1
|
Libra A, Sciacca E, Muscato G, Sambataro G, Spicuzza L, Vancheri C. Highlights on Future Treatments of IPF: Clues and Pitfalls. Int J Mol Sci 2024; 25:8392. [PMID: 39125962 PMCID: PMC11313529 DOI: 10.3390/ijms25158392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by irreversible scarring of lung tissue, leading to death. Despite recent advancements in understanding its pathophysiology, IPF remains elusive, and therapeutic options are limited and non-curative. This review aims to synthesize the latest research developments, focusing on the molecular mechanisms driving the disease and on the related emerging treatments. Unfortunately, several phase 2 studies showing promising preliminary results did not meet the primary endpoints in the subsequent phase 3, underlying the complexity of the disease and the need for new integrated endpoints. IPF remains a challenging condition with a complex interplay of genetic, epigenetic, and pathophysiological factors. Ongoing research into the molecular keystones of IPF is critical for the development of targeted therapies that could potentially stop the progression of the disease. Future directions include personalized medicine approaches, artificial intelligence integration, growth in genetic insights, and novel drug targets.
Collapse
Affiliation(s)
- Alessandro Libra
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Enrico Sciacca
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Giuseppe Muscato
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Gianluca Sambataro
- Artroreuma s.r.l., Rheumatology Outpatient Clinic, 95030 Mascalucia, CT, Italy;
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, Regional Referral Center for Rare Lung Disease, Policlinico “G. Rodolico-San Marco”, University of Catania, 95123 Catania, CT, Italy; (A.L.); (E.S.); (G.M.); (L.S.)
| |
Collapse
|
2
|
Zheng Z, Peng F, Zhou Y. Biomarkers in idiopathic pulmonary fibrosis: Current insight and future direction. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:72-79. [PMID: 38962100 PMCID: PMC11221783 DOI: 10.1016/j.pccm.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease with a dismal prognosis. Early diagnosis, accurate prognosis, and personalized therapeutic interventions are essential for improving patient outcomes. Biomarkers, as measurable indicators of biological processes or disease states, hold significant promise in IPF management. In recent years, there has been a growing interest in identifying and validating biomarkers for IPF, encompassing various molecular, imaging, and clinical approaches. This review provides an in-depth examination of the current landscape of IPF biomarker research, highlighting their potential applications in disease diagnosis, prognosis, and treatment response. Additionally, the challenges and future perspectives of biomarker integration into clinical practice for precision medicine in IPF are discussed.
Collapse
Affiliation(s)
- Zhen Zheng
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Fei Peng
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Yong Zhou
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Yang S, Sun Y, Luo Y, Liu Y, Jiang M, Li J, Zhang Q, Bai J. Hypermethylation of PPARG-encoding gene promoter mediates fine particulate matter-induced pulmonary fibrosis by regulating the HMGB1/NLRP3 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116068. [PMID: 38330871 DOI: 10.1016/j.ecoenv.2024.116068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
The inflammatory response induced by fine particulate matter (PM2.5), a common class of air pollutants, is an important trigger for the development of pulmonary fibrosis. However, the specific mechanisms responsible for this phenomenon are yet to be fully understood. To investigate the mechanisms behind the onset and progression of lung fibrosis owing to PM2.5 exposure, both rats and human bronchial epithelial cells were subjected to varying concentrations of PM2.5. The involvement of the PPARG/HMGB1/NLRP3 signaling pathway in developing lung fibrosis caused by PM2.5 was validated through the utilization of a PPARG agonist (rosiglitazone), a PPARG inhibitor (GW9662), and an HMGB1 inhibitor (glycyrrhizin). These outcomes highlighted the downregulation of PPARG expression and activation of the HMGB1/NLRP3 signaling pathway triggered by PM2.5, thereby eliciting inflammatory responses and promoting pulmonary fibrosis. Additionally, PM2.5 exposure-induced DNA hypermethylation of PPARG-encoding gene promoter downregulated PPARG expression. Moreover, the DNA methyltransferase inhibitor 5-azacytidine mitigated the hypermethylation of the PPARG-encoding gene promoter triggered by PM2.5. In conclusion, the HMGB1/NLRP3 signaling pathway was activated in pulmonary fibrosis triggered by PM2.5 through the hypermethylation of the PPARG-encoding gene promoter.
Collapse
Affiliation(s)
- Siyu Yang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China; Chongqing Nanan District Center for Disease Control and Prevention, Chongqing 400066, China
| | - Yaochuan Sun
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Yajun Luo
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Yingyi Liu
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Mengyu Jiang
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Jiayou Li
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China
| | - Qibing Zhang
- Department of pharmacy, The Second People's Hospital of Deyang City, Deyang 618000, China.
| | - Jun Bai
- Environmental Health Effects and Risk Assessment Key Laboratory of Luzhou, School of Public Health, Southwest Medical University, Luzhou 638000, China.
| |
Collapse
|
4
|
Vats A, Chaturvedi P. The Regenerative Power of Stem Cells: Treating Bleomycin-Induced Lung Fibrosis. Stem Cells Cloning 2023; 16:43-59. [PMID: 37719787 PMCID: PMC10505024 DOI: 10.2147/sccaa.s419474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with no known cure, characterized by the formation of scar tissue in the lungs, leading to respiratory failure. Although the exact cause of IPF remains unclear, the condition is thought to result from a combination of genetic and environmental factors. One of the most widely used animal models to study IPF is the bleomycin-induced lung injury model in mice. In this model, the administration of the chemotherapeutic agent bleomycin causes pulmonary inflammation and fibrosis, which closely mimics the pathological features of human IPF. Numerous recent investigations have explored the functions of various categories of stem cells in the healing process of lung injury induced by bleomycin in mice, documenting the beneficial effects and challenges of this approach. Differentiation of stem cells into various cell types and their ability to modulate tissue microenvironment is an emerging aspect of the regenerative therapies. This review article aims to provide a comprehensive overview of the role of stem cells in repairing bleomycin-induced lung injury. It delves into the mechanisms through which various types of stem cells, including mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells, and lung resident stem cells, exert their therapeutic effects in this specific model. We have also discussed the unique set of intermediate markers and signaling factors that can influence the proliferation and differentiation of alveolar epithelial cells both during lung repair and homeostasis. Finally, we highlight the challenges and opportunities associated with translating stem cell therapy to the clinic for IPF patients. The novelty and implications of this review extend beyond the understanding of the potential of stem cells in treating IPF to the broader field of regenerative medicine. We believe that the review paves the way for further advancements in stem cell therapies, offering hope for patients suffering from this debilitating and currently incurable disease.
Collapse
Affiliation(s)
- Amrita Vats
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, 60612, USA
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Lee SY, Park SY, Lee SH, Kim H, Kwon JH, Yoo JY, Kim K, Park MS, Lee CG, Elias JA, Sohn MH, Shim HS, Yoon HG. The deubiquitinase UCHL3 mediates p300-dependent chemokine signaling in alveolar type II cells to promote pulmonary fibrosis. Exp Mol Med 2023; 55:1795-1805. [PMID: 37524875 PMCID: PMC10474292 DOI: 10.1038/s12276-023-01066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/31/2023] [Indexed: 08/02/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, fatal, fibrotic, interstitial lung disease of unknown cause. Despite extensive studies, the underlying mechanisms of IPF development remain unknown. Here, we found that p300 was upregulated in multiple epithelial cells in lung samples from patients with IPF and mouse models of lung fibrosis. Lung fibrosis was significantly diminished by the alveolar type II (ATII) cell-specific deletion of the p300 gene. Moreover, we found that ubiquitin C-terminal hydrolase L3 (UCHL3)-mediated deubiquitination of p300 led to the transcriptional activation of the chemokines Ccl2, Ccl7, and Ccl12 through the cooperative action of p300 and C/EBPβ, which consequently promoted M2 macrophage polarization. Selective blockade of p300 activity in ATII cells resulted in the reprogramming of M2 macrophages into antifibrotic macrophages. These findings demonstrate a pivotal role for p300 in the development of lung fibrosis and suggest that p300 could serve as a promising target for IPF treatment.
Collapse
Affiliation(s)
- Soo Yeon Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Soo-Yeon Park
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Seung-Hyun Lee
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jae-Hwan Kwon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University Mirae Campus, Wonju, South Korea
| | - Kyunggon Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
- Department of Internal Medicine, Hanyang University, Seoul, 04763, Korea
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Myung Hyun Sohn
- Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
6
|
Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Mesenchymal cells in the Lung: Evolving concepts and their role in fibrosis. Gene 2023; 859:147142. [PMID: 36603696 PMCID: PMC10068350 DOI: 10.1016/j.gene.2022.147142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Giovanni Ligresti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US.
| | - Ahmed A Raslan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Jeongmin Hong
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, US
| | - Marco Confalonieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, US
| |
Collapse
|
7
|
Novak CM, Sethuraman S, Luikart KL, Reader BF, Wheat JS, Whitson B, Ghadiali SN, Ballinger MN. Alveolar macrophages drive lung fibroblast function in cocultures of IPF and normal patient samples. Am J Physiol Lung Cell Mol Physiol 2023; 324:L507-L520. [PMID: 36791050 PMCID: PMC10259863 DOI: 10.1152/ajplung.00263.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by increased collagen accumulation that is progressive and nonresolving. Although fibrosis progression may be regulated by fibroblasts and alveolar macrophage (AM) interactions, this cellular interplay has not been fully elucidated. To study AM-fibroblast interactions, cells were isolated from IPF and normal human lung tissue and cultured independently or together in direct 2-D coculture, direct 3-D coculture, indirect transwell, and in 3-D hydrogels. AM influence on fibroblast function was assessed by gene expression, cytokine/chemokine secretion, and hydrogel contractility. Normal AMs cultured in direct contact with fibroblasts downregulated extracellular matrix (ECM) gene expression whereas IPF AMs had little to no effect. Fibroblast contractility was assessed by encapsulating cocultures in 3-D collagen hydrogels and monitoring gel diameter over time. Both normal and IPF AMs reduced baseline contractility of normal fibroblasts but had little to no effect on IPF fibroblasts. When stimulated with Toll-like receptor (TLR) agonists, IPF AMs increased production of pro-inflammatory cytokines TNFα and IL-1β, compared with normal AMs. TLR ligand stimulation did not alter fibroblast contraction, but stimulation with exogenous TNFα and TGFβ did alter contraction. To determine if the observed changes required cell-to-cell contact, AM-conditioned media and transwell systems were utilized. Transwell culture showed decreased ECM gene expression changes compared with direct coculture and conditioned media from AMs did not alter fibroblast contraction regardless of disease state. Taken together, these data indicate that normal fibroblasts are more responsive to AM crosstalk, and that AM influence on fibroblast behavior depends on cell proximity.
Collapse
Affiliation(s)
- Caymen M Novak
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Shruthi Sethuraman
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Kristina L Luikart
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Brenda F Reader
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Jana S Wheat
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| | - Bryan Whitson
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Samir N Ghadiali
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, United States
| | - Megan N Ballinger
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, United States
| |
Collapse
|
8
|
Borie R, Kannengiesser C, Antoniou K, Bonella F, Crestani B, Fabre A, Froidure A, Galvin L, Griese M, Grutters JC, Molina-Molina M, Poletti V, Prasse A, Renzoni E, van der Smagt J, van Moorsel CHM. European Respiratory Society statement on familial pulmonary fibrosis. Eur Respir J 2023; 61:13993003.01383-2022. [PMID: 36549714 DOI: 10.1183/13993003.01383-2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Genetic predisposition to pulmonary fibrosis has been confirmed by the discovery of several gene mutations that cause pulmonary fibrosis. Although genetic sequencing of familial pulmonary fibrosis (FPF) cases is embedded in routine clinical practice in several countries, many centres have yet to incorporate genetic sequencing within interstitial lung disease (ILD) services and proper international consensus has not yet been established. An international and multidisciplinary expert Task Force (pulmonologists, geneticists, paediatrician, pathologist, genetic counsellor, patient representative and librarian) reviewed the literature between 1945 and 2022, and reached consensus for all of the following questions: 1) Which patients may benefit from genetic sequencing and clinical counselling? 2) What is known of the natural history of FPF? 3) Which genes are usually tested? 4) What is the evidence for telomere length measurement? 5) What is the role of common genetic variants (polymorphisms) in the diagnostic workup? 6) What are the optimal treatment options for FPF? 7) Which family members are eligible for genetic sequencing? 8) Which clinical screening and follow-up parameters may be considered in family members? Through a robust review of the literature, the Task Force offers a statement on genetic sequencing, clinical management and screening of patients with FPF and their relatives. This proposal may serve as a basis for a prospective evaluation and future international recommendations.
Collapse
Affiliation(s)
- Raphael Borie
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | | | - Katerina Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, European Reference Network (ERN)-LUNG, ILD Core Network, Essen, Germany
| | - Bruno Crestani
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Aurélie Fabre
- Department of Histopathology, St Vincent's University Hospital and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antoine Froidure
- Pulmonology Department, Cliniques Universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Liam Galvin
- European Pulmonary Fibrosis Federation, Blackrock, Ireland
| | - Matthias Griese
- Dr von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Jan C Grutters
- ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, UMC Utrecht, Utrecht, The Netherlands
| | - Maria Molina-Molina
- Interstitial Lung Disease Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat (Barcelona), CIBERES, Barcelona, Spain
| | - Venerino Poletti
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Department of Experimental, Diagnostics and Speciality Medicine, University of Bologna, Bologna, Italy
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Fraunhofer ITEM, Hannover, Germany
| | - Elisabetta Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jasper van der Smagt
- Division of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
9
|
van der Vis JJ, Prasse A, Renzoni EA, Stock CJW, Caliskan C, Maher TM, Bonella F, Borie R, Crestani B, Petrek M, Wuyts WA, Wind AE, Molyneaux PL, Grutters JC, van Moorsel CHM. MUC5B rs35705950 minor allele associates with older age and better survival in idiopathic pulmonary fibrosis. Respirology 2022; 28:455-464. [PMID: 36571111 DOI: 10.1111/resp.14440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVE The minor T-allele of the MUC5B promoter polymorphism rs35705950 is strongly associated with idiopathic pulmonary fibrosis (IPF). However, conflicting results have been reported on the relationship between the MUC5B minor allele and survival and it is unknown whether a specific subgroup of IPF patients might benefit from MUC5B minor allele carriage. We investigated the association between MUC5B rs35705950, survival and patient characteristics in a real-world population of European IPF patients. METHODS In this retrospective study, 1751 patients with IPF from 8 European centres were included. MUC5B rs35705950 genotype, demographics, clinical characteristics at diagnosis and survival data were analysed. RESULTS In a multi-variate Cox proportional hazard model the MUC5B minor allele was a significant independent predictor of survival when adjusted for age, sex, high resolution computed tomography pattern, smoking behaviour and pulmonary function tests in IPF. MUC5B minor allele carriers were significantly older at diagnosis (p = 0.001). The percentage of MUC5B minor allele carriers increased significantly with age from 44% in patients aged <56 year, to 63% in patients aged >75. In IPF patients aged <56, the MUC5B minor allele was not associated with survival. In IPF patients aged ≥56, survival was significantly better for MUC5B minor allele carriers (45 months [CI: 42-49]) compared to non-carriers (29 months [CI: 26-33]; p = 4 × 10-12 ). CONCLUSION MUC5B minor allele carriage associates with a better median transplant-free survival of 16 months in the European IPF population aged over 56 years. MUC5B genotype status might aid disease prognostication in clinical management of IPF patients.
Collapse
Affiliation(s)
- Joanne J van der Vis
- St Antonius ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands.,St Antonius ILD Center of Excellence, Department of Clinical Chemistry, St. Antonius Hospital, Nieuwegein, the Netherlands.,European Reference Network (ERN) ILD core Network center
| | - Antje Prasse
- European Reference Network (ERN) ILD core Network center.,Division of Pulmonology, Hannover Medical School & DZL BREATH, Hannover, Germany.,Fraunhofer Institute ITEM, Hannover, Germany
| | - Elisabetta A Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Carmel J W Stock
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK.,Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Canay Caliskan
- European Reference Network (ERN) ILD core Network center.,Division of Pulmonology, Hannover Medical School & DZL BREATH, Hannover, Germany
| | - Toby M Maher
- National Heart and Lung Institute, Imperial College London, London, UK.,Keck Medicine of University of Southern California, Los Angeles, California, USA
| | - Francesco Bonella
- European Reference Network (ERN) ILD core Network center.,Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Raphael Borie
- European Reference Network (ERN) ILD core Network center.,Laboratoire d'excellence INFLAMEX, Inserm U1152, Paris, France.,Service de Pneumologie A, Hôpital Bichat, Paris, France
| | - Bruno Crestani
- European Reference Network (ERN) ILD core Network center.,Laboratoire d'excellence INFLAMEX, Inserm U1152, Paris, France.,Service de Pneumologie A, Hôpital Bichat, Paris, France
| | - Martin Petrek
- University Hospital Olomouc - Experimental Medicine, Olomouc, Czech Republic.,Faculty of Medicine and Dentistry Palacky University - Pathophysiology, Molecular and Translational Medicine, Olomouc, Czech Republic
| | - Wim A Wuyts
- European Reference Network (ERN) ILD core Network center.,Unit for Interstitial Lung Diseases, Department of Respiratory Medicine, University Hospitals, Leuven, Belgium
| | - Anne E Wind
- St Antonius ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands.,European Reference Network (ERN) ILD core Network center
| | - Philip L Molyneaux
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Jan C Grutters
- St Antonius ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands.,European Reference Network (ERN) ILD core Network center.,Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Coline H M van Moorsel
- St Antonius ILD Center of Excellence, Department of Pulmonology, St. Antonius Hospital, Nieuwegein, the Netherlands.,European Reference Network (ERN) ILD core Network center.,Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
10
|
Tirelli C, Pesenti C, Miozzo M, Mondoni M, Fontana L, Centanni S. The Genetic and Epigenetic Footprint in Idiopathic Pulmonary Fibrosis and Familial Pulmonary Fibrosis: A State-of-the-Art Review. Diagnostics (Basel) 2022; 12:diagnostics12123107. [PMID: 36553114 PMCID: PMC9777399 DOI: 10.3390/diagnostics12123107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare disease of the lung with a largely unknown etiology and a poor prognosis. Intriguingly, forms of familial pulmonary fibrosis (FPF) have long been known and linked to specific genetic mutations. There is little evidence of the possible role of genetics in the etiology of sporadic IPF. We carried out a non-systematic, narrative literature review aimed at describing the main known genetic and epigenetic mechanisms that are involved in the pathogenesis and prognosis of IPF and FPF. In this review, we highlighted the mutations in classical genes associated with FPF, including those encoding for telomerases (TERT, TERC, PARN, RTEL1), which are also found in about 10-20% of cases of sporadic IPF. In addition to the Mendelian forms, mutations in the genes encoding for the surfactant proteins (SFTPC, SFTPA1, SFTPA2, ABCA3) and polymorphisms of genes for the mucin MUC5B and the Toll-interacting protein TOLLIP are other pathways favoring the fibrogenesis that have been thoroughly explored. Moreover, great attention has been paid to the main epigenetic alterations (DNA methylation, histone modification and non-coding RNA gene silencing) that are emerging to play a role in fibrogenesis. Finally, a gaze on the shared mechanisms between cancer and fibrogenesis, and future perspectives on the genetics of pulmonary fibrosis have been analyzed.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- Correspondence:
| | - Chiara Pesenti
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Monica Miozzo
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Laura Fontana
- Medical Genetics Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
11
|
Rasaei R, Tyagi A, Rasaei S, Lee SJ, Yang SR, Kim KS, Ramakrishna S, Hong SH. Human pluripotent stem cell-derived macrophages and macrophage-derived exosomes: therapeutic potential in pulmonary fibrosis. Stem Cell Res Ther 2022; 13:433. [PMID: 36056418 PMCID: PMC9438152 DOI: 10.1186/s13287-022-03136-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary fibrosis (PF) is a fatal chronic disease characterized by accumulation of extracellular matrix and thickening of the alveolar wall, ultimately leading to respiratory failure. PF is thought to be initiated by the dysfunction and aberrant activation of a variety of cell types in the lung. In particular, several studies have demonstrated that macrophages play a pivotal role in the development and progression of PF through secretion of inflammatory cytokines, growth factors, and chemokines, suggesting that they could be an alternative therapeutic source as well as therapeutic target for PF. In this review, we describe the characteristics, functions, and origins of subsets of macrophages involved in PF and summarize current data on the generation and therapeutic application of macrophages derived from pluripotent stem cells for the treatment of fibrotic diseases. Additionally, we discuss the use of macrophage-derived exosomes to repair fibrotic lung tissue.
Collapse
Affiliation(s)
- Roya Rasaei
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Shima Rasaei
- Department of Cellular and Molecular Science, Falavarjan Branch, Islamic Azad University, Falavarjan, Iran
| | - Seung-Joon Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiology, School of Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, 1 Kangwondaehakgil, Chuncheon, Gangwon-do, 24431, South Korea.
- Institute of Medical Science, Kangwon National University, Chuncheon, 24341, South Korea.
- KW-Bio Co., Ltd, Wonju, South Korea.
| |
Collapse
|
12
|
Saito S, Deskin B, Rehan M, Yadav S, Matsunaga Y, Lasky JA, Thannickal VJ. Novel mediators of idiopathic pulmonary fibrosis. Clin Sci (Lond) 2022; 136:1229-1240. [PMID: 36043396 DOI: 10.1042/cs20210878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Fibrosis involving the lung may occur in many settings, including in association with known environmental agents, connective tissue diseases, and exposure to drugs or radiation therapy. The most common form is referred to as 'idiopathic' since a causal agent or specific association has not been determined; the strongest risk factor for idiopathic pulmonary fibrosis is aging. Emerging studies indicate that targeting certain components of aging biology may be effective in mitigating age-associated fibrosis. While transforming growth factor-β1 (TGF-β1) is a central mediator of fibrosis in almost all contexts, and across multiple organs, it is not feasible to target this canonical pathway at the ligand-receptor level due to the pleiotropic nature of its actions; importantly, its homeostatic roles as a tumor-suppressor and immune-modulator make this an imprudent strategy. However, defining targets downstream of its receptor(s) that mediate fibrogenesis, while relatively dispenable for tumor- and immune-suppressive functions may aid in developing safer and more effective therapies. In this review, we explore molecular targets that, although TGF-β1 induced/activated, may be relatively more selective in mediating tissue fibrosis. Additionally, we explore epigenetic mechanisms with global effects on the fibrogenic process, as well as metabolic pathways that regulate aging and fibrosis.
Collapse
Affiliation(s)
- Shigeki Saito
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Brian Deskin
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Mohammad Rehan
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Santosh Yadav
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Yasuka Matsunaga
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Joseph A Lasky
- Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| | - Victor J Thannickal
- John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, U.S.A, and the Southeast Louisiana Veterans Health Care System, New Orleans, LA, U.S.A
| |
Collapse
|
13
|
Domingo-Relloso A, Riffo-Campos AL, Powers M, Tellez-Plaza M, Haack K, Brown RH, Umans JG, Fallin MD, Cole SA, Navas-Acien A, Sanchez TR. An epigenome-wide study of DNA methylation profiles and lung function among American Indians in the Strong Heart Study. Clin Epigenetics 2022; 14:75. [PMID: 35681244 PMCID: PMC9185990 DOI: 10.1186/s13148-022-01294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epigenetic modifications, including DNA methylation (DNAm), are often related to environmental exposures, and are increasingly recognized as key processes in the pathogenesis of chronic lung disease. American Indian communities have a high burden of lung disease compared to the national average. The objective of this study was to investigate the association of DNAm and lung function in the Strong Heart Study (SHS). We conducted a cross-sectional study of American Indian adults, 45-74 years of age who participated in the SHS. DNAm was measured using the Illumina Infinium Human MethylationEPIC platform at baseline (1989-1991). Lung function was measured via spirometry, including forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), at visit 2 (1993-1995). Airflow limitation was defined as FEV1 < 70% predicted and FEV1/FVC < 0.7, restriction was defined as FEV1/FVC > 0.7 and FVC < 80% predicted, and normal spirometry was defined as FEV1/FVC > 0.7, FEV1 > 70% predicted, FVC > 80% predicted. We used elastic-net models to select relevant CpGs for lung function and spirometry-defined lung disease. We also conducted bioinformatic analyses to evaluate the biological plausibility of the findings. RESULTS Among 1677 participants, 21.2% had spirometry-defined airflow limitation and 13.6% had spirometry-defined restrictive pattern lung function. Elastic-net models selected 1118 Differentially Methylated Positions (DMPs) as predictors of airflow limitation and 1385 for restrictive pattern lung function. A total of 12 DMPs overlapped between airflow limitation and restrictive pattern. EGFR, MAPK1 and PRPF8 genes were the most connected nodes in the protein-protein interaction network. Many of the DMPs targeted genes with biological roles related to lung function such as protein kinases. CONCLUSION We found multiple differentially methylated CpG sites associated with chronic lung disease. These signals could contribute to better understand molecular mechanisms involved in lung disease, as assessed systemically, as well as to identify patterns that could be useful for diagnostic purposes. Further experimental and longitudinal studies are needed to assess whether DNA methylation has a causal role in lung disease.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, 28029, Madrid, Spain. .,Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA. .,Department of Statistics and Operations Research, University of Valencia, Valencia, Spain.
| | - Angela L Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco, Chile.,Department of Computer Science, ETSE, University of Valencia, Valencia, Spain
| | - Martha Powers
- United States Environmental Protection Agency, Washington, DC, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, 28029, Madrid, Spain
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Robert H Brown
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA.,Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - M Daniele Fallin
- Departments of Mental Health and Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| |
Collapse
|
14
|
Radenkovic D, Zhavoronkov A, Bischof E. AI in Longevity Medicine. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Zhang X, Liu H, Zhou JQ, Krick S, Barnes JW, Thannickal VJ, Sanders YY. Modulation of H4K16Ac levels reduces pro-fibrotic gene expression and mitigates lung fibrosis in aged mice. Theranostics 2022; 12:530-541. [PMID: 34976199 PMCID: PMC8692895 DOI: 10.7150/thno.62760] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 11/05/2022] Open
Abstract
Histone H4 lysine16 acetylation (H4K16Ac) modulates chromatin structure by serving as a switch from a repressive to a transcriptionally active state. This euchromatin mark is associated with active transcription. In this study, we investigated the effects of H4K16Ac on the expression of pro-fibrotic genes in lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) and in an aging murine model of lung fibrosis. Methods: The lung tissues and fibroblasts from human IPF/non-IPF donors and from aged mice with/without bleomycin induced lung fibrosis were used in this study. The H4K16Ac levels were examined by immunohistochemistry or western blots. RNA silencing of H4K16Ac acetyltransferase Mof was used to reduce H4K16Ac levels in IPF fibroblasts. The effects of reduced H4K16Ac on pro-fibrotic gene expression were examined by western blots and real-time PCR. The association of H4K16Ac with these genes' promoter region were evaluated by ChIP assays. The gene expression profile in siRNA Mof transfected IPF cells were determined by RNA-Seq. The impact of H4K16Ac levels on lung fibrosis was evaluated in an aging murine model. Results: Aged mice with bleomycin induced lung fibrosis showed increased H4K16Ac levels. Human lung fibroblasts with siRNA Mof silencing demonstrated reduced H4K16Ac, and significantly down-regulated profibrotic genes, such as α-smooth muscle actin (α-SMA), collagen I, Nox4, and survivin. ChIP assays confirmed the associations of these pro-fibrotic genes' promoter region with H4K16Ac, while in siRNA Mof transfected cells the promoter/H4K16Ac associations were depleted. RNA-seq data demonstrated that Mof knockdown altered gene expression and cellular pathways, including cell damage and repair. In the aging mice model of persistent lung fibrosis, 18-month old mice given intra-nasal siRNA Mof from week 3 to 6 following bleomycin injury showed improved lung architecture, decreased total hydroxyproline content and lower levels of H4K16Ac. Conclusions: These results indicate a critical epigenetic regulatory role for histone H4K16Ac in the pathogenesis of pulmonary fibrosis, which will aid in the development of novel therapeutic strategies for age-related diseases such as IPF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Cummins KA, Bitterman PB, Tschumperlin DJ, Wood DK. A scalable 3D tissue culture pipeline to enable functional therapeutic screening for pulmonary fibrosis. APL Bioeng 2021; 5:046102. [PMID: 34805716 PMCID: PMC8598262 DOI: 10.1063/5.0054967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease targeting the alveolar gas exchange apparatus, leading to death by asphyxiation. IPF progresses on a tissue scale through aberrant matrix remodeling, enhanced cell contraction, and subsequent microenvironment densification. Although two pharmaceuticals modestly slow progression, IPF patient survival averages less than 5 years. A major impediment to therapeutic development is the lack of high-fidelity models that account for the fibrotic microenvironment. Our goal is to create a three-dimensional (3D) platform to enable lung fibrosis studies and recapitulate IPF tissue features. We demonstrate that normal lung fibroblasts encapsulated in collagen microspheres can be pushed toward an activated phenotype, treated with FDA-approved therapies, and their fibrotic function quantified using imaging assays (extracellular matrix deposition, contractile protein expression, and microenvironment compaction). Highlighting the system's utility, we further show that fibroblasts isolated from IPF patient lungs maintain fibrotic phenotypes and manifest reduced fibrotic function when treated with epigenetic modifiers. Our system enables enhanced screening due to improved predictability and fidelity compared to 2D systems combined with superior tractability and throughput compared to 3D systems.
Collapse
Affiliation(s)
- Katherine A. Cummins
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Peter B. Bitterman
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - David K. Wood
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
17
|
Involvement of the ACE2/Ang-(1-7)/MasR Axis in Pulmonary Fibrosis: Implications for COVID-19. Int J Mol Sci 2021; 22:ijms222312955. [PMID: 34884756 PMCID: PMC8657555 DOI: 10.3390/ijms222312955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Pulmonary fibrosis is a chronic, fibrotic lung disease affecting 3 million people worldwide. The ACE2/Ang-(1–7)/MasR axis is of interest in pulmonary fibrosis due to evidence of its anti-fibrotic action. Current scientific evidence supports that inhibition of ACE2 causes enhanced fibrosis. ACE2 is also the primary receptor that facilitates the entry of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. COVID-19 is associated with a myriad of symptoms ranging from asymptomatic to severe pneumonia and acute respiratory distress syndrome (ARDS) leading to respiratory failure, mechanical ventilation, and often death. One of the potential complications in people who recover from COVID-19 is pulmonary fibrosis. Cigarette smoking is a risk factor for fibrotic lung diseases, including the idiopathic form of this disease (idiopathic pulmonary fibrosis), which has a prevalence of 41% to 83%. Cigarette smoke increases the expression of pulmonary ACE2 and is thought to alter susceptibility to COVID-19. Cannabis is another popular combustible product that shares some similarities with cigarette smoke, however, cannabis contains cannabinoids that may reduce inflammation and/or ACE2 levels. The role of cannabis smoke in the pathogenesis of pulmonary fibrosis remains unknown. This review aimed to characterize the ACE2-Ang-(1–7)-MasR Axis in the context of pulmonary fibrosis with an emphasis on risk factors, including the SARS-CoV-2 virus and exposure to environmental toxicants. In the context of the pandemic, there is a dire need for an understanding of pulmonary fibrotic events. More research is needed to understand the interplay between ACE2, pulmonary fibrosis, and susceptibility to coronavirus infection.
Collapse
|
18
|
Yeh CF, Chou C, Yang KC. Mechanotransduction in fibrosis: Mechanisms and treatment targets. CURRENT TOPICS IN MEMBRANES 2021; 87:279-314. [PMID: 34696888 DOI: 10.1016/bs.ctm.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
To perceive and integrate the environmental cues, cells and tissues sense and interpret various physical forces like shear, tensile, and compression stress. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical and mechanical signals to guide cell fate and achieve tissue homeostasis. Disruption of this mechanical homeostasis by tissue injury elicits multiple cellular responses leading to pathological matrix deposition and tissue stiffening, and consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes, leading to tissue/organ fibrosis. This review focuses on the molecular mechanisms linking mechanotransduction to fibrosis and uncovers the potential therapeutic targets to halt or resolve fibrosis.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Caroline Chou
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Washington University in St. Louis, St. Louis, MO, United States
| | - Kai-Chien Yang
- Division of Cardiology, Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology & Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
19
|
Wei A, Gao Q, Chen F, Zhu X, Chen X, Zhang L, Su X, Dai J, Shi Y, Cao W. Inhibition of DNA methylation derepresses PPARγ and attenuates pulmonary fibrosis. Br J Pharmacol 2021; 179:1304-1318. [PMID: 34378791 DOI: 10.1111/bph.15655] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/13/2021] [Accepted: 08/02/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Development of pulmonary fibrosis is associated with altered DNA methylation modifications of fibrogenic gene expressions; however, their causal relationships and the underlying mechanisms remain unclear. This study investigates the critical role of DNA methylation aberration-associated suppression of PPARγ (peroxisome proliferator-activated receptor-gamma) in pulmonary fibrosis. EXPERIMENTAL APPROACH Expressions of PPARγ and bioactive DNA methyltranferases, and PPARγ promoter methylation status were examined from fibrotic lungs of idiopathic pulmonary fibrosis (IPF) patients and bleomycin (Blm)-treated mice. DNA demethylating agent 5-Aza-2'-deoxycytidine (5aza) and glycyrrhizic acid (GA) derived from medicinal plant were assessed for their PPARγ derepression and anti-pulmonary fibrosis activities. PPARγ knockout mice were created to determine the critical role of PPARγ in the protections. KEY RESULTS Lung PPARγ expressions were markedly suppressed in IPF patients and Blm mice, accompanied by increased methyltransferase (DNMT) 1/DNMT3a and PPARγ promoter hypermethylation. Administrations of 5aza and GA similarly demethylated PPARγ promoter, recovered the PPARγ loss and alleviated the fibrotic lung pathologies, including structural alterations and adverse expressions of fibrotic mediators and inflammatory cytokines. In cultured lung fibroblast and alveolar epithelial cells, GA alleviated the fibrotic PPARγ suppression in a gain of DNMT-sensitive manner, and in PPARγ knockout mice, the anti-fibrotic effects of 5aza and GA were significantly reduced, suggesting that PPARγ is a critical mediator of epigenetic pulmonary fibrogenesis. CONCLUSION AND IMPLICATIONS Aberrant DNMT1/3a elevations and the resultant PPARγ suppression contribute significantly to the development of pulmonary fibrosis, and strategies targeting DNMT/PPARγ axis by synthetic or natural small compounds might benefit patients with pulmonary fibrotic disorders.
Collapse
Affiliation(s)
- Ai Wei
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China.,Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qi Gao
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Fang Chen
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xiaobo Zhu
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xingren Chen
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Lijun Zhang
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| | - Xin Su
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jinghong Dai
- Department of Pulmonary and Critical Care Medicine, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Yi Shi
- Department of Respiratory and Critical Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Wangsen Cao
- Organ Fibrosis and Remodeling Research Center, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
20
|
Idiopathic pulmonary fibrosis and systemic sclerosis: pathogenic mechanisms and therapeutic interventions. Cell Mol Life Sci 2021; 78:5527-5542. [PMID: 34145462 PMCID: PMC8212897 DOI: 10.1007/s00018-021-03874-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/07/2021] [Accepted: 06/05/2021] [Indexed: 12/19/2022]
Abstract
Fibrotic diseases take a very heavy toll in terms of morbidity and mortality equal to or even greater than that caused by metastatic cancer. In this review, we examine the pathogenesis of fibrotic diseases, mainly addressing triggers for induction, processes that lead to progression, therapies and therapeutic trials. For the most part, we have focused on two fibrotic diseases with lung involvement, idiopathic pulmonary fibrosis, in which the contribution of inflammatory mechanisms may be secondary to non-immune triggers, and systemic sclerosis in which the contribution of adaptive immunity may be predominant.
Collapse
|
21
|
Gally F, Sasse SK, Kurche JS, Gruca MA, Cardwell JH, Okamoto T, Chu HW, Hou X, Poirion OB, Buchanan J, Preissl S, Ren B, Colgan SP, Dowell RD, Yang IV, Schwartz DA, Gerber AN. The MUC5B-associated variant rs35705950 resides within an enhancer subject to lineage- and disease-dependent epigenetic remodeling. JCI Insight 2021; 6:144294. [PMID: 33320836 PMCID: PMC7934873 DOI: 10.1172/jci.insight.144294] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
The G/T transversion rs35705950, located approximately 3 kb upstream of the MUC5B start site, is the cardinal risk factor for idiopathic pulmonary fibrosis (IPF). Here, we investigate the function and chromatin structure of this –3 kb region and provide evidence that it functions as a classically defined enhancer subject to epigenetic programming. We use nascent transcript analysis to show that RNA polymerase II loads within 10 bp of the G/T transversion site, definitively establishing enhancer function for the region. By integrating Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analysis of fresh and cultured human airway epithelial cells with nuclease sensitivity data, we demonstrate that this region is in accessible chromatin that affects the expression of MUC5B. Through applying paired single-nucleus RNA- and ATAC-seq to frozen tissue from IPF lungs, we extend these findings directly to disease, with results indicating that epigenetic programming of the –3 kb enhancer in IPF occurs in both MUC5B-expressing and nonexpressing lineages. In aggregate, our results indicate that the MUC5B-associated variant rs35705950 resides within an enhancer that is subject to epigenetic remodeling and contributes to pathologic misexpression in IPF.
Collapse
Affiliation(s)
- Fabienne Gally
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Sarah K Sasse
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Jonathan S Kurche
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Margaret A Gruca
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA
| | | | - Tsukasa Okamoto
- Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hong W Chu
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Xiaomeng Hou
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Olivier B Poirion
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Justin Buchanan
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Sebastian Preissl
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - Bing Ren
- Center for Epigenomics, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California, USA.,Ludwig Institute for Cancer Research, La Jolla, California, USA
| | - Sean P Colgan
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado-Boulder (CU Boulder), Boulder, Colorado, USA.,Molecular, Cellular and Developmental Biology, and.,Computer Science, CU Boulder, Boulder, Colorado, USA
| | - Ivana V Yang
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - David A Schwartz
- Department of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Anthony N Gerber
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Medicine, University of Colorado, Aurora, Colorado, USA.,Department of Medicine, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
22
|
Radenkovic D, Zhavoronkov A, Bischof E. AI in Longevity Medicine. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Dees C, Chakraborty D, Distler JHW. Cellular and molecular mechanisms in fibrosis. Exp Dermatol 2021; 30:121-131. [PMID: 32931037 DOI: 10.1111/exd.14193] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
The activation of fibroblasts is required for physiological tissue remodelling such as wound healing. However, when the regulatory mechanisms are disrupted and fibroblasts remain persistently activated, the progressive deposition of extracellular matrix proteins leads to tissue fibrosis, which results in dysfunction or even loss of function of the affected organ. Although fibrosis has been recognized as a major cause of morbidity and mortality in modern societies, there are only few treatment options available that directly disrupt the release of extracellular matrix from fibroblasts. Intensive research in recent years, however, identified several pathways as core fibrotic mechanisms that are shared across different fibrotic diseases and organs. We discuss herein selection of those core pathways, especially downstream of the profibrotic TGF-β pathway, which are druggable and which may be transferable from bench to bedside.
Collapse
Affiliation(s)
- Clara Dees
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Debomita Chakraborty
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
24
|
Yang J, Pan X, Wang L, Yu G. Alveolar cells under mechanical stressed niche: critical contributors to pulmonary fibrosis. Mol Med 2020; 26:95. [PMID: 33054759 PMCID: PMC7556585 DOI: 10.1186/s10020-020-00223-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis arises from the repeated epithelial mild injuries and insufficient repair lead to over activation of fibroblasts and excessive deposition of extracellular matrix, which result in a mechanical stretched niche. However, increasing mechanical stress likely exists before the establishment of fibrosis since early micro injuries increase local vascular permeability and prompt cytoskeletal remodeling which alter cellular mechanical forces. It is noteworthy that COVID-19 patients with severe hypoxemia will receive mechanical ventilation as supportive treatment and subsequent pathology studies indicate lung fibrosis pattern. At advanced stages, mechanical stress originates mainly from the stiff matrix since boundaries between stiff and compliant parts of the tissue could generate mechanical stress. Therefore, mechanical stress has a significant role in the whole development process of pulmonary fibrosis. The alveoli are covered by abundant capillaries and function as the main gas exchange unit. Constantly subject to variety of damages, the alveolar epithelium injuries were recently recognized to play a vital role in the onset and development of idiopathic pulmonary fibrosis. In this review, we summarize the literature regarding the effects of mechanical stress on the fundamental cells constituting the alveoli in the process of pulmonary fibrosis, particularly on epithelial cells, capillary endothelial cells, fibroblasts, mast cells, macrophages and stem cells. Finally, we briefly review this issue from a more comprehensive perspective: the metabolic and epigenetic regulation.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Outstanding Overseas Scientists Center for Pulmonary Fibrosis of Henan Province, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
25
|
Jones-Freeman B, Starkey MR. Bronchioalveolar stem cells in lung repair, regeneration and disease. J Pathol 2020; 252:219-226. [PMID: 32737996 DOI: 10.1002/path.5527] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
Abstract
Bronchioalveolar stem cells (BASCs) are a lung resident stem cell population located at bronchioalveolar duct junctions that contribute to the maintenance of bronchiolar club cells and alveolar epithelial cells of the distal lung. Their transformed counterparts are considered to be likely progenitors of lung adenocarcinomas, which has been a major area of research in relation to BASCs. A critical limitation in addressing the function of BASCs in vivo has been the lack of a unique BASC marker, which has prevented specific targeting of BASCs in animal models of respiratory conditions. Recently, there have been several studies describing genetically modified mice that allow in vivo quantification, tracing, and functional analysis of BASCs to address this long-standing issue. These cutting-edge experimental tools will likely have significant implications for future experimental studies involving BASCs and the elucidation of their role in various lung diseases. To date, this has been largely explored in models of lung injury including naphthalene-induced airway injury, bleomycin-induced alveolar injury, hyperoxia-induced models of bronchopulmonary dysplasia, and influenza virus infection. These novel experimental mouse tools will facilitate the assessment of the impact of BASC loss on additional respiratory conditions including infection-induced severe asthma and chronic obstructive pulmonary disease, as well as respiratory bacterial infections, both in early life and adulthood. These future studies may shed light on the potential broad applicability of targeting BASCs for a diverse range of respiratory conditions during lung development and in promoting effective regeneration and repair of the lung in respiratory diseases. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bernadette Jones-Freeman
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
26
|
Research Advances on DNA Methylation in Idiopathic Pulmonary Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1255:73-81. [PMID: 32949391 DOI: 10.1007/978-981-15-4494-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic complex lung disease with no specific treatment and poor prognosis, characterized by the pulmonary progressive fibrosis and dysfunctions that lead to respiratory failure. Several factors may impact the progress of IPF, including age, cigarette smoking, and dusts, of which genetic and epigenetic factors mainly contribute to lung tissue fibrosis. DNA methylation is one of epigenetic processes that occur in many diseases and regulate chromosomal and extrachromosomal DNA functions in response to environmental exposures. The methylation plays pivotal roles in regulation of gene expression to facilitate the formation of fibroblastic foci and lung fibrosis. This chapter will describe alterations and effects of the DNA methylation on gene expression, the potential application of DNA methylation as a biomarker, and significance as therapeutic targets. Those understanding will provide us new insight into the treatment and prognosis of IPF.
Collapse
|
27
|
Glass DS, Grossfeld D, Renna HA, Agarwala P, Spiegler P, Kasselman LJ, Glass AD, DeLeon J, Reiss AB. Idiopathic pulmonary fibrosis: Molecular mechanisms and potential treatment approaches. Respir Investig 2020; 58:320-335. [PMID: 32487481 DOI: 10.1016/j.resinv.2020.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive disease with high mortality that commonly occurs in middle-aged and older adults. IPF, characterized by a decline in lung function, often manifests as exertional dyspnea and cough. Symptoms result from a fibrotic process driven by alveolar epithelial cells that leads to increased migration, proliferation, and differentiation of lung fibroblasts. Ultimately, the differentiation of fibroblasts into myofibroblasts, which synthesize excessive amounts of extracellular matrix proteins, destroys the lung architecture. However, the factors that induce the fibrotic process are unclear. Diagnosis can be a difficult process; the gold standard for diagnosis is the multidisciplinary conference. Practical biomarkers are needed to improve diagnostic and prognostic accuracy. High-resolution computed tomography typically shows interstitial pneumonia with basal and peripheral honeycombing. Gas exchange and diffusion capacity are impaired. Treatments are limited, although the anti-fibrotic drugs pirfenidone and nintedanib can slow the progression of the disease. Lung transplantation is often contraindicated because of age and comorbidities, but it improves survival when successful. The incidence and prevalence of IPF has been increasing and there is an urgent need for improved therapies. This review covers the detailed cellular and molecular mechanisms underlying IPF progression as well as current treatments and cutting-edge research into new therapeutic targets.
Collapse
Affiliation(s)
- Daniel S Glass
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - David Grossfeld
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Heather A Renna
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Priya Agarwala
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Peter Spiegler
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Lora J Kasselman
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Amy D Glass
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Joshua DeLeon
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| | - Allison B Reiss
- Department of Medicine and Winthrop Research Institute, NYU Long Island School of Medicine and NYU Winthrop Hospital, Mineola, NY, USA.
| |
Collapse
|
28
|
Nathan N, Berdah L, Delestrain C, Sileo C, Clement A. Interstitial lung diseases in children. Presse Med 2020; 49:103909. [PMID: 32563946 DOI: 10.1016/j.lpm.2019.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023] Open
Abstract
Interstitial lung disease (ILD) in children (chILD) is a heterogeneous group of rare respiratory disorders that are mostly chronic and associated with high morbidity and mortality. The pathogenesis of the various chILD is complex and the diseases share common features of inflammatory and fibrotic changes of the lung parenchyma that impair gas exchanges. The etiologies of chILD are numerous. In this review, we chose to classify them as ILD related to exposure/environment insults, ILD related to systemic and immunological diseases, ILD related to primary lung parenchyma dysfunctions and ILD specific to infancy. A growing part of the etiologic spectrum of chILD is being attributed to molecular defects. Currently, the main genetic mutations associated with chILD are identified in the surfactant genes SFTPA1, SFTPA2, SFTPB, SFTPC, ABCA3 and NKX2-1. Other genetic contributors include mutations in MARS, CSF2RA and CSF2RB in pulmonary alveolar proteinosis, and mutations in TMEM173 and COPA in specific auto-inflammatory forms of chILD. However, only few genotype-phenotype correlations could be identified so far. Herein, information is provided about the clinical presentation and the diagnosis approach of chILD. Despite improvements in patient management, the therapeutic strategies are still relying mostly on corticosteroids although specific therapies are emerging. Larger longitudinal cohorts of patients are being gathered through ongoing international collaborations to improve disease knowledge and targeted therapies. Thus, it is expected that children with ILD will be able to reach the adulthood transition in a better condition.
Collapse
Affiliation(s)
- Nadia Nathan
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France; Sorbonne université and Inserm UMRS933, 75012 Paris, France
| | - Laura Berdah
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France; Sorbonne université and Inserm UMRS933, 75012 Paris, France
| | - Céline Delestrain
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France
| | - Chiara Sileo
- Radiology department, AP-HP, Trousseau hospital, 75012 Paris, France
| | - Annick Clement
- Pediatric pulmonology department, Trousseau hospital, reference center for rare lung diseases RespiRare, Assistance publique-Hôpitaux de Paris (AP-HP), , 75012 Paris, France; Sorbonne université and Inserm UMRS933, 75012 Paris, France.
| |
Collapse
|
29
|
Intrinsic Abnormalities of Cystic Fibrosis Airway Connective Tissue Revealed by an In Vitro 3D Stromal Model. Cells 2020; 9:cells9061371. [PMID: 32492951 PMCID: PMC7348935 DOI: 10.3390/cells9061371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis is characterized by lung dysfunction involving mucus hypersecretion, bacterial infections, and inflammatory response. Inflammation triggers pro-fibrotic signals that compromise lung structure and function. At present, several in vitro cystic fibrosis models have been developed to study epithelial dysfunction but none of these focuses on stromal alterations. Here we show a new cystic fibrosis 3D stromal lung model made up of primary fibroblasts embedded in their own extracellular matrix and investigate its morphological and transcriptomic features. Cystic fibrosis fibroblasts showed a high proliferation rate and produced an abundant and chaotic matrix with increased protein content and elastic modulus. More interesting, they had enhanced pro-fibrotic markers and genes involved in epithelial function and inflammatory response. In conclusion, our study reveals that cystic fibrosis fibroblasts maintain in vitro an activated pro-fibrotic state. This abnormality may play in vivo a role in the modulation of epithelial and inflammatory cell behavior and lung remodeling. We argue that the proposed bioengineered model may provide new insights on epithelial/stromal/inflammatory cells crosstalk in cystic fibrosis, paving the way for novel therapeutic strategies.
Collapse
|
30
|
Bargagli E, Cameli P, Carleo A, Refini RM, Bergantini L, D'alessandro M, Vietri L, Perillo F, Volterrani L, Rottoli P, Bini L, Landi C. The effect of cigarette smoking on bronchoalveolar lavage protein profiles from patients with different interstitial lung diseases. Panminerva Med 2020; 62:109-115. [DOI: 10.23736/s0031-0808.19.03754-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
32
|
Jones DL, Haak AJ, Caporarello N, Choi KM, Ye Z, Yan H, Varelas X, Ordog T, Ligresti G, Tschumperlin DJ. TGFβ-induced fibroblast activation requires persistent and targeted HDAC-mediated gene repression. J Cell Sci 2019; 132:jcs.233486. [PMID: 31527052 DOI: 10.1242/jcs.233486] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue fibrosis is a chronic disease driven by persistent fibroblast activation that has recently been linked to epigenetic modifications. Here, we screened a small library of epigenetic small-molecule modulators to identify compounds capable of inhibiting or reversing TGFβ-mediated fibroblast activation. We identified pracinostat, an HDAC inhibitor, as a potent attenuator of lung fibroblast activation and confirmed its efficacy in patient-derived fibroblasts isolated from fibrotic lung tissue. Mechanistically, we found that HDAC-dependent transcriptional repression was an early and essential event in TGFβ-mediated fibroblast activation. Treatment of lung fibroblasts with pracinostat broadly attenuated TGFβ-mediated epigenetic repression and promoted fibroblast quiescence. We confirmed a specific role for HDAC-dependent histone deacetylation in the promoter region of the anti-fibrotic gene PPARGC1A (PGC1α) in response to TGFβ stimulation. Finally, we identified HDAC7 as a key factor whose siRNA-mediated knockdown attenuates fibroblast activation without altering global histone acetylation. Together, these results provide novel mechanistic insight into the essential role HDACs play in TGFβ-mediated fibroblast activation via targeted gene repression.
Collapse
Affiliation(s)
- Dakota L Jones
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew J Haak
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyoung M Choi
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Huihuang Yan
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University, Boston, MA 02118, USA
| | - Tamas Ordog
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Giovanni Ligresti
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
33
|
Tan Q, Tschumperlin DJ. Epigenome Editing Enters the Arena. A New Tool to Reveal (and Reverse?) Pathologic Gene Regulation. Am J Respir Crit Care Med 2019; 198:549-551. [PMID: 30016116 DOI: 10.1164/rccm.201807-1239ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Qi Tan
- 1 Department of Physiology & Biomedical Engineering Mayo Clinic College of Medicine and Science Rochester Minnesota
| | - Daniel J Tschumperlin
- 1 Department of Physiology & Biomedical Engineering Mayo Clinic College of Medicine and Science Rochester Minnesota
| |
Collapse
|
34
|
Ligresti G, Caporarello N, Meridew JA, Jones DL, Tan Q, Choi KM, Haak AJ, Aravamudhan A, Roden AC, Prakash YS, Lomberk G, Urrutia RA, Tschumperlin DJ. CBX5/G9a/H3K9me-mediated gene repression is essential to fibroblast activation during lung fibrosis. JCI Insight 2019; 5:127111. [PMID: 31095524 DOI: 10.1172/jci.insight.127111] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pulmonary fibrosis is a devastating disease characterized by accumulation of activated fibroblasts and scarring in the lung. While fibroblast activation in physiological wound repair reverses spontaneously, fibroblast activation in fibrosis is aberrantly sustained. Here we identified histone 3 lysine 9 methylation (H3K9me) as a critical epigenetic modification that sustains fibroblast activation by repressing the transcription of genes essential to returning lung fibroblasts to an inactive state. We show that the histone methyltransferase G9a (EHMT2) and chromobox homolog 5 (CBX5, also known as HP1α), which deposit H3K9me marks and assemble an associated repressor complex respectively, are essential to initiation and maintenance of fibroblast activation specifically through epigenetic repression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha gene (PPARGC1A, encoding PGC1α). Both TGFβ and increased matrix stiffness potently inhibit PGC1α expression in lung fibroblasts through engagement of the CBX5/G9a pathway. Inhibition of CBX5/G9a pathway in fibroblasts elevates PGC1α, attenuates TGFβ- and matrix stiffness-promoted H3K9 methylation, and reduces collagen accumulation in the lungs following bleomycin injury. Our results demonstrate that epigenetic silencing mediated by H3K9 methylation is essential for both biochemical and biomechanical fibroblast activation, and that targeting this epigenetic pathway may provide therapeutic benefit by returning lung fibroblasts to quiescence.
Collapse
Affiliation(s)
| | | | | | | | - Qi Tan
- Department of Physiology and Biomedical Engineering
| | | | | | | | | | - Y S Prakash
- Department of Physiology and Biomedical Engineering.,Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gwen Lomberk
- Division of Research,Department of Surgery and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | - Raul A Urrutia
- Division of Research,Department of Surgery and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Wauwatosa, Wisconsin, USA
| | | |
Collapse
|
35
|
Hadjicharalambous MR, Roux BT, Csomor E, Feghali-Bostwick CA, Murray LA, Clarke DL, Lindsay MA. Long intergenic non-coding RNAs regulate human lung fibroblast function: Implications for idiopathic pulmonary fibrosis. Sci Rep 2019; 9:6020. [PMID: 30988425 PMCID: PMC6465406 DOI: 10.1038/s41598-019-42292-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/28/2019] [Indexed: 12/23/2022] Open
Abstract
Phenotypic changes in lung fibroblasts are believed to contribute to the development of Idiopathic Pulmonary Fibrosis (IPF), a progressive and fatal lung disease. Long intergenic non-coding RNAs (lincRNAs) have been identified as novel regulators of gene expression and protein activity. In non-stimulated cells, we observed reduced proliferation and inflammation but no difference in the fibrotic response of IPF fibroblasts. These functional changes in non-stimulated cells were associated with changes in the expression of the histone marks, H3K4me1, H3K4me3 and H3K27ac indicating a possible involvement of epigenetics. Following activation with TGF-β1 and IL-1β, we demonstrated an increased fibrotic but reduced inflammatory response in IPF fibroblasts. There was no significant difference in proliferation following PDGF exposure. The lincRNAs, LINC00960 and LINC01140 were upregulated in IPF fibroblasts. Knockdown studies showed that LINC00960 and LINC01140 were positive regulators of proliferation in both control and IPF fibroblasts but had no effect upon the fibrotic response. Knockdown of LINC01140 but not LINC00960 increased the inflammatory response, which was greater in IPF compared to control fibroblasts. Overall, these studies demonstrate for the first time that lincRNAs are important regulators of proliferation and inflammation in human lung fibroblasts and that these might mediate the reduced inflammatory response observed in IPF-derived fibroblasts.
Collapse
Affiliation(s)
- Marina R Hadjicharalambous
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Benoit T Roux
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Eszter Csomor
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, United Kingdom
| | - Carol A Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, USA
| | | | - Deborah L Clarke
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, United Kingdom.,Boehringer Ingelheim Ltd, Ellesfield Avenue, Bracknell, Berkshire, RG12 8YS, United Kingdom
| | - Mark A Lindsay
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
36
|
MKL1-actin pathway restricts chromatin accessibility and prevents mature pluripotency activation. Nat Commun 2019; 10:1695. [PMID: 30979898 PMCID: PMC6461646 DOI: 10.1038/s41467-019-09636-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/01/2019] [Indexed: 12/19/2022] Open
Abstract
Actin cytoskeleton is well-known for providing structural/mechanical support, but whether and how it regulates chromatin and cell fate reprogramming is far less clear. Here, we report that MKL1, the key transcriptional co-activator of many actin cytoskeletal genes, regulates genomic accessibility and cell fate reprogramming. The MKL1-actin pathway weakens during somatic cell reprogramming by pluripotency transcription factors. Cells that reprogram efficiently display low endogenous MKL1 and inhibition of actin polymerization promotes mature pluripotency activation. Sustained MKL1 expression at a level seen in typical fibroblasts yields excessive actin cytoskeleton, decreases nuclear volume and reduces global chromatin accessibility, stalling cells on their trajectory toward mature pluripotency. In addition, the MKL1-actin imposed block of pluripotency can be bypassed, at least partially, when the Sun2-containing linker of the nucleoskeleton and cytoskeleton (LINC) complex is inhibited. Thus, we unveil a previously unappreciated aspect of control on chromatin and cell fate reprogramming exerted by the MKL1-actin pathway. MKL1 is a key transcriptional co-activator of actin cytoskeleton genes. Here the authors show that MKL1 activation in somatic cells reduces chromatin accessibility and hinders full reprogramming to pluripotency. Reduction of MKL1, disruption of actin cytoskeleton and its links to the nucleus relieve this repression.
Collapse
|
37
|
Sauleda J, Núñez B, Sala E, Soriano JB. Idiopathic Pulmonary Fibrosis: Epidemiology, Natural History, Phenotypes. Med Sci (Basel) 2018; 6:E110. [PMID: 30501130 PMCID: PMC6313500 DOI: 10.3390/medsci6040110] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common of the idiopathic interstitial pneumonias. It is characterized by a chronic, progressive, fibrotic interstitial lung disease of unknown cause that occurs primarily in older adults. Its prevalence and incidence have appeared to be increasing over the last decades. Despite its unknown nature, several genetic and environmental factors have been associated with IPF. Moreover, its natural history is variable, but could change depending on the currently suggested phenotypes: rapidly progressive IPF, familial, combined pulmonary fibrosis and emphysema, pulmonary hypertension, and that associated with connective tissue diseases. Early recognition and accurate staging are likely to improve outcomes and induce a prompt initiation of antifibrotics therapy. Treatment is expected to be more effective in the early stages of the disease, while developments in treatment aim to improve the current median survival of 3⁻4 years after diagnosis.
Collapse
Affiliation(s)
- Jaume Sauleda
- Servei Pneumologia, Hospital Universitari Son Espases, 07010 Palma Mallorca, Spain.
- Institut de Investigacio Sanitària de les Illes Balears (IdISBa), 07120 Palma Mallorca, Spain.
- CIBER Enfermedades Respiratorias, Insituto Carlos III, 28029 Madrid, Spain.
| | - Belén Núñez
- Servei Pneumologia, Hospital Universitari Son Espases, 07010 Palma Mallorca, Spain.
- Institut de Investigacio Sanitària de les Illes Balears (IdISBa), 07120 Palma Mallorca, Spain.
| | - Ernest Sala
- Servei Pneumologia, Hospital Universitari Son Espases, 07010 Palma Mallorca, Spain.
- Institut de Investigacio Sanitària de les Illes Balears (IdISBa), 07120 Palma Mallorca, Spain.
- CIBER Enfermedades Respiratorias, Insituto Carlos III, 28029 Madrid, Spain.
| | - Joan B Soriano
- Instituto de Investigación, Hospital Universitario de la Princesa (IISP), Universidad Autónoma de Madrid, 28006 Madrid, Spain.
| |
Collapse
|
38
|
Zhang L, Wang Y, Wu G, Xiong W, Gu W, Wang CY. Macrophages: friend or foe in idiopathic pulmonary fibrosis? Respir Res 2018; 19:170. [PMID: 30189872 PMCID: PMC6127991 DOI: 10.1186/s12931-018-0864-2] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a prototype of lethal, chronic, progressive interstitial lung disease of unknown etiology. Over the past decade, macrophage has been recognized to play a significant role in IPF pathogenesis. Depending on the local microenvironments, macrophages can be polarized to either classically activated (M1) or alternatively activated (M2) phenotypes. In general, M1 macrophages are responsible for wound healing after alveolar epithelial injury, while M2 macrophages are designated to resolve wound healing processes or terminate inflammatory responses in the lung. IPF is a pathological consequence resulted from altered wound healing in response to persistent lung injury. In this review, we intend to summarize the current state of knowledge regarding the process of macrophage polarization and its mediators in the pathogenesis of pulmonary fibrosis. Our goal is to update the understanding of the mechanisms underlying the initiation and progression of IPF, and by which, we expect to provide help for developing effective therapeutic strategies in clinical settings.
Collapse
Affiliation(s)
- Lei Zhang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Guorao Wu
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Weining Xiong
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Weikuan Gu
- Departments of Orthopaedic Surgery-Campbell Clinic, and Pathology, University of Tennessee Health Science Center (UTHSC), Memphis, TN, 38163, USA
| | - Cong-Yi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
39
|
Vella S, Conaldi PG, Cova E, Meloni F, Liotta R, Cuzzocrea S, Martino L, Bertani A, Luca A, Vitulo P. Lung resident mesenchymal cells isolated from patients with the Bronchiolitis Obliterans Syndrome display a deregulated epigenetic profile. Sci Rep 2018; 8:11167. [PMID: 30042393 PMCID: PMC6057887 DOI: 10.1038/s41598-018-29504-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Bronchiolitis Obliterans Syndrome is the major determinant of the graft function loss after lung transplantation, but its pathogenesis is still incompletely understood and currently available therapeutic strategies are poorly effective. A deeper understanding of its pathogenic mechanisms is crucial for the development of new strategies to prevent and treat this devastating complication. In this study, we focused on the mesenchymal stromal cells, recently recognized as BOS key effectors, and our primary aim was to identify their epigenetic determinants, such as histone modifications and non-coding RNA regulation, which could contribute to their differentiation in myofibroblasts. Interestingly, we identified a deregulated expression of histone deacetylases and methyltransferases, and a microRNA-epigenetic regulatory network, which could represent novel targets for anti-fibrotic therapy. We validated our results in vitro, in a cell model of fibrogenesis, confirming the epigenetic involvement in this process and paving the way for a new application for epigenetic drugs.
Collapse
Affiliation(s)
- Serena Vella
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy.
- Anemocyte S.r.l, Gerenzano, Italy.
| | - Pier Giulio Conaldi
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Emanuela Cova
- Department of Respiratory Diseases, IRCCS San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Federica Meloni
- Department of Respiratory Diseases, IRCCS San Matteo Foundation and University of Pavia, Pavia, Italy
| | - Rosa Liotta
- Department of Diagnostic and Therapeutic Services, Pathology Service, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Lavinia Martino
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Alessandro Bertani
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Angelo Luca
- Department of Diagnostic and Therapeutic Services, Radiology Service, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| | - Patrizio Vitulo
- Department for the Treatment and Study of Cardiothoracic Diseases and Cardiothoracic Transplantation, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), Palermo, Italy
| |
Collapse
|
40
|
Schaefer L. Decoding fibrosis: Mechanisms and translational aspects. Matrix Biol 2018; 68-69:1-7. [PMID: 29679639 DOI: 10.1016/j.matbio.2018.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022]
Abstract
Fibrosis, a complex process of abnormal tissue healing which inevitably leads to loss of physiological organ structure and function, is a worldwide leading cause of death. Despite a large body of research over the last two decades, antifibrotic approaches are mainly limited to organ replacement therapy generating high costs of medical care. In this translational issue, a unique group of basic and clinical researchers provide meaningful answers to a desperate call of society for effective antifibrotic treatments. Fortunately, a plethora of novel fibrogenic factors and biomarkers has been identified. Noninvasive diagnostic methods and drug delivery systems have been recently developed for the management of fibrosis. Consequently, a large number of exciting clinical trials addressing comprehensive, organ and stage-specific mechanisms of fibrogenesis are ongoing. By critically addressing previously unsuccessful and novel promising therapeutic strategies, we aim to spread hope for future treatments of the various forms of organ fibrosis.
Collapse
Affiliation(s)
- Liliana Schaefer
- Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe-Universität Frankfurt am Main, Frankfurt am Main 60590, Germany.
| |
Collapse
|
41
|
Roman J, Mutsaers SE. Epigenetic Control of CXCL10: Regulating the Counterregulator in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2018; 58:419-420. [DOI: 10.1165/rcmb.2017-0389ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Jesse Roman
- Jane and Leonard Korman Respiratory InstituteThomas Jefferson UniversityPhiladelphia, Pennsylvaniaand
| | - Steven E. Mutsaers
- Institute for Respiratory HealthUniversity of Western AustraliaPerth, WA, Australia
| |
Collapse
|
42
|
Kaur A, Mathai SK, Schwartz DA. Genetics in Idiopathic Pulmonary Fibrosis Pathogenesis, Prognosis, and Treatment. Front Med (Lausanne) 2017; 4:154. [PMID: 28993806 PMCID: PMC5622313 DOI: 10.3389/fmed.2017.00154] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia (IIP), is characterized by irreversible scarring of the lung parenchyma and progressive decline in lung function leading to eventual respiratory failure. The prognosis of IPF is poor with a median survival of 3–5 years after diagnosis and no curative medical therapies. Although the pathogenesis of IPF is not well understood, there is a growing body of evidence that genetic factors contribute to disease risk. Recent studies have identified common and rare genetic variants associated with both sporadic and familial forms of pulmonary fibrosis, with at least one-third of the risk for developing fibrotic IIP explained by common genetic variants. The IPF-associated genetic loci discovered to date are implicated in diverse biological processes, including alveolar stability, host defense, cell–cell barrier function, and cell senescence. In addition, some common variants have also been associated with distinct clinical phenotypes. Better understanding of how genetic variation plays a role in disease risk and phenotype could identify potential therapeutic targets and inform clinical decision-making. In addition, clinical studies should be designed controlling for the genetic backgrounds of subjects, since clinical outcomes and therapeutic responses may differ by genotype. Further understanding of these differences will allow the development of personalized approaches to the IPF management.
Collapse
Affiliation(s)
- Amarpreet Kaur
- Department of Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - Susan K Mathai
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - David A Schwartz
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver School of Medicine, Aurora, CO, United States
| |
Collapse
|
43
|
Abstract
Pulmonary fibrosis is associated with a number of specific forms of interstitial lung disease (ILD) and can lead to progressive decline in lung function, poor quality of life, and, ultimately, early death. Idiopathic pulmonary fibrosis (IPF), the most common fibrotic ILD, affects up to 1 in 200 elderly individuals and has a median survival that ranges from 3 to 5 years following initial diagnosis. IPF has not been shown to respond to immunomodulatory therapies, but recent trials with novel antifibrotic agents have demonstrated lessening of lung function decline over time. Pirfenidone has been shown to significantly slow decline in forced vital capacity (FVC) over time and prolong progression-free survival, which led to its licensing by the United States Food and Drug Administration (FDA) in 2014 for the treatment of patients with IPF. However, pirfenidone has been associated with significant side effects, and patients treated with pirfenidone must be carefully monitored. We review recent and ongoing clinical research and experience with pirfenidone as a pharmacologic therapy for patients with IPF, provide a suggested approach to incorporate pirfenidone into a treatment algorithm for patients with IPF, and examine the potential of pirfenidone as a treatment for non-IPF forms of ILD accompanied by progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- Keith C Meyer
- University of Wisconsin Lung Transplant and Advanced Lung Diseas Program.,Department of Medicine, Section of Allergy, Pulmonary and Critical Care Medicine, Clinical Sciences Center, University of Wisconsin School of Medicine and Public Health
| | - Catherine A Decker
- Department of Pharmacy.,Department of Pulmonary Medicine, University of Wisconsin Hospital and Clinics, Madison, WI, USA
| |
Collapse
|
44
|
Pulmonary Hypertension Associated with Idiopathic Pulmonary Fibrosis: Current and Future Perspectives. Can Respir J 2017; 2017:1430350. [PMID: 28286407 PMCID: PMC5327768 DOI: 10.1155/2017/1430350] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is commonly present in patients with chronic lung diseases such as Chronic Obstructive Pulmonary Disease (COPD) or Idiopathic Pulmonary Fibrosis (IPF) where it is classified as Group III PH by the World Health Organization (WHO). PH has been identified to be present in as much as 40% of patients with COPD or IPF and it is considered as one of the principal predictors of mortality in patients with COPD or IPF. However, despite the prevalence and fatal consequences of PH in the setting of chronic lung diseases, there are limited therapies available for patients with Group III PH, with lung transplantation remaining as the most viable option. This highlights our need to enhance our understanding of the molecular mechanisms that lead to the development of Group III PH. In this review we have chosen to focus on the current understating of PH in IPF, we will revisit the main mediators that have been shown to play a role in the development of the disease. We will also discuss the experimental models available to study PH associated with lung fibrosis and address the role of the right ventricle in IPF. Finally we will summarize the current available treatment options for Group III PH outside of lung transplantation.
Collapse
|
45
|
Villar J, Slutsky AS. GOLDEN anniversary of the acute respiratory distress syndrome. Curr Opin Crit Care 2017; 23:4-9. [DOI: 10.1097/mcc.0000000000000378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Global DNA hypomethylation has no impact on lung function or serum inflammatory and fibrosis cytokines in asbestos-exposed population. Int Arch Occup Environ Health 2017; 90:265-274. [PMID: 28105512 DOI: 10.1007/s00420-017-1195-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 01/02/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE To examine the effect of asbestos exposure on global DNA methylation and determine whether lung function and inflammatory and fibrosis biomarkers are correlated with the methylation state. METHODS A total of 26 healthy subjects without asbestos exposure (Group 1), 47 healthy subjects with exposure (Group 2), and 52 subjects with benign asbestos-related disorders (ARDs) (Group 3) participated in this cross-sectional study. Blood global 5-methylcytosine (5mC) and serum TNF-α, collagen IV, CCL5 and CC16 concentrations were analyzed using enzyme-linked immunosorbent assay-like assays. Spirometric maneuvers were performed to assess lung function. RESULTS Decreased 5mC levels were observed in Groups 2 and 3 compared to Group 1, irrespective of lung function (p < 0.01). There was no significant change in 5mC between Groups 2 and 3. Overall, 5mC was negatively correlated with CCL5 and collagen IV (p < 0.05), but no significant inverse relationship was found between 5mC and CCL5 or collagen IV in each group. Additionally, both 5mC and CC16 were inversely associated with FEV1/FVC% (p = 0.001, adjusted R 2 = 0.145) for non-smokers, and consistently significant inverse relationships were found between CC16 and FEV1/FVC%, independent of asbestos exposure. CONCLUSIONS Asbestos exposure causes global DNA hypomethylation. DNA hypomethylation has no influence on serum biomarkers and lung function in asbestos-exposed population with or without pleural and pulmonary parenchymal abnormalities.
Collapse
|
47
|
Sassoli C, Chellini F, Squecco R, Tani A, Idrizaj E, Nosi D, Giannelli M, Zecchi-Orlandini S. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment. Lasers Surg Med 2015; 48:318-32. [PMID: 26660509 DOI: 10.1002/lsm.22441] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. MATERIALS AND METHODS NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. RESULTS Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the expression of Smad3, the TGF-β1 downstream signaling molecule. CONCLUSION Low intensity irradiation with 635 ± 5 nm diode laser inhibited TGF-β1/Smad3-mediated fibroblast-myofibroblast transition and this effect involved the modulation of TRPC1 ion channels. These data contribute to support the potential anti-fibrotic effect of LLLT and may offer further informations for considering this therapy as a promising therapeutic tool for the treatment of tissue fibrosis.
Collapse
Affiliation(s)
- Chiara Sassoli
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Flaminia Chellini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Roberta Squecco
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Alessia Tani
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Eglantina Idrizaj
- Section of Physiological Sciences, Department of Experimental and Clinical Medicine, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - Daniele Nosi
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| | - Marco Giannelli
- Odontostomatologic Laser Therapy Center, Via dell' Olivuzzo 162, 50143, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134, Florence, Italy
| |
Collapse
|
48
|
Zhavoronkov A, Bhullar B. Classifying aging as a disease in the context of ICD-11. Front Genet 2015; 6:326. [PMID: 26583032 PMCID: PMC4631811 DOI: 10.3389/fgene.2015.00326] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/20/2015] [Indexed: 01/16/2023] Open
Abstract
Aging is a complex continuous multifactorial process leading to loss of function and crystalizing into the many age-related diseases. Here, we explore the arguments for classifying aging as a disease in the context of the upcoming World Health Organization's 11th International Statistical Classification of Diseases and Related Health Problems (ICD-11), expected to be finalized in 2018. We hypothesize that classifying aging as a disease with a "non-garbage" set of codes will result in new approaches and business models for addressing aging as a treatable condition, which will lead to both economic and healthcare benefits for all stakeholders. Actionable classification of aging as a disease may lead to more efficient allocation of resources by enabling funding bodies and other stakeholders to use quality-adjusted life years (QALYs) and healthy-years equivalent (HYE) as metrics when evaluating both research and clinical programs. We propose forming a Task Force to interface the WHO in order to develop a multidisciplinary framework for classifying aging as a disease with multiple disease codes facilitating for therapeutic interventions and preventative strategies.
Collapse
Affiliation(s)
- Alex Zhavoronkov
- The Biogerontology Research Foundation, Oxford, UK
- Insilico Medicine Inc, Baltimore, MD, USA
| | - Bhupinder Bhullar
- Novartis Pharma AG, Department of Developmental and Molecular Pathways, Novartis Institute for Biomedical Research, Basel, Switzerland
| |
Collapse
|