1
|
Lopergolo D, Bianchi S, Gallus GN, Locci S, Pucci B, Leoni V, Gasparini D, Tardelli E, Chincarini A, Sestini S, Santorelli FM, Zetterberg H, De Stefano N, Mignarri A. Familial Alzheimer's disease associated with heterozygous NPC1 mutation. J Med Genet 2024; 61:332-339. [PMID: 37989569 DOI: 10.1136/jmg-2023-109219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/14/2023] [Indexed: 11/23/2023]
Abstract
INTRODUCTION NPC1 mutations are responsible for Niemann-Pick disease type C (NPC), a rare autosomal recessive neurodegenerative disease. Patients harbouring heterozygous NPC1 mutations may rarely show parkinsonism or dementia. Here, we describe for the first time a large family with an apparently autosomal dominant late-onset Alzheimer's disease (AD) harbouring a novel heterozygous NPC1 mutation. METHODS All the five living siblings belonging to the family were evaluated. We performed clinical evaluation, neuropsychological tests, assessment of cerebrospinal fluid markers of amyloid deposition, tau pathology and neurodegeneration (ATN), structural neuroimaging and brain amyloid-positron emission tomography. Oxysterol serum levels were also tested. A wide next-generation sequencing panel of genes associated with neurodegenerative diseases and a whole exome sequencing analysis were performed. RESULTS We detected the novel heterozygous c.3034G>T (p.Gly1012Cys) mutation in NPC1, shared by all the siblings. No other point mutations or deletions in NPC1 or NPC2 were found. In four siblings, a diagnosis of late-onset AD was defined according to clinical characterisation and ATN biomarkers (A+, T+, N+) and serum oxysterol analysis showed increased 7-ketocholesterol and cholestane-3β,5α,6β-triol. DISCUSSION We describe a novel NPC1 heterozygous mutation harboured by different members of a family with autosomal dominant late-onset amnesic AD without NPC-associated features. A missense mutation in homozygous state in the same aminoacidic position has been previously reported in a patient with NPC with severe phenotype. The alteration of serum oxysterols in our family corroborates the pathogenic role of our NPC1 mutation. Our work, illustrating clinical and biochemical disease hallmarks associated with NPC1 heterozygosity in patients affected by AD, provides relevant insights into the pathogenetic mechanisms underlying this possible novel association.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Silvia Bianchi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Gian Nicola Gallus
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Sara Locci
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Barbara Pucci
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Neurofisiologia Clinica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Desio, ASST Brianza, School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Daniele Gasparini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elisa Tardelli
- Unit of Nuclear Medicine, Department of Diagnostic Imaging, PO - S. Stefano, Azienda U.S.L. Toscana Centro, Prato, italy
| | | | - Stelvio Sestini
- Unit of Nuclear Medicine, Department of Diagnostic Imaging, PO - S. Stefano, Azienda U.S.L. Toscana Centro, Prato, italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Calambrone, Italy
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong Special Administrative Region, People's Republic of China
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Andrea Mignarri
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| |
Collapse
|
2
|
Poli G, Leoni V, Biasi F, Canzoneri F, Risso D, Menta R. Oxysterols: From redox bench to industry. Redox Biol 2022; 49:102220. [PMID: 34968886 PMCID: PMC8717233 DOI: 10.1016/j.redox.2021.102220] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
More and more attention is nowadays given to the possible translational application of a great number of biochemical and biological findings with the involved molecules. This is also the case of cholesterol oxidation products, redox molecules over the last years deeply investigated for their implication in human pathophysiology. Oxysterols of non-enzymatic origin, the excessive increase of which in biological fluids and tissues is of toxicological relevance for their marked pro-oxidant and pro-inflammatory properties, are increasingly applied in clinical biochemistry as molecular markers in the diagnosis and monitoring of several human and veterinary diseases. Conversely, oxysterols of enzymatic origin, the production of which is commonly under physiological regulation, could be considered and tested as promising pharmaceutical agents because of their antiviral, pro-osteogenic and antiadipogenic properties of some of them. Very recently, the quantification of oxysterols of non-enzymatic origin has been adopted in a systematic way to evaluate, monitor and improve the quality of cholesterol-based food ingredients, that are prone to auto-oxidation, as well as their industrial processing and the packaging and the shelf life of the finished food products. The growing translational value of oxysterols is here reviewed in its present and upcoming applications in various industrial fields.
Collapse
Affiliation(s)
- Giuseppe Poli
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043, Orbassano, Turin, Italy.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Desio, ASST Brianza, School of Medicine and Surgery, University of Milano Bicocca, 20126, Milan, Italy
| | - Fiorella Biasi
- Unit of General Pathology and Physiopathology, Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043, Orbassano, Turin, Italy
| | | | - Davide Risso
- Soremartec Italia Srl, Ferrero Group, 12051, Alba, CN, Italy
| | - Roberto Menta
- Soremartec Italia Srl, Ferrero Group, 12051, Alba, CN, Italy
| |
Collapse
|
3
|
Ghzaiel I, Sassi K, Zarrouk A, Nury T, Ksila M, Leoni V, Bouhaouala-Zahar B, Hammami S, Hammami M, Mackrill JJ, Samadi M, Ghrairi T, Vejux A, Lizard G. 7-Ketocholesterol: Effects on viral infections and hypothetical contribution in COVID-19. J Steroid Biochem Mol Biol 2021; 212:105939. [PMID: 34118414 PMCID: PMC8188774 DOI: 10.1016/j.jsbmb.2021.105939] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
7-Ketocholesterol, which is one of the earliest cholesterol oxidization products identified, is essentially formed by the auto-oxidation of cholesterol. In the body, 7-ketocholesterol is both provided by food and produced endogenously. This pro-oxidant and pro-inflammatory molecule, which can activate apoptosis and autophagy at high concentrations, is an abundant component of oxidized Low Density Lipoproteins. 7-Ketocholesterol appears to significantly contribute to the development of age-related diseases (cardiovascular diseases, age-related macular degeneration, and Alzheimer's disease), chronic inflammatory bowel diseases and to certain cancers. Recent studies have also shown that 7-ketocholesterol has anti-viral activities, including on SARS-CoV-2, which are, however, lower than those of oxysterols resulting from the oxidation of cholesterol on the side chain. Furthermore, 7-ketocholesterol is increased in the serum of moderately and severely affected COVID-19 patients. In the case of COVID-19, it can be assumed that the antiviral activity of 7-ketocholesterol could be counterbalanced by its toxic effects, including pro-oxidant, pro-inflammatory and pro-coagulant activities that might promote the induction of cell death in alveolar cells. It is therefore suggested that this oxysterol might be involved in the pathophysiology of COVID-19 by contributing to the acute respiratory distress syndrome and promoting a deleterious, even fatal outcome. Thus, 7-ketocholesterol could possibly constitute a lipid biomarker of COVID-19 outcome and counteracting its toxic effects with adjuvant therapies might have beneficial effects in COVID-19 patients.
Collapse
Affiliation(s)
- Imen Ghzaiel
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia.
| | - Khouloud Sassi
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University Tunis El Manar, Laboratory of Onco-Hematology (LR05ES05), Faculty of Medicine, 1007 Tunis, Tunisia.
| | - Amira Zarrouk
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University of Sousse, Faculty of Medicine, Sousse, Tunisia.
| | - Thomas Nury
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| | - Mohamed Ksila
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France; University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMoleecules, LR18ES03, Department of Biologie, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospitals of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Venoms and Therapeutic Molecules, Pasteur Institute of Tunis & University of Tunis El Manar, 1002 Tunis, Tunisia.
| | - Sonia Hammami
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia.
| | - Mohamed Hammami
- University of Monastir, Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia.
| | - John J Mackrill
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland.
| | - Mohammad Samadi
- LCPMC-A2, ICPM, Dept of Chemistry, Univ. Lorraine, Metz Technopôle, Metz, France.
| | - Taoufik Ghrairi
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMoleecules, LR18ES03, Department of Biologie, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Anne Vejux
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| | - Gérard Lizard
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA 7270 / Inserm, 21000 Dijon, France.
| |
Collapse
|
4
|
Nury T, Yammine A, Ghzaiel I, Sassi K, Zarrouk A, Brahmi F, Samadi M, Rup-Jacques S, Vervandier-Fasseur D, Pais de Barros J, Bergas V, Ghosh S, Majeed M, Pande A, Atanasov A, Hammami S, Hammami M, Mackrill J, Nasser B, Andreoletti P, Cherkaoui-Malki M, Vejux A, Lizard G. Attenuation of 7-ketocholesterol- and 7β-hydroxycholesterol-induced oxiapoptophagy by nutrients, synthetic molecules and oils: Potential for the prevention of age-related diseases. Ageing Res Rev 2021; 68:101324. [PMID: 33774195 DOI: 10.1016/j.arr.2021.101324] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/18/2022]
Abstract
Age-related diseases for which there are no effective treatments include cardiovascular diseases; neurodegenerative diseases such as Alzheimer's disease; eye disorders such as cataract and age-related macular degeneration; and, more recently, Severe Acute Respiratory Syndrome (SARS-CoV-2). These diseases are associated with plasma and/or tissue increases in cholesterol derivatives mainly formed by auto-oxidation: 7-ketocholesterol, also known as 7-oxo-cholesterol, and 7β-hydroxycholesterol. The formation of these oxysterols can be considered as a consequence of mitochondrial and peroxisomal dysfunction, leading to increased in oxidative stress, which is accentuated with age. 7-ketocholesterol and 7β-hydroxycholesterol cause a specific form of cytotoxic activity defined as oxiapoptophagy, including oxidative stress and induction of death by apoptosis associated with autophagic criteria. Oxiaptophagy is associated with organelle dysfunction and in particular with mitochondrial and peroxisomal alterations involved in the induction of cell death and in the rupture of redox balance. As the criteria characterizing 7-ketocholesterol- and 7β-hydroxycholesterol-induced cytotoxicity are often simultaneously observed in major age-related diseases (cardiovascular diseases, age-related macular degeneration, Alzheimer's disease) the involvement of these oxysterols in the pathophysiology of the latter seems increasingly likely. It is therefore important to better understand the signalling pathways associated with the toxicity of 7-ketocholesterol and 7β-hydroxycholesterol in order to identify pharmacological targets, nutrients and synthetic molecules attenuating or inhibiting the cytotoxic activities of these oxysterols. Numerous natural cytoprotective compounds have been identified: vitamins, fatty acids, polyphenols, terpenes, vegetal pigments, antioxidants, mixtures of compounds (oils, plant extracts) and bacterial enzymes. However, few synthetic molecules are able to prevent 7-ketocholesterol- and/or 7β-hydroxycholesterol-induced cytotoxicity: dimethyl fumarate, monomethyl fumarate, the tyrosine kinase inhibitor AG126, memantine, simvastatine, Trolox, dimethylsufoxide, mangafodipir and mitochondrial permeability transition pore (MPTP) inhibitors. The effectiveness of these compounds, several of which are already in use in humans, makes it possible to consider using them for the treatment of certain age-related diseases associated with increased plasma and/or tissue levels of 7-ketocholesterol and/or 7β-hydroxycholesterol.
Collapse
|
5
|
Kloudova-Spalenkova A, Ueng YF, Wei S, Kopeckova K, Peter Guengerich F, Soucek P. Plasma oxysterol levels in luminal subtype breast cancer patients are associated with clinical data. J Steroid Biochem Mol Biol 2020; 197:105566. [PMID: 31874216 PMCID: PMC7015808 DOI: 10.1016/j.jsbmb.2019.105566] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023]
Abstract
Oxygenated metabolites of cholesterol (oxysterols) have been previously demonstrated to contribute to progression of various cancers and to modulate resistance to breast cancer endocrine therapy in vitro. We measured prognostic roles of circulating levels of seven major oxysterols in the progression of luminal subtype breast carcinoma. Liquid chromatography coupled with tandem mass spectrometry was used for determination of levels of non-esterified 25-hydroxycholesterol, 27-hydroxycholesterol, 7α-hydroxycholesterol, 7-ketocholesterol, cholesterol-5α,6α-epoxide, cholesterol-5β,6β-epoxide, and cholestane-3β,5α,6β-triol in plasma samples collected from patients (n = 58) before surgical removal of tumors. Oxysterol levels were then associated with clinical data of patients. All oxysterols except cholesterol-5α,6α-epoxide were detected in patient plasma samples. Circulating levels of 7α-hydroxycholesterol and 27-hydroxycholesterol were significantly lower in patients with small tumors (pT1) and cholesterol-5β,6β-epoxide and cholestane-3β,5α,6β-triol were lower in patients with stage IA disease compared to larger tumors or more advanced stages. Patients with higher than median cholestane-3β,5α,6β-triol levels had significantly worse disease-free survival than patients with lower levels (p = 0.037 for all patients and p = 0.015 for subgroup treated only with tamoxifen). In conclusion, this study shows, for the first time, that circulating levels of oxysterols, especially cholestane-3β,5α,6β-triol, may have prognostic roles in patients with luminal subtype breast cancer.
Collapse
Affiliation(s)
- Alzbeta Kloudova-Spalenkova
- Department of Toxicogenomics, National Institute of Public Health, Srobarova 48, Prague 10, 10042, Czech Republic; Biomedical Centre, Faculty of Medicine Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 32300, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 2411/87, Prague 10, 10000, Czech Republic
| | - Yune-Fang Ueng
- National Research Institute of Chinese Medicine, Taipei, Taiwan, ROC; Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, ROC
| | - Shouzou Wei
- Department of Medicine, Vanderbilt University Medical Center, 2200 Pierce Avenue, Nashville, TN, 37235, United States
| | - Katerina Kopeckova
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84/1, 15000, Prague 5, Czech Republic
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, 2200 Pierce Avenue, Nashville, TN, 37232-0146, United States
| | - Pavel Soucek
- Biomedical Centre, Faculty of Medicine Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 32300, Czech Republic.
| |
Collapse
|
6
|
Vejux A, Abed-Vieillard D, Hajji K, Zarrouk A, Mackrill JJ, Ghosh S, Nury T, Yammine A, Zaibi M, Mihoubi W, Bouchab H, Nasser B, Grosjean Y, Lizard G. 7-Ketocholesterol and 7β-hydroxycholesterol: In vitro and animal models used to characterize their activities and to identify molecules preventing their toxicity. Biochem Pharmacol 2020; 173:113648. [DOI: 10.1016/j.bcp.2019.113648] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
7
|
Wang D, Huang J, Gui T, Yang Y, Feng T, Tzvetkov NT, Xu T, Gai Z, Zhou Y, Zhang J, Atanasov AG. SR-BI as a target of natural products and its significance in cancer. Semin Cancer Biol 2020; 80:18-38. [PMID: 31935456 DOI: 10.1016/j.semcancer.2019.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Scavenger receptor class B type I (SR-BI) protein is an integral membrane glycoprotein. SR-BI is emerging as a multifunctional protein, which regulates autophagy, efferocytosis, cell survival and inflammation. It is well known that SR-BI plays a critical role in lipoprotein metabolism by mediating cholesteryl esters selective uptake and the bi-directional flux of free cholesterol. Recently, SR-BI has also been identified as a potential marker for cancer diagnosis, prognosis, or even a treatment target. Natural products are a promising source for the discovery of new drug leads. Multiple natural products were identified to regulate SR-BI protein expression. There are still a number of challenges in modulating SR-BI expression in cancer and in using natural products for modulation of such protein expression. In this review, our purpose is to discuss the relationship between SR-BI protein and cancer, and the molecular mechanisms regulating SR-BI expression, as well as to provide an overview of natural products that regulate SR-BI expression.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Jiansheng Huang
- Department of Medicine, Vanderbilt University Medical Center, 318 Preston Research Building, 2200 Pierce Avenue, Nashville, Tennessee, 37232, USA
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaxin Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Tingting Feng
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China
| | - Nikolay T Tzvetkov
- Department of Biochemical Pharmacology and Drug Design, Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Tao Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi university town, 550025, Guiyang, China.
| | - Jingjie Zhang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Fei Shan Jie 32, 550003, Guiyang, China.
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552, Jastrzębiec, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria; Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria; Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Holzlechner M, Eugenin E, Prideaux B. Mass spectrometry imaging to detect lipid biomarkers and disease signatures in cancer. Cancer Rep (Hoboken) 2019; 2:e1229. [PMID: 32729258 PMCID: PMC7941519 DOI: 10.1002/cnr2.1229] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current methods to identify, classify, and predict tumor behavior mostly rely on histology, immunohistochemistry, and molecular determinants. However, better predictive markers are required for tumor diagnosis and evaluation. Due, in part, to recent technological advancements, metabolomics and lipid biomarkers have become a promising area in cancer research. Therefore, there is a necessity for novel and complementary techniques to identify and visualize these molecular markers within tumors and surrounding tissue. RECENT FINDINGS Since its introduction, mass spectrometry imaging (MSI) has proven to be a powerful tool for mapping analytes in biological tissues. By adding the label-free specificity of mass spectrometry to the detailed spatial information of traditional histology, hundreds of lipids can be imaged simultaneously within a tumor. MSI provides highly detailed lipid maps for comparing intra-tumor, tumor margin, and healthy regions to identify biomarkers, patterns of disease, and potential therapeutic targets. In this manuscript, recent advancement in sample preparation and MSI technologies are discussed with special emphasis on cancer lipid research to identify tumor biomarkers. CONCLUSION MSI offers a unique approach for biomolecular characterization of tumor tissues and provides valuable complementary information to histology for lipid biomarker discovery and tumor classification in clinical and research cancer applications.
Collapse
Affiliation(s)
- Matthias Holzlechner
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| | - Eliseo Eugenin
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and AnatomyThe University of Texas Medical Branch at Galveston (UTMB)GalvestonTexas
| |
Collapse
|
9
|
Griffiths WJ, Yutuc E, Abdel-Khalik J, Crick PJ, Hearn T, Dickson A, Bigger BW, Hoi-Yee Wu T, Goenka A, Ghosh A, Jones SA, Covey DF, Ory DS, Wang Y. Metabolism of Non-Enzymatically Derived Oxysterols: Clues from sterol metabolic disorders. Free Radic Biol Med 2019; 144:124-133. [PMID: 31009661 PMCID: PMC6863434 DOI: 10.1016/j.freeradbiomed.2019.04.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022]
Abstract
Cholestane-3β,5α,6β-triol (3β,5α,6β-triol) is formed from cholestan-5,6-epoxide (5,6-EC) in a reaction catalysed by cholesterol epoxide hydrolase, following formation of 5,6-EC through free radical oxidation of cholesterol. 7-Oxocholesterol (7-OC) and 7β-hydroxycholesterol (7β-HC) can also be formed by free radical oxidation of cholesterol. Here we investigate how 3β,5α,6β-triol, 7-OC and 7β-HC are metabolised to bile acids. We show, by monitoring oxysterol metabolites in plasma samples rich in 3β,5α,6β-triol, 7-OC and 7β-HC, that these three oxysterols fall into novel branches of the acidic pathway of bile acid biosynthesis becoming (25R)26-hydroxylated then carboxylated, 24-hydroxylated and side-chain shortened to give the final products 3β,5α,6β-trihydroxycholanoic, 3β-hydroxy-7-oxochol-5-enoic and 3β,7β-dihydroxychol-5-enoic acids, respectively. The intermediates in these pathways may be causative of some phenotypical features of, and/or have diagnostic value for, the lysosomal storage diseases, Niemann Pick types C and B and lysosomal acid lipase deficiency. Free radical derived oxysterols are metabolised in human to unusual bile acids via novel branches of the acidic pathway, intermediates in these pathways are observed in plasma.
Collapse
Affiliation(s)
- William J Griffiths
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| | - Eylan Yutuc
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Jonas Abdel-Khalik
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Peter J Crick
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Thomas Hearn
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Alison Dickson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Brian W Bigger
- Stem Cell & Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Stopford Building, Oxford Road, University of Manchester, Manchester, M13 9PT, UK
| | - Teresa Hoi-Yee Wu
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Anu Goenka
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Arunabha Ghosh
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, 6th Floor, St Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Daniel S Ory
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
10
|
Griffiths WJ, Wang Y. Oxysterols as lipid mediators: Their biosynthetic genes, enzymes and metabolites. Prostaglandins Other Lipid Mediat 2019; 147:106381. [PMID: 31698146 PMCID: PMC7081179 DOI: 10.1016/j.prostaglandins.2019.106381] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Pathways of oxysterol biosynthesis. Pathways of oxysterol metabolism. Oxysterols as bioactive molecules. Disorders of oxysterol metabolism.
There is growing evidence that oxysterols are more than simple metabolites in the pathway from cholesterol to bile acids. Recent data has shown oxysterols to be ligands to nuclear receptors and to G protein-coupled receptors, modulators of N-methyl-d-aspartate receptors and regulators of cholesterol biosynthesis. In this mini-review we will discuss the biosynthetic mechanisms for the formation of different oxysterols and the implication of disruption of these mechanisms in health and disease.
Collapse
Affiliation(s)
- William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea, SA2 8PP Wales, UK.
| |
Collapse
|
11
|
Abstract
In mammalian systems "sterolomics" can be regarded as the quantitative or semi-quantitative profiling of all metabolites derived from cholesterol and its cyclic precursors. The system can be further complicated by metabolites derived from ingested phytosterols or pharmaceuticals, but this is beyond the scope of this article. "Sterolomics" can be performed on either an unbiased global format, or more usually, exploiting a targeted format. Here we discuss the different mass spectrometry-based analytical techniques used in "sterolomics" giving specific examples in the context of neurodegenerative disease and for the diagnosis of inborn errors of metabolism. We pay particular attention to the profiling of cholesterol metabolites in the bile acid biosynthesis pathways, although the analytical techniques discussed are also appropriate for analysis of hormonal steroids.
Collapse
Affiliation(s)
- William J. Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, Wales, UK
| |
Collapse
|
12
|
Oxysterol research: a brief review. Biochem Soc Trans 2019; 47:517-526. [PMID: 30936243 PMCID: PMC6490702 DOI: 10.1042/bst20180135] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
In the present study, we discuss the recent developments in oxysterol research. Exciting results have been reported relating to the involvement of oxysterols in the fields of neurodegenerative disease, especially in Huntington's disease, Parkinson's disease and Alzheimer's disease; in signalling and development, in particular, in relation to Hedgehog signalling; and in cancer, with a special focus on (25R)26-hydroxycholesterol. Methods for the measurement of oxysterols, essential for understanding their mechanism of action in vivo, and valuable for diagnosing rare diseases of cholesterol biosynthesis and metabolism are briefly considered.
Collapse
|
13
|
Developing an Enzyme-Assisted Derivatization Method for Analysis of C 27 Bile Alcohols and Acids by Electrospray Ionization-Mass Spectrometry. Molecules 2019; 24:molecules24030597. [PMID: 30736477 PMCID: PMC6384595 DOI: 10.3390/molecules24030597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 01/08/2023] Open
Abstract
Enzyme-assisted derivatization for sterol analysis (EADSA) is a technology designed to enhance sensitivity and specificity for sterol analysis using electrospray ionization⁻mass spectrometry. To date it has only been exploited on sterols with a 3β-hydroxy-5-ene or 3β-hydroxy-5α-hydrogen structure, using bacterial cholesterol oxidase enzyme to convert the 3β-hydroxy group to a 3-oxo group for subsequent derivatization with the positively charged Girard hydrazine reagents, or on substrates with a native oxo group. Here we describe an extension of the technology by substituting 3α-hydroxysteroid dehydrogenase (3α-HSD) for cholesterol oxidase, making the method applicable to sterols with a 3α-hydroxy-5β-hydrogen structure. The 3α-HSD enzyme works efficiently on bile alcohols and bile acids with this stereochemistry. However, as found by others, derivatization of the resultant 3-oxo group with a hydrazine reagent does not go to completion in the absence of a conjugating double bond in the sterol structure. Nevertheless, Girard P derivatives of bile alcohols and C27 acids give an intense molecular ion ([M]⁺) upon electrospray ionization and informative fragmentation spectra. The method shows promise for analysis of bile alcohols and 3α-hydroxy-5β-C27-acids, enhancing the range of sterols that can be analyzed at high sensitivity in sterolomic studies.
Collapse
|
14
|
Griffiths WJ, Crick PJ, Meljon A, Theofilopoulos S, Abdel-Khalik J, Yutuc E, Parker JE, Kelly DE, Kelly SL, Arenas E, Wang Y. Additional pathways of sterol metabolism: Evidence from analysis of Cyp27a1-/- mouse brain and plasma. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:191-211. [PMID: 30471425 PMCID: PMC6327153 DOI: 10.1016/j.bbalip.2018.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/29/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 (CYP) 27A1 is a key enzyme in both the acidic and neutral pathways of bile acid biosynthesis accepting cholesterol and ring-hydroxylated sterols as substrates introducing a (25R)26-hydroxy and ultimately a (25R)26-acid group to the sterol side-chain. In human, mutations in the CYP27A1 gene are the cause of the autosomal recessive disease cerebrotendinous xanthomatosis (CTX). Surprisingly, Cyp27a1 knockout mice (Cyp27a1−/−) do not present a CTX phenotype despite generating a similar global pattern of sterols. Using liquid chromatography – mass spectrometry and exploiting a charge-tagging approach for oxysterol analysis we identified over 50 cholesterol metabolites and precursors in the brain and circulation of Cyp27a1−/− mice. Notably, we identified (25R)26,7α- and (25S)26,7α-dihydroxy epimers of oxysterols and cholestenoic acids, indicating the presence of an additional sterol 26-hydroxylase in mouse. Importantly, our analysis also revealed elevated levels of 7α-hydroxycholest-4-en-3-one, which we found increased the number of oculomotor neurons in primary mouse brain cultures. 7α-Hydroxycholest-4-en-3-one is a ligand for the pregnane X receptor (PXR), activation of which is known to up-regulate the expression of CYP3A11, which we confirm has sterol 26-hydroxylase activity. This can explain the formation of (25R)26,7α- and (25S)26,7α-dihydroxy epimers of oxysterols and cholestenoic acids; the acid with the former stereochemistry is a liver X receptor (LXR) ligand that increases the number of oculomotor neurons in primary brain cultures. We hereby suggest that a lack of a motor neuron phenotype in some CTX patients and Cyp27a1−/− mice may involve increased levels of 7α-hydroxycholest-4-en-3-one and activation PXR, as well as increased levels of sterol 26-hydroxylase and the production of neuroprotective sterols capable of activating LXR. Besides CYP27A1 an additional sterol 26-hydroxylase is present in mouse. Sterol-acids are observed as 7α-hydroxy-(25R/S)26-acid epimers. The (25S)26-acid is found in mouse brain of the CYP27A1−/− mouse. The (25R)26-acid is found in brain of the wild type animal. Both epimers are found in plasma of both genotypes.
Collapse
Affiliation(s)
- William J Griffiths
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| | - Peter J Crick
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Anna Meljon
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Spyridon Theofilopoulos
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK; Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Jonas Abdel-Khalik
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Eylan Yutuc
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Josie E Parker
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Diane E Kelly
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Steven L Kelly
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Yuqin Wang
- Swansea University Medical School, ILS1 Building, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
15
|
Griffiths WJ, Gilmore I, Yutuc E, Abdel-Khalik J, Crick PJ, Hearn T, Dickson A, Bigger BW, Wu THY, Goenka A, Ghosh A, Jones SA, Wang Y. Identification of unusual oxysterols and bile acids with 7-oxo or 3β,5α,6β-trihydroxy functions in human plasma by charge-tagging mass spectrometry with multistage fragmentation. J Lipid Res 2018; 59:1058-1070. [PMID: 29626102 PMCID: PMC5983402 DOI: 10.1194/jlr.d083246] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/26/2018] [Indexed: 12/29/2022] Open
Abstract
7-Oxocholesterol (7-OC), 5,6-epoxycholesterol (5,6-EC), and its hydrolysis product cholestane-3β,5α,6β-triol (3β,5α,6β-triol) are normally minor oxysterols in human samples; however, in disease, their levels may be greatly elevated. This is the case in plasma from patients suffering from some lysosomal storage disorders, e.g., Niemann-Pick disease type C, or the inborn errors of sterol metabolism, e.g., Smith-Lemli-Opitz syndrome and cerebrotendinous xanthomatosis. A complication in the analysis of 7-OC and 5,6-EC is that they can also be formed ex vivo from cholesterol during sample handling in air, causing confusion with molecules formed in vivo. When formed endogenously, 7-OC, 5,6-EC, and 3β,5α,6β-triol can be converted to bile acids. Here, we describe methodology based on chemical derivatization and LC/MS with multistage fragmentation (MSn) to identify the necessary intermediates in the conversion of 7-OC to 3β-hydroxy-7-oxochol-5-enoic acid and 5,6-EC and 3β,5α,6β-triol to 3β,5α,6β-trihydroxycholanoic acid. Identification of intermediate metabolites is facilitated by their unusual MSn fragmentation patterns. Semiquantitative measurements are possible, but absolute values await the synthesis of isotope-labeled standards.
Collapse
Affiliation(s)
| | - Ian Gilmore
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Eylan Yutuc
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Jonas Abdel-Khalik
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Peter J Crick
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Thomas Hearn
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Alison Dickson
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom
| | - Brian W Bigger
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Teresa Hoi-Yee Wu
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Anu Goenka
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Arunabha Ghosh
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Simon A Jones
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester Foundation Trust, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Yuqin Wang
- Swansea University Medical School, Swansea SA2 8PP, Wales, United Kingdom.
| |
Collapse
|