1
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024; 61:641-684. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Maciocha F, Suchanecka A, Chmielowiec K, Chmielowiec J, Ciechanowicz A, Boroń A. Correlations of the CNR1 Gene with Personality Traits in Women with Alcohol Use Disorder. Int J Mol Sci 2024; 25:5174. [PMID: 38791212 PMCID: PMC11121729 DOI: 10.3390/ijms25105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Alcohol use disorder (AUD) is a significant issue affecting women, with severe consequences for society, the economy, and most importantly, health. Both personality and alcohol use disorders are phenotypically very complex, and elucidating their shared heritability is a challenge for medical genetics. Therefore, our study investigated the correlations between the microsatellite polymorphism (AAT)n of the Cannabinoid Receptor 1 (CNR1) gene and personality traits in women with AUD. The study group included 187 female subjects. Of these, 93 were diagnosed with alcohol use disorder, and 94 were controls. Repeat length polymorphism of microsatellite regions (AAT)n in the CNR1 gene was identified with PCR. All participants were assessed with the Mini-International Neuropsychiatric Interview and completed the NEO Five-Factor and State-Trait Anxiety Inventories. In the group of AUD subjects, significantly fewer (AAT)n repeats were present when compared with controls (p = 0.0380). While comparing the alcohol use disorder subjects (AUD) and the controls, we observed significantly higher scores on the STAI trait (p < 0.00001) and state scales (p = 0.0001) and on the NEO Five-Factor Inventory Neuroticism (p < 0.00001) and Openness (p = 0.0237; insignificant after Bonferroni correction) scales. Significantly lower results were obtained on the NEO-FFI Extraversion (p = 0.00003), Agreeability (p < 0.00001) and Conscientiousness (p < 0.00001) scales by the AUD subjects when compared to controls. There was no statistically significant Pearson's linear correlation between the number of (AAT)n repeats in the CNR1 gene and the STAI and NEO Five-Factor Inventory scores in the group of AUD subjects. In contrast, Pearson's linear correlation analysis in controls showed a positive correlation between the number of the (AAT)n repeats and the STAI state scale (r = 0.184; p = 0.011; insignificant after Bonferroni correction) and a negative correlation with the NEO-FFI Openness scale (r = -0.241; p = 0.001). Interestingly, our study provided data on two separate complex issues, i.e., (1) the association of (AAT)n CNR1 repeats with the AUD in females; (2) the correlation of (AAT)n CNR1 repeats with anxiety as a state and Openness in non-alcohol dependent subjects. In conclusion, our study provided a plethora of valuable data for improving our understanding of alcohol use disorder and anxiety.
Collapse
Affiliation(s)
- Filip Maciocha
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland; (F.M.); (A.C.)
| | - Aleksandra Suchanecka
- Independent Laboratory of Behavioral Genetics and Epigenetics, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland;
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland; (F.M.); (A.C.)
| | - Agnieszka Boroń
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 St., 70-111 Szczecin, Poland; (F.M.); (A.C.)
| |
Collapse
|
3
|
Fakhfouri G, Mijailović NR, Rahimian R. Psychiatric Comorbidities of Inflammatory Bowel Disease: It Is a Matter of Microglia's Gut Feeling. Cells 2024; 13:177. [PMID: 38247868 PMCID: PMC10814793 DOI: 10.3390/cells13020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Inflammatory bowel disease (IBD), a common term for Crohn's disease and ulcerative colitis, is a chronic, relapse-remitting condition of the gastrointestinal tract that is increasing worldwide. Psychiatric comorbidities, including depression and anxiety, are more prevalent in IBD patients than in healthy individuals. Evidence suggests that varying levels of neuroinflammation might underlie these states in IBD patients. Within this context, microglia are the crucial non-neural cells in the brain responsible for innate immune responses following inflammatory insults. Alterations in microglia's functions, such as secretory profile, phagocytic activity, and synaptic pruning, might play significant roles in mediating psychiatric manifestations of IBD. In this review, we discuss the role played by microglia in IBD-associated comorbidities.
Collapse
Affiliation(s)
- Gohar Fakhfouri
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC H4H 1R3, Canada;
| | - Nataša R. Mijailović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health Institute, McGill University, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| |
Collapse
|
4
|
Obermanns J, Meiser H, Hoberg S, Vesterager CS, Schulz F, Juckel G, Emons B. Genetic variation of the 5-HT1A rs6295, 5-HT2A rs6311, and CNR1 rs1049353 and an altered endocannabinoid system in depressed patients. Brain Behav 2023; 13:e3323. [PMID: 37984468 PMCID: PMC10726863 DOI: 10.1002/brb3.3323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND The reasons for developing depression are not fully understood. However, it is known that the serotonergic system plays a role in the etiology, but the endocannabinoid system receives attention. METHOD In this study, 161 patients with a depressive disorder and 161 healthy participants were examined for the distribution of the CNR1 rs4940353, 5-HT2A rs6311, and 5-HT1A rs6295 by high-resolution melting genotyping. The concentration of arachidonoyl ethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) in the blood was measured by liquid chromatography-tandem mass spectrometry. Additionally, depression and anxiety symptoms were evaluated based on self-questionnaires. Fifty-nine patients participated in a second appointment to measure the concentration of AEA, 2-AG, and symptoms of depression and anxiety. RESULTS We observed higher AEA and decreased 2-AG concentrations in patients with depression compared to healthy participants. During the treatment, the concentrations of AEA and 2-AG did not change significantly. In patients higher symptoms of anxiety correlated with lower concentrations of 2-AG. Gender differences were found concerning increased 2-AG concentration in male patients and increased anxiety symptoms in female patients. Genotypic variations of 5-HT1A rs6295 and 5-HT2A rs6311 are associated with altered serotonergic activity and serotonin content in patients. CONCLUSION In conclusion, it seems that the endocannabinoid system, especially the endocannabinoids 2-AG and AEA, and genetic variations of the 5-HT1A and 5-HT2A could play a role in patients with depression and may be involved in a depressive disorder.
Collapse
Affiliation(s)
- Jasmin Obermanns
- LWL University HospitalDepartment of PsychiatryPsychotherapy and Preventive MedicineRuhr University BochumBochumGermany
| | - Hanna Meiser
- LWL University HospitalDepartment of PsychiatryPsychotherapy and Preventive MedicineRuhr University BochumBochumGermany
| | - Saskia Hoberg
- LWL University HospitalDepartment of PsychiatryPsychotherapy and Preventive MedicineRuhr University BochumBochumGermany
| | | | - Frank Schulz
- Chemistry and Biochemistry of Natural ProductsRuhr University BochumBochumGermany
| | - Georg Juckel
- LWL University HospitalDepartment of PsychiatryPsychotherapy and Preventive MedicineRuhr University BochumBochumGermany
| | - Barbara Emons
- LWL University HospitalDepartment of PsychiatryPsychotherapy and Preventive MedicineRuhr University BochumBochumGermany
| |
Collapse
|
5
|
Angelopoulou E, Bougea A, Paudel YN, Georgakopoulou VE, Papageorgiou SG, Piperi C. Genetic Insights into the Molecular Pathophysiology of Depression in Parkinson's Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1138. [PMID: 37374342 DOI: 10.3390/medicina59061138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/05/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Parkinson's disease (PD) is a clinically heterogeneous disorder with poorly understood pathological contributing factors. Depression presents one of the most frequent non-motor PD manifestations, and several genetic polymorphisms have been suggested that could affect the depression risk in PD. Therefore, in this review we have collected recent studies addressing the role of genetic factors in the development of depression in PD, aiming to gain insights into its molecular pathobiology and enable the future development of targeted and effective treatment strategies. Materials and Methods: we have searched PubMed and Scopus databases for peer-reviewed research articles published in English (pre-clinical and clinical studies as well as relevant reviews and meta-analyses) investigating the genetic architecture and pathophysiology of PD depression. Results: in particular, polymorphisms in genes related to the serotoninergic pathway (sodium-dependent serotonin transporter gene, SLC6A4, tryptophan hydrolase-2 gene, TPH2), dopamine metabolism and neurotransmission (dopamine receptor D3 gene, DRD3, aldehyde dehydrogenase 2 gene, ALDH2), neurotrophic factors (brain-derived neurotrophic factor gene, BDNF), endocannabinoid system (cannabinoid receptor gene, CNR1), circadian rhythm (thyrotroph embryonic factor gene, TEF), the sodium-dependent neutral amino acid transporter B(0)AT2 gene, SLC6A15), and PARK16 genetic locus were detected as altering susceptibility to depression among PD patients. However, polymorphisms in the dopamine transporter gene (SLC6A3), monoamine oxidase A (MAOA) and B (MAOB) genes, catechol-O-methyltransferase gene (COMT), CRY1, and CRY2 have not been related to PD depression. Conclusions: the specific mechanisms underlying the potential role of genetic diversity in PD depression are still under investigation, however, there is evidence that they may involve neurotransmitter imbalance, mitochondrial impairment, oxidative stress, and neuroinflammation, as well as the dysregulation of neurotrophic factors and their downstream signaling pathways.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Anastasia Bougea
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 46150, Selangor, Malaysia
| | | | - Sokratis G Papageorgiou
- Department of Neurology, Eginition University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
6
|
Babayeva M, Loewy ZG. Cannabis Pharmacogenomics: A Path to Personalized Medicine. Curr Issues Mol Biol 2023; 45:3479-3514. [PMID: 37185752 PMCID: PMC10137111 DOI: 10.3390/cimb45040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Cannabis and related compounds have created significant research interest as a promising therapy in many disorders. However, the individual therapeutic effects of cannabinoids and the incidence of side effects are still difficult to determine. Pharmacogenomics may provide the answers to many questions and concerns regarding the cannabis/cannabinoid treatment and help us to understand the variability in individual responses and associated risks. Pharmacogenomics research has made meaningful progress in identifying genetic variations that play a critical role in interpatient variability in response to cannabis. This review classifies the current knowledge of pharmacogenomics associated with medical marijuana and related compounds and can assist in improving the outcomes of cannabinoid therapy and to minimize the adverse effects of cannabis use. Specific examples of pharmacogenomics informing pharmacotherapy as a path to personalized medicine are discussed.
Collapse
Affiliation(s)
- Mariana Babayeva
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Zvi G Loewy
- Department of Biomedical and Pharmaceutical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
7
|
Xu H, Li T, Gong Q, Xu H, Hu Y, Lü W, Yang X, Li J, Xu W, Kuang W. Genetic variations in the retrograde endocannabinoid signaling pathway in Chinese patients with major depressive disorder. Front Neurol 2023; 14:1153509. [PMID: 37168668 PMCID: PMC10165312 DOI: 10.3389/fneur.2023.1153509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023] Open
Abstract
Background The retrograde endocannabinoid (eCB) pathway is closely associated with the etiology of major depressive disorder (MDD) at both pathophysiological and genetic levels. This study aimed to investigate the potential role of genetic mutations in the eCB pathway and underlying mechanisms in Han Chinese patients with MDD. Methods A total of 96 drug-naïve patients with first-episode MDD and 62 healthy controls (HCs) were recruited. Whole-exome sequencing was performed to identify the gene mutation profiles in patients with MDD. Results were filtered to focus on low-frequency variants and rare mutations (minor allele frequencies <0.05) related to depressive phenotypes. Enrichment analyses were performed for 146 selected genes to examine the pathways in which the most significant enrichment occurred. A protein-protein interaction (PPI) network analysis was performed to explore the biological functions of the eCB pathway. Finally, based on current literature, a preliminary analysis was conducted to explore the effect of genetic mutations on the function of this pathway. Results Our analysis identified 146 (15.02%) depression-related genetic mutations in patients with MDD when compared with HCs, and 37 of the mutations were enriched in the retrograde eCB signaling pathway. Seven hub genes in the eCB pathway were closely related to mitochondrial function, including Complex I genes (NDUFS4, NDUFV2, NDUFA2, NDUFA12, NDUFB11) and genes associated with protein (PARK7) and enzyme (DLD) function in the regulation of mitochondrial oxidative stress. Conclusion These results indicate that genetic mutations in the retrograde eCB pathway represent potential etiological factors associated with the pathogenesis of MDD.
Collapse
Affiliation(s)
- Huifang Xu
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Tongtong Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiyong Gong
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Haizhen Xu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yongbo Hu
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wenqi Lü
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Yang
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wenming Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Wenming Xu,
| | - Weihong Kuang
- Department of Psychiatry and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Weihong Kuang,
| |
Collapse
|
8
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Bright U, Akirav I. Modulation of Endocannabinoid System Components in Depression: Pre-Clinical and Clinical Evidence. Int J Mol Sci 2022; 23:5526. [PMID: 35628337 PMCID: PMC9146799 DOI: 10.3390/ijms23105526] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Depression is characterized by continuous low mood and loss of interest or pleasure in enjoyable activities. First-line medications for mood disorders mostly target the monoaminergic system; however, many patients do not find relief with these medications, and those who do suffer from negative side effects and a discouragingly low rate of remission. Studies suggest that the endocannabinoid system (ECS) may be involved in the etiology of depression and that targeting the ECS has the potential to alleviate depression. ECS components (such as receptors, endocannabinoid ligands, and degrading enzymes) are key neuromodulators in motivation and cognition as well as in the regulation of stress and emotions. Studies in depressed patients and in animal models for depression have reported deficits in ECS components, which is motivating researchers to identify potential diagnostic and therapeutic biomarkers within the ECS. By understanding the effects of cannabinoids on ECS components in depression, we enhance our understanding of which brain targets they hit, what biological processes they alter, and eventually how to use this information to design better therapeutic options. In this article, we discuss the literature on the effects of cannabinoids on ECS components of specific depression-like behaviors and phenotypes in rodents and then describe the findings in depressed patients. A better understanding of the effects of cannabinoids on ECS components in depression may direct future research efforts to enhance diagnosis and treatment.
Collapse
Affiliation(s)
- Uri Bright
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel;
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
10
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
11
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
12
|
Remes O, Mendes JF, Templeton P. Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sci 2021; 11:1633. [PMID: 34942936 PMCID: PMC8699555 DOI: 10.3390/brainsci11121633] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Depression is one of the leading causes of disability, and, if left unmanaged, it can increase the risk for suicide. The evidence base on the determinants of depression is fragmented, which makes the interpretation of the results across studies difficult. The objective of this study is to conduct a thorough synthesis of the literature assessing the biological, psychological, and social determinants of depression in order to piece together the puzzle of the key factors that are related to this condition. Titles and abstracts published between 2017 and 2020 were identified in PubMed, as well as Medline, Scopus, and PsycInfo. Key words relating to biological, social, and psychological determinants as well as depression were applied to the databases, and the screening and data charting of the documents took place. We included 470 documents in this literature review. The findings showed that there are a plethora of risk and protective factors (relating to biological, psychological, and social determinants) that are related to depression; these determinants are interlinked and influence depression outcomes through a web of causation. In this paper, we describe and present the vast, fragmented, and complex literature related to this topic. This review may be used to guide practice, public health efforts, policy, and research related to mental health and, specifically, depression.
Collapse
Affiliation(s)
- Olivia Remes
- Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK
| | | | - Peter Templeton
- IfM Engage Limited, Institute for Manufacturing, University of Cambridge, Cambridge CB3 0FS, UK;
- The William Templeton Foundation for Young People’s Mental Health (YPMH), Cambridge CB2 0AH, UK
| |
Collapse
|
13
|
Variability in cannabinoid receptor genes is associated with psychiatric comorbidities in anorexia nervosa. Eat Weight Disord 2021; 26:2597-2606. [PMID: 33575982 DOI: 10.1007/s40519-021-01106-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/09/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE The endocannabinoid system plays a key role in eating behavior regulating appetite and reward mechanisms, but the impact of its genetic variability has been scarcely studied in Anorexia Nervosa (AN). We aimed to analyze the association of genetic variants in cannabinoid receptors with the risk for AN and with psychiatric comorbidities that are commonplace in these patients. METHODS We screened 221 AN patients and 396 controls for 14 tag-SNPs in the CNR1 and CNR2 genes, coding for cannabinoids receptors CB1 and CB2, respectively. Patients were diagnosed according to DSM-5 criteria and interviewed with the SCL-90R and the EDI-2 inventories to identify AN-coupled and general psychopathology. RESULTS None of the tag-SNPs was significantly related to AN risk. However, the rs806369-TT genotype and haplotype rs806368/rs1049353/rs806369 of CNR1 were respectively associated with lower weight (mean difference = - 4.92 kg, FDR-q = 0.044) and BMI (FDR-q = 0.042) in AN patients. CNR1 rs806374-TT and CNR2 rs3003335-AA and rs6658703-GG genotypes correlated with higher scores in the Positive Symptom Distress Index (PSDI, FDR-q = 0.011 and 0.009, respectively). These three genotypes were also linked to increased Hostility in the patients (FDR-q < 0.05). Remarkably, a proximal area of the CNR1 gene locus (positions 88,143,916-88,149,832) correlated with PSDI, Hostility, Asceticism and EDI-2 total scores after correcting by multiple testing (FDR-q < 0.05 in all instances). Finally, significant CNR1/CNR2 epistasis was observed in relation to Hostility (p < 0.01) and Maturity Fears (p < 0.001). CONCLUSION The CNR1 and CNR2 genes, coding for cannabinoid receptors, may constitute important loci regarding psychiatric comorbidities in AN patients. LEVEL III Evidence obtained from well-designed cohort or case-control analytic studies.
Collapse
|
14
|
Lopresti AL, Smith SJ. An investigation into the anxiety-relieving and mood-enhancing effects of Echinacea angustifolia (EP107™): A randomised, double-blind, placebo-controlled study. J Affect Disord 2021; 293:229-237. [PMID: 34217960 DOI: 10.1016/j.jad.2021.06.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND The acute anxiolytic effects of the echinacea angustifolia extract (EP107TM) have been demonstrated in two previous human trials. The goals of this study were to examine the anxiolytic and mood-enhancing effects of echinacea angustifolia over a longer duration with a larger sample size. METHODS In this 6-week, 3-arm, parallel-group, double-blind, randomised controlled trial, 108 adults with mild-to-moderately severe anxiety were recruited and randomised to receive either a placebo, 20 mg, or 40 mg of echinacea angustifolia, twice daily. Outcome measures included the Clinically Useful Anxiety Outcome Scale (CUXOS), Positive and Negative Affect Scale (PANAS), Short Form-36 (SF-36), and Bergen Insomnia Scale (BIS). RESULTS Based on data collected from 104 participants, both doses of echinacea were associated with overall reductions in anxiety, although improvements were not different from the placebo. However, both doses of echinacea were associated with greater improvements in the PANAS positive and negative affect scores, and SF-36 emotional wellbeing score compared to the placebo. LIMITATIONS The positive improvements associated with echinacea were only identified via the secondary outcome measures and, therefore, require validation in future trials. CONCLUSIONS The echinacea angustifolia extract (EP107TM) administered for 6 weeks at a dose of 40 and 80 mg daily was not associated with greater improvements in anxiety in adults with mild-to-moderately severe anxiety compared to the placebo. However, there were greater improvements in positive and negative affect, and emotional wellbeing, suggesting antidepressant effects. Further studies using clearly-defined populations and validated outcome measures will be useful in future trials.
Collapse
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, Perth, Western Australia 6023, Australia; College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia 6150, Australia
| | - Stephen J Smith
- Clinical Research Australia, Perth, Western Australia 6023, Australia; College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
15
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
16
|
Song CG, Kang X, Yang F, Du WQ, Zhang JJ, Liu L, Kang JJ, Jia N, Yue H, Fan LY, Wu SX, Jiang W, Gao F. Endocannabinoid system in the neurodevelopment of GABAergic interneurons: implications for neurological and psychiatric disorders. Rev Neurosci 2021; 32:803-831. [PMID: 33781002 DOI: 10.1515/revneuro-2020-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 02/07/2023]
Abstract
In mature mammalian brains, the endocannabinoid system (ECS) plays an important role in the regulation of synaptic plasticity and the functioning of neural networks. Besides, the ECS also contributes to the neurodevelopment of the central nervous system. Due to the increase in the medical and recreational use of cannabis, it is inevitable and essential to elaborate the roles of the ECS on neurodevelopment. GABAergic interneurons represent a group of inhibitory neurons that are vital in controlling neural network activity. However, the role of the ECS in the neurodevelopment of GABAergic interneurons remains to be fully elucidated. In this review, we provide a brief introduction of the ECS and interneuron diversity. We focus on the process of interneuron development and the role of ECS in the modulation of interneuron development, from the expansion of the neural stem/progenitor cells to the migration, specification and maturation of interneurons. We further discuss the potential implications of the ECS and interneurons in the pathogenesis of neurological and psychiatric disorders, including epilepsy, schizophrenia, major depressive disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Chang-Geng Song
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China.,Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Xin Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Yang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wan-Qing Du
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jia-Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Long Liu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Jun-Jun Kang
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Ning Jia
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Hui Yue
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Lu-Yu Fan
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Sheng-Xi Wu
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, 127 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| | - Fang Gao
- Department of Neurobiology and Institute of Neurosciences, Collaborative Innovation Center for Brain Science, School of Basic Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an710032, Shaanxi, China
| |
Collapse
|
17
|
On the Role of Central Type-1 Cannabinoid Receptor Gene Regulation in Food Intake and Eating Behaviors. Int J Mol Sci 2021; 22:ijms22010398. [PMID: 33401515 PMCID: PMC7796374 DOI: 10.3390/ijms22010398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Different neuromodulatory systems are involved in long-term energy balance and body weight and, among these, evidence shows that the endocannabinoid system, in particular the activation of type-1 cannabinoid receptor, plays a key role. We here review current literature focusing on the role of the gene encoding type-1 cannabinoid receptors in the CNS and on the modulation of its expression by food intake and specific eating behaviors. We point out the importance to further investigate how environmental cues might have a role in the development of obesity as well as eating disorders through the transcriptional regulation of this gene in order to prevent or to treat these pathologies.
Collapse
|
18
|
Fonseca R, Madeira N, Simoes C. Resilience to fear: The role of individual factors in amygdala response to stressors. Mol Cell Neurosci 2020; 110:103582. [PMID: 33346000 DOI: 10.1016/j.mcn.2020.103582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022] Open
Abstract
Resilience to stress is an adaptive process that varies individually. Resilience refers to the adaptation, or the ability to maintain or regain mental health, despite being subject to adverse situation. Resilience is a dynamic concept that reflects a combination of internal individual factors, including age and gender interacting with external factors such as social, cultural and environmental factors. In the last decade, we have witnessed an increase in the prevalence of anxiety disorders, including post-traumatic stress disorder. Given that stress in unavoidable, it is of great interest to understand the neurophysiological mechanisms of resilience, the individual factors that may contribute to susceptibility and promote efficacious approaches to improve resilience. Here, we address this complex question, attempting at defining clear and operational definitions that may allow us to improve our analysis of behavior incorporating individuality. We examine how individual perception of the stressor can alter the outcome of an adverse situation using as an example, the fear-conditioning paradigm and discuss how individual differences in the reward system can contribute to resilience. Given the central role of the endocannabinoid system in regulating fear responses and anxiety, we discuss the evidence that polymorphisms in several molecules of this signaling system contribute to different anxiety phenotypes. The endocannabinoid system is highly interconnected with the serotoninergic and dopaminergic modulatory systems, contributing to individual differences in stress perception and coping mechanisms. We review how the individual variability in these modulatory systems can be used towards a multivariable assessment of stress risk. Incorporating individuality in our research will allow us to define biomarkers of anxiety disorders as well as assess prognosis, towards a personalized clinical approach to mental health.
Collapse
Affiliation(s)
- Rosalina Fonseca
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal.
| | - Natália Madeira
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| | - Carla Simoes
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| |
Collapse
|
19
|
deRoon-Cassini TA, Stollenwerk TM, Beatka M, Hillard CJ. Meet Your Stress Management Professionals: The Endocannabinoids. Trends Mol Med 2020; 26:953-968. [PMID: 32868170 PMCID: PMC7530069 DOI: 10.1016/j.molmed.2020.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
The endocannabinoid signaling system (ECSS) is altered by exposure to stress and mediates and modulates the effects of stress on the brain. Considerable preclinical data support critical roles for the endocannabinoids and their target, the CB1 cannabinoid receptor, in the adaptation of the brain to repeated stress exposure. Chronic stress exposure increases vulnerability to mental illness, so the ECSS has attracted attention as a potential therapeutic target for the prevention and treatment of stress-related psychopathology. We discuss human genetic studies indicating that the ECSS contributes to risk for mental illness in those exposed to severe stress and trauma early in life, and we explore the potential difficulties in pharmacological manipulation of the ECSS.
Collapse
Affiliation(s)
- Terri A deRoon-Cassini
- Neuroscience Research Center, USA; Department of Surgery, Division of Trauma and Acute Care Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Margaret Beatka
- Neuroscience Research Center, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cecilia J Hillard
- Neuroscience Research Center, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
20
|
Scherma M, Muntoni AL, Riedel G, Fratta W, Fadda P. Cannabinoids and their therapeutic applications in mental disorders
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 22:271-279. [PMID: 33162770 PMCID: PMC7605020 DOI: 10.31887/dcns.2020.22.3/pfadda] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mental disorders represent a significant public health burden worldwide due to their high prevalence, chronically disabling nature, and substantial impact on quality of life. Despite growing knowledge of the pathological mechanisms that underlie the development of these disorders, a high percentage of patients do not respond to first-line clinical treatments; thus, there is a strong need for alternative therapeutic approaches. During the past half-century, after the identification of the endocannabinoid system and its role in multiple physiological processes, both natural and synthetic cannabinoids have attracted considerable interest as putative medications in pathological conditions such as, but not exclusive to, mental disorders. Here, we provide a summary of cannabinoid effects in support of possible therapeutic applications for major depression, bipolar disorder, anxiety, posttraumatic stress disorder, and schizophrenia. Considering this evidence, highlighted benefits and risks of cannabinoid use in the management of these illnesses require further experimental study.
.
Collapse
Affiliation(s)
- Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Gernot Riedel
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom
| | - Walter Fratta
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy
| | - Paola Fadda
- Author affiliations: Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy; Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, United Kingdom (Gernot Riedel); National Neuroscience Institute, Pisa, Italy
| |
Collapse
|
21
|
Abstract
The endocannabinoid system (ECS) is a highly versatile signaling system within the nervous system. Despite its widespread localization, its functions within the context of distinct neural processes are very well discernable and specific. This is remarkable, and the question remains as to how such specificity is achieved. One key player in the ECS is the cannabinoid type 1 receptor (CB1), a G protein-coupled receptor characterized by the complexity of its cell-specific expression, cellular and subcellular localization, and its adaptable regulation of intracellular signaling cascades. CB1 receptors are involved in different synaptic and cellular plasticity processes and in the brain's bioenergetics in a context-specific manner. CB2 receptors are also important in several processes in neurons, glial cells, and immune cells of the brain. As polymorphisms in ECS components, as well as external impacts such as stress and metabolic challenges, can both lead to dysregulated ECS activity and subsequently to possible neuropsychiatric disorders, pharmacological intervention targeting the ECS is a promising therapeutic approach. Understanding the neurobiology of cannabinoid receptor signaling in depth will aid optimal design of therapeutic interventions, minimizing unwanted side effects.
.
Collapse
Affiliation(s)
- Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
22
|
Charytoniuk T, Zywno H, Konstantynowicz-Nowicka K, Berk K, Bzdega W, Chabowski A. Can Physical Activity Support the Endocannabinoid System in the Preventive and Therapeutic Approach to Neurological Disorders? Int J Mol Sci 2020; 21:E4221. [PMID: 32545780 PMCID: PMC7352563 DOI: 10.3390/ijms21124221] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
The worldwide prevalence of neurological and neurodegenerative disorders, such as depression or Alzheimer's disease, has spread extensively throughout the last decades, becoming an enormous health issue. Numerous data indicate a distinct correlation between the altered endocannabinoid signaling and different aspects of brain physiology, such as memory or neurogenesis. Moreover, the endocannabinoid system is widely regarded as a crucial factor in the development of neuropathologies. Thus, targeting those disorders via synthetic cannabinoids, as well as phytocannabinoids, becomes a widespread research issue. Over the last decade, the endocannabinoid system has been extensively studied for its correlation with physical activity. Recent data showed that physical activity correlates with elevated endocannabinoid serum concentrations and increased cannabinoid receptor type 1 (CB1R) expression in the brain, which results in positive neurological effects including antidepressant effect, ameliorated memory, neuroplasticity development, and reduced neuroinflammation. However, none of the prior reviews presented a comprehensive correlation between physical activity, the endocannabinoid system, and neuropathologies. Thus, our review provides a current state of knowledge of the endocannabinoid system, its action in physical activity, as well as neuropathologies and a possible correlation between all those fields. We believe that this might contribute to finding a new preventive and therapeutic approach to both neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, 15-089 Białystok, Poland; (H.Z.); (K.K.-N.); (K.B.); (W.B.); (A.C.)
| | | | | | | | | | | |
Collapse
|
23
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|