teng Y, Ramoji A, Chi M, Hauswald W, Huschke S, Hoeppener S, Popp J, Schacher FH, Sierka M, Figge MT, Press AT, Bauer M. Tuning the corona-core ratio of polyplex micelles for selective oligonucleotide delivery to hepatocytes or hepatic immune cells. Biomaterials 2023; 294:122016. [PMID: 36702000 DOI: 10.1016/j.biomaterials.2023.122016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Targeted delivery of oligonucleotides or small molecular drugs to hepatocytes, the liver's parenchymal cells, is challenging without targeting moiety due to the highly efficient mononuclear phagocyte system (MPS) of the liver. The MPS comprises Kupffer cells and specialized sinusoidal endothelial cells, efficiently clearing nanocarriers regardless of their size and surface properties. Physiologically, this non-parenchymal shield protects hepatocytes; however, these local barriers must be overcome for drug delivery. Nanocarrier structural properties strongly influence tissue penetration, in vivo pharmacokinetics, and biodistribution profile. Here we demonstrate the in vivo biodistribution of polyplex micelles formed by polyion complexation of short interfering (si)RNA with modified poly(ethylene glycol)-block-poly(allyl glycidyl ether) (PEG-b-PAGE) diblock copolymer that carries amino moieties in the side chain. The ratio between PEG corona and siRNA complexed PAGE core of polyplex micelles was chemically varied by altering the degree of polymerization of PAGE. Applying Raman-spectroscopy and dynamic in silico modeling on the polyplex micelles, we determined the corona-core ratio (CCR) and visualized the possible micellar structure with varying CCR. The results for this model system reveal that polyplex micelles with higher CCR, i.e., better PEG coverage, exclusively accumulate and thus allow passive cell-type-specific targeting towards hepatocytes, overcoming the macrophage-rich reticuloendothelial barrier of the liver.
Collapse
Affiliation(s)
- WanLing Foo
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany
| | - Zoltán Cseresnyés
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany
| | - Carsten Rössel
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Yingfeng Teng
- Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany
| | - Mingzhe Chi
- Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Walter Hauswald
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Sophie Huschke
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany
| | - Stephanie Hoeppener
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich-Schiller-University, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany
| | - Felix H Schacher
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Humboldtstraße 10, 07743, Jena, Germany
| | - Marek Sierka
- Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Friedrich-Schiller-University, Computational Materials Science Group, Otto Schott Institute of Materials Research, Faculty of Physics and Astronomy, Löbdergraben 32, 07743, Jena, Germany
| | - Marc Thilo Figge
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Research Group Applied Systems Biology, Beutenbergstraße 13, 07745, Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, 07743, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany
| | - Adrian T Press
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Faculty of Medicine, Kastanienstraße. 1, 07747, Jena, Germany.
| | - Michael Bauer
- Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Am Klinikum 1, 07747, Jena, Germany; Friedrich-Schiller-University, Jena Center for Soft Matter, Philosophenweg 7, 07743, Jena, Germany; Jena University Hospital, Center for Sepsis Control and Care, Friedrich-Schiller-University, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
4
|
Kang DD, Park J, Park Y. Therapeutic Potential of Antimicrobial Peptide PN5 against Multidrug-Resistant E. coli and Anti-Inflammatory Activity in a Septic Mouse Model. Microbiol Spectr 2022; 10:e0149422. [PMID: 36129300 PMCID: PMC9603901 DOI: 10.1128/spectrum.01494-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/01/2022] [Indexed: 12/31/2022] Open
Abstract
Antibiotic-resistant bacteria have become a public health problem. Thus, antimicrobial peptides (AMPs) have been evaluated as substitutes for antibiotics. Herein, we investigated PN5 derived from Pinus densiflora (pine needle). PN5 exhibited antimicrobial activity without causing cytotoxic effects. Based on these results, we examined the mode of action of PN5 against Gram-negative and -positive bacteria. PN5 exhibited membrane permeabilization ability, had antimicrobial stability in the presence of elastase, a proteolytic enzyme, and did not induce resistance in bacteria. Bacterial lipopolysaccharide (LPS) induces an inflammatory response in RAW 264.7 macrophages. PN5 suppressed proinflammatory cytokines mediated by NF-κB and mitogen-activated protein kinase signaling. In C57BL/6J mice treated with LPS and d-galactosamine, PN5 exhibited anti-inflammatory activity in inflamed mouse livers. Our results indicate that PN5 has antimicrobial and anti-inflammatory activities and thus may be useful as an antimicrobial agent to treat septic shock caused by multidrug-resistant (MDR) Escherichia coli without causing further resistance. IMPORTANCE Antibiotic-resistant bacteria are a global health concern. There is no effective treatment for antibiotic-resistant bacteria, and new alternatives are being suggested. The present study found antibacterial and anti-inflammatory activities of PN5 derived from Pinus densiflora (pine needle), and further investigated the therapeutic effect in a mouse septic model. As a mechanism of antibacterial activity, PN5 exhibited the membrane permeabilization ability of the toroidal model, and treated strains did not develop drug resistance during serial passages. PN5 showed immunomodulatory properties of neutralizing LPS in a mouse septic model. These results indicate that PN5 could be a new and promising therapeutic agent for bacterial infectious disease caused by antibiotic-resistant strains.
Collapse
Affiliation(s)
- Da Dam Kang
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
- Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, South Korea
| |
Collapse
|
5
|
Immunomodulation by Hemoadsorption—Changes in Hepatic Biotransformation Capacity in Sepsis and Septic Shock: A Prospective Study. Biomedicines 2022; 10:biomedicines10102340. [PMID: 36289602 PMCID: PMC9598581 DOI: 10.3390/biomedicines10102340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Sepsis is often associated with liver dysfunction, which is an indicator of poor outcomes. Specific diagnostic tools that detect hepatic dysfunction in its early stages are scarce. So far, the immune modulatory effects of hemoadsorption with CytoSorb® on liver function are unclear. Method: We assessed the hepatic function by using the dynamic LiMAx® test and biochemical parameters in 21 patients with sepsis or septic shock receiving CytoSorb® in a prospective, observational study. Points of measurement: T1: diagnosis of sepsis or septic shock; T2 and T3: 24 h and 48 h after the start of CytoSorb®; T4: 24 h after termination of CytoSorb®. Results: The hepatic biotransformation capacity measured by LiMAx® was severely impaired in up to 95 % of patients. Despite a rapid shock reversal under CytoSorb®, a significant improvement in LiMAx® values appeared from T3 to T4. This decline and recovery of liver function were not reflected by common parameters of hepatic metabolism that remained mostly within the normal range. Conclusions: Hepatic dysfunction can effectively and safely be diagnosed with LiMAx® in ventilated ICU patients under CytoSorb®. Various static liver parameters are of limited use since they do not adequately reflect hepatic dysfunction and impaired hepatic metabolism.
Collapse
|
6
|
Beyer D, Hoff J, Sommerfeld O, Zipprich A, Gaßler N, Press AT. The liver in sepsis: molecular mechanism of liver failure and their potential for clinical translation. Mol Med 2022; 28:84. [PMID: 35907792 PMCID: PMC9338540 DOI: 10.1186/s10020-022-00510-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/13/2022] [Indexed: 12/25/2022] Open
Abstract
Liver failure is a life-threatening complication of infections restricting the host's response to infection. The pivotal role of the liver in metabolic, synthetic, and immunological pathways enforces limits the host's ability to control the immune response appropriately, making it vulnerable to ineffective pathogen resistance and tissue damage. Deregulated networks of liver diseases are gradually uncovered by high-throughput, single-cell resolved OMICS technologies visualizing an astonishing diversity of cell types and regulatory interaction driving tolerogenic signaling in health and inflammation in disease. Therefore, this review elucidates the effects of the dysregulated host response on the liver, consequences for the immune response, and possible avenues for personalized therapeutics.
Collapse
Affiliation(s)
- Dustin Beyer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Jessica Hoff
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany
| | - Oliver Sommerfeld
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Nikolaus Gaßler
- Pathology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Adrian T Press
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany. .,Center for Sepsis Control and Care, Jena University Hospital, Bachstr. 18, 07743, Jena, Germany. .,Medical Faculty, Friedrich-Schiller-University Jena, Kastanienstr. 1, 07747, Jena, Germany.
| |
Collapse
|
7
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
8
|
Li L, Chen L, Wang H, Li P, Wang D, Zhang W, Mi L, Lin F, Qin Y, Zhou Y. Clinical correlation between coagulation disorders and sepsis in patients with liver failure. Clin Hemorheol Microcirc 2021; 80:219-231. [PMID: 34719481 DOI: 10.3233/ch-211113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE This study aimed to explore the clinical detection and prognosis of coagulation function in patients with liver failure and sepsis. METHODS The plasma fibrinogen (FIB), factor II, factor VII, factor V, factor IV, antithrombin III (ATIII), platelet (PLT), mean PLT volume (MPV), D-dimer, prothrombin activity (PTA), and fibrin degradation product (FDP) levels and thromboelastogram values were detected in patients with liver failure complicated with sepsis and compared with those in the liver failure and liver cirrhosis groups. The patients with liver failure complicated with sepsis were analyzed by univariate and multivariate logistic regression, and the regression equation was established. RESULTS The levels of FIB, factor II, factor VII, factor V, ATIII, PLT, MPV, D-dimer, and FDP in the patients with liver failure complicated with sepsis were compared with those in the control group patients, and the differences were statistically significant (p < 0.05). Among the thromboelastography parameters in the patients with liver failure and sepsis, the differences in the K-value, R-value, angle, maximum amplitude, and coagulation index values compared with those of the control group were statistically significant (p < 0.05). The logistic regression model obtained was as follows: p = 1/(1 + e [-0.128×X1-0.058×X2 + 0.211×X3 + 0.2×X4 + 0.25]). The specificity, sensitivity, and accuracy values of the regression equation in determining the prognosis were 92%, 93.9%, and 92.8%, respectively. Among the 11 factors, factor VII, PLT, FDP, and D-dimer were included in the regression equation. CONCLUSION Coagulation disorder is exacerbated in patients with liver failure and sepsis. Among the 11 coagulation-related factors, factor VII, PLT, FDP, and D-dimer may be the independent factors influencing the prognosis of patients with acute liver failure and sepsis.
Collapse
Affiliation(s)
- Lei Li
- Department of Emergency, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| | - Ling Chen
- Department of Emergency, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| | - Han Wang
- Department of Blood Transfusion, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| | - Peiran Li
- Department of Clinical Laboratory, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| | - Dan Wang
- Department of Emergency, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| | - Wei Zhang
- Department of Emergency, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| | - Lai Mi
- Department of Emergency, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| | - Fang Lin
- Department of Critical Care Medicine, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| | - Yuling Qin
- Department of Emergency, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| | - Yuesu Zhou
- Department of Emergency, Fifth Medical Center of Chinese PLA Hospital, Beijing, China
| |
Collapse
|
9
|
Peng M, Deng F, Qi D, Hu Z, Zhang L. The Hyperbilirubinemia and Potential Predictors Influence on Long-Term Outcomes in Sepsis: A Population-Based Propensity Score-Matched Study. Front Med (Lausanne) 2021; 8:713917. [PMID: 34604255 PMCID: PMC8484885 DOI: 10.3389/fmed.2021.713917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/16/2021] [Indexed: 01/20/2023] Open
Abstract
Objective: Although hyperbilirubinemia has been associated with mortality in patients who are critically ill, yet no clinical studies dissect the effect of dynamic change of hyperbilirubinemia on long-term septic prognosis. The study aims to investigate the specific stages of hyperbilirubinemia and potential risk factors on long-term outcomes in patients with sepsis. Methods: In this retrospective observational cohort study, patients with sepsis, without previous chronic liver diseases, were identified from the Medical Information Mart for the Intensive Care III MIMIC-III database. We used propensity scores (PS) to adjust the baseline differences in septic patients with hyperbilirubinemia or not. The multivariate Cox was employed to investigate the predictors that influence a clinical outcome in sepsis. Results: Of 2,784 patients with sepsis, hyperbilirubinemia occurred in 544 patients (19.5%). After PS matching, a survival curve demonstrated that patients with sepsis with the new onset of total bilirubin (TBIL) levels more than or equal to 5 mg/dl survived at significantly lower rates than those with TBIL levels <5 mg/dl. Multivariate Cox hazard analysis showed that patients with TBIL at more than or equal to 5 mg/dl during sepsis exhibit 1.608 times (95% CI: 1.228-2.106) higher risk of 1-year mortality than those with TBIL levels <5 mg/dl. Also, age above 65 years old, preexisting malignancy, a respiratory rate above 30 beats/min at admission, serum parameters levels within 24-h admission, containing international normalized ratio (INR) above 1.5, platelet <50*10∧9/L, lactate above 4 mmol/L, and bicarbonate <22 or above 29 mmol/L are the independent risk factors for long-term mortality of patients with sepsis. Conclusions: After PS matching, serum TBIL levels at more than or equal to 5 mg/dl during hospitality are associated with increased long-term mortality for patients with sepsis. This study may provide clinicians with some cutoff values for early intervention, which may improve the prognosis of patients with sepsis.
Collapse
Affiliation(s)
- Milin Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Fuxing Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Desheng Qi
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| | - Zhonghua Hu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Molecular Precision Medicine, Xiangya Hospital, Institute of Molecular Precision Medicine, Central South University, Changsha, China
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Post-infectious and post-acute sequelae of critically ill adults with COVID-19. PLoS One 2021; 16:e0252763. [PMID: 34138871 PMCID: PMC8211258 DOI: 10.1371/journal.pone.0252763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
Background Data on the post-acute and post-infectious complications of patients who have recovered from severe coronavirus disease 2019 (COVID-19) are limited. While studies report that approximately 5–15% of COVID-19 hospitalized patients require intensive care and mechanical ventilation, a substantially higher number need non-invasive ventilation and are subject to prolonged hospitalizations, with long periods of immobility and isolation. The purpose of this study is to describe the post-infectious sequelae of severe viral illness and the post-acute complications of intensive care treatments in critically ill patients who have recovered from severe COVID-19 infection. Methods We performed a retrospective chart review of adult patients initially hospitalized with confirmed COVID-19 infection, who recovered and were transferred to a general medical ward or discharged home between March 15, 2020 and May 15, 2020, dates inclusive, after an intensive care unit (ICU) or high dependency unit (HDU) admission in a designated COVID-19 hospital in the United Arab Emirates. Demographic data, underlying comorbidities, treatment, complications, and outcomes were collected. Descriptive statistical analyses were performed. Results Of 71 patients transferred out of ICU (n = 38, 54%) and HDU (n = 33, 46%), mean age was 48 years (SD, 9.95); 96% men; 54% under age 50. Mean ICU stay was 12.4 days (SD, 5.29), HDU stay was 13.4 days (SD, 4.53). Pre-existing conditions were not significantly associated with developing post-acute complications (Odds Ratio [OR] 1.1, 95% confidence interval [CI] 0.41, 2.93, p = 1.00). Fifty nine percent of patients had complications; myopathy, swallowing impairments, and pressure ulcers were most common. Delirium and confusion were diagnosed in 18% (n = 13); all were admitted to the ICU and required mechanical ventilation. Of note, of all patients studied, 59.2% (n = 42/71) had at least 1 complication, 32.4% (n = 23) had at least 2 complications, and 19.7% (n = 14) suffered 3 or more sequelae. Complications were significantly more common in ICU patients (n = 33/38, 87%), compared to HDU patients (n = 9/33, 27%) (OR 17.6, 95% CI 5.23, 59.21, p <0.05). Conclusion In a subset of critically ill patients who recovered from severe COVID-19 infection, there was considerable short-term post-infectious and post-acute disability. Long-term follow-up of COVID-19 survivors is warranted.
Collapse
|
11
|
Veres B, Eros K, Antus C, Kalman N, Fonai F, Jakus PB, Boros E, Hegedus Z, Nagy I, Tretter L, Gallyas F, Sumegi B. Cyclophilin D-dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia. FEBS Open Bio 2021; 11:684-704. [PMID: 33471430 PMCID: PMC7931201 DOI: 10.1002/2211-5463.13091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 01/05/2023] Open
Abstract
Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram-negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)-dependent mitochondrial permeability transition (mPT) in the immunosuppressive phase of LPS-induced endotoxic shock. The liver plays an important role in immunity and organ dysfunction; therefore, we used liver RNA sequencing (RNA-seq) data, Ingenuity® Pathway Analysis (IPA ® ) to investigate the complex role of mPT formation in inflammatory reprogramming and disease progression. LPS induced significant changes in the expression of 2844 genes, affecting 179 pathways related to mitochondrial dysfunction, defective oxidative phosphorylation, nitric oxide (NO) and reactive oxygen species (ROS) accumulation, nuclear factor, erythroid 2 like 2 (Nrf2), Toll-like receptors (TLRs), and tumor necrosis factor α receptor (TNFR)-mediated processes in wild-type mice. The disruption of CypD reduced LPS-induced alterations in gene expression and pathways involving TNFRs and TLRs, in addition to improving survival and attenuating oxidative liver damage and the related NO- and ROS-producing pathways. CypD deficiency diminished the suppressive effect of LPS on mitochondrial function, nuclear- and mitochondrial-encoded genes, and mitochondrial DNA (mtDNA) quantity, which could be critical in improving survival. Our data propose that CypD-dependent mPT is an amplifier in inflammatory reprogramming and promotes disease progression. The mortality in human sepsis and shock is associated with mitochondrial dysfunction. Prevention of mPT by CypD disruption reduces inflammatory reprogramming, mitochondrial dysfunction, and lethality; therefore, CypD can be a novel drug target in endotoxic shock and related inflammatory diseases.
Collapse
Affiliation(s)
- Balazs Veres
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Krisztian Eros
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| | - Csenge Antus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Nikoletta Kalman
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Fruzsina Fonai
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Peter Balazs Jakus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
| | - Eva Boros
- Institute of BiochemistryBiological Research CentreSzegedHungary
| | - Zoltan Hegedus
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- Institute of BiophysicsBiological Research CentreSzegedHungary
| | - Istvan Nagy
- Institute of BiochemistryBiological Research CentreSzegedHungary
- SeqOmics Biotechnology LtdMorahalomHungary
| | - Laszlo Tretter
- Department of Medical BiochemistrySemmelweis UniversityBudapestHungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical ChemistryMedical SchoolUniversity of PecsHungary
- MTA‐PTE Nuclear‐Mitochondrial Interactions Research GroupPecsHungary
- Szentagothai Janos Research CenterUniversity of PecsHungary
| |
Collapse
|
12
|
The systemic inflammation hypothesis: Towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J Hepatol 2021; 74:670-685. [PMID: 33301825 DOI: 10.1016/j.jhep.2020.11.048] [Citation(s) in RCA: 219] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
Acute decompensation (AD) of cirrhosis is defined by the development of ascites, hepatic encephalopathy and/or variceal bleeding. Ascites is traditionally attributed to splanchnic arterial vasodilation and left ventricular dysfunction, hepatic encephalopathy to hyperammonaemia, and variceal haemorrhage to portal hypertension. Recent large-scale European observational studies have shown that systemic inflammation is a hallmark of AD. Here we present a working hypothesis, the systemic inflammation hypothesis, suggesting that systemic inflammation through an impairment of the functions of one or more of the major organ systems may be a common theme and act synergistically with the traditional mechanisms involved in the development of AD. Systemic inflammation may impair organ system function through mechanisms which are not mutually exclusive. The first mechanism is a nitric oxide-mediated accentuation of the preexisting splanchnic vasodilation, resulting in the overactivation of the endogenous vasoconstrictor systems which elicit intense vasoconstriction and hypoperfusion in certain vascular beds, in particular the renal circulation. Second, systemic inflammation may cause immune-mediated tissue damage, a process called immunopathology. Finally, systemic inflammation may induce important metabolic changes. Indeed, systemic inflammatory responses are energetically expensive processes, requiring reallocation of nutrients (glucose, amino acids and lipids) to fuel immune activation. Systemic inflammation also inhibits nutrient consumption in peripheral (non-immune) organs, an effect that may provide one mechanism of reallocation and prioritisation of metabolic fuels for inflammatory responses. However, the decrease in nutrient consumption in peripheral organs may result in decreased mitochondrial production of ATP (energy) and subsequently impaired organ function.
Collapse
|
13
|
Nardo AD, Schneeweiss‐Gleixner M, Bakail M, Dixon ED, Lax SF, Trauner M. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int 2021; 41:20-32. [PMID: 33190346 PMCID: PMC7753756 DOI: 10.1111/liv.14730] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has resulted in a world-wide pandemic. Disseminated lung injury with the development of acute respiratory distress syndrome (ARDS) is the main cause of mortality in COVID-19. Although liver failure does not seem to occur in the absence of pre-existing liver disease, hepatic involvement in COVID-19 may correlate with overall disease severity and serve as a prognostic factor for the development of ARDS. The spectrum of liver injury in COVID-19 may range from direct infection by SARS-CoV-2, indirect involvement by systemic inflammation, hypoxic changes, iatrogenic causes such as drugs and ventilation to exacerbation of underlying liver disease. This concise review discusses the potential pathophysiological mechanisms for SARS-CoV-2 hepatic tropism as well as acute and possibly long-term liver injury in COVID-19.
Collapse
Affiliation(s)
- Alexander D. Nardo
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Mathias Schneeweiss‐Gleixner
- Medical Intensive Care Unit 13H1. Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - May Bakail
- Campus ITInstitute of Science and Technology AustriaKlosterneuburgAustria
| | - Emmanuel D. Dixon
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Sigurd F. Lax
- Department of PathologyHospital Graz IIAcademic Teaching Hospital of the Medical University of GrazGrazAustria
- School of MedicineJohannes Kepler UniversityLinzAustria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular HepatologyDivision of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
- Medical Intensive Care Unit 13H1. Division of Gastroenterology and HepatologyDepartment of Internal Medicine IIIMedical University of ViennaViennaAustria
| |
Collapse
|
14
|
The impact of maternal protein restriction during perinatal life on the response to a septic insult in adult rats. J Dev Orig Health Dis 2020; 12:915-922. [PMID: 33353580 DOI: 10.1017/s2040174420001269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although abundant evidence exists that adverse events during pregnancy lead to chronic conditions, there is limited information on the impact of acute insults such as sepsis. This study tested the hypothesis that impaired fetal development leads to altered organ responses to a septic insult in both male and female adult offspring. Fetal growth restricted (FGR) rats were generated using a maternal protein-restricted diet. Male and female FGR and control diet rats were housed until 150-160 d of age when they were exposed either a saline (control) or a fecal slurry intraperitoneal (Sepsis) injection. After 6 h, livers and lungs were analyzed for inflammation and, additionally, the amounts and function of pulmonary surfactant were measured. The results showed increases in the steady-state mRNA levels of inflammatory cytokines in the liver in response to the septic insult in both males and females; these responses were not different between FGR and control diet groups. In the lungs, cytokines were not detectable in any of the experimental groups. A significant decrease in the relative amount of surfactant was observed in male FGR offspring, but this was not observed in control males or in female animals. Overall, it is concluded that FGR induced by maternal protein restriction does not impact liver and lung inflammatory response to sepsis in either male or female adult rats. An altered septic response in male FGR offspring with respect to surfactant may imply a contribution to lung dysfunction.
Collapse
|
15
|
Nardo AD, Schneeweiss-Gleixner M, Bakail M, Dixon ED, Lax SF, Trauner M. Pathophysiological mechanisms of liver injury in COVID-19. LIVER INTERNATIONAL : OFFICIAL JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR THE STUDY OF THE LIVER 2020. [PMID: 33190346 DOI: 10.1111/liv.14730.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The recent outbreak of coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has resulted in a world-wide pandemic. Disseminated lung injury with the development of acute respiratory distress syndrome (ARDS) is the main cause of mortality in COVID-19. Although liver failure does not seem to occur in the absence of pre-existing liver disease, hepatic involvement in COVID-19 may correlate with overall disease severity and serve as a prognostic factor for the development of ARDS. The spectrum of liver injury in COVID-19 may range from direct infection by SARS-CoV-2, indirect involvement by systemic inflammation, hypoxic changes, iatrogenic causes such as drugs and ventilation to exacerbation of underlying liver disease. This concise review discusses the potential pathophysiological mechanisms for SARS-CoV-2 hepatic tropism as well as acute and possibly long-term liver injury in COVID-19.
Collapse
Affiliation(s)
- Alexander D Nardo
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Mathias Schneeweiss-Gleixner
- Medical Intensive Care Unit 13H1. Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - May Bakail
- Campus IT, Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Emmanuel D Dixon
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sigurd F Lax
- Department of Pathology, Hospital Graz II, Academic Teaching Hospital of the Medical University of Graz, Graz, Austria.,School of Medicine, Johannes Kepler University, Linz, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.,Medical Intensive Care Unit 13H1. Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Chavant A, Gautier-Veyret E, Chhun S, Guilhaumou R, Stanke-Labesque F. [Pharmacokinetic changes related to acute infection. Examples from the SARS-CoV-2 pandemic]. Therapie 2020; 76:319-333. [PMID: 33129512 PMCID: PMC7833468 DOI: 10.1016/j.therap.2020.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023]
Abstract
The knowledge of factors of pharmacokinetic variability is important in order to personalize pharmacological treatment, particularly for drugs with a narrow therapeutic range for which pharmacological therapeutic monitoring is recommended. Inflammation is a protective response against acute infections and injuries that contributes to intra- and inter-individual variability in drug exposure by modulating the activity of enzymes involved in drug metabolism, and by altering the binding of drugs to plasma proteins. The understanding of the impact of inflammation on drug metabolism and the related clinical consequences allow to better take into consideration the effect of inflammation on the variability of drug exposure. We first summarized the molecular mechanisms by which inflammation contributes to the inhibition of drug metabolism enzymes. We then presented an updated overview of the consequences of the outcome of acute infectious event on pharmacokinetic exposure of drugs with a narrow therapeutic range and that are substrates of cytochrome P450, and the related clinical consequences. Finally, in the context of the COVID-19 pandemic, we reported examples of drug overexposures in COVID- 19 infected patients.
Collapse
Affiliation(s)
- Anaëlle Chavant
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Elodie Gautier-Veyret
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France; University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38043 Grenoble, France
| | - Stéphanie Chhun
- UFR de médecine Paris centre, 75015 Paris, France; Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS UMR 8253, 75015 Paris, France; Laboratoire d'immunologie biologique, département médico universitaire BioPhyGen, hôpital universitaire Necker-enfants malades, AP-HP, 75015 Paris, France
| | - Romain Guilhaumou
- Unité de pharmacologie clinique et pharmacovigilance AP-HM, 13354 Marseille, France; Aix Marseille Univ, Inserm, INS Inst Neurosci Syst, 13354 Marseille, France
| | - Françoise Stanke-Labesque
- Laboratoire de pharmacologie-pharmacogénétique-toxicologie, pôle de biologie et pathologie, CHU Grenoble Alpes, 38700 La Tronche, France; University Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, 38043 Grenoble, France.
| |
Collapse
|
17
|
Wang S, Ruan WQ, Yu Z, Zhao X, Chen ZX, Li Q. Validity of presepsin for the diagnosis and prognosis of sepsis in elderly patients admitted to the Intensive Care Unit. Minerva Anestesiol 2020; 86:1170-1179. [DOI: 10.23736/s0375-9393.20.13661-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Patel K, Lamm R, Altshuler P, Dang H, Shah AP. Hepatocellular Carcinoma-The Influence of Immunoanatomy and the Role of Immunotherapy. Int J Mol Sci 2020; 21:ijms21186757. [PMID: 32942580 PMCID: PMC7555667 DOI: 10.3390/ijms21186757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related morbidity and mortality worldwide. Most patients are diagnosed with advanced disease, limiting their options for treatment. While current treatments are adequate for lower staged disease, available systemic treatments are limited, with marginal benefit at best. Chimeric antigen receptor (CAR) T cell therapy, effective in treating liquid tumors such as B-cell lymphoma, presents a potentially promising treatment option for advanced HCC. However, new challenges specific to solid tumors, such as tumor immunoanatomy or the immune cell presence and position anatomically and the tumor microenvironment, need to be defined and overcome. Immunotherapy currently in use must be re-engineered and re-envisioned to treat HCC with the hopes of ushering in an answer to advanced stage solid tumor disease processes. Future therapy options must address the uniqueness of the tumors under the umbrella of HCC. This review strives to summarize HCC, its staging system, current therapy and immunotherapy medications currently being utilized or studied in the treatment of HCC with the hopes of highlighting what is being done and suggesting what needs to be done in the future to champion this therapy as an effective option.
Collapse
Affiliation(s)
- Keyur Patel
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA; (K.P.); (R.L.); (P.A.)
| | - Ryan Lamm
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA; (K.P.); (R.L.); (P.A.)
| | - Peter Altshuler
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA; (K.P.); (R.L.); (P.A.)
| | - Hien Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA; (K.P.); (R.L.); (P.A.)
- Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
- Correspondence: (H.D.); (A.P.S.)
| | - Ashesh P. Shah
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA; (K.P.); (R.L.); (P.A.)
- Correspondence: (H.D.); (A.P.S.)
| |
Collapse
|
19
|
Stanke-Labesque F, Gautier-Veyret E, Chhun S, Guilhaumou R. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol Ther 2020; 215:107627. [PMID: 32659304 PMCID: PMC7351663 DOI: 10.1016/j.pharmthera.2020.107627] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Inflammation is an evolutionary process that allows survival against acute infection or injury. Inflammation is also a pathophysiological condition shared by numerous chronic diseases. In addition, inflammation modulates important drug-metabolizing enzymes and transporters (DMETs), thus contributing to intra- and interindividual variability of drug exposure. A better knowledge of the impact of inflammation on drug metabolism and its related clinical consequences would help to personalize drug treatment. Here, we summarize the kinetics of inflammatory mediators and the underlying transcriptional and post-transcriptional mechanisms by which they contribute to the inhibition of important DMETs. We also present an updated overview of the effect of inflammation on the pharmacokinetic parameters of most of the drugs that are DMET substrates, for which therapeutic drug monitoring is recommended. Furthermore, we provide opinions on how to integrate the inflammatory status into pharmacogenetics, therapeutic drug monitoring, and population pharmacokinetic strategies to improve the personalization of drug treatment for each patient.
Collapse
Affiliation(s)
- Françoise Stanke-Labesque
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble 38000, France; Laboratory of Pharmacology-Pharmacogenetics-Toxicology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, France.
| | - Elodie Gautier-Veyret
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble 38000, France; Laboratory of Pharmacology-Pharmacogenetics-Toxicology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, France
| | - Stephanie Chhun
- Faculty of Medicine, Paris University, Paris, France; Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France; AP-HP, Paris Centre, Laboratory of Immunology, Necker-Enfants Malades Hospital, Paris, France
| | - Romain Guilhaumou
- Clinical Pharmacology and Pharmacovigilance Unit, AP-HM, Marseille, France; Aix Marseille Univ, INSERM, INS Inst Neurosci Syst, Marseille, France
| |
Collapse
|
20
|
Fan J, Zhang YC, Zheng DF, Zhang M, Liu H, He M, Wu ZJ. IL-27 is elevated in sepsis with acute hepatic injury and promotes hepatic damage and inflammation in the CLP model. Cytokine 2019; 127:154936. [PMID: 31786500 DOI: 10.1016/j.cyto.2019.154936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/26/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Immuno-inflammation plays an important role in the pathophysiological process of sepsis-associated acute hepatic injury (AHI). Interleukin 27 (IL-27) is an important inflammatory regulator; however, its role in this condition is not clear. METHODS The clinical data and IL-27 serum levels in sepsis patients with or without AHI were analysed. Classical caecal ligation puncture (CLP) models were established in wild-type (WT) and IL-27 receptor (WSX-1)-deficient (IL-27R-/-) mice. In addition, exogenous IL-27 was injected into these mice, and the levels of IL-27, IL-6, and tumour necrosis factor alpha (TNF-α) in the serum and liver were then measured by enzyme-linked immunoassay (ELISA), quantitative PCR, and Western blotting. The severity of liver damage was evaluated by haematoxylin and eosin staining of liver tissue, TUNEL assay and evaluation of alanine aminotransferase (ALT) and aspartate transaminase (AST) serum levels. Furthermore, the effects of IL-27 on the levels of phosphorylated c-Jun N-terminal kinase (JNK) in macrophages were assessed by Western blotting, and the effects of IL-27 on the expression of IL-6 and TNF-α in macrophages were assessed by ELISA. RESULTS IL-27 was elevated in sepsis patients with acute hepatic injury, which correlated with the Acute Physiologic Assessment and Chronic Health Evaluation II (APACHEII) scores, Sequential Organ Failure Assessment (SOFA) scores, and procalcitonin, C-reactive protein, IL-6, and TNF-α expression. In the CLP-WT group, IL-27 was highly expressed in the serum and liver, which correlated with the elevated content of ALT, AST, TNF-α, IL-6, and p-JNK in the serum and liver and the pathological injury of the liver. In CLP-IL-27R-/- group, however, the levels of ALT, AST, TNF-α, IL-6, and p-JNK in the serum and liver and the pathological injury of the liver were decreased. Treatment with exogenous IL-27 led to a further increase in these cytokines in WT mice after CLP. IL-27 treatment and lipopolysaccharide stimulation in vitro increased the expression of p-JNK, IL-6, and TNF-α in macrophages, and these changes were decreased by a JNK signalling pathway inhibitor. CONCLUSION IL-27 is elevated in sepsis patients, especially those with acute hepatic injury. In addition, IL-27 can promote inflammatory reactions in the CLP-induced hepatic injury mice model.
Collapse
Affiliation(s)
- Jing Fan
- Department of Critical care medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Yu-Chi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Dao-Feng Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Mu Zhang
- Department of Critical care medicine, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Hang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China
| | - Miao He
- Chongqing University Cancer Hospital, No.181 Hanyu Road, Shapingba District, Chongqing 400030, China
| | - Zhong-Jun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
21
|
Yokoyama J, Yoshioka D, Toda K, Matsuura R, Suzuki K, Samura T, Miyagawa S, Yoshikawa Y, Takano H, Matsumiya G, Sakaguchi T, Fukuda H, Takahashi T, Izutani H, Funatsu T, Nishi H, Sawa Y. Surgery-first treatment improves clinical results in infective endocarditis complicated with disseminated intravascular coagulation†. Eur J Cardiothorac Surg 2019; 56:785-792. [PMID: 30932157 DOI: 10.1093/ejcts/ezz068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Infective endocarditis (IE) is a critical infection with a high mortality rate, and it usually causes sepsis. Though disseminated intravascular coagulation (DIC) sometimes occurs in IE patients, no definitive treatment strategy for IE patients with DIC as a complication exists. Therefore, we evaluated the prevalence, surgical results and treatment strategy for IE complicated with DIC. METHODS Between 2009 and 2017, a total of 585 patients undergoing valve surgery for active IE were enrolled at 14 institutions, of whom 116 (20%) had DIC as a complication. For further evaluation, we divided DIC patients into medical treatment-first (n = 45, group M) and valve surgery-first (n = 51, group S) groups after excluding 20 patients with intracranial haemorrhage. RESULTS The overall survival rates at 1 and 5 years were 91% and 85% in the non-DIC group and 65% and 55% in the DIC group, respectively (P < 0.001). Recurrence-free survival rates at 1 and 5 years were 99% and 95% in the non-DIC group and 94% and 74% in the DIC group, respectively (P < 0.001). The overall survival rates at 1 and 5 years were 77% and 64% in group S and 51% and 46% in group M, respectively (P = 0.032). Multivariable analysis revealed that 'medical treatment first' was an exclusive independent risk factor [hazards ratio 2.26 (1.13-4.75), P = 0.024] for overall mortality. CONCLUSIONS Mortality and IE recurrence were statistically significantly higher in DIC patients. Valve surgery should not be delayed because most patients proceeding with medical treatment eventually require emergency surgery and their clinical outcomes are worse than those of patients undergoing early surgery.
Collapse
Affiliation(s)
- Junya Yokoyama
- Department of Cardiovascular Surgery, Osaka University Hospital, Osaka, Japan
| | - Daisuke Yoshioka
- Department of Cardiovascular Surgery, Osaka University Hospital, Osaka, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Hospital, Osaka, Japan
| | - Ryohei Matsuura
- Department of Cardiovascular Surgery, Osaka University Hospital, Osaka, Japan
| | - Kota Suzuki
- Department of Cardiovascular Surgery, Osaka University Hospital, Osaka, Japan
| | - Takaaki Samura
- Department of Cardiovascular Surgery, Osaka University Hospital, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Hospital, Osaka, Japan
| | - Yasushi Yoshikawa
- Department of Cardiovascular Surgery, Osaka University Hospital, Osaka, Japan
| | - Hiroshi Takano
- Department of Cardiovascular Surgery, Dokkyo Koshigaya Medical Center, Saitama, Japan
| | - Goro Matsumiya
- Department of Cardiovascular Surgery, Chiba University Hospital, Chiba, Japan
| | - Taichi Sakaguchi
- Department of Cardiovascular Surgery, Hyogo College of Medicine, Hyogo, Japan
| | - Hirotsugu Fukuda
- Department of Cardiovascular Surgery, Dokkyo University Medical School Hospital, Tochigi, Japan
| | - Toshiki Takahashi
- Department of Cardiovascular Surgery, Osaka Police Hospital, Osaka, Japan
| | - Hironori Izutani
- Department of Cardiovascular Surgery, Ehime University Hospital, Matsuyama, Japan
| | - Toshihiro Funatsu
- Department of Cardiovascular Surgery, Rinku General Medical Center, Osaka, Japan
| | - Hiroyuki Nishi
- Department of Cardiovascular Surgery, Osaka Police Hospital, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Hospital, Osaka, Japan
| |
Collapse
|
22
|
Zi SF, Li JH, Liu L, Deng C, Ao X, Chen DD, Wu SZ. Dexmedetomidine-mediated protection against septic liver injury depends on TLR4/MyD88/NF-κB signaling downregulation partly via cholinergic anti-inflammatory mechanisms. Int Immunopharmacol 2019; 76:105898. [PMID: 31520992 DOI: 10.1016/j.intimp.2019.105898] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Uncontrolled inflammatory responses exacerbate the pathogenesis of septic acute liver injury (ALI), posing a lethal threat to the host. Dexmedetomidine (DEX) has been reported to possess protective properties in inflammatory conditions. This study aimed to investigate whether DEX pretreatment exhibits hepatoprotection against ALI induced by lipopolysaccharide (LPS) in rats and determine its possible molecular mechanism. METHODS Septic ALI was induced by intravenous injection of LPS. The rats received DEX intraperitoneally 30 min before LPS administration. α-Bungarotoxin (α-BGT), a specific α7 nicotinic acetylcholine receptor (α7nAChR) antagonist, was administered intraperitoneally 1 h before LPS exposure. The role of the vagus nerve was verified by performing unilateral cervical vagotomy or sham surgery before sepsis. RESULTS The expression of α7nAChR, toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), and cleaved caspase-3 increased, peaking 24 h during sepsis. DEX enhanced α7nAChR activation and reduced TLR4 expression upon challenge with LPS. DEX significantly prevented LPS-induced ALI, which was associated with increased survival, the mitigation of pathological changes, the attenuation of inflammatory cytokine expression and apoptosis, and the downregulation of TLR4/MyD88/NF-κB pathway. Moreover, the hepatoprotective effect of DEX was abolished by α-BGT. Further investigation established that vagotomy, compared to sham surgery, triggered more severe pathogenic manifestations and higher proinflammatory cytokine levels. The inhibitory effects of DEX were shown in sham-operated rats but not in vagotomized rats. CONCLUSIONS Our data highlight the pivotal function of α7nAChR and intact vagus nerves in protecting against LPS-induced ALI through inhibiting the TLR4/MyD88/NF-κB signaling pathway upon pretreatment with DEX.
Collapse
Affiliation(s)
- Shuang-Feng Zi
- Department of Critical Care Medicine, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Jing-Hui Li
- Department of Critical Care Medicine, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China.
| | - Lei Liu
- Department of Critical Care Medicine, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Chao Deng
- Department of Critical Care Medicine, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Xue Ao
- Department of Critical Care Medicine, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Dan-Dan Chen
- Department of Critical Care Medicine, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China
| | - Sheng-Zan Wu
- Department of Critical Care Medicine, Affiliated Haikou Hospital, Xiangya School of Medicine, Central South University, Haikou 570208, China
| |
Collapse
|
23
|
Ilaiwy A, Ten Have GAM, Bain JR, Muehlbauer MJ, O'Neal SK, Berthiaume JM, Parry TL, Deutz NE, Willis MS. Identification of Metabolic Changes in Ileum, Jejunum, Skeletal Muscle, Liver, and Lung in a Continuous I.V. Pseudomonas aeruginosa Model of Sepsis Using Nontargeted Metabolomics Analysis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1797-1813. [PMID: 31439155 PMCID: PMC6723233 DOI: 10.1016/j.ajpath.2019.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Sepsis is a multiorgan disease affecting the ileum and jejunum (small intestine), liver, skeletal muscle, and lung clinically. The specific metabolic changes in the ileum, jejunum, liver, skeletal muscle, and lung have not previously been investigated. Live Pseudomonas aeruginosa, isolated from a patient, was given via i.v. catheter to pigs to induce severe sepsis. Eighteen hours later, ileum, jejunum, medial gastrocnemius skeletal muscle, liver, and lung were analyzed by nontargeted metabolomics analysis using gas chromatography/mass spectrometry. The ileum and the liver demonstrated significant changes in metabolites involved in linoleic acid metabolism: the ileum and lung had significant changes in the metabolism of valine/leucine/isoleucine; the jejunum, skeletal muscle, and liver had significant changes in arginine/proline metabolism; and the skeletal muscle and lung had significant changes in aminoacyl-tRNA biosynthesis, as analyzed by pathway analysis. Pathway analysis also identified changes in metabolic pathways unique for different tissues, including changes in the citric acid cycle (jejunum), β-alanine metabolism (skeletal muscle), and purine metabolism (liver). These findings demonstrate both overlapping metabolic pathways affected in different tissues and those that are unique to others and provide insight into the metabolic changes in sepsis leading to organ dysfunction. This may allow therapeutic interventions that focus on multiple tissues or single tissues once the relationship of the altered metabolites/metabolism to the underlying pathogenesis of sepsis is determined.
Collapse
Affiliation(s)
- Amro Ilaiwy
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina; Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Gabriella A M Ten Have
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - James R Bain
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina; Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Michael J Muehlbauer
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - Sara K O'Neal
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina
| | - Jessica M Berthiaume
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Traci L Parry
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nicolaas E Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Monte S Willis
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
24
|
Yarbakht M, Pradhan P, Köse-Vogel N, Bae H, Stengel S, Meyer T, Schmitt M, Stallmach A, Popp J, Bocklitz TW, Bruns T. Nonlinear Multimodal Imaging Characteristics of Early Septic Liver Injury in a Mouse Model of Peritonitis. Anal Chem 2019; 91:11116-11121. [DOI: 10.1021/acs.analchem.9b01746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Melina Yarbakht
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | - Pranita Pradhan
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | | | - Hyeonsoo Bae
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | | | - Tobias Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | | | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | - Thomas Wilhelm Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technology, 07745 Jena, Germany
| | - Tony Bruns
- Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
25
|
Sharma NK, Ferreira BL, Tashima AK, Brunialti MKC, Torquato RJS, Bafi A, Assuncao M, Azevedo LCP, Salomao R. Lipid metabolism impairment in patients with sepsis secondary to hospital acquired pneumonia, a proteomic analysis. Clin Proteomics 2019; 16:29. [PMID: 31341447 PMCID: PMC6631513 DOI: 10.1186/s12014-019-9252-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/10/2019] [Indexed: 12/28/2022] Open
Abstract
Background Sepsis is a dysregulated host response to infection and a major cause of death worldwide. Respiratory tract infections account for most sepsis cases and depending on the place of acquisition, i.e., community or hospital acquired infection, differ in etiology, antimicrobial resistance and outcomes. Accordingly, the host response may be different in septic patients secondary to community-acquired pneumonia and hospital acquired pneumonia (HAP). Proteomic analysis is a useful approach to evaluate broad alterations in biological pathways that take place during sepsis. Here we evaluated plasma proteome changes in sepsis secondary to HAP. Methods Plasma samples were obtained from patients (n = 27) at admission and after 7 days of follow-up, and were analyzed according to the patients’ outcomes. The patients’ proteome profiles were compared with healthy volunteers (n = 23). Pooled plasma samples were labeled with isobaric tag for relative and absolute quantitationand analyzed by LC–MS/MS. We used bioinformatics tools to find altered functions and pathways. Results were validated using biochemical estimations and ELISA tests. Results We identified 159 altered proteins in septic patients; most of them were common when comparing patients’ outcomes, both at admission and after 7 days. The top altered biological processes were acute inflammatory response, response to wounding, blood coagulation and homeostasis. Lipid metabolism emerged as the main altered function in patients, with HDL as a central node in the network analysis, interacting with downregulated proteins, such as APOA4, APOB, APOC1, APOL1, SAA4 and PON1. Validation tests showed reduced plasma levels of total cholesterol, HDL-C, LDL-C, non-HDL cholesterol, apolipoproteins ApoA1 and ApoB100, and Paraoxonase 1 in HAP patients. Conclusion Proteomic analysis pointed to impairment of lipid metabolism as a major change in septic patients secondary to HAP, which was further validated by the reduced levels of cholesterol moieties and apolipoproteins in plasma. Our results stress the involvement of lipids in the pathogenesis of sepsis, which is in accordance with previous reports supporting the role of lipid moieties in pathogen toxin clearance and in modulating inflammatory responses. Electronic supplementary material The online version of this article (10.1186/s12014-019-9252-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Narendra Kumar Sharma
- 1Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 10th Floor, Sao Paulo, SP 04039-032 Brazil.,6Present Address: Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali Tonk, 304022 Rajasthan India
| | - Bianca Lima Ferreira
- 1Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 10th Floor, Sao Paulo, SP 04039-032 Brazil
| | - Alexandre Keiji Tashima
- 2Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900 Brazil
| | - Milena Karina Colo Brunialti
- 1Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 10th Floor, Sao Paulo, SP 04039-032 Brazil
| | - Ricardo Jose Soares Torquato
- 2Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP 04023-900 Brazil
| | - Antonio Bafi
- 3Intensive Care Unit, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, 04024-002 Brazil
| | - Murillo Assuncao
- 4Intensive Care Unit, Hospital Israelita Albert Einstein, Sao Paulo, 05652-900 Brazil
| | | | - Reinaldo Salomao
- 1Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 10th Floor, Sao Paulo, SP 04039-032 Brazil
| |
Collapse
|
26
|
Ten Have GAM, Engelen MPKJ, Wolfe RR, Deutz NEP. Inhibition of jejunal protein synthesis and breakdown in Pseudomonas aeruginosa-induced sepsis pig model. Am J Physiol Gastrointest Liver Physiol 2019; 316:G755-G762. [PMID: 30978112 PMCID: PMC6620581 DOI: 10.1152/ajpgi.00407.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Maintenance of gut integrity has long been recognized as crucial for survival in sepsis, but alterations in protein metabolism have not previously been documented. Therefore, in the present study, we measured in a Pseudomonas aeruginosa-induced porcine sepsis model fractional protein synthesis (FSR) and breakdown rates (FBR) in jejunal mucosa in a fasted, conscious state. FSR was measured by the incorporation rate of stable tracer amino acid (l-[ring-13C6]phenylalanine) into tissue protein. FBR was determined using the relation between blood arterial enrichment and intracellular enrichment of phenylalanine in consecutive mucosal biopsies after a pulse of l-[15N]phenylalanine. Additionally, we determined the FSR in jejunum, ileum, liver, muscle, and lung tissue. We found in this sham-controlled acute sepsis pig model (control: n = 9; sepsis: n = 13) that jejunal mucosal protein turnover is reduced with both decreased FSR (control: 3.29 ± 0.22; sepsis: 2.32 ± 0.12%/h, P = 0.0008) and FBR (control: 0.72 ± 0.12; sepsis: 0.34 ± 0.04%/h, P = 0.006). We also found that FSR was unchanged in ileum and muscle, whereas it was higher in the liver (control: 0.87 ± 0.05; sepsis: 1.05 ± 0.06%/h, P = 0.041). Our data, obtained with a translational acute sepsis model, suggest that jejunal mucosal protein metabolism is diminished in acute sepsis. Comparison with other tissues indicates that the most serious acute metabolic changes in sepsis occur in the jejunum rather than the muscle. NEW & NOTEWORTHY In a highly translational acute sepsis model, presented data suggest that jejunal mucosal protein metabolism is diminished in acute sepsis, even if the origin of the sepsis is not located in the gut. Comparison with other tissues indicates that the most serious acute changes in the protein synthesis rates in sepsis occur in the gut rather than the muscle. Therefore, we hypothesize that preventing a compromised gut is critical to maintain gut function during sepsis.
Collapse
Affiliation(s)
- Gabriëlla A. M. Ten Have
- 1Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A & M University, College Station, Texas,2Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mariëlle P. K. J. Engelen
- 1Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A & M University, College Station, Texas,2Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Robert R. Wolfe
- 2Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nicolaas E. P. Deutz
- 1Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A & M University, College Station, Texas,2Donald W. Reynolds Institute on Aging, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
27
|
Blaurock-Möller N, Gröger M, Siwczak F, Dinger J, Schmerler D, Mosig AS, Kiehntopf M. CAAP48, a New Sepsis Biomarker, Induces Hepatic Dysfunction in an in vitro Liver-on-Chip Model. Front Immunol 2019; 10:273. [PMID: 30873161 PMCID: PMC6401602 DOI: 10.3389/fimmu.2019.00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a leading cause of mortality in the critically ill, characterized by life-threatening organ dysfunctions due to dysregulation of the host response to infection. Using mass spectrometry, we identified a C-terminal fragment of alpha-1-antitrypsin, designated CAAP48, as a new sepsis biomarker that actively participates in the pathophysiology of sepsis. It is well-known that liver dysfunction is an early event in sepsis-associated multi-organ failure, thus we analyzed the pathophysiological function of CAAP48 in a microfluidic-supported in vitro liver-on-chip model. Hepatocytes were stimulated with synthetic CAAP48 and several control peptides. CAAP48-treatment resulted in an accumulation of the hepatocyte-specific intracellular enzymes aspartate- and alanine-transaminase and impaired the activity of the hepatic multidrug resistant-associated protein 2 and cytochrome P450 3A4. Moreover, CAAP48 reduced hepatic expression of the multidrug resistant-associated protein 2 and disrupted the endothelial structural integrity as demonstrated by reduced expression of VE-cadherin, F-actin and alteration of the tight junction protein zonula occludens-1, which resulted in a loss of the endothelial barrier function. Furthermore, CAAP48 induced the release of adhesion molecules and pro- and anti-inflammatory cytokines. Our results show that CAAP48 triggers inflammation-related endothelial barrier disruption as well as hepatocellular dysfunction in a liver-on-chip model emulating the pathophysiological conditions of inflammation. Besides its function as new sepsis biomarker, CAAP48 thus might play an important role in the development of liver dysfunction as a consequence of the dysregulated host immune-inflammatory response in sepsis.
Collapse
Affiliation(s)
- Nancy Blaurock-Möller
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Marko Gröger
- Centre for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Fatina Siwczak
- Centre for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Julia Dinger
- Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Diana Schmerler
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| | - Alexander S Mosig
- Centre for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Michael Kiehntopf
- Department of Clinical Chemistry and Laboratory Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
28
|
Raasch M, Fritsche E, Kurtz A, Bauer M, Mosig AS. Microphysiological systems meet hiPSC technology - New tools for disease modeling of liver infections in basic research and drug development. Adv Drug Deliv Rev 2019; 140:51-67. [PMID: 29908880 DOI: 10.1016/j.addr.2018.06.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/01/2018] [Accepted: 06/12/2018] [Indexed: 02/08/2023]
Abstract
Complex cell culture models such as microphysiological models (MPS) mimicking human liver functionality in vitro are in the spotlight as alternative to conventional cell culture and animal models. Promising techniques like microfluidic cell culture or micropatterning by 3D bioprinting are gaining increasing importance for the development of MPS to address the needs for more predictivity and cost efficiency. In this context, human induced pluripotent stem cells (hiPSCs) offer new perspectives for the development of advanced liver-on-chip systems by recreating an in vivo like microenvironment that supports the reliable differentiation of hiPSCs to hepatocyte-like cells (HLC). In this review we will summarize current protocols of HLC generation and highlight recently established MPS suitable to resemble physiological hepatocyte function in vitro. In addition, we are discussing potential applications of liver MPS for disease modeling related to systemic or direct liver infections and the use of MPS in testing of new drug candidates.
Collapse
|
29
|
Magalhães MAB, Petroianu A, Barbosa AJA, Figueiredo JA, Alberti LR, Ribas Filho JM. Effects of different periods of gastric ischemia on liver as a remote organ1. Acta Cir Bras 2018; 33:964-974. [PMID: 30517323 DOI: 10.1590/s0102-865020180110000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To evaluate the hepatic changes associated with gastric ischemia. METHODS Thirty male rabbits were studied, distributed in 3 groups (n=10). Group 1: ligature and section of the gastric vasculature and removal of the liver after three hours; Group 2: ligature and section of the gastric vasculature and removal of the liver after 6 hours; Group 3: ligature and section of the gastric vasculature and removal of the liver after 12 hours. Blood samples were collected immediately before surgery and after the determined time of ischemia in each group to evaluate the hepatic function. After the death of the rabbits, the liver was removed for macro and microscopic study. RESULTS An increase in aminotransferases and bilirubin occurred in groups 2 and 3. Total protein and albumin diminished in all of the animals. All of the rabbits from groups 2 and 3 presented hepatocellular necrosis. CONCLUSION The devascularization of the stomach for a period of above three hours is associated with hepatic morphological and functional disorders.
Collapse
Affiliation(s)
- Maria Angélica Baron Magalhães
- DVM, PhD, Associate Professor, Department of Surgery, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo-Horizonte-MG, Brazil. Conception and design of the study; acquisition, analysis and interpretation of data; technical procedures; manuscript preparation and writing; critical revision
| | - Andy Petroianu
- PhD, Full Professor, Department of Surgery, Faculty of Medicine, UFMG, Researcher 1B CNPq, Belo Horizonte-MG, Brazil. Conception and design of the study; acquisition, analysis and interpretation of data; critical revision, final approval
| | - Alfredo José Afonso Barbosa
- PhD, Full Professor, Department of Pathology, Faculty of Medicine, UFMG, Belo Horizonte-MG, Brazil. Conception and design of the study, histopathological examinations, analysis and interpretation of data
| | - Juliano Alves Figueiredo
- Associate Professor, Department of Surgery, Faculty of Medicine, UFMG, Belo-Horizonte-MG, Brazil. Conception and design of the study, technical procedures
| | - Luiz Ronaldo Alberti
- Associate Professor, Department of Surgery, Faculty of Medicine, UFMG, Belo-Horizonte-MG, Brazil. Analysis and interpretation of data, statistics analysis
| | - Jurandir Marcondes Ribas Filho
- Associate Professor, Department of Surgery, Faculty of Medicine, Faculdade Evangélica do Paraná (FEPAR), Curitiba-PR, Brazil. Conception and design of the study, critical revision
| |
Collapse
|
30
|
Acid Sphingomyelinase Inhibition Stabilizes Hepatic Ceramide Content and Improves Hepatic Biotransformation Capacity in a Murine Model of Polymicrobial Sepsis. Int J Mol Sci 2018; 19:ijms19103163. [PMID: 30326559 PMCID: PMC6214114 DOI: 10.3390/ijms19103163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Liver dysfunction during sepsis is an independent risk factor leading to increased mortality rates. Specifically, dysregulation of hepatic biotransformation capacity, especially of the cytochrome P450 (CYP) system, represents an important distress factor during host response. The activity of the conserved stress enzyme sphingomyelin phosphodiesterase 1 (SMPD1) has been shown to be elevated in sepsis patients, allowing for risk stratification. Therefore, the aim of the present study was to investigate whether SMPD1 activity has an impact on expression and activity of different hepatic CYP enzymes using an animal model of polymicrobial sepsis. Polymicrobial sepsis was induced in SMPD1 wild-type and heterozygous mice and hepatic ceramide content as well as CYP mRNA, protein expression and enzyme activities were assessed at two different time points, at 24 h, representing the acute phase, and at 28 days, representing the post-acute phase of host response. In the acute phase of sepsis, SMPD1+/+ mice showed an increased hepatic C16- as well as C18-ceramide content. In addition, a downregulation of CYP expression and activities was detected. In SMPD1+/- mice, however, no noticeable changes of ceramide content and CYP expression and activities during sepsis could be observed. After 28 days, CYP expression and activities were normalized again in all study groups, whereas mRNA expression remained downregulated in SMPD+/+ animals. In conclusion, partial genetic inhibition of SMPD1 stabilizes hepatic ceramide content and improves hepatic monooxygenase function in the acute phase of polymicrobial sepsis. Since we were also able to show that the functional inhibitor of SMPD1, desipramine, ameliorates downregulation of CYP mRNA expression and activities in the acute phase of sepsis in wild-type mice, SMPD1 might be an interesting pharmacological target, which should be further investigated.
Collapse
|
31
|
Liver Function, Quantified by LiMAx Test, After Major Abdominal Surgery. Comparison Between Open and Laparoscopic Approach. World J Surg 2018; 42:557-566. [PMID: 28840295 DOI: 10.1007/s00268-017-4170-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Major abdominal surgery may lead to a systemic inflammatory response (SIRS) with a risk of organ failure. One possible trigger for a postoperative hepatic dysfunction is an altered hepatic blood flow during SIRS, resulting in a decreased oxygen delivery. This pilot study investigated the role of liver dysfunction measured by the LiMAx test after major abdominal surgery, focussing on open and laparoscopic surgical approaches. METHODS We prospectively investigated 25 patients (7 females and 18 males, age range 55-72 years) scheduled for upper abdominal surgery. The LiMAx test, ICG-PDR and duplex sonography were carried out preoperatively, followed by postoperative days (PODs) 1, 3, 5 and 10. Laboratory parameters and clinical parameters were measured daily. Clinical outcome parameters were examined at the end of treatment. The population was divided into group A (laparotomy) versus group B (laparoscopy). RESULTS LiMAx values decreased significantly on POD 1 (290 µg/kg/h, P < 0.001), followed by a significant increase at POD 3 (348 µg/kg/h, P = 0.013). Only INR showed a significant increase on POD 1 (1.26, P < 0.001). Duplex sonography and ICG-PDR revealed a hyper-dynamic liver blood flow. No differences between group A and B were found. CONCLUSIONS Hepatic dysfunction after major abdominal surgery is evident and underestimated. The LiMAx test provides an adequate tool to determine liver dysfunction. Open and laparoscopic approaches appeared similar in terms of liver dysfunction and postoperative SIRS.
Collapse
|
32
|
The LPS Responsiveness in BN and LEW Rats and Its Severity Are Modulated by the Liver. J Immunol Res 2018; 2018:6328713. [PMID: 30151394 PMCID: PMC6091288 DOI: 10.1155/2018/6328713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/11/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022] Open
Abstract
Differences in LPS responsiveness influence the outcome of patients with sepsis. The intensity of the response is highly variable in patients and strain dependent in rodents. However, the role of the liver for initiating the LPS response remains ill defined. We hypothesize that hepatic LPS uptake is a key event for initiating the LPS response. In the present study, the severity of the LPS-induced inflammatory response and the hepatic LPS uptake was compared in two rat strains (Lewis (LEW) rats and Brown Norway (BN) rats). Using a transplantation model, we demonstrated the decisive role of the liver. The expression of hepatic TNF-α, IL-6, and IL-1β mRNA levels in BN rats was significantly lower than that in LEW rats. LEW rats were sensitized to LPS via G-CSF pretreatment. Sensitization caused by G-CSF pretreatment induced severe liver injury and mortality in LEW rats, but not in BN rats (survival rate: 0% (LEW) versus 100% (BN), p < 0.01). LEW rats presented with higher liver enzymes, more alterations in histology, and higher expression of caspase 3 and higher cytokines levels. One of the reasons could be the increased hepatic LPS uptake, which was only observed in LEW but not in BN livers. Using the transplantation model revealed the decisive role of the LPS responsiveness of the liver. Injection of LPS to the high-responding LEW recipient before transplantation of a low-responder BN liver resulted in a 50% survival rate. In contrast, injecting the same dose of LPS into the high-responding LEW recipient after transplanting the low-responding BN liver resulted in a 100% survival rate. The severity of inflammatory response in different strains might be related to the differences in hepatic LPS uptake. This observation suggests that the liver plays a genetically defined decisive role in modulating the inflammatory severity.
Collapse
|
33
|
Bauer M, Coldewey SM, Leitner M, Löffler B, Weis S, Wetzker R. Deterioration of Organ Function As a Hallmark in Sepsis: The Cellular Perspective. Front Immunol 2018; 9:1460. [PMID: 29997622 PMCID: PMC6028602 DOI: 10.3389/fimmu.2018.01460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/12/2018] [Indexed: 01/12/2023] Open
Abstract
Development of organ dysfunction discriminates sepsis from uncomplicated infection. The paradigm shift implicated by the new sepsis-3 definition holds that initial impairment of any organ can pave the way for multiple organ dysfunction and death. Moreover, the role of the systemic inflammatory response, central element in previous sepsis definitions, has been questioned. Most strikingly, a so far largely underestimated defense mechanism of the host, i.e., "disease tolerance," which aims at maintaining host vitality without reducing pathogen load, has gained increasing attention. Here, we summarize evidence that a dysregulation of critical cellular signaling events, also in non-immune cells, might provide a conceptual framework for sepsis-induced dysfunction of parenchymal organs in the absence of significant cell death. We suggest that key signaling mediators, such as phosphoinositide 3-kinase, mechanistic target of rapamycin, and AMP-activated protein kinase, control the balance of damage and repair processes and thus determine the fate of affected organs and ultimately the host. Therapeutic targeting of these multifunctional signaling mediators requires cell-, tissue-, or organ-specific approaches. These novel strategies might allow stopping the domino-like damage to further organ systems and offer alternatives beyond the currently available strictly supportive therapeutic options.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Margit Leitner
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Bettina Löffler
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany.,Center for Infectious Disease and Infection Control, Jena University Hospital, Jena, Germany
| | - Reinhard Wetzker
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| |
Collapse
|
34
|
Sauer M, Haubner C, Richter G, Ehler J, Mencke T, Mitzner S, Margraf S, Altrichter J, Doß S, Nöldge-Schomburg G. Impaired Cell Viability and Functionality of Hepatocytes After Incubation With Septic Plasma-Results of a Second Prospective Biosensor Study. Front Immunol 2018; 9:1448. [PMID: 29988573 PMCID: PMC6026797 DOI: 10.3389/fimmu.2018.01448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Liver dysfunction (LD) and liver failure are associated with poor outcome in critically ill patients. In patients with severe sepsis or septic shock, LD occurred in nearly 19% of patients. An early diagnosis of LD at time of initial damage of the liver can lead to a better prognosis of these patients because an early start of therapy is possible. We performed a second prospective study with septic patients to test a new cell-based cytotoxicity device (biosensor) to evaluate clinical relevance for early diagnosis of LD and prognostic capacity. In the clinical study, 99 intensive care unit patients were included in two groups. From the patients of the septic group (n = 51, SG), and the control (non-septic) group [n = 49, control group (CG)] were drawn 20 ml blood at inclusion, after 3, and 7 days for testing with the biosensor. Patients’ data were recorded for hospital survival, organ function, and demographic data, illness severity [acute physiology and chronic health evaluation (APACHE) II-, sepsis-related organ failure assessment (SOFA) scores], cytokines, circulating-free deoxyribonucleic acid/neutrophil-derived extracellular traps (cf-DNA/NETs), microbiological results, and pre-morbidity. For the developed cytotoxicity test, the human liver cell line HepG2/C3A was used. Patients’ plasma was incubated in a microtiter plate assay with the test cells and after 6 days incubation the viability (trypan blue staining, XTT-test) and functionality (synthesis of albumin, cytochrome 1A2 activity) was analyzed. An impairment of viability and functionality of test cells was only seen in the SG compared with the CG. The plasma of non-survivors in the SG led to a more pronounced impairment of test cells than the plasma of survivors at inclusion. In addition, the levels of cf-DNA/NETs were significantly higher in the SG at inclusion, after 3, and after 7 days compared with the CG. The SG showed an in-hospital mortality of 24% and the values of bilirubin, APACHE II-, and SOFA scores were markedly higher at inclusion than in the CG. Hepatotoxicity of septic plasma was already detected with the liver cell-based biosensor at inclusion and also in the course of disease. The biosensor may be a tool for early diagnosis of LD in septic patients and may have prognostic relevance.
Collapse
Affiliation(s)
- Martin Sauer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany.,Extracorporeal Immunomodulation (EXIM), Fraunhofer Institute for Cell Therapy and Immunology, Rostock, Germany
| | - Cristof Haubner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Georg Richter
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Thomas Mencke
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Steffen Mitzner
- Extracorporeal Immunomodulation (EXIM), Fraunhofer Institute for Cell Therapy and Immunology, Rostock, Germany.,Division of Nephrology, Department of Medicine, University Hospital of Rostock, Rostock, Germany
| | - Stefan Margraf
- Extracorporeal Immunomodulation (EXIM), Fraunhofer Institute for Cell Therapy and Immunology, Rostock, Germany
| | - Jens Altrichter
- Division of Nephrology, Department of Medicine, University Hospital of Rostock, Rostock, Germany
| | - Sandra Doß
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| | - Gabriele Nöldge-Schomburg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Rostock, Rostock, Germany
| |
Collapse
|
35
|
Rahmel T, Rump K, Adamzik M, Peters J, Frey UH. Increased circulating microRNA-122 is associated with mortality and acute liver injury in the acute respiratory distress syndrome. BMC Anesthesiol 2018; 18:75. [PMID: 29935532 PMCID: PMC6015662 DOI: 10.1186/s12871-018-0541-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/06/2018] [Indexed: 12/11/2022] Open
Abstract
Background Acute liver injury in patients with ARDS decreases survival but early stages may be easily missed due to the lack of sufficient biomarkers signalling its onset. Accordingly, we tested in ARDS patients the hypotheses that microRNA-122, the foremost liver-related microRNA (miR), 1) is an sensitive and specific early predictor for potential liver injury and 2) analysed its impact on 30-day-survival. Methods We collected clinical data and analysed blood samples from 119 ARDS patients within the first 24 h of ICU admission and from 20 patients undergoing elective abdominal non-liver surgery serving as controls. Total circulating miR was isolated from serum and relative miR-122 expression was measured (using specific probes and spiked-in miR-54), as were liver function and 30-day survival. Acute liver injury was defined as a total bilirubin concentration ≥ 3.0 mg/dl, an ALT activity ≥350 U/l, and an INR ≥2.0. Results 30-day survival of the entire ARDS-cohort was 69% but differed between patients with normal liver function (77%) and acute liver injury (19% p < 0.001). miR-122 expression was 20fold higher in non-survivors (95%-CI 0.0149–0.0768; p = 0.001) and almost 4fold greater in survivors (95%-CI: 0.0037–0.0122; p = 0.005) compared to controls (95%-CI 0.0008–0.0034) and correlated with markers of liver cell integrity/function [ALT (p < 0.001, r = 0.495), AST (p < 0.001, r = 0.537), total bilirubin (p = 0.025, r = 0.206), INR (p = 0.001, r = 0.308), and GLDH (p < 0.001, r = 0.489)]. miR-122 serum expression discriminated survivors and non-survivors (AUC: 0.78) better than total bilirubin concentration (AUC: 0.66). Multivariable Cox-regression analysis revealed both acute liver injury (HR 7.6, 95%-CI 2.9–19.8, p < 0.001) and miR-122 (HR 4.4, 95%-CI 1.2–16.1, p = 0.02) as independent prognostic factors for 30-day mortality. Conclusions Increased miR-122 serum expression is an early and independent risk factor for 30-day mortality in ARDS patients and potentially reveal an acute liver injury earlier than the conventional markers of liver cell integrity. Electronic supplementary material The online version of this article (10.1186/s12871-018-0541-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, D-44892, Bochum, Germany.
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, D-44892, Bochum, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, In der Schornau 23-25, D-44892, Bochum, Germany.,Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, D-45122, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, D-45122, Essen, Germany
| | - Ulrich H Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen & Universitätsklinikum Essen, D-45122, Essen, Germany
| |
Collapse
|
36
|
Aravanis CV, Kapelouzou A, Vagios S, Tsilimigras DI, Katsimpoulas M, Moris D, Demesticha TD, Schizas D, Kostakis A, Machairas A, Liakakos T. Toll-Like Receptors -2, -3, -4 and -7 Expression Patterns in the Liver of a CLP-Induced Sepsis Mouse Model. J INVEST SURG 2018; 33:109-117. [PMID: 29847187 DOI: 10.1080/08941939.2018.1476630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective: To investigate the expression of toll-like receptors (TLRs) in the liver of septic mouse model. Materials and methods: For this study seventy-two C57BL/6J mice were utilized. Sepsis was induced by cecal ligation and puncture (CLP) in the mice of the three septic (S) groups (euthanized at 24 hours, 48 hours and 72 hours). Sham (laparotomy)- operated mice constituted the control (C) groups (euthanized at 24, 48 and 72 hours). Blood samples were drawn and liver tissues were extracted and examined histologically. The expression of TLRs 2, 3, 4 and 7 was assessed via immunohistochemistry (IHC) and qrt-PCR (quantitative- Polymerase Chain Reaction). Results: Liver function tests were elevated in all S-groups in contrast to their time-equivalent control groups (S24 versus C24, S48 versus C48 and S72 versus C72) (p < 0.05). Liver histology displayed progressive deterioration in the septic groups. IHC and qrt-PCR both showed an increased expression of all TLRs in the septic mice in comparison to their analogous control ones (p < 0.05). Analysis of livers and intestines of the septic animals proved that all TLRs were significantly expressed in higher levels in the intestinal tissues at 24h and 48h (p < 0.05) except for TLR 3 in S48 (p > 0.05); whereas at 72 hours only TLR 4 levels were significantly elevated in the intestine (p < 0.05). Conclusion: TLRs seem to be expressed in significant levels in the livers of septic rodents, indicating that they have a possible role in the pathophysiology of liver damage in septic conditions.
Collapse
Affiliation(s)
- Chrysostomos V Aravanis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alkistis Kapelouzou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Stylianos Vagios
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Michalis Katsimpoulas
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Demetrios Moris
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Theano D Demesticha
- Department of Anatomy, Faculty of Medicine, National and Kapodistrian, University of Athens, Athens, Greece
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alkiviadis Kostakis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anastasios Machairas
- 3rd Department of Surgery, National and Kapodistrian University of Athens, School of Medicine, Attikon University Hospital, Athens, Greece
| | - Theodore Liakakos
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
37
|
Rahmel T, Schäfer ST, Frey UH, Adamzik M, Peters J. Increased circulating microRNA-122 is a biomarker for discrimination and risk stratification in patients defined by sepsis-3 criteria. PLoS One 2018; 13:e0197637. [PMID: 29782519 PMCID: PMC5962092 DOI: 10.1371/journal.pone.0197637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Sepsis is now operationally defined as life-threatening organ dysfunction caused by an infection, identified by an acute change in SOFA-Score of at least two points, including clinical chemistry such as creatinine or bilirubin concentrations. However, little knowledge exists about organ-specific microRNAs as potentially new biomarkers. Accordingly, we tested the hypotheses that micro-RNA-122, the foremost liver-related micro-RNA (miR), 1) discriminates between sepsis and infection, 2) is an early predictor for mortality, and 3) improves the prognostic value of the SOFA-score. Methods We analyzed 108 patients with sepsis (infection + increase SOFA-Score ≥2) within the first 24h of ICU admission and as controls 20 patients with infections without sepsis (infection + SOFA-Score ≤1). Total circulating miR was isolated from serum and relative miR-122 expression was measured (using spiked-in cel-miR-54) and associated with 30-day survival. Results 30-day survival of the sepsis patients was 63%. miR-122 expression was 40-fold higher in non-survivors (p = 0.001) and increased almost 6-fold in survivors (p = 0.013) compared to controls. miR-122 serum-expression discriminated both between sepsis vs. infection (AUC 0.760, sensitivity 58.3%, specificity 95%) and survivors vs. non-survivors (AUC 0.728, sensitivity 42.5%, specificity 94%). Multivariate Cox-regression analysis revealed miR-122 (HR 4.3; 95%-CI 2.0–8.9, p<0.001) as independent prognostic factor for 30-day mortality. Furthermore, the predictive value for 30-day mortality of the SOFA-Score (AUC 0.668) was improved by adding miR-122 (AUC 0.743; net reclassification improvement 0.37, p<0.001; integrated discrimination improvement 0.07, p = 0.007). Conclusions Increased miR-122 serum concentration supports the discrimination between infection and sepsis, is an early and independent risk factor for 30-day mortality, and improves the prognostic value of the SOFA-Score, suggesting a potential role for miR-122 in sepsis-related prediction models.
Collapse
Affiliation(s)
- Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
- * E-mail:
| | - Simon T. Schäfer
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, Germany
| | - Ulrich H. Frey
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, Germany
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, Germany
| | - Jürgen Peters
- Klinik für Anästhesiologie und Intensivmedizin, Universität Duisburg-Essen and Universitätsklinikum Essen, Essen, Germany
| |
Collapse
|
38
|
Lima GC, Vasconcelos YDAG, de Santana Souza MT, Oliveira AS, Bomfim RR, de Albuquerque Júnior RLC, Camargo EA, Portella VG, Coelho-de-Souza AN, Diniz LRL. Hepatoprotective Effect of Essential Oils from Hyptis crenata in Sepsis-Induced Liver Dysfunction. J Med Food 2018; 21:709-715. [PMID: 29489449 DOI: 10.1089/jmf.2017.0125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
No specific therapeutics are available for the treatment of sepsis-induced liver dysfunction, a clinical complication strongly associated with the high mortality rate of septic patients. This study investigated the effect of the essential oil of Hyptis crenata (EOHc), a lamiaceae plant used to treat liver disturbances in Brazilian folk medicine, on liver function during early sepsis. Sepsis was induced by the cecal ligation and puncture (CLP) model. Rats were divided into four groups: Sham, Sham+EOHc, CLP, and CLP+EOHc. EOHc (300 mg/kg) was orally administered 12 and 24 h after surgery. The animals were sacrificed for blood collection and liver tissue samples 48 h after surgery. Hepatic function was evaluated by measuring serum bilirubin, alkaline phosphatase (ALP), aspartate aminotransferase, and alanine aminotransferase (ALT) levels. The levels of malondialdehyde and the activity of superoxide dismutase, catalase, and GSH peroxidase (GSH-Px) were measured for assessment of oxidative stress. Liver morphology was analyzed by hematoxylin and eosin staining. EOHc normalized serum ALP, ALT, and bilirubin levels and inhibited morphological changes. In addition, we observed that EOHc inhibited elevation in hepatic lipid peroxidation and reduction of the glutathione peroxidase activity induced by sepsis. Our data show that EOHc plays a protective effect against liver injury induced by sepsis.
Collapse
Affiliation(s)
- Glauber Cruz Lima
- 1 Department of Physiology, Superior Institute of Biomedical Sciences, State University of Ceará , Fortaleza, Ceará, Brazil
| | | | | | - Alan Santos Oliveira
- 2 Department of Physiology, Federal University of Sergipe , São Cristóvão, Sergipe, Brazil
| | | | | | | | - Viviane Gomes Portella
- 1 Department of Physiology, Superior Institute of Biomedical Sciences, State University of Ceará , Fortaleza, Ceará, Brazil
| | | | | |
Collapse
|
39
|
Yang D, Zheng X, Wang N, Fan S, Yang Y, Lu Y, Chen Q, Liu X, Zheng J. Kukoamine B promotes TLR4-independent lipopolysaccharide uptake in murine hepatocytes. Oncotarget 2018; 7:57498-57513. [PMID: 27542278 PMCID: PMC5295368 DOI: 10.18632/oncotarget.11292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
Free bacterial lipopolysaccharide (LPS) is generally removed from the bloodstream through hepatic uptake via TLR4, the LPS pattern recognition receptor, but mechanisms for internalization and clearance of conjugated LPS are less clear. Kukoamine B (KB) is a novel cationic alkaloid that interferes with LPS binding to TLR4. In this study, KB accelerated blood clearance of LPS. KB also enhanced LPS distribution in the hepatic tissues of C57 BL/6 mice, along with LPS uptake in primary hepatocytes and HepG2 cells. By contrast, KB inhibited LPS internalization in Kupffer and RAW 264.7 cells. Loss of TLR4 did not affect LPS uptake into KB-treated hepatocytes. We also detected selective upregulation of the asialoglycoprotein receptor (ASGPR) upon KB treatment, and ASGPR colocalized with KB in cultured hepatocytes. Molecular docking showed that KB bound to ASGPR in a manner similar to GalNAc, a known ASGPR agonist. GalNAc dose-dependently reduced KB internalization, suggesting it competes with KB for ASGPR binding, and ASGPR knockdown also impaired LPS uptake into hepatocytes. Finally, while KB enhanced LPS uptake, it was protective against LPS-induced inflammation and hepatocyte injury. Our study provides a new mechanism for conjugated LPS hepatic uptake induced by the LPS neutralizer KB and mediated by membrane ASGPR binding.
Collapse
Affiliation(s)
- Dong Yang
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xinchuan Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ning Wang
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
40
|
Chae BS. Pretreatment of Low-Dose and Super-Low-Dose LPS on the Production of In Vitro LPS-Induced Inflammatory Mediators. Toxicol Res 2018; 34:65-73. [PMID: 29372003 PMCID: PMC5776914 DOI: 10.5487/tr.2018.34.1.065] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022] Open
Abstract
Pretreatment of low-dose lipopolysaccharide (LPS) induces a hyporesponsive state to subsequent secondary challenge with high-dose LPS in innate immune cells, whereas super-low-dose LPS results in augmented expression of pro-inflammatory cytokines. However, little is known about the difference between super-low-dose and low-dose LPS pretreatments on immune cell-mediated inflammatory and hepatic acute-phase responses to secondary LPS. In the present study, RAW 264.7 cells, EL4 cells, and Hepa-1c1c7 cells were pretreated with super-low-dose LPS (SL-LPS: 50 pg/mL) or low-dose LPS (L-LPS: 50 ng/mL) in fresh complete medium once a day for 2~3 days and then cultured in fresh complete medium for 24 hr or 48 hr in the presence or absence of LPS (1~10 μg/mL) or concanavalin A (Con A). SL-LPS pretreatment strongly enhanced the LPS-induced production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, TNF-α/IL-10, prostaglandin E2 (PGE2), and nitric oxide (NO) by RAW 264.7 cells compared to the control, whereas L-LPS increased IL-6 and NO production only. SL-LPS strongly augmented the Con A-induced ratios of interferon (IFN)-γ/IL-10 in EL4 cells but decreased the LPS-induced ratios of IFN-γ/IL-10 compared to the control, while L-LPS decreased the Con A- and LPS-induced ratios of IFN-γ/IL-10. SL-LPS enhanced the LPS-induced production of IL-6 by Hepa1c1c-7 cells compared to the control, while L-LPS increased IL-6 but decreased IL-1β and C reactive protein (CRP) levels. SL-LPS pretreatment strongly enhanced the LPS-induced production of TNF-α, IL-6, IL-10, PGE2, and NO in RAW 264.7 cells, and the IL-6, IL-1β, and CRP levels in Hepa1c1c-7 cells, as well as the ratios of IFN-γ/IL-10 in LPS- and Con A-stimulated EL4 cells compared to L-LPS. These findings suggest that pre-conditioning of SL-LPS may contribute to the mortality to secondary infection in sepsis rather than pre-conditioning of L-LPS.
Collapse
|
41
|
Tannert A, Ramoji A, Neugebauer U, Popp J. Photonic monitoring of treatment during infection and sepsis: development of new detection strategies and potential clinical applications. Anal Bioanal Chem 2017; 410:773-790. [PMID: 29214536 DOI: 10.1007/s00216-017-0713-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/06/2017] [Accepted: 10/17/2017] [Indexed: 01/02/2023]
Abstract
Despite the strong decline in the infection-associated mortality since the development of the first antibiotics, infectious diseases are still a major cause of death in the world. With the rising number of antibiotic-resistant pathogens, the incidence of deaths caused by infections may increase strongly in the future. Survival rates in sepsis, which occurs when body response to infections becomes uncontrolled, are still very poor if an adequate therapy is not initiated immediately. Therefore, approaches to monitor the treatment efficacy are crucially needed to adapt therapeutic strategies according to the patient's response. An increasing number of photonic technologies are being considered for diagnostic purpose and monitoring of therapeutic response; however many of these strategies have not been introduced into clinical routine, yet. Here, we review photonic strategies to monitor response to treatment in patients with infectious disease, sepsis, and septic shock. We also include some selected approaches for the development of new drugs in animal models as well as new monitoring strategies which might be applicable to evaluate treatment response in humans in the future. Figure Label-free probing of blood properties using photonics.
Collapse
Affiliation(s)
- Astrid Tannert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany
| | - Anuradha Ramoji
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany.
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany.
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany.
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena, Germany.
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
- Jena Biophotonics and Imaging Laboratory, 07745, Jena, Germany
- Center for Sepsis Control and Care, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena, Germany
| |
Collapse
|
42
|
Wicha SG, Frey OR, Roehr AC, Pratschke J, Stockmann M, Alraish R, Wuensch T, Kaffarnik M. Linezolid in liver failure: exploring the value of the maximal liver function capacity (LiMAx) test in a pharmacokinetic pilot study. Int J Antimicrob Agents 2017; 50:557-563. [PMID: 28711678 DOI: 10.1016/j.ijantimicag.2017.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/22/2017] [Accepted: 06/24/2017] [Indexed: 01/12/2023]
Abstract
Patients in the intensive care unit frequently require antibiotic treatment. Liver impairment poses substantial challenges for dose selection in these patients. The aim of the present pilot study was to assess the novel maximal liver function capacity (LiMAx test) in comparison with conventional liver function markers as covariates of drug clearance in liver failure using linezolid as a model drug. A total of 28 patients with different degrees of liver failure were recruited. LiMAx test as well as plasma, dialysate and urine sampling were performed under linezolid steady-state therapy (600 mg twice daily). NONMEM® was used for a pharmacometric analysis in which the different clearance routes of linezolid were elucidated. Linezolid pharmacokinetics was highly variable in patients with liver failure. The LiMAx score displayed the strongest association with non-renal clearance (CLnon-renal) [ = 4.46∙(body weight/57.9) 0.75∙(LiMAx/221.5)0.388 L/h], which reduced interindividual variability in CLnon-renal from 46.6% to 33.6%, thereby being superior to other common markers of liver function (international normalised ratio, gamma-glutaryl transferase, bilirubin, thrombocytes, alanine aminotransferase, aspartate aminotransferase). For LiMAx < 100 µg/kg/h, 64% of linezolid trough concentrations were above the recommended trough concentration of 8 mg/L, indicating the necessity of therapeutic drug monitoring in these patients. This is the first pilot application of the LiMAx test in a pharmacokinetic (PK) study demonstrating its potential to explain PK variability in linezolid clearance. Further studies with a larger patient collective and further drugs are highly warranted to guide dosing in patients with severe liver impairment.
Collapse
Affiliation(s)
- Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Bundesstr. 45, 20146 Hamburg, Germany.
| | - Otto R Frey
- Klinikum Heidenheim, Clinical Pharmacy, Schlosshaustraße 100, 89522 Heidenheim, Germany
| | - Anka C Roehr
- Klinikum Heidenheim, Clinical Pharmacy, Schlosshaustraße 100, 89522 Heidenheim, Germany
| | - Johann Pratschke
- Charité-Universitätsmedizin Berlin, Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum Augustenburger Platz 1, 13353 Berlin, Germany
| | - Martin Stockmann
- Charité-Universitätsmedizin Berlin, Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum Augustenburger Platz 1, 13353 Berlin, Germany
| | - Rawan Alraish
- Charité-Universitätsmedizin Berlin, Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum Augustenburger Platz 1, 13353 Berlin, Germany
| | - Tilo Wuensch
- Charité-Universitätsmedizin Berlin, Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum Augustenburger Platz 1, 13353 Berlin, Germany
| | - Magnus Kaffarnik
- Charité-Universitätsmedizin Berlin, Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
43
|
Ning Y, Kim JK, Min HK, Ren S. Cholesterol metabolites alleviate injured liver function and decrease mortality in an LPS-induced mouse model. Metabolism 2017; 71:83-93. [PMID: 28521882 DOI: 10.1016/j.metabol.2016.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxysterol sulfation plays a fundamental role in the regulation of many biological events. Its products, 25-hydroxycholesterol 3-sulfate (25HC3S) and 25-hydroxycholesterol 3, 25-disulfate (25HCDS), have been demonstrated to be potent regulators of lipid metabolism, inflammatory response, cell apoptosis, and cell survival. In the present study, we tested these products' potential to treat LPS-induced acute liver failure in a mouse model. METHODS Acute liver failure mouse model was established by intravenous injection with LPS. The injured liver function was treated with intraperitoneal administration of 25HC, 25HC3S or 25HCDS. Serum enzymatic activities were determined in our clinic laboratory. ELISA assays were used to detect pro-inflammatory factor levels in sera. Western blot, Real-time Quantitative PCR and RT2 Profiler PCR Array analysis were used to determine levels of gene expression. RESULTS Administration of 25HC3S/25HCDS decreased serum liver-impaired markers; suppressed secretion of pro-inflammatory factors; alleviated liver, lung, and kidney injury; and subsequently increased the survival rate in the LPS-induced mouse model. These effects resulted from the inhibition of the expression of genes involved in the pro-inflammatory response and apoptosis and the simultaneous induction of the expression of genes involved in cell survival. Compared to 25HC, 25HC3S and 25HCDS exhibited significantly stronger effects in these activities, indicating that the cholesterol metabolites play an important role in the inflammatory response, cell apoptosis, and cell survival in vivo. CONCLUSIONS 25HC3S/25HCDS has potential to serve as novel biomedicines in the therapy of acute liver failure and acute multiple organ failure.
Collapse
Affiliation(s)
- Yanxia Ning
- Department of Internal Medicine, Virginia Commonwealth University/McGuire Veterans Affairs Medical Center, Richmond, VA 23249, United States
| | - Jin Kyung Kim
- Department of Internal Medicine, Virginia Commonwealth University/McGuire Veterans Affairs Medical Center, Richmond, VA 23249, United States
| | - Hae-Ki Min
- Department of Internal Medicine, Virginia Commonwealth University/McGuire Veterans Affairs Medical Center, Richmond, VA 23249, United States
| | - Shunlin Ren
- Department of Internal Medicine, Virginia Commonwealth University/McGuire Veterans Affairs Medical Center, Richmond, VA 23249, United States.
| |
Collapse
|
44
|
Kozlov AV, Lancaster JR, Meszaros AT, Weidinger A. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol 2017; 13:170-181. [PMID: 28578275 PMCID: PMC5458092 DOI: 10.1016/j.redox.2017.05.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023] Open
Abstract
Liver failure induced by systemic inflammatory response (SIRS) is often associated with mitochondrial dysfunction but the mechanism linking SIRS and mitochondria-mediated liver failure is still a matter of discussion. Current hypotheses suggest that causative events could be a drop in ATP synthesis, opening of mitochondrial permeability transition pore, specific changes in mitochondrial morphology, impaired Ca2+ uptake, generation of mitochondrial reactive oxygen species (mtROS), turnover of mitochondria and imbalance in electron supply to the respiratory chain. The aim of this review is to critically analyze existing hypotheses, in order to highlight the most promising research lines helping to prevent liver failure induced by SIRS. Evaluation of the literature shows that there is no consistent support that impaired Ca++ metabolism, electron transport chain function and ultrastructure of mitochondria substantially contribute to liver failure. Moreover, our analysis suggests that the drop in ATP levels has protective rather than a deleterious character. Recent data suggest that the most critical mitochondrial event occurring upon SIRS is the release of mtROS in cytoplasm, which can activate two specific intracellular signaling cascades. The first is the mtROS-mediated activation of NADPH-oxidase in liver macrophages and endothelial cells; the second is the acceleration of the expression of inflammatory genes in hepatocytes. The signaling action of mtROS is strictly controlled in mitochondria at three points, (i) at the site of ROS generation at complex I, (ii) the site of mtROS release in cytoplasm via permeability transition pore, and (iii) interaction with specific kinases in cytoplasm. The systems controlling mtROS-signaling include pro- and anti-inflammatory mediators, nitric oxide, Ca2+ and NADPH-oxidase. Analysis of the literature suggests that further research should be focused on the impact of mtROS on organ failure induced by inflammation and simultaneously providing a new theoretical basis for a targeted therapy of overwhelmed inflammatory response. Relationship between mitochondrial dysfunction and high lethality upon sepsis. Criteria to define critical for lethality mitochondrial dysfunction. ATP, calcium, mitochondrial ultrastructure and apoptosis, upon inflammation. Regulation of inflammatory processes by mitochondrial ROS.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingen Str. 13, 1200 Vienna, Austria.
| | - Jack R Lancaster
- University of Pittsburgh, Departments of Pharmacology & Chemical Biology, Surgery, and Medicine, 1341A Thomas E. Starzl Biomedical Science Tower, PA 15261, United States
| | - Andras T Meszaros
- University of Szeged, Institute of Surgical Research, 6720 Szeged, Hungary
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Donaueschingen Str. 13, 1200 Vienna, Austria
| |
Collapse
|
45
|
Abstract
Sepsis and septic shock are characterized by life-threatening organ dysfunction caused by a dysregulated host response to infection. The liver has a central role during sepsis, and is essential to the regulation of immune defence during systemic infections by mechanisms such as bacterial clearance, acute-phase protein or cytokine production and metabolic adaptation to inflammation. However, the liver is also a target for sepsis-related injury, including hypoxic hepatitis due to ischaemia and shock, cholestasis due to altered bile metabolism, hepatocellular injury due to drug toxicity or overwhelming inflammation, as well as distinct pathologies such as secondary sclerosing cholangitis in critically ill patients. Hence, hepatic dysfunction substantially impairs the prognosis of sepsis and serves as a powerful independent predictor of mortality in the intensive care unit. Sepsis is particularly problematic in patients with liver cirrhosis (who experience increased bacterial translocation from the gut and impaired microbial defence) as it can trigger acute-on-chronic liver failure - a syndrome with high short-term mortality. Here, we review the importance of the liver as a guardian, modifier and target of sepsis, the factors that contribute to sepsis in patients with liver cirrhosis and new therapeutic strategies.
Collapse
|
46
|
Relevance of serum sclerostin concentrations in critically ill patients. J Crit Care 2016; 37:38-44. [PMID: 27621111 DOI: 10.1016/j.jcrc.2016.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/26/2016] [Accepted: 08/17/2016] [Indexed: 11/27/2022]
Abstract
PURPOSE Sclerostin is a negative regulator of bone metabolism and associated with chronic morbidities. We investigated circulating sclerostin in critically ill patients. METHODS A total of 264 patients (170 with sepsis) were studied prospectively upon admission to the medical intensive care unit (ICU) and on day 7. Patients' survival was followed for up to 3 years. RESULTS Sclerostin serum levels were significantly elevated in critically ill patients at ICU admission compared with 99 healthy controls. Unlike in healthy controls, sclerostin did not depend on sex or age of ICU patients. Sclerostin was associated with disease severity, independent of the presence of sepsis. Sclerostin levels increased during the first week of treatment at the ICU but were not a predictor of mortality. Sclerostin was elevated in patients with preexisting chronic kidney disease or liver cirrhosis, but was not related to diabetes, obesity, or cardiovascular disease. Circulating sclerostin in ICU patients correlated with biomarkers reflecting renal, hepatic and cardiac dysfunction, and biomarkers reflecting bone metabolism. CONCLUSION Serum sclerostin concentrations are significantly elevated in critically ill patients, linked to renal or hepatic organ failure, and associated with bone resorption markers, supporting its value as a potential tool for the assessment of ICU-related metabolic bone disease.
Collapse
|
47
|
Patterns and causes of liver involvement in acute dengue infection. BMC Infect Dis 2016; 16:319. [PMID: 27391896 PMCID: PMC4938910 DOI: 10.1186/s12879-016-1656-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
Background Liver involvement in acute dengue infection is frequently observed and sometimes leads to acute liver failure, with fatal outcomes. Many factors are thought to contribute to liver dysfunction, including hypoxic injury due to decreased perfusion, direct damage by the virus and immune mediated injury. In this study, we sought to identify the pattern in the change in liver enzymes throughout the illness and its association with the degree of viraemia, onset and extent of plasma leakage and inflammatory mediators. Methods Serial daily blood samples were obtained from 55 adult patients with acute dengue from the time of admission to discharge and the liver function tests, viral loads and cytokines were assessed. The onset and extent of fluid leakage was measured by daily ultrasound examinations and all clinical and laboratory features were serially recorded. Results Aspartate transaminase (AST), alanine transaminase (ALT) and gamma glutamyl transferase (GGT) levels were elevated in patients with dengue infection throughout the illness. The highest AST levels were seen on day 6 of illness and both AST and GGT levels were significantly higher in patients with severe dengue (SD), when compared to those with non-severe dengue (NSD) on day 5 and 6 of illness. Three patients with SD had AST and ALT values of >1000/IU in the absence of any fluid leakage or a rise in the haematocrit (≥20 %). The peak of the AST levels and the lowest serum albumin levels were seen 24 h before the maximum fluid leakage and 24 h after the peak in viraemia. Both serum IL-10 and IL-17 levels were elevated during early illness and were significantly higher in those with SD when compared to NSD. Conclusion Dengue associated liver injury appears to peak around day 6 and 7. Therefore, liver function tests done at earlier dates might not reflect the extent of liver involvement in acute infection. Since severe liver involvement can occur in the absence of fluid leakage, after the peak viraemia, and since it is associated with high IL-17 and IL-10 levels, possible immune mechanisms leading to hepatic damage should be investigated. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1656-2) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Li P, Liu H, Zhang Y, Liao R, He K, Ruan X, Gong J. Endotoxin Tolerance Inhibits Degradation of Tumor Necrosis Factor Receptor-Associated Factor 3 by Suppressing Pellino 1 Expression and the K48 Ubiquitin Ligase Activity of Cellular Inhibitor of Apoptosis Protein 2. J Infect Dis 2016; 214:906-15. [PMID: 27377744 DOI: 10.1093/infdis/jiw279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pellino 1 positively regulates Toll-like receptor 4 signaling by regulating tumor necrosis factor receptor-associated factor 3 (TRAF3) degradation and is suppressed with the induction of endotoxin tolerance. However, the role of TRAF3 in endotoxin tolerance is largely unknown. In this study, we found that lipopolysaccharide (LPS) stimulation decreased TARF3 protein expression in mouse Kupffer cells (KCs) and liver tissues, whereas endotoxin tolerization abrogated this effect. Degradative TRAF3 K48-linked ubiquitination and the cytoplasmic translocation of the MYD88-associated multiprotein complex were significantly inhibited in tolerized KCs, which led to markedly impaired activation of MYD88-dependent JNK and p38 and downregulation of inflammatory cytokines. TRAF3 ablation failed to induce a fully endotoxin-tolerant state in RAW264.7 cells. Pellino 1 knockdown in Raw264.7 cells did not impair induction of cIAP2 in response to LPS but inhibited the K63-linked ubiquitination of cellular inhibitor of apoptosis protein 2 (cIAP2) and K48-linked ubiquitination of TRAF3 protein. We also found upregulation of Pellino 1 and downregulation of TRAF3 in liver tissues of patients with cholangitis. Our findings reveal a novel mechanism that endotoxin tolerance reprograms mitogen-activated protein kinase signaling by suppressing Pellino 1-mediated K63-linked ubiquitination of cIAP2, K48-linked ubiquitination, and degradation of TRAF3.
Collapse
Affiliation(s)
| | | | | | - Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, China
| | - Kun He
- Department of Hepatobiliary Surgery
| | - Xiongzhong Ruan
- Centre for Lipid Research, & Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University
| | | |
Collapse
|
49
|
Zhang J, Gao S, Duan Z, Hu KQ. Overview on acute-on-chronic liver failure. Front Med 2016; 10:1-17. [PMID: 26976617 DOI: 10.1007/s11684-016-0439-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
Abstract
Liver failure (LF) is defined as severe dysfunction in hepatic synthesis, detoxification, and metabolism induced by various etiologies. Clinical presentation of LF typically includes severe jaundice, coagulation disorder, hepatic encephalopathy, and ascites. LF can be classified into acute LF, acute-on-chronic LF (ACLF), and chronic LF. ACLF has been demonstrated as a distinct syndrome with unique clinical presentation and outcomes. The severity, curability, and reversibility of ACLF have attracted considerable attention. Remarkable developments in ACLF-related conception, diagnostic criteria, pathogenesis, and therapy have been achieved. However, this disease, especially its diagnostic criteria, remains controversial. In this paper, we systemically reviewed the current understanding of ACLF from its definition, etiology, pathophysiology, pathology, and clinical presentation to management by thoroughly comparing important findings between east and west countries, as well as those from other regions. We also discussed the controversies, challenges, and needs for future studies to promote the standardization and optimization of the diagnosis and treatment for ACLF.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hepatitis C and Drug Induced Liver Injury, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
- Collaborative Innovation Center of Infectious Diseases, Beijing, 100069, China
| | - Shan Gao
- Beijing Artificial Liver Treatment & Training Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China
- Collaborative Innovation Center of Infectious Diseases, Beijing, 100069, China
| | - Zhongping Duan
- Beijing Artificial Liver Treatment & Training Center, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
- Collaborative Innovation Center of Infectious Diseases, Beijing, 100069, China.
| | - Ke-Qin Hu
- Division of Gastroenterology and Hepatology, University of California, Irvine, Medical Center, Orange, CA, 92868, USA.
| |
Collapse
|
50
|
Gröger M, Rennert K, Giszas B, Weiß E, Dinger J, Funke H, Kiehntopf M, Peters FT, Lupp A, Bauer M, Claus RA, Huber O, Mosig AS. Monocyte-induced recovery of inflammation-associated hepatocellular dysfunction in a biochip-based human liver model. Sci Rep 2016; 6:21868. [PMID: 26902749 PMCID: PMC4763209 DOI: 10.1038/srep21868] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/02/2016] [Indexed: 12/19/2022] Open
Abstract
Liver dysfunction is an early event in sepsis-related multi-organ failure. We here report the establishment and characterization of a microfluidically supported in vitro organoid model of the human liver sinusoid. The liver organoid is composed of vascular and hepatocyte cell layers integrating non-parenchymal cells closely reflecting tissue architecture and enables physiological cross-communication in a bio-inspired fashion. Inflammation-associated liver dysfunction was mimicked by stimulation with various agonists of toll-like receptors. TLR-stimulation induced the release of pro- and anti-inflammatory cytokines and diminished expression of endothelial VE-cadherin, hepatic MRP-2 transporter and apolipoprotein B (ApoB), resulting in an inflammation-related endothelial barrier disruption and hepatocellular dysfunction in the liver organoid. However, interaction of the liver organoid with human monocytes attenuated inflammation-related cell responses and restored MRP-2 transporter activity, ApoB expression and albumin/urea production. The cellular events observed in the liver organoid closely resembled pathophysiological responses in the well-established sepsis model of peritoneal contamination and infection (PCI) in mice and clinical observations in human sepsis. We therefore conclude that this human liver organoid model is a valuable tool to investigate sepsis-related liver dysfunction and subsequent immune cell-related tissue repair/remodeling processes.
Collapse
Affiliation(s)
- Marko Gröger
- Institute of Biochemistry II, Jena University Hospital, 07743 Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747 Jena, Germany
| | - Knut Rennert
- Institute of Biochemistry II, Jena University Hospital, 07743 Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747 Jena, Germany
| | - Benjamin Giszas
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena 07747 Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747 Jena, Germany
| | - Elisabeth Weiß
- Institute of Biochemistry II, Jena University Hospital, 07743 Jena, Germany
| | - Julia Dinger
- Institute of Forensic Medicine, Jena University Hospital, 07743 Jena, Germany
| | - Harald Funke
- Molecular Hemostaseology, Jena University Hospital, Jena, 07747 Jena, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07747 Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747 Jena, Germany
| | - Frank T Peters
- Institute of Forensic Medicine, Jena University Hospital, 07743 Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena 07747 Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747 Jena, Germany
| | - Ralf A Claus
- Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena 07747 Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747 Jena, Germany
| | - Otmar Huber
- Institute of Biochemistry II, Jena University Hospital, 07743 Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747 Jena, Germany
| | - Alexander S Mosig
- Institute of Biochemistry II, Jena University Hospital, 07743 Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, 07747 Jena, Germany
| |
Collapse
|