1
|
Li J, Huang Y, Xu S, Wang Y. Sleep disturbances and female infertility: a systematic review. BMC Womens Health 2024; 24:643. [PMID: 39707272 DOI: 10.1186/s12905-024-03508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Sleep disturbances are more prevalent among women with infertility. Current research increasingly highlights the significant relationship between sleep disturbances and female infertility, suggesting that sleep may be a key factor in reproductive health. In this review, we aim to delve into the complex interplay between sleep disturbances and female infertility, as well as to assess the underlying mechanisms involved, and seek to illuminate the causes of sleep-related fertility issues. The understanding of these contents may help clinicians enhance clinical strategies for managing sleep disturbances in women facing infertility challenges and provide timely support to those seeking fertility treatments. METHODS A comprehensive literature search was conducted in the PubMed and EMBASE databases. Studies that described sleep patterns or any type of sleep disturbance, sleep breathing disorders and their associations with female infertility or female fecundity, published between January 1, 2010, and November 1, 2023, were identified and extracted. The screening, data extraction, and quality assessment processes were independently performed by paired reviewers. The quality of the included studies was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal tools for observational and cohort studies. RESULTS A total of 1,179 articles were initially identified from the search strategy (PubMed, n = 377; EMBASE, n = 802). After removing duplicates (n = 83) and screening for eligibility (n = 75), 19 studies were reviewed and determined to be eligible for inclusion. Infertile women generally report poorer sleep quality and exhibit more evening sleep chronotypes. Sleep disorders are significantly associated with infertility. Poor sleep quality, extreme sleep durations, and certain sleep chronotypes are associated with poorer fertility treatment outcomes, such as a reduced number of retrieved oocytes, decreased embryo quality, and lower fertilization rates. Obstructive sleep apnea (OSA) is also more prevalent in women with fertility issues, especially those with polycystic ovary syndrome (PCOS), and may negatively impact reproductive outcomes. The circadian rhythms of the Clock gene system, melatonin and hormone dysregulation, oxidative stress and immune response are considered to be potential mechanisms explaining how sleep disturbance impairs reproductive function, remain to be fully elucidated, and therefore, require further investigation. CONCLUSIONS Sleep disturbances are negatively associated with female infertility and poor fertility treatment outcomes. Longitudinal studies are expected to substantiate these findings and inform more nuanced approaches to prior sleep management and lifestyle advisement for infertile women, especially those undergoing fertility treatments. TRIAL REGISTRATION This study was registered in the International Prospective Register of Systematic Reviews (PROSPERO, #CRD42024498443).
Collapse
Affiliation(s)
- Jing Li
- Reproductive Medical Center, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Yali Huang
- Reproductive Medical Center, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Shirong Xu
- Reproductive Medical Center, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ying Wang
- Reproductive Medical Center, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
2
|
Yang Y, Song J, Shen S, Wang Y, Pan C, Wu J, Lan X. InDel mutations within the bovine PER2 gene are significantly associated with reproductive traits. Anim Biotechnol 2024; 35:2397806. [PMID: 39222161 DOI: 10.1080/10495398.2024.2397806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Functioning as a key regulator of circadian rhythms, the PER2 gene exerts a substantial impact on the reproductive traits of animals. However, the effect of the PER2 gene on ovarian development remains unclear. In order to examine the relationship between bovine reproductive trait and the PER2 gene, a total of 901 ovarian samples were collected, categorized into different oestrus cycles (proestrus, oestrus, post-oestrus, anoestrous), and subjected to analysis for two potential insertion/deletions (InDels) in the PER2 gene. Through agarose gel electrophoresis and DNA sequencing, two polymorphic deletion mutations (P2-D5-bp, P3-D13-bp) were identified. Furthermore, a significant association between mature follicle diameter and P2-D5-bp was found (P < 0.05). Additionally, several significant correlations with ovarian length, width, height, and white body diameter were found for P3-D13-bp (P < 0.05). These findings suggested that the bovine PER2 gene plays an important role in above-mentioned reproductive traits, offering new avenues for improving cow fertility through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Yuanzhe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiajun Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Siyuan Shen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiyao Wu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Wu T, Wu Y, Li Y, Du Y, Feng S, Wang D, Zhou L. Genome-wide analysis of two different regions of brain reveals the molecular changes of fertility related genes in rln3a -/- mutants in male Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol 2024; 354:114543. [PMID: 38692521 DOI: 10.1016/j.ygcen.2024.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Relaxin3 (rln3) has been associated with various emotional and cognitive processes, including stress, anxiety, learning, memory, motivational behavior, and circadian rhythm. Notably, previous report revealed that Rln3a played an indispensable role in testicular development and male fertility in Nile tilapia (Oreochromis niloticus). However, the underlying molecular mechanisms remain largely unknown. We found that Rln3a is expressed exclusively in the diencephalon* (Di*) of the brain. Deficiency of Rln3a resulted in a significant increase in serum dopamine level and an upregulation of gene expression of gnrh1 and kisspeptin2. To further elucidate the role of Rln3a in fish fertility, we collected two different regions of Di* and hypothalamus (Hyp) tissues for subsequent RNA-seq analysis of both wild-type (rln3a+/+) and rln3a-/- male tilapia. Upon the transcriptomic data, 1136 and 755 differentially expressed genes (DEGs) were identified in the Di* and Hyp tissues, respectively. In Di*, the up-regulated genes were enriched in circadian rhythm, chemical carcinogenesis, while the down-regulated genes were enriched in type II diabetes mellitus, dopaminergic synapse, and other pathways. In Hyp, the up-regulated genes were enriched in circadian rhythm, pyrimidine metabolism, while the down-regulated genes were enriched in type I diabetes mellitus, autoimmune thyroid disease, and other pathways. Subsequently, the results of both qRT-PCR and FISH assays highlighted a pronounced up-regulation of core circadian rhythm genes, cry1b and per3, whereas genes such as clocka, clockb, and arntl exhibited down-regulation. Furthermore, the genes associated with dopamine biosynthesis were significantly increased in the Hyp. In summary, the mutation of rln3a in male tilapia resulted in notable changes in circadian rhythm and disease-linked signaling pathways in the Di* and Hyp. These changes might account for the fertility defects observed in rln3a-/- male mutants in tilapia.
Collapse
Affiliation(s)
- Tengfei Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - You Wu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Yanlong Li
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Yiyun Du
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Saining Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China.
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China.
| |
Collapse
|
4
|
Sobol M, Błachnio A, Meisner M, Wdowiak A, Wdowiak N, Gorbaniuk O, Jankowski KS. Circadian rhythm and sleep disruptions in relation to prenatal stress and depression symptoms. Chronobiol Int 2024; 41:294-303. [PMID: 38297459 DOI: 10.1080/07420528.2024.2303985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Circadian rhythm and sleep are related to health, but there is little data on the relationship between the sleep/wake rhythm and mood at different stages of pregnancy. The aim of this prospective, longitudinal study was to investigate the associations of circadian rhythm and sleep disruptions with stress and depression among women in early and late pregnancy. The participants were 26 pregnant women. Objective and subjective estimations of circadian rhythm and sleep were administered, namely actigraphy and the Biological Rhythms Interview of Assessment in Neuropsychiatry in the form of a questionnaire. The Perceived Stress Scale and the Edinburgh Postnatal Depression Scale were also used. Subjectively perceived circadian rhythm disruptions were positively related to stress. Tendency to maintain a regular rhythm of sleep and activity in early pregnancy and subjectively perceived disruptions of circadian rhythms in late pregnancy were positively associated with prenatal depression in late pregnancy. Sleep fragmentation and long time spent in bed at night in early pregnancy were positively associated with stress and depression in late pregnancy. The results suggest the importance of flexibility and the ability to adapt one's circadian activities to the demands of the situation of pregnancy-related changes in lifestyle. They also indicate the significance of good-quality uninterrupted night sleep in early pregnancy.
Collapse
Affiliation(s)
| | - Agata Błachnio
- Department of Psychology, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Michał Meisner
- Department of Psychology, University of Warsaw, Warsaw, Poland
| | - Artur Wdowiak
- Faculty of Medicine and Dentistry, Medical University of Lublin, Lublin, Poland
| | - Natalia Wdowiak
- Faculty of Medicine and Dentistry, Medical University of Lublin, Lublin, Poland
| | - Oleg Gorbaniuk
- Institute of Psychology, Maria Curie-Skłodowska University, Lublin, Poland
- Department of Psychology, Casimir Pulaski Radom University, Radom, Poland
| | | |
Collapse
|
5
|
Pelayo RA, Xu S, Walter JR. Embryo transfers performed during daylight savings time led to reduced live birth rates in older patients. J Assist Reprod Genet 2023; 40:2639-2647. [PMID: 37667016 PMCID: PMC10643731 DOI: 10.1007/s10815-023-02920-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
PURPOSE To study the impact of undergoing an embryo transfer during the week of daylight savings time transition on live birth rates. METHODS We performed a retrospective observational cohort study of patients undergoing embryo transfer at an academic infertility practice during the week of spring or fall daylight savings time transition (cases), or the 2 weeks preceding and following the daylight savings transition (controls) between 2015 and 2021. The primary exposure was completion of an embryo transfer during the week of daylight savings time transition. The primary outcome was a comparison of live birth rate per embryo transfer among individuals undergoing an embryo transfer during the week of daylight savings time (DST) transition and those who did not. RESULTS A total of 309 embryo transfers occurred during the week of daylight savings transition and 1242 embryo transfers occurred in the control group outside of the daylight savings transition week. The live birth rate after embryo transfer during DST transition weeks was 39.2% (121/309) compared to 40.8% (507/1242) (p = 0.59). When restricting the analysis to individuals (age > 37 years), the live birth rate after embryo transfer during DST transition week was 23.5% (24/102) compared to 34.8% (149/429) (p = 0.03). This difference persisted in the mixed-effects regression model demonstrating that after adjusting for relevant covariates, embryo transfer during DST transition weeks resulted in a 45% decrease in the odds of achieving a live birth. CONCLUSION Daylight savings time transition may be associated with less favorable outcomes after embryo transfer among an older infertile patient population. Future work is needed to prospectively examine the influence of circadian rhythm disruption on reproductive outcomes.
Collapse
Affiliation(s)
- Ramon A Pelayo
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Jessica R Walter
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 259 E Erie St Suite 2400, Chicago, IL, 60611, USA.
| |
Collapse
|
6
|
Li QL, Wang C, Cao KX, Zhang L, Xu YS, Chang L, Liu ZH, Yang AJ, Xue YX. Sleep characteristics before assisted reproductive technology treatment predict reproductive outcomes: a prospective cohort study of Chinese infertile women. Front Endocrinol (Lausanne) 2023; 14:1178396. [PMID: 37908752 PMCID: PMC10614022 DOI: 10.3389/fendo.2023.1178396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023] Open
Abstract
Sleep disorders affect mental and physical health. Infertile women undergoing assisted reproductive technology (ART) treatment are prone to sleep disorders. Sleep condition, its influencing factors, and the association between sleep condition and ART treatment outcomes before treatment have not been explored within a population with a large sample size. Therefore, we investigated the sleep characteristics of 1002 Chinese infertile women before ovulation induction and investigated the influencing factors (negative and positive psychological factors, demographics, and fertility characteristics). We also examined whether sleep conditions before treatment predicted reproductive outcomes. We found that 24.1% of participants reported poor sleep quality. Women with primary infertility reported poorer sleep than women with secondary infertility. Negative psychological factors, including depression, anxiety, and perceived stress were associated with poor sleep, whereas positive affect was linked with good sleep. Adverse sleep characteristics, including poor subjective sleep quality, sleep disturbances, and poor sleep efficiency, decreased the quantity and quality of oocytes retrieved, fertilization rates, and clinical pregnancy rates. This study indicates that before ART treatment, a large number of females with infertility suffer from sleep problems, which are affected by psychological factors and infertility type, and unhealthy sleep characteristics may impair treatment outcomes. Our findings highlight the importance of screening and treatment for sleep disorders before the enrollment of ART treatment in infertile women.
Collapse
Affiliation(s)
- Qian-Ling Li
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chao Wang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing, China
| | - Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lin Zhang
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yun-Shuai Xu
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, China
| | - Liang Chang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhen-Hui Liu
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ai-Jun Yang
- Center for Reproductive Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| |
Collapse
|
7
|
Kember AJ, Elangainesan P, Ferraro ZM, Jones C, Hobson SR. Common sleep disorders in pregnancy: a review. Front Med (Lausanne) 2023; 10:1235252. [PMID: 37671402 PMCID: PMC10475609 DOI: 10.3389/fmed.2023.1235252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
In this review, we provide a comprehensive overview of common sleep disorders during pregnancy, including their characterization, prevalence, risk factors, and possible contribution to maternal and fetal outcomes. We conducted a quasi-systematic literature search of the MEDLINE database and identified 744 studies from 1991 through 2021, inclusive, that met our inclusion criteria. We synthesized the existing literature on sleep disorders during pregnancy and highlighted controversies, research gaps, and needed clinical developments. Our review covers a range of sleep disorders, including insomnia, obstructive sleep apnea, restless legs syndrome, and circadian rhythm disorders. We discuss the prevalence of these disorders in pregnancy and their potential impact on maternal and fetal health outcomes. We also explore the relationship between sleep disorders, pre-pregnancy comorbidities such as obesity, and pregnancy-related conditions such as gestational diabetes mellitus and preeclampsia. In addition to summarizing the existing literature on sleep disorders during pregnancy, we also highlight opportunities for further research in this area. We suggest that future studies should strive to employ validated and objective measurement tools for sleep disorders and prioritize utilization of longitudinal methods with participant follow-up through postpartum, mid-life, menopause, and beyond. We also put forward investigation into the impact of circadian rhythm disruption on reproductive physiology and early pregnancy outcomes as an area of important work. Overall, our review provides valuable insights on sleep and reproduction and into common sleep disorders during pregnancy and their potential impact on maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Allan J. Kember
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Shiphrah Biomedical Inc., Toronto, ON, Canada
| | - Praniya Elangainesan
- Temerty Faculty of Medicine, Medical Education, University of Toronto, Toronto, ON, Canada
| | - Zachary M. Ferraro
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Claire Jones
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Reproductive Endocrinology and Infertility, Mount Sinai Hospital, Toronto, ON, Canada
| | - Sebastian R. Hobson
- Department of Obstetrics and Gynaecology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Medical Education, University of Toronto, Toronto, ON, Canada
- Temerty Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Maternal-Fetal Medicine Division, Mount Sinai Hospital, Toronto, ON, Canada
| |
Collapse
|
8
|
Bora G, Önel T, Yıldırım E, Yaba A. Circadian regulation of mTORC1 signaling via Per2 dependent mechanism disrupts folliculogenesis and oocyte maturation in female mice. J Mol Histol 2023:10.1007/s10735-023-10126-9. [PMID: 37162693 DOI: 10.1007/s10735-023-10126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/04/2023] [Indexed: 05/11/2023]
Abstract
mTOR (mammalian target of Rapamycin) is an important signaling pathway involved in several crucial ovarian functions including folliculogenesis and oocyte maturation. The circadian rhythm regulates multiple physiological processes and PER2 is one of the core circadian rhythm components. mTOR is regulated by the circadian clock and in turn, the rhythmic mTOR activities strengthen the clock function. Our current study aims to investigate a possible interconnection between the circadian clock and the mTORC1 signaling pathway in folliculogenesis and oocyte maturation. Here we demonstrate that the circadian system regulates mTORC1 signaling via Per2 dependent mechanism in the mouse ovary. To investigate the effect of constant light on ovarian and oocyte morphology, animals were housed 12:12 h L:D group in standard lightening conditions and the 12:12 h L:L group in constant light for one week. Food intake and body weight changes were measured. Ovarian morphology, follicle counting, and oocyte aging were evaluated. Afterward, western blot for mTOR, p-mTOR, p70S6K, p-p70S6K, PER2, and Caspase-3 protein levels was performed. The study demonstrated that circadian rhythm disruption caused an alteration in their food intake and decrease in primordial follicle numbers and an increase in the number of atretic follicles. It caused an increase in oxidative stress and a decrease in ZP3 expression in oocytes. Decreased protein levels of mTOR, p-mTOR, p70S6K, and PER2 were shown. The results showed that the circadian clock regulates mTORC1 through PER2 dependent mechanism and that decreased mTORC1 activity can contribute to premature aging of mouse ovary. In conclusion, these results suggest that the circadian clock may control ovarian aging by regulating mTOR signaling pathway through Per2 expression.
Collapse
Affiliation(s)
- Gizem Bora
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, 34755, İstanbul, Turkey
| | - Tuğçe Önel
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, 34755, İstanbul, Turkey
| | - Ecem Yıldırım
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, 34755, İstanbul, Turkey
| | - Aylin Yaba
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, 34755, İstanbul, Turkey.
| |
Collapse
|
9
|
Guan Y, Xu M, Zhang Z, Liu C, Zhou J, Lin F, Fang J, Zhang Y, Yue Q, Zhen X, Yan G, Sun H, Liu W. Maternal circadian disruption before pregnancy impairs the ovarian function of female offspring in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161161. [PMID: 36572306 DOI: 10.1016/j.scitotenv.2022.161161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Circadian disturbance brought on by shift employment, nighttime light pollution, and other factors is quite prevalent in contemporary culture. However, the effect of maternal circadian disruption before pregnancy on the reproduction of offspring in mice requires further research. Herein, we exposed female ICR mice to constant light to establish a model of preconceptional circadian disruption and then checked the ovarian function of female offspring (named the CLE group below). Our results revealed obesity, abnormal lipid metabolism and earlier puberty onset in the CLE group. Additionally, impaired ovarian follicle development, oocyte quality and preimplantation embryo development were shown in the CLE group. Moreover, the expression levels of Gnrh1 in the hypothalamus and Cyp17a1, Bmper, Bdnf and Lyve1 in ovaries, as well as circadian clock genes, including Clock, Cry1, Nr1d2 and Per2, were significantly downregulated in the CLE group. Mechanistically, immune responses, including the interleukin-17 (IL-17) signalling pathway, cytokine-cytokine receptor interaction and the chemokine signalling pathway, were altered in the CLE group, which may be responsible for the damaged ovarian function.
Collapse
Affiliation(s)
- Yajie Guan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Manlin Xu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Zhe Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Fei Lin
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Qiuling Yue
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China.
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Wenwen Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China; Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Krajnak K, Waugh S, Welcome D, Xu XS, Warren C, McKinney W, Dong RG. Effects of whole-body vibration on reproductive physiology in a rat model of whole-body vibration. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:953-971. [PMID: 36165131 PMCID: PMC9885295 DOI: 10.1080/15287394.2022.2128954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Findings from epidemiological studies suggest that occupational exposure to whole-body vibration (WBV) may increase the risk of miscarriage and contribute to a reduction in fertility rates in both men and women. However, workers exposed to WBV may also be exposed to other risk factors that contribute to reproductive dysfunction. The goal of this experiment was to examine the effects of WBV on reproductive physiology in a rat model. Male and female rats were exposed to WBV at the resonant frequency of the torso (31.5 Hz, 0.3 g amplitude) for 4 hr/day for 10 days. WBV exposure resulted in a significant reduction in number of developing follicles, and decrease in circulating estradiol concentrations, ovarian luteinizing hormone receptor protein levels, and marked changes in transcript levels for several factors involved in follicular development, cell cycle, and steroidogenesis. In males, WBV resulted in a significant reduction in spermatids and circulating prolactin levels, elevation in number of males having higher circulating testosterone concentrations, and marked alterations in levels of transcripts associated with oxidative stress, inflammation, and factors involved in regulating the cell cycle. Based upon these findings data indicate that occupational exposure to WBV contributes to adverse alterations in reproductive physiology in both genders that may lead to reduction in fertility.
Collapse
Affiliation(s)
- K Krajnak
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - S Waugh
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - D Welcome
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - X S Xu
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - C Warren
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - W McKinney
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - R G Dong
- Physical Effects Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| |
Collapse
|
11
|
Evans MC, Campbell RE, Anderson GM. Physiological regulation of leptin as an integrative signal of reproductive readiness. Curr Opin Pharmacol 2022; 67:102321. [PMID: 36427399 DOI: 10.1016/j.coph.2022.102321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022]
Abstract
Reproductive function is tightly regulated by both environmental and physiological factors. The adipose-derived hormone leptin has been identified as one such critical factor that relays information about peripheral energy availability to the centrally-governed HPG axis to ensure there is sufficient energy availability to support the high energy demands of mammalian reproduction. In the absence of adequate central leptin signaling, reproductive function is suppressed. While leptin levels are predominantly regulated by adiposity, circulating leptin levels are also under the modulatory influence of other factors, such as stress system activation, circadian rhythmicity, and immune activation and the inflammatory response. Furthermore, changes in leptin sensitivity can affect the degree to which leptin exerts its influence on the neuroendocrine reproductive axis. This review will discuss the different mechanisms by which leptin serves to integrate and relay information about metabolic, psychological, environmental and immune conditions to the central neuronal network that governs reproductive function.
Collapse
Affiliation(s)
- Maggie C Evans
- Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Greg M Anderson
- Centre for Neuroendocrinology, University of Otago School of Biomedical Sciences, Dunedin, New Zealand.
| |
Collapse
|
12
|
Cui L, Xu F, Xu C, Ding Y, Wang S, Du M. Circadian gene Rev-erbα influenced by sleep conduces to pregnancy by promoting endometrial decidualization via IL-6-PR-C/EBPβ axis. J Biomed Sci 2022; 29:101. [PMID: 36419076 PMCID: PMC9685872 DOI: 10.1186/s12929-022-00884-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Sleep disturbance can cause adverse pregnancy outcomes by changing circadian gene expression. The potential mechanisms remain unclear. Decidualization is critical for the establishment and maintenance of normal pregnancy, which can be regulated by circadian genes. Whether Rev-erbα, a critical circadian gene, affects early pregnancy outcome by regulating decidualization needs to be explored. METHODS QPCR, western blot and artificial decidualization mouse model were used to confirm the effect of sleep disturbance on Rev-erbα expression and decidualization. The regulatory mechanism of Rev-erbα on decidualization was assessed using QPCR, western blot, RNA-Seq, and Chip-PCR. Finally, sleep disturbance mouse model was used to investigate the effect of therapeutic methods targeting Rev-erbα and interleukin 6 (IL-6) on improving adverse pregnancy outcomes induced by sleep disturbance. RESULTS Dysregulation of circadian rhythm due to sleep disturbance displayed abnormal expression profile of circadian genes in uterine including decreased level of Rev-erbα, accompanied by defective decidualization. Rev-erbα could regulate decidualization by directly repressing IL-6, which reduced the expression of CCAAT/enhancer-binding protein β (C/EBPβ) and its target insulin-like growth factor binding protein 1 (IGFBP1), the marker of decidualization, by inhibiting progesterone receptors (PR) expression. Moreover, deficient decidualization, higher abortion rate and lower implantation number were exhibited in the mouse models with sleep disturbance compared with those in normal mouse. Pharmacological activation of Rev-erbα or neutralization of IL-6 alleviated the adverse effect of sleep disturbance on pregnancy outcomes. CONCLUSIONS Taken together, Rev-erbα regulated decidualization via IL-6-PR-C/EBPβ axis and might be a connector between sleep and pregnancy outcome. Therapies targeting Rev-erbα and IL-6 might help improving adverse pregnancy outcomes induced by sleep disturbance.
Collapse
Affiliation(s)
- Liyuan Cui
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Feng Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Chunfang Xu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Yan Ding
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China
| | - Songcun Wang
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China. .,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, ZhaoZhou Road 413, Shanghai, 200011, China.
| | - Meirong Du
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, 200090, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200090, China. .,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, ZhaoZhou Road 413, Shanghai, 200011, China. .,State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, SAR, China. .,Department of Obstetrics and Gynecology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
| |
Collapse
|
13
|
Parrino L, Halasz P, Szucs A, Thomas RJ, Azzi N, Rausa F, Pizzarotti S, Zilioli A, Misirocchi F, Mutti C. Sleep medicine: Practice, challenges and new frontiers. Front Neurol 2022; 13:966659. [PMID: 36313516 PMCID: PMC9616008 DOI: 10.3389/fneur.2022.966659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep medicine is an ambitious cross-disciplinary challenge, requiring the mutual integration between complementary specialists in order to build a solid framework. Although knowledge in the sleep field is growing impressively thanks to technical and brain imaging support and through detailed clinic-epidemiologic observations, several topics are still dominated by outdated paradigms. In this review we explore the main novelties and gaps in the field of sleep medicine, assess the commonest sleep disturbances, provide advices for routine clinical practice and offer alternative insights and perspectives on the future of sleep research.
Collapse
Affiliation(s)
- Liborio Parrino
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- *Correspondence: Liborio Parrino
| | - Peter Halasz
- Szentagothai János School of Ph.D Studies, Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Anna Szucs
- Department of Behavioral Sciences, National Institute of Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Robert J. Thomas
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Nicoletta Azzi
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| | - Francesco Rausa
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Silvia Pizzarotti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| | - Alessandro Zilioli
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Carlotta Mutti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
15
|
Nagórska M, Lesińska-Sawicka M, Obrzut B, Ulman D, Darmochwał-Kolarz D, Zych B. Health Related Behaviors and Life Satisfaction in Patients Undergoing Infertility Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159188. [PMID: 35954545 PMCID: PMC9367928 DOI: 10.3390/ijerph19159188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023]
Abstract
The aim of the study was to evaluate the level of life satisfaction and health behaviors presented by patients with diagnosed infertility. This cross-sectional study included 456 patients (235 women and 221 men) from infertile couples in southeastern Poland from June 2019 to February 2020. Participants completed a questionnaire on sociodemographic characteristics, the Health Behaviors Inventory (HBI), and the Satisfaction with Life Scale (SWLS). The average score of severity of health behaviors for the study group was 82.96 points. Satisfaction with life at a higher level was declared by 57.6% of respondents, at an average level was declared by 31.4%, and at a lower level was declared by 11%. The SWLS score for the entire study group was 24.11 points (6.82 points on the sten scale). Respondents who achieved a higher rate of life satisfaction also had a higher level of severity of health behaviors (p < 0.0001). There were no significant differences between male and female SWLS scores, although the women had significantly higher rates of severity of health behaviors than men. The level of health behavior is positively related to life satisfaction in infertile patients. Medical personnel should conduct health education on a healthy lifestyle that promotes the improvement of reproductive health.
Collapse
Affiliation(s)
- Małgorzata Nagórska
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (B.O.); (D.D.-K.)
- Correspondence: ; Tel.: +48-12-872-11-45
| | | | - Bogdan Obrzut
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (B.O.); (D.D.-K.)
| | - Dariusz Ulman
- Department of Obstetrics and Gynaecology, Pro-Familia Hospital, 35-001 Rzeszow, Poland;
| | - Dorota Darmochwał-Kolarz
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland; (B.O.); (D.D.-K.)
| | - Barbara Zych
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland;
| |
Collapse
|
16
|
Beroukhim G, Esencan E, Seifer DB. Impact of sleep patterns upon female neuroendocrinology and reproductive outcomes: a comprehensive review. Reprod Biol Endocrinol 2022; 20:16. [PMID: 35042515 PMCID: PMC8764829 DOI: 10.1186/s12958-022-00889-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022] Open
Abstract
Sleep is vital to human bodily function. Growing evidence indicates that sleep deprivation, disruption, dysrhythmia, and disorders are associated with impaired reproductive function and poor clinical outcomes in women. These associations are largely mediated by molecular-genetic and hormonal pathways, which are crucial for the complex and time sensitive processes of hormone synthesis/secretion, folliculogenesis, ovulation, fertilization, implantation, and menstruation. Pathologic sleep patterns are closely linked to menstrual irregularity, polycystic ovarian syndrome, premature ovarian insufficiency, sub/infertility, and early pregnancy loss. Measures of success with assisted reproductive technology are also lower among women who engage in shift work, or experience sleep disruption or short sleep duration. Extremes of sleep duration, poor sleep quality, sleep disordered breathing, and shift work are also associated with several harmful conditions in pregnancy, including gestational diabetes and hypertensive disorders. While accumulating evidence implicates pathologic sleep patterns in impaired reproductive function and poor reproductive outcomes, additional research is needed to determine causality and propose therapeutic interventions.
Collapse
Affiliation(s)
- Gabriela Beroukhim
- Department of Obstetrics, Gynecology, and Reproductive Sciences at Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.
| | - Ecem Esencan
- Department of Obstetrics, Gynecology, and Reproductive Sciences at Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| | - David B Seifer
- Department of Obstetrics, Gynecology, and Reproductive Sciences at Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA
| |
Collapse
|
17
|
Shi F, Qiu J, Zhang S, Zhao X, Feng D, Feng X. Exogenous melatonin protects preimplantation embryo development from decabromodiphenyl ethane-induced circadian rhythm disorder and endogenous melatonin reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118445. [PMID: 34737029 DOI: 10.1016/j.envpol.2021.118445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) is a novel flame retardant that is widely used in plastics, electronic products, building materials and textiles. Our previous studies have revealed the oocyte toxicity of DBDPE, but the effect of DBDPE on preimplantation embryo development has not been reported. Here, we investigated whether and how DBDPE exposure affects preimplantation embryo development. Adult female mice were orally exposed to DBDPE (0, 5, 50, 500 μg/kg bw/day) for 14 days. First, we found that after DBDPE exposure, mice showed obvious circadian rhythm disorder. Moreover, the development of preimplantation embryos was inhibited in DBDPE-exposed mice after pregnancy. Then, we further explored and revealed that DBDPE exposure reduced the endogenous melatonin (MLT) level during pregnancy, thereby inhibiting the development of preimplantation embryos. Furthermore, we discovered that exogenous MLT supplementation (15 mg/kg bw/day) rescued the inhibition of preimplantation embryo development induced by DBDPE, and a mechanistic study demonstrated that exogenous MLT inhibited the overexpression of ROS and DNA methylation at the 5-position of cytosine (5-mC) in DBDPE-exposed preimplantation embryos. Simultaneously, MLT ameliorated the DBDPE-induced mitochondrial dysfunction by increasing the mitochondrial membrane potential (MMP), ATP, and Trp1 expression. Additionally, MLT restored DBDPE-induced changes in zona pellucida (ZP) hardness and trophectoderm (TE) cortical tension. Finally, the protective effect of MLT on embryos ameliorated the adverse reproductive outcomes (dead fetus, fetus with abnormal liver, fetal weight loss) induced by DBDPE. Collectively, DBDPE induced preimplantation embryo damage leading to adverse reproductive outcomes, and MLT has emerged as a potential tool to rescue adverse reproductive outcomes induced by DBDPE.
Collapse
Affiliation(s)
- Feifei Shi
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jinyu Qiu
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Shaozhi Zhang
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Daofu Feng
- Department of General Surgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin, 300052, China
| | - Xizeng Feng
- College of Life Science, The Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Mechanisms of Melatonin in Obesity: A Review. Int J Mol Sci 2021; 23:ijms23010218. [PMID: 35008644 PMCID: PMC8745381 DOI: 10.3390/ijms23010218] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and its complications have become a prominent global public health problem that severely threatens human health. Melatonin, originally known as an effective antioxidant, is an endogenous hormone found throughout the body that serves various physiological functions. In recent decades, increasing attention has been paid to its unique function in regulating energy metabolism, especially in glucose and lipid metabolism. Accumulating evidence has established the relationship between melatonin and obesity; nevertheless, not all preclinical and clinical evidence indicates the anti-obesity effect of melatonin, which makes it remain to conclude the clinical effect of melatonin in the fight against obesity. In this review, we have summarized the current knowledge of melatonin in regulating obesity-related symptoms, with emphasis on its underlying mechanisms. The role of melatonin in regulating the lipid profile, adipose tissue, oxidative stress, and inflammation, as well as the interactions of melatonin with the circadian rhythm, gut microbiota, sleep disorder, as well as the α7nAChR, the opioidergic system, and exosomes, make melatonin a promising agent to open new avenues in the intervention of obesity.
Collapse
|
19
|
Philipsen MT, Knudsen UB, Zachariae R, Ingerslev HJ, Hvidt JEM, Frederiksen Y. Sleep, psychological distress, and clinical pregnancy outcome in women and their partners undergoing in vitro or intracytoplasmic sperm injection fertility treatment. Sleep Health 2021; 8:242-248. [PMID: 34949542 DOI: 10.1016/j.sleh.2021.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To explore the prevalence of poor sleep quality in couples undergoing fertility treatment and study possible associations. PARTICIPANTS 163 women and 132 partners receiving in vitro (IVF) or intracytoplasmic sperm injection (ICSI) fertility treatment. SETTING Three public Danish fertility clinics. DESIGN AND MEASUREMENTS Participants completed the Pittsburgh Sleep Quality Index (PSQI) at three time-points as part of a larger RCT. Additional data from patient records and questionnaires were included to evaluate possible associations with treatment protocol type, psychological distress, and pregnancy outcome. RESULTS Mean PSQI global scores before treatment were 8.1 (standard deviation = 2.3), with 91% of participants having PSQI scores > 5, indicating poor sleep quality. Scores did not differ between women and their partners and did not change during treatment. Statistically significant associations were found between sleep quality and depressive symptoms and state anxiety (p < .001). No difference in PSQI scores was found between protocol types. While there was a trend towards higher clinical pregnancy rates among women with good sleep quality (PSQI ≤ 5 = 72.7%, PSQI 6-10 = 52.6% and PSQI ≥ 11 = 42.3%), the differences did not reach statistical significance (p = .10-.21). CONCLUSIONS Poor sleep quality is a prevalent problem among couples undergoing fertility treatment and is associated with psychological distress and possibly with pregnancy outcomes. Success rates after fertility treatment remain moderate, and poor sleep quality, a potentially modifiable factor, could be relevant to screen for and treat among couples undergoing fertility treatment. The high prevalence of poor sleep quality calls for further investigation.
Collapse
Affiliation(s)
- Marie Tholstrup Philipsen
- Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark.
| | - Ulla Breth Knudsen
- Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark; Horsens Fertility Clinic, Horsens Hospital, Horsens, Denmark
| | - Robert Zachariae
- Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark; Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Jakob Ingerslev
- Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Gynaecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
| | - Julius Edward Miller Hvidt
- Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark
| | - Yoon Frederiksen
- Department of Psychology and Behavioural Sciences, Aarhus University, Aarhus, Denmark; The Sexology Unit, Department of Affective Disorders, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
20
|
Han Q, He X, Di R, Chu M. Comparison of expression patterns of six canonical clock genes of follicular phase and luteal phase in Small-tailed Han sheep. Arch Anim Breed 2021; 64:457-466. [PMID: 34746369 PMCID: PMC8567854 DOI: 10.5194/aab-64-457-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
The circadian rhythm is a biological rhythm that is closely related to
the rhythmic expression of a series of clock genes. Results from several
studies have indicated that clock genes are associated with the estrous cycle in
female animals. Until now, the relationship between estrus cycle transition
and clock gene expression in reproductive-axis-related tissues has remained
unknown in Small-tailed Han (STH) sheep. This study was conducted to analyze
the expression patterns of six canonical clock genes (Clock, BMAL1, Per1, Per2, Cry1, and Cry2) in the follicle
phase and luteal phase of STH sheep. We found that all six genes were
expressed in the brain, cerebellum, hypothalamus, pituitary, ovary, uterus,
and oviduct in follicle and luteal phases. The results indicated that Clock expression
was significantly higher in the cerebellum, hypothalamus, and uterus of
the luteal phase than that of the follicle phase, whereas BMAL1 expression was
significantly higher in the hypothalamus of the luteal phase than that of
the follicle phase. Per1 expression was significantly higher in the brain,
cerebellum, hypothalamus, and pituitary of the luteal phase than that of the follicle
phase, and Per2 expression was significantly higher in the hypothalamus,
pituitary, and uterus of the luteal phase than that of the follicle phase. Cry1
expression was significantly higher in the brain, cerebellum, and
hypothalamus of the luteal phase than that of the follicle phase, whereas Cry2 expression
was significantly higher in the pituitary of the luteal phase than that of the
follicle phase. The clock gene expression in all tissues was different
between follicle and luteal phases, but all clock gene mRNA levels were
found to exhibit higher expression among seven tissues in the luteal
phase. Our results suggest that estrous cycles may be associated
with clock gene expression in the STH sheep. This is the first study to
systematically analyze the expression patterns of clock genes of different
estrous cycle in ewes, which could form a basis for further studies to
develop the relationship between clock genes and the estrous cycle.
Collapse
Affiliation(s)
- Qi Han
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
21
|
Objective sleep duration and timing predicts completion of in vitro fertilization cycle. J Assist Reprod Genet 2021; 38:2687-2696. [PMID: 34374922 DOI: 10.1007/s10815-021-02260-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/10/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To examine associations between objectively measured sleep duration and sleep timing with odds of completion of an in vitro fertilization (IVF) cycle. METHODS This prospective cohort study enrolled 48 women undergoing IVF at a large tertiary medical center between 2015 and 2017. Sleep was assessed by wrist-worn actigraphy, 1-2 weeks prior to initiation of the IVF cycle. Reproductive and IVF cycle data and demographic and health information were obtained from medical charts. Sleep duration, midpoint, and bedtime were examined in relation to IVF cycle completion using logistic regression models, adjusted for age and anti-Müllerian hormone levels. A sub-analysis excluded women who worked non-day shifts to control for circadian misalignment. RESULTS The median age of all participants was 33 years, with 29% of women >35 years. Ten women had an IVF cycle cancelation prior to embryo transfer. These women had shorter sleep duration, more nocturnal awakenings, lower sleep efficiency, and later sleep timing relative to those who completed their cycle. Longer sleep duration was associated with lower odds of uncompleted IVF cycle (OR = 0.88; 95%CI 0.78, 1.00, per 20-min increment of increased sleep duration). Women with later sleep midpoint and later bedtime had higher odds of uncompleted cycle relative to those with earlier midpoint and earlier bedtime; OR = 1.24; 95%CI 1.09, 1.40 and OR = 1.33; 95%CI 1.17, 1.53 respectively, for 20-min increments. These results were independent of age, anti-Müllerian hormone levels, or sleep duration, and remained significant after exclusion of shift-working women. CONCLUSIONS Shorter sleep duration and later sleep timing increase the odds of uncompleted cycles prior to embryo transfer.
Collapse
|
22
|
Shao S, Zhao H, Lu Z, Lei X, Zhang Y. Circadian Rhythms Within the Female HPG Axis: From Physiology to Etiology. Endocrinology 2021; 162:6298422. [PMID: 34125877 PMCID: PMC8256628 DOI: 10.1210/endocr/bqab117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Declining female fertility has become a global health concern. It results partially from an abnormal circadian clock caused by unhealthy diet and sleep habits in modern life. The circadian clock system is a hierarchical network consisting of central and peripheral clocks. It not only controls the sleep-wake and feeding-fasting cycles but also coordinates and maintains the required reproductive activities in the body. Physiologically, the reproductive processes are governed by the hypothalamic-pituitary-gonadal (HPG) axis in a time-dependent manner. The HPG axis releases hormones, generates female characteristics, and achieves fertility. Conversely, an abnormal daily rhythm caused by aberrant clock genes or abnormal environmental stimuli contributes to disorders of the female reproductive system, such as polycystic ovarian syndrome and premature ovarian insufficiency. Therefore, breaking the "time code" of the female reproductive system is crucial. In this paper, we review the interplay between circadian clocks and the female reproductive system and present its regulatory principles, moving from normal physiology regulation to disease etiology.
Collapse
Affiliation(s)
- Shuyi Shao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Zhiying Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Xiaohong Lei
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
| | - Ying Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
- The Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, 200011, China
- Correspondence: Dr. Ying Zhang, Obstetrics and Gynecology Hospital of Fudan University, Fangxie Road 419, Huangpu District, Shanghai, 200011, China.
| |
Collapse
|
23
|
Imrie R, Ghosh S, Narvekar N, Vigneswaran K, Wang Y, Savvas M. Socioeconomic status and fertility treatment outcomes in high-income countries: a review of the current literature. HUM FERTIL 2021:1-11. [PMID: 34315303 DOI: 10.1080/14647273.2021.1957503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The association between socioeconomic status and fertility is a subject that has received much attention. Yet, little is known as to whether the socioeconomic status has an impact on the outcomes of fertility treatment. This systematic review aims to assess any possible relationship between socioeconomic deprivation and treatment outcomes. A database search was conducted of all publications in this field up to March 2021. Eleven studies were identified and six of these specifically investigated the impact of socioeconomic status on fertility treatment outcomes. Children conceived following assisted conception are more likely to be born to mothers of a higher socioeconomic status than those conceived naturally. Of the few studies investigating the impact of socioeconomic status on fertility treatment outcomes and the results are conflicting, making it difficult to draw robust conclusions as to its effect. It is unknown which, if any, marker of socioeconomic status is the most significant for fertility patients: whether it is the characteristics of the individual or that of their surroundings. Further research is urgently needed.
Collapse
Affiliation(s)
- Rachel Imrie
- Women's Services, King's College Hospital, London, UK.,King's Fertility, The Fetal Medicine Research Institute, London, UK
| | - Srirupa Ghosh
- Women's Services, King's College Hospital, London, UK
| | | | | | - Yanzhong Wang
- School of Population Health & Environmental Sciences, King's College London, London, UK
| | - Mike Savvas
- Women's Services, King's College Hospital, London, UK
| |
Collapse
|
24
|
Unraveling the Balance between Genes, Microbes, Lifestyle and the Environment to Improve Healthy Reproduction. Genes (Basel) 2021; 12:genes12040605. [PMID: 33924000 PMCID: PMC8073673 DOI: 10.3390/genes12040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Humans’ health is the result of a complex and balanced interplay between genetic factors, environmental stimuli, lifestyle habits, and the microbiota composition. The knowledge about their single contributions, as well as the complex network linking each to the others, is pivotal to understand the mechanisms underlying the onset of many diseases and can provide key information for their prevention, diagnosis and therapy. This applies also to reproduction. Reproduction, involving almost 10% of our genetic code, is one of the most critical human’s functions and is a key element to assess the well-being of a population. The last decades revealed a progressive decline of reproductive outcomes worldwide. As a consequence, there is a growing interest in unveiling the role of the different factors involved in human reproduction and great efforts have been carried out to improve its outcomes. As for many other diseases, it is now clear that the interplay between the underlying genetics, our commensal microbiome, the lifestyle habits and the environment we live in can either exacerbate the outcome or mitigate the adverse effects. Here, we aim to analyze how each of these factors contribute to reproduction highlighting their individual contribution and providing supporting evidence of how to modify their impact and overall contribution to a healthy reproductive status.
Collapse
|
25
|
Mehrafza M, Asgharnia M, Raoufi A, Hosseinzadeh E, Samadnia S, Roushan ZA. The effect of seasonality on reproductive outcome of patients undergoing intracytoplasmic sperm injection: A descriptive cross-sectional study. Int J Reprod Biomed 2020; 18:989-994. [PMID: 33349808 PMCID: PMC7749974 DOI: 10.18502/ijrm.v13i11.7967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/04/2019] [Accepted: 06/13/2020] [Indexed: 11/24/2022] Open
Abstract
Background There is conflicting evidence regarding the impact of season on the assisted reproductive technology outcome. Objective To retrospectively compare three year outcome of women undergoing their first intracytoplasmic sperm injection cycle, across seasons. Materials and Methods In this descriptive cross-sectional study, 3,670 women who underwent their first intracytoplasmic sperm injection cycle in Mehr Medical Institute, Rasht, Iran between April 2010 and May 2014 were studied. Women were divided into four groups according to the day of oocyte retrival as: spring (n = 808), summer (n = 994), autumn (n = 1066), and winter (n = 802). Basal and stimulation charecteristics were compared among groups. Results While sperm concentration and motility were significantly lower during summer, the total number of retrieved and metaphase II oocytes were significantly higher (p = 0.0001, p = 0.0001, p = 0.004, p = 0.02, respectively). Fertilization rate were significantly higher during autumn (p = 0.0001). Also, the number of high- quality transferred embryos were significantly higher during summer and winter (p = 0.03). A similar pattern was observed in implantation rate and pregnancy over the four seasons. Conclusion Despite the fact that intracytoplasmic sperm injection minimize the seasonal effect on pregnancy outcome, changes in pregnancy rate still occur among different seasons without particular pattern. It seems that performing assisted reproductive technology procedures in a particular season should be considered as an effective factor.
Collapse
Affiliation(s)
- Marzieh Mehrafza
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Asgharnia
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran.,Reproductive Health Research Center, Department of Obstetrics and Gynecology, Alzahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Azadeh Raoufi
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Elmira Hosseinzadeh
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sajedeh Samadnia
- Mehr Fertility Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Atrkar Roushan
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, Alzahra Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
26
|
Daylight Saving Time and Spontaneous Deliveries: A Case-Control Study in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17218091. [PMID: 33153052 PMCID: PMC7662372 DOI: 10.3390/ijerph17218091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/25/2020] [Accepted: 10/25/2020] [Indexed: 01/20/2023]
Abstract
(1) Background: Although the current literature shows that daylight saving time (DST) may play a role in human health and behavior, this topic has been poorly investigated with reference to Obstetrics. The aim of this case–control study was to evaluate whether DST may influence the number of spontaneous deliveries. (2) Methods: A low-risk pregnancy cohort with spontaneous onset of labor (n = 7415) was analyzed from a single Italian region for the period 2016–2018. Primary outcome was the number of spontaneous deliveries. Secondary outcomes were: gestational age at delivery, type and time of delivery, use of analgesia, birth weight, and 5-min Apgar at delivery. We compared the outcomes in the two weeks after DST (cases) to the two weeks before DST (controls). (3) Results: Data showed no significant difference between the number of deliveries occurring before and after DST (Chi-square = 0.546, p = 0.46). Vaginal deliveries at any gestational age showed no statistical difference between the two groups (Chi-square = 0.120, p = 0.73). There were no significant differences in the secondary outcomes, as well. (4) Conclusions: DST has neither a significant impact on the number of deliveries nor on the obstetric variables investigated by this study.
Collapse
|
27
|
Hua L, Feng B, Huang L, Li J, Luo T, Jiang X, Han X, Che L, Xu S, Lin Y, Fang Z, Wu D, Zhuo Y. Time-restricted feeding improves the reproductive function of female mice via liver fibroblast growth factor 21. Clin Transl Med 2020; 10:e195. [PMID: 33135359 PMCID: PMC7533054 DOI: 10.1002/ctm2.195] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/16/2020] [Accepted: 09/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background There has been a significant increase, to epidemic levels, of obese and overweight women of reproductive age, causing impairments to reproductive health. Time‐restricted feeding (TRF) including isocaloric intake has shown to be preventive of obesity‐related disorders. However, its therapeutic ability to improve the reproductive function of female remains largely unknown. Methods Here, we investigated the ability of TRF to improve the reproductive function in wild‐type and liver‐specific FGF21 knockout female mice. To study fertility, a continuous and a short‐term fertility test, gonadotropin releasing‐hormone (GnRH), and Kisspeptin test were performed. Immortalized GnRH neuron was used to examine the direct role of liver fibroblast growth factor 21 (FGF21) on GnRH secretion. Results We found that TRF rescues female mice from bodyweight gain and glucose intolerance, as well as ovarian follicle loss and dysfunction of estrus cyclicity induced by high‐fat diet. Furthermore, the beneficial effects of the TRF regimen on the reproductive performance were also observed in mice fed both chow and high‐fat diet. However, those beneficial effects of TRF on metabolism and reproduction were absent in liver‐specific FGF21 knockout mice. In vitro, FGF21 directly acted on GnRH neurons to modulate GnRH secretion via extracellular regulated protein kinases (ERK1/2) pathway. Conclusions Overall, time‐restricted feeding improves the reproductive function of female mice and liver FGF21 signaling plays a key role in GnRH neuron activity in female mice.
Collapse
Affiliation(s)
- Lun Hua
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Liansu Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jing Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Ting Luo
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Xuemei Jiang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xingfa Han
- School of Life Sciences, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lianqiang Che
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Shengyu Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yan Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - De Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yong Zhuo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory for Animal Disease-Resistant Nutrition of the Ministry of Education of China, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease-Resistant Nutrition of Sichuan Province, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
28
|
Dunietz GL, Vanini G, Shannon C, O'Brien LM, Chervin RD. Associations of plasma hypocretin-1 with metabolic and reproductive health: Two systematic reviews of clinical studies. Sleep Med Rev 2020; 52:101307. [PMID: 32259696 PMCID: PMC7351596 DOI: 10.1016/j.smrv.2020.101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
The hypocretin system consists of two peptides hypocretin-1 and hypocretin-2 (HCRT1 and HCRT2). Hypocretin-containing neurons are located in the posterior and lateral hypothalamus, and have widespread projections throughout the brain and spinal cord. In addition to its presence in the cerebrospinal fluid (CSF), peripheral HCRT1 has been detected in plasma. Robust experimental evidence demonstrates functions of hypothalamic-originated HCRT1 in regulation of multiple biological systems related to sleep-wake states, energy homeostasis and endocrine function. In contrast, HCRT1 studies with human participants are limited by the necessarily invasive assessment of CSF HCRT1 to patients with underlying morbidity. Regulation by HCRT1 of energy homeostasis and reproduction in animals suggests similar regulation in humans and prompts these two systematic reviews. These reviews translate prior experimental findings from animal studies to humans and examine associations between HCRT1 and: 1) metabolic risk factors; 2) reproductive function in men, women and children. A total of 21 studies and six studies met the inclusion criteria for the two searches, respectively. Research question, study design, study population, assessments of HCRT1, reproductive, cardiometabolic data and main findings were extracted. Associations between HCRT1, metabolic and reproductive function are inconsistent. Limitations of studies and future research directions are outlined.
Collapse
Affiliation(s)
- Galit L Dunietz
- Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carol Shannon
- Taubman Health Sciences Library, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Louise M O'Brien
- Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ronald D Chervin
- Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
29
|
Disruption of Circadian Rhythms: A Crucial Factor in the Etiology of Infertility. Int J Mol Sci 2020; 21:ijms21113943. [PMID: 32486326 PMCID: PMC7312974 DOI: 10.3390/ijms21113943] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Infertility represents a growing health problem in industrialized countries. Thus, a greater understanding of the molecular networks involved in this disease could be critical for the development of new therapies. A recent finding revealed that circadian rhythmicity disruption is one of the main causes of poor reproductive outcome. The circadian clock system beats circadian rhythms and modulates several physiological functions such as the sleep-wake cycle, body temperature, heart rate, and hormones secretion, all of which enable the body to function in response to a 24 h cycle. This intricated machinery is driven by specific genes, called “clock genes” that fine-tune body homeostasis. Stress of modern lifestyle can determine changes in hormone secretion, favoring the onset of infertility-related conditions that might reflect disfunctions within the hypothalamic–pituitary–gonadal axis. Consequently, the loss of rhythmicity in the suprachiasmatic nuclei might affect pulsatile sexual hormones release. Herein, we provide an overview of the recent findings, in both animal models and humans, about how fertility is influenced by circadian rhythm. In addition, we explore the complex interaction among hormones, fertility and the circadian clock. A deeper analysis of these interactions might lead to novel insights that could ameliorate the therapeutic management of infertility and related disorders.
Collapse
|