1
|
Turner M, Laws M, Griffiths M, Turner K, Dempsey L, Laws SM, Cruickshank T. The relationships between multidimensional sleep health and work productivity in individuals with neurological conditions. J Sleep Res 2024; 33:e14107. [PMID: 38069583 DOI: 10.1111/jsr.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/03/2023] [Accepted: 11/02/2023] [Indexed: 07/17/2024]
Abstract
Numerous studies have reported the negative impacts of poor sleep on work productivity in the general population. However, despite the known sleep issues that individuals living with neurological conditions experience, no study has explored its impact on their work productivity. Sleep health is a concept that includes multiple domains of sleep, measured with a combination of objective and subjective measures. Therefore, this study aimed to ascertain the associations between sleep health and its domains and work productivity in individuals with neurological conditions. Sleep health domains were determined through actigraphy data collected over 1 week and sleep questionnaires. Work productivity was assessed via the Work Productivity and Activity Impairment Questionnaire. A comparison of sleep health scores between demographic variables was performed using Mann-Whitney U and Kruskal-Wallis tests. Associations between the sleep health domains and work productivity were performed using linear regression models. There were no significant differences in sleep health scores between sex, smoking status, education level, employment status or any work productivity domain. Individuals with non-optimal sleep timing had greater absenteeism (22.99%) than the optimal group. Individuals with non-optimal sleep quality had an increase in presenteeism (30.85%), work productivity loss (26.44%) and activity impairment (25.81%) compared to those in the optimal group. The findings from this study highlight that self-reported sleep quality has the largest impact on work productivity. Improving individuals' sleep quality through triage for potential sleep disorders or improving their sleep hygiene (sleep behaviour and environment) may positively impact work productivity.
Collapse
Affiliation(s)
- Mitchell Turner
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Manja Laws
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Madeline Griffiths
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Kate Turner
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Leah Dempsey
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Simon M Laws
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia, Australia
| | - Travis Cruickshank
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, Western Australia, Australia
- Perron Institute for Neurological and Translational Sciences, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Fedele B, Williams G, McKenzie D, Giles R, McKay A, Olver J. Sleep Disturbance During Post-Traumatic Amnesia and Early Recovery After Traumatic Brain Injury. J Neurotrauma 2024; 41:e1961-e1975. [PMID: 38553904 DOI: 10.1089/neu.2023.0656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
After moderate to severe traumatic brain injury (TBI), sleep disturbance commonly emerges during the confused post-traumatic amnesia (PTA) recovery stage. However, the evaluation of early sleep disturbance during PTA, its recovery trajectory, and influencing factors is limited. This study aimed to evaluate sleep outcomes in patients experiencing PTA using ambulatory gold-standard polysomnography (PSG) overnight and salivary endogenous melatonin (a hormone that influences the sleep-wake cycle) assessment at two time-points. The relationships between PSG-derived sleep-wake parameters and PTA symptoms (i.e., agitation and cognitive disturbance) were also evaluated. In a patient subset, PSG was repeated after PTA had resolved to assess the trajectory of sleep disturbance. Participants with PTA were recruited from Epworth HealthCare's inpatient TBI Rehabilitation Unit. Trained nurses administered overnight PSG at the patient bedside using the Compumedics Somté portable PSG device (Compumedics, Ltd., Australia). Two weeks after PTA had resolved, PSG was repeated. On a separate evening, two saliva specimens were collected (at 24:00 and 06:00) for melatonin testing. Results of routine daily hospital measures (i.e., Agitated Behavior Scale and Westmead PTA Scale) were also collected. Twenty-nine patients were monitored with PSG (mean: 41.6 days post-TBI; standard deviation [SD]: 28.3). Patients' mean sleep duration was reduced (5.6 h, SD: 1.2), and was fragmented with frequent awakenings (mean: 27.7, SD: 15.0). Deep, slow-wave restorative sleep was reduced, or completely absent (37.9% of patients). The use of PSG did not appear to exacerbate patient agitation or cognitive disturbance. Mean melatonin levels at both time-points were commonly outside of normal reference ranges. After PTA resolved, patients (n = 11) displayed significantly longer mean sleep time (5.3 h [PTA]; 6.5 h [out of PTA], difference between means: 1.2, p = 0.005). However, disturbances to other sleep-wake parameters (e.g., increased awakenings, wake time, and sleep latency) persisted after PTA resolved. This is the first study to evaluate sleep disturbance in a cohort of patients as they progressed through the early TBI recovery phases. There is a clear need for tailored assessment of sleep disturbance during PTA, which currently does not form part of routine hospital assessment, to suggest new treatment paradigms, enhance patient recovery, and reduce its long-term impacts.
Collapse
Affiliation(s)
- Bianca Fedele
- Department of Rehabilitation, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
- Department of Rehabilitation, Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Gavin Williams
- Department of Rehabilitation, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
- Department of Rehabilitation, Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Australia
- Department of Physiotherapy, The University of Melbourne, Melbourne, Australia
| | - Dean McKenzie
- Research Development and Governance Unit, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Robert Giles
- Sleep Unit, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
| | - Adam McKay
- Department of Rehabilitation, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
- School of Psychological Sciences, Monash University, Melbourne, Australia
- Monash Epworth Rehabilitation Research Centre, Melbourne, Australia
| | - John Olver
- Department of Rehabilitation, Department of Rehabilitation and Mental Health, Epworth HealthCare, Melbourne, Australia
- Department of Rehabilitation, Epworth Monash Rehabilitation Medicine (EMReM) Unit, Melbourne, Australia
- School of Clinical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Morrow EL, Mattis-Roesch H, Walsh K, Duff MC. Measurement of Sleep in Chronic Traumatic Brain Injury: Relationship Between Self-report and Actigraphy. J Head Trauma Rehabil 2024; 39:E132-E140. [PMID: 37702663 PMCID: PMC10927608 DOI: 10.1097/htr.0000000000000894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
OBJECTIVE To examine the relationship between self-report and actigraphy measurement of sleep in people with and without traumatic brain injury (TBI) by addressing 2 aims: (1) to assess the relationship between self-report and actigraphy for sleep quantity in people with and without TBI; and (2) to explore how self-report and actigraphy capture sleep quality in TBI. SETTING Participants completed the study over 2 weeks in their own homes. They wore activity monitors, day and night, throughout the experiment and completed morning sleep diaries while interacting with an experimenter on videoconference. PARTICIPANTS This project was embedded in a larger study on sleep and word learning in 100 adults: 50 with chronic, moderate-severe TBI and 50 demographically matched noninjured peers. Of the 100 participants who completed the larger study, 92 participants (45 with TBI and 47 noninjured peers) had sufficient actigraphy data for inclusion in the current study. DESIGN We used multilevel linear regression models and correlation analyses to assess how well participants' self-report corresponded to actigraphy measurement of sleep. MAIN MEASURES Actigraphy measures included nightly sleep duration and nighttime wakeups. Sleep diary measures included self-reported nightly sleep duration, nighttime wakeups, sleep quality, and morning fatigue. RESULTS People with and without TBI did not differ in the relationship between self-reported and actigraphy measurement of sleep quantity. Performance on a neuropsychological memory assessment did not correlate with the difference in self-reported and actigraphy-measured sleep in the TBI group. Sleep characteristics that were measured by actigraphy did not predict subjective experiences of sleep quality or fatigue. CONCLUSIONS Short-term self-report diaries capture accurate information about sleep quantity in individuals with TBI and may support self-report of other daily habits. Future research is needed to identify reliable metrics of sleep quality, and how they relate to other domains such as memory and mood, in the chronic phase of TBI.
Collapse
Affiliation(s)
- Emily L Morrow
- Departments of Hearing and Speech Sciences (Drs Morrow and Duff, Mss Mattis-Roesch and Walsh) and Medicine, Division of General Internal Medicine and Public Health (Dr Morrow), Vanderbilt University Medical Center, Nashville, Tennessee; and Center for Health Behavior and Health Education, Vanderbilt University Medical Center, Nashville, Tennessee (Dr Morrow)
| | | | | | | |
Collapse
|
4
|
Morrow EL, Mayberry LS, Duff MC. The growing gap: A study of sleep, encoding, and consolidation of new words in chronic traumatic brain injury. Neuropsychologia 2023; 184:108518. [PMID: 36804844 PMCID: PMC10174227 DOI: 10.1016/j.neuropsychologia.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/31/2022] [Accepted: 02/16/2023] [Indexed: 02/18/2023]
Abstract
Word learning is an iterative and dynamic process supported by multiple neural and cognitive systems. Converging evidence from behavioral, cellular, and systems neuroscience highlights sleep as an important support for memory and word learning over time. In many lab-based word learning experiments, participants encode and subsequently retrieve newly learned words in a single session. These designs are inadequate to capture the full dynamic word learning process, making them less ecologically valid. Single timepoint studies also limit investigation of the role of behavioral and lifestyle factors, like sleep, in supporting word learning over time. Adults with a history of traumatic brain injury (TBI), who commonly exhibit deficits in the memory systems that support word learning and report concomitant sleep disturbance, provide a unique opportunity to examine the link between memory, sleep, and word learning. Here we examined word learning over time and the influence of sleep on short- and long-term word recall in 50 adults with chronic moderate-severe TBI and 50 demographically matched neurotypical peers. We used a randomized within-participant crossover design to assess immediate encoding of new words and the consolidation of those words over time across intervals that did or did not involve sleep. Participants completed this study over the course of two weeks in their own homes to capture the iterative, dynamic process of real-world word learning. We also measured sleep in free living conditions using actigraphy throughout the experiment. Participants with TBI exhibited a word learning deficit that began at encoding and persisted across time. Critically, this deficit grew over the course of the week. The performance gap between groups was larger at the 1-week post-test than the immediate post-test, suggesting deficits in both encoding and consolidation of new words in individuals with TBI. Participants with and without TBI remembered more words when they slept after learning. Ecologically valid research designs that examine the relationship between memory, sleep, and word learning over time promise to advance mechanistic accounts of word learning and improve the long-term retention of new words in individuals with and without brain injury.
Collapse
Affiliation(s)
- Emily L Morrow
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, USA; Department of Medicine, Division of General Internal Medicine & Public Health, Vanderbilt University Medical Center, USA; Center for Health Behavior and Health Education, Vanderbilt University Medical Center, USA.
| | - Lindsay S Mayberry
- Department of Medicine, Division of General Internal Medicine & Public Health, Vanderbilt University Medical Center, USA; Center for Health Behavior and Health Education, Vanderbilt University Medical Center, USA
| | - Melissa C Duff
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, USA
| |
Collapse
|
5
|
Peng YY, Lu XM, Li S, Tang C, Ding Y, Wang HY, Yang C, Wang YT. Effects and mechanisms of extremely cold environment on body response after trauma. J Therm Biol 2023; 114:103570. [PMID: 37344028 DOI: 10.1016/j.jtherbio.2023.103570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 06/23/2023]
Abstract
With the outbreak of the Ukrainian crisis, extremely cold environment warfare has once again become the focus of international attention. People exposed to extremely cold environments may suffer from cold damage, further aggravate trauma, trigger high disability and mortality rates, and even cause serious sequelae. To declare the effects and mechanisms of the extremely cold environment on the body after trauma, this paper reviews, firstly, physiological reaction of human body in an extremely cold environment. Then, the post-traumatic body response in an extremely cold environment was introduced, and finally, the sequelae of trauma in extremely cold environment was further summarized in the paper. The results indicated that extremely cold environment can cause a series of damage to the body, especially the body after trauma. The extremely cold factor is a double-edged sword, showing a favorable and unfavorable side in different aspects. Moreover, in addition to the trauma suffered by the body, the subsequent sequelae such as cognitive dysfunction, anxiety, depression and even post-traumatic stress disorder may also be induced. The paper summarizes the human body's physiological response in an extremely cold environment, and declares the effects and mechanisms of the extremely cold environment on the body after trauma, which may provide a theoretical basis for effectively improving the level of combat trauma treatment in extremely cold regions.
Collapse
Affiliation(s)
- Yu-Yuan Peng
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong-Tang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
6
|
Mountney A, Blaze J, Wang Z, Umali M, Flerlage WJ, Dougherty J, Ge Y, Shear D, Haghighi F. Penetrating Ballistic Brain Injury Produces Acute Alterations in Sleep and Circadian-Related Genes in the Rodent Cortex: A Preliminary Study. Front Neurol 2021; 12:745330. [PMID: 34777213 PMCID: PMC8580116 DOI: 10.3389/fneur.2021.745330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions of Americans each year, with extremely high prevalence in the Veteran community, and sleep disturbance is one of the most commonly reported symptoms. Reduction in the quality and amount of sleep can negatively impact recovery and result in a wide range of behavioral and physiological symptoms, such as impaired cognition, mood and anxiety disorders, and cardiovascular effects. Thus, to improve long-term patient outcomes and develop novel treatments, it is essential to understand the molecular mechanisms involved in sleep disturbance following TBI. In this effort, we performed transcriptional profiling in an established rodent model of penetrating ballistic brain injury (PBBI) in conjunction with continuous sleep/wake EEG/EMG recording of the first 24 h after injury. Rats subjected to PBBI showed profound differences in sleep architecture. Injured animals spent significantly more time in slow wave sleep and less time in REM sleep compared to sham control animals. To identify PBBI-related transcriptional differences, we then performed transcriptome-wide gene expression profiling at 24 h post-injury, which identified a vast array of immune- related genes differentially expressed in the injured cortex as well as sleep-related genes. Further, transcriptional changes associated with total time spent in various sleep stages were identified. Such molecular changes may underlie the pathology and symptoms that emerge following TBI, including neurodegeneration, sleep disturbance, and mood disorders.
Collapse
Affiliation(s)
- Andrea Mountney
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Jennifer Blaze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zhaoyu Wang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle Umali
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jacqueline Dougherty
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Yongchao Ge
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Deborah Shear
- Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, United States
| | - Fatemeh Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| |
Collapse
|
7
|
When Mind Meets the Brain: Essentials of Well-Coordinated Management of Psychiatric Disorders in Neurological Diseases. J Acad Consult Liaison Psychiatry 2021; 62:270-284. [PMID: 34092347 DOI: 10.1016/j.jaclp.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND The management of psychiatric disorders in neurological diseases (PDND) creates special challenges that cannot be adequately addressed by either psychiatry or neurology alone. However, the literature on clinician-friendly recommendations on how to coordinate neurological and psychiatric care is limited. OBJECTIVE This narrative review will provide practical instructions on how to efficiently integrate psychiatric and neurological care in inpatient management of PDND. METHODS We reviewed articles published as recently as January, 2021 in five electronic databases. We included articles that assessed human care, focused on adults, and examined how to better coordinate care between different medical specialties, particularly, between psychiatry and neurology. RESULTS Eighty-four manuscripts were included in this review, of which 23 (27%) discussed general principles of well-coordinated care of PDND in inpatient settings (first part of this review), and 61 (73%) were used to provide recommendations in specific neurological diseases (second part of this review). CONCLUSIONS General principles of well-coordinated care of PDND include recommendations for both the primary team (usually neurology) and the consulting team (psychiatry). Primary teams should delineate a specific question, establish roles, and follow up on the recommendations of the consulting team. Consultants should do their independent assessment, be organized and specific in their recommendations, and anticipate potential problems. One of the most important aspect to develop well-coordinated care is the establishment of clear, frank and, preferably oral, communication between the teams. Practical difficulties in the management of PDND include pharmacodynamic and pharmacokinetic interactions as well as mutual dependency between psychiatry and neurology.
Collapse
|
8
|
Saksvik SB, Karaliute M, Kallestad H, Follestad T, Asarnow R, Vik A, Håberg AK, Skandsen T, Olsen A. The Prevalence and Stability of Sleep-Wake Disturbance and Fatigue throughout the First Year after Mild Traumatic Brain Injury. J Neurotrauma 2020; 37:2528-2541. [PMID: 32460623 PMCID: PMC7698981 DOI: 10.1089/neu.2019.6898] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this prospective, longitudinal study, we aimed to determine the prevalence and stability of sleep-wake disturbance (SWD) and fatigue in a large representative sample of patients (Trondheim mild traumatic brain injury [mTBI] follow-up study). We included 378 patients with mTBI (age 16-60), 82 matched trauma controls with orthopedic injuries, and 83 matched community controls. Increased sleep need, poor sleep quality, excessive daytime sleepiness, and fatigue were assessed at 2 weeks, 3 months, and 12 months after injury. Mixed logistic regression models were used to evaluate clinically relevant group differences longitudinally. Prevalence of increased sleep need, poor sleep quality, and fatigue was significantly higher in patients with mTBI than in both trauma controls and community controls at all time points. More patients with mTBI reported problems with excessive daytime sleepiness compared to trauma controls, but not community controls, at all time points. Patients with complicated mTBI (intracranial findings on computed tomography or magnetic resonance imaging) had more fatigue problems compared to those with uncomplicated mTBI, at all three time points. In patients with mTBI who experienced SWDs and fatigue 2 weeks after injury, around half still had problems at 3 months and approximately one third at 12 months. Interestingly, we observed limited overlap between the different symptom measures; a large number of patients reported one specific problem with SWD or fatigue rather than several problems. In conclusion, our results provide strong evidence that mTBI contributes significantly to the development and maintenance of SWDs and fatigue.
Collapse
Affiliation(s)
- Simen Berg Saksvik
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Migle Karaliute
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håvard Kallestad
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Turid Follestad
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robert Asarnow
- Department of Psychology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Psychiatry, University of California, Los Angeles, Los Angeles, California, USA
| | - Anne Vik
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Asta Kristine Håberg
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Toril Skandsen
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
9
|
Shultz SR, McDonald SJ, Corrigan F, Semple BD, Salberg S, Zamani A, Jones NC, Mychasiuk R. Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. J Neurotrauma 2020; 37:2381-2400. [DOI: 10.1089/neu.2018.6149] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Frances Corrigan
- Department of Anatomy, University of South Australia, Adelaide, South Australia, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Akram Zamani
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
| | - Nigel C. Jones
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
10
|
Barlow KM, Kirk V, Brooks B, Esser MJ, Yeates KO, Zemek R, Kirton A, Mikrogianakis A, MacMaster F, Nettel-Aguirre A, Hutchison J, Turley B, Cameron C, Hill M, Boyd R, Dewey D. Efficacy of Melatonin for Sleep Disturbance in Children with Persistent Post-Concussion Symptoms: Secondary Analysis of a Randomized Controlled Trial. J Neurotrauma 2020; 38:950-959. [PMID: 32988292 DOI: 10.1089/neu.2020.7154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Sleep disturbances are commonly reported in children with persistent post-concussion symptoms (PPCS). Melatonin treatment is often recommended, yet supporting evidence is scarce. We aimed to evaluate the efficacy of treatment with melatonin for sleep disturbance in youth with PPCS following mild traumatic brain injury (mTBI). This article is a secondary analysis of a clinical trial of melatonin compared with placebo to treat PPCS. Youth (8-18 years of age) with PPCS and significant sleep-related problems (SRPs) at 4-6 weeks post-injury were eligible. Exclusion criteria: significant medical/psychiatric history; previous concussion/mTBI within 3 months. Treatment groups were: placebo, melatonin 3 mg, or melatonin 10 mg. Primary outcome was change in SRPs measured using the Post-Concussion Symptom Inventory (PCSI) after 2 weeks of treatment. Secondary outcomes included change in actigraphy sleep efficiency, duration, onset latency, and wake-after-sleep-onset. Behavior was measured using Behaviour Assessment for Children (2nd edition). Seventy-two participants (mean age 14.0, standard deviation [SD] = 2.6) years; 60% female) with PPCS and significant sleep disturbance were included in the secondary analysis: placebo (n = 22); melatonin 3 mg (n = 25); melatonin 10 mg (n = 25). Sixty-four participants had actigraphy data. SRPs decreased across all groups over time with a significant effect of melatonin 3 mg (3.7; 95% confidence interval [CI]: 2.1, 5.4) compared with placebo (7.4; 95% CI: 4.2, 10.6) and melatonin 10 mg (6.4; 95% CI: 3.6, 9.2). Sleep duration increased in the melatonin 3 mg (43 min; 95% CI: 6, 93) and melatonin 10 mg groups (55 min; 95% CI: 5, 104) compared with placebo. A per protocol analysis demonstrated improved sleep efficiency in the melatonin 10 mg group (p = 0.029). No serious adverse events were reported. Depressive symptoms significantly decreased with melatonin 3 mg (-4.7; 95% CI: -9.2, -.2) but not with melatonin 10 mg (-1.4, 95% CI: -5.9, 3.2) treatment compared with placebo. Changes in cognition or behavior were otherwise not significantly different between treatment groups. Short-term melatonin is a well-tolerated treatment for sleep disturbance in youth with PPCS following mTBI. In this context, it may also be associated with a reduction in depressive symptoms.
Collapse
Affiliation(s)
- Karen Maria Barlow
- Child Health Research Centre, University of Queensland Faculty of Medicine and Biomedical Sciences, South Brisbane, Queensland, Australia.,Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Valerie Kirk
- Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Brian Brooks
- Department of Pediatrics, Clinical Neurosciences, and Psychology, Alberta Children's Hospital and University of Calgary, Calgary, Alberta, Canada
| | | | - Keith Owen Yeates
- Department of Psychology and University of Calgary, Calgary, Alberta, Canada
| | - Roger Zemek
- Clinical Research Unit, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Adam Kirton
- Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | | | - Frank MacMaster
- Department of Psychiatry and Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Alberto Nettel-Aguirre
- Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - James Hutchison
- Critical Care Medicine and Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brenda Turley
- Department of Pediatrics, Clinical Neurosciences, and Psychology, Alberta Children's Hospital and University of Calgary, Calgary, Alberta, Canada
| | - Candice Cameron
- Research Pharmacy, Alberta Health Services, Calgary, Alberta, Canada
| | - Michael Hill
- Department of Clinical Neurosciences, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| | - Roslyn Boyd
- Children's Health Research Centre, University of Queensland, South Brisbane, Queensland, Australia
| | - Deborah Dewey
- Department of Paediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Rauen K, Reichelt L, Probst P, Schäpers B, Müller F, Jahn K, Plesnila N. Quality of life up to 10 years after traumatic brain injury: a cross-sectional analysis. Health Qual Life Outcomes 2020; 18:166. [PMID: 32498679 PMCID: PMC7271485 DOI: 10.1186/s12955-020-01391-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 05/05/2020] [Indexed: 01/15/2023] Open
Abstract
Background Traumatic brain injury (TBI) is the leading cause of death and disability among children and young adults in industrialized countries, but strikingly little is known how patients cope with the long-term consequences of TBI. Thus, the aim of the current study was to elucidate health-related quality of life (HRQoL) and outcome predictors in chronic TBI adults. Methods In this cross-sectional study, 439 former patients were invited to report HRQoL up to 10 years after mild, moderate or severe TBI using the QOLIBRI (Quality of Life after Brain Injury) questionnaire. The QOLIBRI total score has a maximum score of 100. A score below 60 indicates an unfavorable outcome with an increased risk of an affective and/or anxiety disorder. Results were correlated with demographics and basic characteristics received from medical records (TBI severity, etiology, age at TBI, age at survey, time elapsed since TBI, and sex) using regression models. Differences were considered significant at p < 0.05. Results From the 439 invited patients, 135 out of 150 in principle eligible patients (90%) completed the questionnaire; 76% were male, and most patients experienced severe TBI due to a traffic-related accident (49%) or a fall (44%). The mean QOLIBRI total score was 65.5 (± 22.6), indicating good HRQoL. Factors for higher level of satisfaction (p = 0.03; adjusted R2 = 0.1) were autonomy in daily life (p = 0.03; adjusted R2 = 0.09) and cognition (p = 0.05; adjusted R2 = 0.05). HRQoL was weakly correlated with initial TBI severity (p = 0.04; adjusted R2 = 0.02). 36% of patients reported unfavorable HRQoL with increased risk of one (20%) or two (16%) psychiatric disorders. Conclusions The majority of chronic TBI patients reported good HRQoL and the initial TBI severity is a slight contributor but not a strong predictor of HRQoL. Autonomy and cognition are decisive factors for satisfied outcome and should be clearly addressed in neurorehabilitation. One third of patients, however, suffer from unsatisfactory outcome with psychiatric sequelae. Thus, an early neuropsychiatric assessment after TBI is necessary and need to be installed in future TBI guidelines.
Collapse
Affiliation(s)
- Katrin Rauen
- Schoen Clinic Bad Aibling, Kolbermoorer Strasse 72, 83043, Bad Aibling, Germany. .,Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Feodor-Lynen-Straße 17, 81377, Munich, Germany. .,Department of Geriatric Psychiatry, University Hospital of Psychiatry Zurich & Institute for Regenerative Medicine (IREM), University of Zurich, Minervastrasse 145, 8032, Zurich, Switzerland.
| | - Lara Reichelt
- Schoen Clinic Bad Aibling, Kolbermoorer Strasse 72, 83043, Bad Aibling, Germany.,Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Philipp Probst
- Institute for Medical Informatics, Biometry and Epidemiology (IBE), University of Munich, Munich, Germany
| | - Barbara Schäpers
- Schoen Clinic Bad Aibling, Kolbermoorer Strasse 72, 83043, Bad Aibling, Germany
| | - Friedemann Müller
- Schoen Clinic Bad Aibling, Kolbermoorer Strasse 72, 83043, Bad Aibling, Germany
| | - Klaus Jahn
- Schoen Clinic Bad Aibling, Kolbermoorer Strasse 72, 83043, Bad Aibling, Germany.,German Center for Vertigo and Balance Disorders, University of Munich Medical Center, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Feodor-Lynen-Straße 17, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (Synergy), Munich, Germany
| |
Collapse
|
12
|
Morrow EL, Duff MC. Sleep Supports Memory and Learning: Implications for Clinical Practice in Speech-Language Pathology. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2020; 29:577-585. [PMID: 32202919 DOI: 10.1044/2019_ajslp-19-00125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose This tutorial aims to draw attention to the interactions among memory, sleep, and therapy potential and to increase awareness and knowledge in the field of speech-language pathology of the potential impact of sleep as a mediating or moderating factor in promoting therapeutic outcome. Method We highlight key findings from the literature on the cognitive neuroscience of memory, the neurophysiology of sleep, how sleep supports memory, and how sleep disruption affects memory and learning abilities in populations commonly served in speech-language pathology. Results Research increasingly points to the critical importance of sleep quality and quantity to memory and learning, and sleep disruption is linked to deficits in functional cognition that may limit our clients' ability to benefit from speech pathology interventions. Conclusions As a field dedicated to promoting memory, learning, and relearning through our interventions, any systemic factors that affect these abilities demand our attention. Although speech-language pathologists do not treat sleep disturbance, we play a critical role in recognizing the signs and symptoms of sleep disturbance and making appropriate referrals, as undiagnosed and untreated sleep disturbance can have serious impacts on success in therapeutic contexts. By considering how related factors affect memory and learning, we have the opportunity to take a whole client approach to maximizing our clients' therapy potential and functional progress.
Collapse
Affiliation(s)
- Emily L Morrow
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Melissa C Duff
- Department of Hearing & Speech Sciences, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
13
|
Barlow KM, Girgulis KA, Goldstein G, Crowe EG, Vo MK, Su P, Esser MJ, Dewey D, Kirk VG. Sleep Parameters and Overnight Urinary Melatonin Production in Children With Persistent Post-concussion Symptoms. Pediatr Neurol 2020; 105:27-34. [PMID: 32029332 DOI: 10.1016/j.pediatrneurol.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/19/2019] [Accepted: 11/03/2019] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sleep disturbance is common after a mild traumatic brain injury (mTBI) in children, yet its biology is poorly understood. We aimed to explore sleep-related problems (SRPs), sleep-activity patterns, and endogenous melatonin production in children with different recovery trajectories following mTBI. We hypothesized that children with delayed recovery would have more SRPs and abnormal sleep-activity patterns, which would correlate with lower overnight melatonin production. METHODS In this prospective controlled cohort study, we enrolled 83 children with persistent symptoms, 26 children who had clinically recovered following mTBI, and 25 healthy controls. SRPs were evaluated using the sleep subscale of the Post-Concussion Symptom Inventory. Sleep actigraphy was performed for five to seven days at 37 (S.D. 7) days post-injury. Health-related quality of life and mood disturbance was assessed using the Child Health Questionnaire and the Behavior Assessment System for Children, respectively. Endogenous melatonin production was assessed using overnight urine collection. RESULTS The groups were similar in age (13.9 [S.D. 2.6] years) and sex (52% female). Regression analysis demonstrated increased SRP in the symptomatic group (9.0; 95% confidence interval: 7.6, 11.1) compared with the recovered group (1.6; 95% confidence interval: 1.0, 2.4) and controls (2.0; 95% confidence intervals: 1.2, 3.2). Actigraphy parameters and urinary melatonin levels were not significantly different between groups. Neither SRPs nor actigraphy parameters correlated with anxiety and depression scores. CONCLUSIONS Although children with persistent post-concussion symptoms reported more SRPs, this was not related to actigraphy sleep parameters or melatonin production. Further research is warranted to understand the pathophysiology of post-traumatic sleep disturbance.
Collapse
Affiliation(s)
- Karen M Barlow
- Department of Paediatrics, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Faculty of Medicine, Children's Health Research Centre, University of Queensland, St Lucia, Australia.
| | - Katherine A Girgulis
- Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Section of Pediatrics, Alberta Children's Hospital, Calgary, Canada
| | | | - Erica G Crowe
- Section of Pediatrics, Alberta Children's Hospital, Calgary, Canada
| | - Mai K Vo
- Section of Pediatrics, Alberta Children's Hospital, Calgary, Canada
| | - Peter Su
- Faculty of Medicine, Children's Health Research Centre, University of Queensland, St Lucia, Australia
| | - Michael J Esser
- Department of Paediatrics, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Deborah Dewey
- Department of Paediatrics, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Valerie G Kirk
- Department of Paediatrics, University of Calgary, Calgary, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
14
|
Fedele B, Williams G, McKenzie D, Sutherland E, Olver J. Subacute sleep disturbance in moderate to severe traumatic brain injury: a systematic review. Brain Inj 2019; 34:316-327. [PMID: 31774695 DOI: 10.1080/02699052.2019.1695288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: This systematic review evaluated subacute sleep disturbance following moderate to severe traumatic brain injury (TBI) and the impact of secondary factors such as mood or pain.Methods: A comprehensive search strategy was applied to nine databases. Inclusion criteria included: adults ≥18 years, moderate and severe TBI and within 3 months of injury. Eligible studies were critically appraised using the McMaster Quantitative Critical Review Form. Study characteristics, outcomes, and methodological quality were synthesized. This systematic review was registered with PROSPERO (Registration number: CRD42018087799).Results: Ten studies were included. Research identified early-onset sleep disturbances; characterized as fragmented sleep periods and difficulty initiating sleep. Alterations to sleep architecture (e.g. rapid eye movement sleep) were reported. Sleep disturbance appears to associate with alterations of consciousness. Sleep disturbance tended to be particularly increased during the phase of post-traumatic amnesia (PTA) (78.7%).Conclusions: There is a limited amount of research available, which has inherent measurement and sample size limitations. The gold standard for measuring sleep (polysomnography) was rarely utilized, which may affect the detection of sleep disturbance and sleep architecture. Secondary factors potentially influencing sleep were generally not reported. Further evaluation on associations between sleep and PTA is needed.
Collapse
Affiliation(s)
- Bianca Fedele
- Department of Rehabilitation, Epworth HealthCare, Melbourne, Australia.,Department of Rehabilitation, Epworth Monash Rehabilitation Medicine Unit (EMReM), Melbourne, Australia.,School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Gavin Williams
- Department of Rehabilitation, Epworth Monash Rehabilitation Medicine Unit (EMReM), Melbourne, Australia.,Department of Physiotherapy, The University of Melbourne, Melbourne, Australia
| | - Dean McKenzie
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Research Development and Governance Unit, Epworth HealthCare, Melbourne, Australia
| | - Edwina Sutherland
- Department of Rehabilitation, Epworth HealthCare, Melbourne, Australia
| | - John Olver
- Department of Rehabilitation, Epworth HealthCare, Melbourne, Australia.,Department of Rehabilitation, Epworth Monash Rehabilitation Medicine Unit (EMReM), Melbourne, Australia.,School of Clinical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
15
|
Yamakawa GR, Weerawardhena H, Eyolfson E, Griep Y, Antle MC, Mychasiuk R. Investigating the Role of the Hypothalamus in Outcomes to Repetitive Mild Traumatic Brain Injury: Neonatal Monosodium Glutamate Does Not Exacerbate Deficits. Neuroscience 2019; 413:264-278. [DOI: 10.1016/j.neuroscience.2019.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/29/2019] [Accepted: 06/15/2019] [Indexed: 12/20/2022]
|
16
|
Botchway EN, Godfrey C, Nicholas CL, Hearps S, Anderson V, Catroppa C. Objective sleep outcomes 20 years after traumatic brain injury in childhood. Disabil Rehabil 2019; 42:2393-2401. [PMID: 30945574 DOI: 10.1080/09638288.2019.1578422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: To assess objective sleep outcomes and correlates in young adults with a history of childhood traumatic brain injury.Materials and methods: Participants included 45 young adults who sustained brain injury in childhood (mild = 12, moderate = 22, and severe = 11) and 13 typically developing control participants. Sleep was assessed with actigraphy and sleep diaries recorded over 14 consecutive days. Rates of good sleep (sleep efficiency ≥ 85%) and poor sleep (sleep efficiency < 85%) were also evaluated.Results: At 20-years postinjury, participants with traumatic brain injury and controls presented with similar outcomes across the objective sleep parameters (all p > 0.050) and rates of poor sleepers were also similar between these groups (p = 0.735): 67% and 77%, respectively. However, moderate and severe traumatic brain injury and female sex were associated with longer sleep duration.Conclusions: These findings provide preliminary insights into objective sleep outcome and associated factors in the very-long-term after childhood brain injuries. They also indicate the need to monitor sleep outcomes in young adults with and without traumatic brain injury.Implication for rehabilitationSustaining traumatic brain injury in childhood can impact on several functional domains including sleep.Sleep disturbances, particularly insomnia-related symptoms, are common in this population, with evidence of poor outcomes reported until adolescence postinjury, while outcomes beyond adolescence remain unexplored.In this first investigation of objective sleep outcomes in young adults with a history of childhood traumatic brain injury, we showed that insomnia-related symptoms are highly prevalent in both young adults with traumatic brain injury (67%) and healthy controls (77%).These findings suggest the need to routinely evaluate and treat sleep problem in young adults in general, irrespective of history of childhood traumatic brain injury.
Collapse
Affiliation(s)
- Edith N Botchway
- Murdoch Children's Research Institute, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Celia Godfrey
- Murdoch Children's Research Institute, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Christian L Nicholas
- Murdoch Children's Research Institute, Melbourne, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia.,Institute for Breathing and Sleep, Austin Health, Heidelberg, Australia
| | - Stephen Hearps
- Murdoch Children's Research Institute, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia
| | - Vicki Anderson
- Murdoch Children's Research Institute, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Cathy Catroppa
- Murdoch Children's Research Institute, Melbourne, Australia.,Royal Children's Hospital, Melbourne, Australia.,Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
17
|
Abstract
BACKGROUND Sleep disturbance plays a significant role in cognitive impairment following traumatic brain injury (TBI). OBJECTIVES To summarize recent findings that examine sleep disturbance and cognition in TBI. METHODS Epidemiological information on sleep disorders in people with TBI is presented. A simple introduction to the role of sleep in normal cognition provides context for the literature on clinical populations. Current theory on the mechanisms underlying cognitive problems in people with sleep disorder is briefly described. Findings on the relationship between sleep disorder and cognitive problems in TBI is examined in more detail. RESULTS Consistent reports of an association between sleep duration and cognition include several studies noting positive associations (shorter sleep duration accompanies cognitive impairment) and others observing negative associations (longer sleep duration accompanies cognitive problems). Both insomnia and hypersomnolence are forms of sleep disturbance that disrupt key mental processes such as memory consolidation. Obstructive sleep apnea, cerebral structural abnormalities, neurochemical changes and psychiatric pathology are implicated. CONCLUSIONS Additional information is needed on how severity of injury impacts sleep and cognition. Hypothesized mechanisms underlying the effects of sleep on cognition in TBI should be empirically tested. Further, discrepancies between objective and subjective measures of sleep and cognition must be explored.
Collapse
Affiliation(s)
- Eric B Larson
- Marianjoy Rehabilitation Hospital, 26W171 Roosevelt Road, Wheaton, IL 60187, USA. Tel.: +1 630 909 8608; Fax: +1 630 909 6572; E-mail:
| |
Collapse
|