1
|
Pobeguts OV, Galyamina MA, Mikhalchik EV, Kovalchuk SI, Smirnov IP, Lee AV, Filatova LY, Sikamov KV, Panasenko OM, Gorbachev AY. The Role of Propionate-Induced Rearrangement of Membrane Proteins in the Formation of the Virulent Phenotype of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. Int J Mol Sci 2024; 25:10118. [PMID: 39337603 PMCID: PMC11431891 DOI: 10.3390/ijms251810118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Adhesive-invasive E. coli has been suggested to be associated with the development of Crohn's disease (CD). It is assumed that they can provoke the onset of the inflammatory process as a result of the invasion of intestinal epithelial cells and then, due to survival inside macrophages and dendritic cells, stimulate chronic inflammation. In previous reports, we have shown that passage of the CD isolate ZvL2 on minimal medium M9 supplemented with sodium propionate (PA) as a carbon source stimulates and inhibits the adherent-invasive properties and the ability to survive in macrophages. This effect was reversible and not observed for the laboratory strain K12 MG1655. We were able to compare the isogenic strain AIEC in two phenotypes-virulent (ZvL2-PA) and non-virulent (ZvL2-GLU). Unlike ZvL2-GLU, ZvL2-PA activates the production of ROS and cytokines when interacting with neutrophils. The laboratory strain does not cause a similar effect. To activate neutrophils, bacterial opsonization is necessary. Differences in neutrophil NADH oxidase activation and ζ-potential for ZvL2-GLU and ZvL2-PA are associated with changes in membrane protein abundance, as demonstrated by differential 2D electrophoresis and LC-MS. The increase in ROS and cytokine production during the interaction of ZvL2-PA with neutrophils is associated with a rearrangement of the abundance of membrane proteins, which leads to the activation of Rcs and PhoP/Q signaling pathways and changes in the composition and/or modification of LPS. Certain isoforms of OmpA may play a role in the formation of the virulent phenotype of ZvL2-PA and participate in the activation of NADPH oxidase in neutrophils.
Collapse
Affiliation(s)
- Olga V Pobeguts
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Maria A Galyamina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Elena V Mikhalchik
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Sergey I Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Ulitsa Mikluho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Igor P Smirnov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Alena V Lee
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Lyubov Yu Filatova
- Department of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1-3, 119991 Moscow, Russia
| | - Kirill V Sikamov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| | - Alexey Yu Gorbachev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya 1a, 119435 Moscow, Russia
| |
Collapse
|
2
|
Bustamante P, Ramos-Corominas MN, Martinez-Medina M. Contribution of Toxin-Antitoxin Systems to Adherent-Invasive E. coli Pathogenesis. Microorganisms 2024; 12:1158. [PMID: 38930540 PMCID: PMC11205521 DOI: 10.3390/microorganisms12061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Pathobionts have been implicated in various chronic diseases, including Crohn's disease (CD), a multifactorial chronic inflammatory condition that primarily affects the gastrointestinal tract, causing inflammation and damage to the digestive system. While the exact cause of CD remains unclear, adherent-invasive Escherichia coli (AIEC) strains have emerged as key contributors to its pathogenesis. AIEC are characterized by their ability to adhere to and invade intestinal epithelial cells and survive and replicate inside macrophages. However, the mechanisms underlying the virulence and persistence of AIEC within their host remain the subject of intensive research. Toxin-antitoxin systems (TAs) play a potential role in AIEC pathogenesis and may be therapeutic targets. These systems generally consist of two components: a toxin harmful to the cell and an antitoxin that neutralizes the toxin's effects. They contribute to bacterial survival in adverse conditions and regulate bacterial growth and behavior, affecting various cellular processes in bacterial pathogens. This review focuses on the current information available to determine the roles of TAs in the pathogenicity of AIEC. Their contribution to the AIEC stress response, biofilm formation, phage inhibition, the maintenance of mobile genetic elements, and host lifestyles is discussed.
Collapse
Affiliation(s)
- Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - María Núria Ramos-Corominas
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| | - Margarita Martinez-Medina
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| |
Collapse
|
3
|
Iaquinto G, Aufiero VR, Mazzarella G, Lucariello A, Panico L, Melina R, Iaquinto S, De Luca A, Sellitto C. Pathogens in Crohn's Disease: The Role of Adherent Invasive Escherichia coli. Crit Rev Eukaryot Gene Expr 2024; 34:83-99. [PMID: 38305291 DOI: 10.1615/critreveukaryotgeneexpr.2023050088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In Crohn's disease (CD), gut dysbiosis is marked by the prevalence of pathogenic bacterial species. Although several microbes have been reported as risk factors or causative agents of CD, it is not yet clear which is the real trigger of the disease. Thirty years ago, a new pathovar of Escherichia coli strain was isolated in the ileal mucosa of CD patients. This strain, called adherent invasive E. coli (AIEC), for its ability to invade the intestinal mucosa, could represent the causative agent of the disease. Several authors studied the mechanisms by which the AIEC penetrate and replicate within macrophages, and release inflammatory cytokines sustaining inflammation. In this review we will discuss about the role of AIEC in the pathogenesis of CD, the virulence factors mediating adhesion and invasion of AIEC in mucosal tissue, the environmental conditions improving AIEC survival and replication within macrophages. Finally, we will also give an overview of the new strategies developed to limit AIEC overgrowth.
Collapse
Affiliation(s)
- Gaetano Iaquinto
- Gastroenterology Division, S. Rita Hospital, Atripalda, Avellino, Italy
| | - Vera Rotondi Aufiero
- Institute of Food Sciences, CNR, Avellino, Italy and Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Giuseppe Mazzarella
- Institute of Food Sciences, CNR, Avellino, Italy and Department of Translational Medical Science and E.L.F.I.D, University "Federico II" Napoli, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope," 80100, Naples, Italy
| | - Luigi Panico
- Pathological Anatomy and Histology Unit, Monaldi Hospital, Napoli, Italy
| | - Raffaele Melina
- Department of Gastroenterology, San G. Moscati Hospital, Avellino, Italy
| | | | - Antonio De Luca
- Department of Mental Health and Physics, Preventive Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy
| | | |
Collapse
|
4
|
Wen W, Xu Y, Qian W, Huang L, Gong J, Li Y, Zhu W, Guo Z. PUFAs add fuel to Crohn's disease-associated AIEC-induced enteritis by exacerbating intestinal epithelial lipid peroxidation. Gut Microbes 2023; 15:2265578. [PMID: 37800577 PMCID: PMC10561586 DOI: 10.1080/19490976.2023.2265578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) have been shown to exacerbate Crohn's disease (CD) by promoting lipid peroxidation (LPO) of intestinal epithelial cells (IECs). Dysbiosis of the gut microbiota may play a crucial role in this process. CD patients often exhibit an increased abundance of Escherichia coli (E. coli) in the gut, and the colonization of adherent-invasive E. coli (AIEC) is implicated in the initiation of intestinal inflammation in CD. However, the impact of AIEC on LPO remains unclear. In this study, we observed that AIEC colonization in the terminal ileum of CD patients was associated with decreased levels of glutathione peroxidase 4 (GPX4) and ferritin heavy chain (FTH) in the intestinal epithelium, along with elevated levels of 4-Hydroxynonenal (4-HNE). In vitro experiments demonstrated that AIEC infection reduced the levels of GPX4 and FTH, increased LPO, and induced ferroptosis in IECs. Furthermore, arachidonic acid (AA) and docosahexaenoic acid (DHA) supplementation in AIEC-infected IECs significantly aggravated LPO and ferroptosis. However, overexpression of GPX4 rescued AIEC-induced LPO and ferroptosis in IECs. Our results further confirmed that AIEC with AA supplementation, associated with excessive LPO and cell death in IECs, worsened colitis in the DSS mouse model and induced enteritis in the antibiotic cocktail pre-treatment mouse model in vivo. Moreover, treatment with ferrostatin-1, a ferroptosis inhibitor, alleviated AIEC with AA supplementation-induced enteritis in mice, accompanied by reduced LPO and cell death in IECs. Our findings suggest that AIEC, in combination with PUFA supplementation, can induce and exacerbate intestinal inflammation, primarily through increased LPO and ferroptosis in IECs.
Collapse
Affiliation(s)
- Weiwei Wen
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, Nanjing, China
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yihan Xu
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenwei Qian
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, Nanjing, China
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liangyu Huang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianfeng Gong
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Li
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, Nanjing, China
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhen Guo
- Department of General Surgery, Jinling Hospital, Medical School of Southeast University, Nanjing, China
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Bonet-Rossinyol Q, Camprubí-Font C, López-Siles M, Martinez-Medina M. Identification of differences in gene expression implicated in the Adherent-Invasive Escherichia coli phenotype during in vitro infection of intestinal epithelial cells. Front Cell Infect Microbiol 2023; 13:1228159. [PMID: 37767199 PMCID: PMC10519790 DOI: 10.3389/fcimb.2023.1228159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction Adherent-invasive Escherichia coli (AIEC) is strongly associated with the pathogenesis of Crohn's disease (CD). However, no molecular markers currently exist for AIEC identification. This study aimed to identify differentially expressed genes (DEGs) between AIEC and non-AIEC strains that may contribute to AIEC pathogenicity and to evaluate their utility as molecular markers. Methods Comparative transcriptomics was performed on two closely related AIEC/non-AIEC strain pairs during Intestine-407 cell infection. DEGs were quantified by RT-qPCR in the same RNA extracts, as well as in 14 AIEC and 23 non-AIEC strains to validate the results across a diverse strain collection. Binary logistical regression was performed to identify DEGs whose quantification could be used as AIEC biomarkers. Results Comparative transcriptomics revealed 67 differences in expression between the two phenotypes in the strain pairs, 50 of which (81.97%) were corroborated by RT-qPCR. When explored in the whole strain collection, 29 DEGs were differentially expressed between AIEC and non-AIEC phenotypes (p-value < 0.042), and 42 genes between the supernatant fraction of infected cell cultures and the cellular fraction containing adhered and intracellular bacteria (p-value < 0.049). Notably, six DEGs detected in the strain collection were implicated in arginine biosynthesis and five in colanic acid synthesis. Furthermore, two biomarkers based on wzb and cueR gene expression were proposed with an accuracy of ≥ 85% in our strain collection. Discussion This is the first transcriptomic study conducted using AIEC-infected cell cultures. We have identified several genes that may be involved in AIEC pathogenicity, two of which are putative biomarkers for identification.
Collapse
|
6
|
Larabi AB, Masson HLP, Bäumler AJ. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 2023; 15:2172671. [PMID: 36740850 PMCID: PMC9904317 DOI: 10.1080/19490976.2023.2172671] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Changes in the composition of gut-associated microbial communities are associated with many human illnesses, but the factors driving dysbiosis remain incompletely understood. One factor governing the microbiota composition in the gut is bile. Bile acids shape the microbiota composition through their antimicrobial activity and by activating host signaling pathways that maintain gut homeostasis. Although bile acids are host-derived, their functions are integrally linked to bacterial metabolism, which shapes the composition of the intestinal bile acid pool. Conditions that change the size or composition of the bile acid pool can trigger alterations in the microbiota composition that exacerbate inflammation or favor infection with opportunistic pathogens. Therefore, manipulating the composition or size of the bile acid pool might be a promising strategy to remediate dysbiosis.
Collapse
Affiliation(s)
- Anaïs B. Larabi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Hugo L. P. Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| |
Collapse
|
7
|
Saitz W, Montero DA, Pardo M, Araya D, De la Fuente M, Hermoso MA, Farfán MJ, Ginard D, Rosselló-Móra R, Rasko DA, Del Canto F, Vidal RM. Characterization of Adherent-Invasive Escherichia coli (AIEC) Outer Membrane Proteins Provides Potential Molecular Markers to Screen Putative AIEC Strains. Int J Mol Sci 2022; 23:ijms23169005. [PMID: 36012279 PMCID: PMC9409007 DOI: 10.3390/ijms23169005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 01/28/2023] Open
Abstract
Adherent-invasive E. coli (AIEC) is a pathotype associated with the etiopathogenesis of Crohn's disease (CD), albeit with an as-yet unclear role. The main pathogenic mechanisms described for AIEC are adherence to epithelial cells, invasion of epithelial cells, and survival and replication within macrophages. A few virulence factors have been described as participating directly in these phenotypes, most of which have been evaluated only in AIEC reference strains. To date, no molecular markers have been identified that can differentiate AIEC from other E. coli pathotypes, so these strains are currently identified based on the phenotypic characterization of their pathogenic mechanisms. The identification of putative AIEC molecular markers could be beneficial not only from the diagnostic point of view but could also help in better understanding the determinants of AIEC pathogenicity. The objective of this study was to identify molecular markers that contribute to the screening of AIEC strains. For this, we characterized outer membrane protein (OMP) profiles in a group of AIEC strains and compared them with the commensal E. coli HS strain. Notably, we found a set of OMPs that were present in the AIEC strains but absent in the HS strain. Moreover, we developed a PCR assay and performed phylogenomic analyses to determine the frequency and distribution of the genes coding for these OMPs in a larger collection of AIEC and other E. coli strains. As result, it was found that three genes (chuA, eefC, and fitA) are widely distributed and significantly correlated with AIEC strains, whereas they are infrequent in commensal and diarrheagenic E. coli strains (DEC). Additional studies are needed to validate these markers in diverse strain collections from different geographical regions, as well as investigate their possible role in AIEC pathogenicity.
Collapse
Affiliation(s)
- Waleska Saitz
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - David A. Montero
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Mirka Pardo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Daniela Araya
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marjorie De la Fuente
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Marcela A. Hermoso
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Department of Gastroenterology and Hepatology, University Medical Center Groningen (UMCG), University of Groningen, 9712 Groningen, The Netherlands
| | - Mauricio J. Farfán
- Departamento de Pediatría y Cirugía Infantil Oriente, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago 7500539, Chile
| | - Daniel Ginard
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain
| | - Ramon Rosselló-Móra
- Grupo de Microbiología Marina, Instituto Mediterráneo de Estudios Avanzados (IMEDEA; CSIC-UIB), 07190 Esporles, Illes Balears, Spain
| | - Dave A. Rasko
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Felipe Del Canto
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (F.D.C.); (R.M.V.)
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (F.D.C.); (R.M.V.)
| |
Collapse
|
8
|
Crohn’s Disease, Host–Microbiota Interactions, and Immunonutrition: Dietary Strategies Targeting Gut Microbiome as Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23158361. [PMID: 35955491 PMCID: PMC9369148 DOI: 10.3390/ijms23158361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Crohn’s disease (CD) is a complex, disabling, idiopathic, progressive, and destructive disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the interplay between host genetics, and environmental factors, resulting in an aberrant immune response leading to intestinal inflammation. Due to the high morbidity and long-term management of CD, the development of non-pharmacological approaches to mitigate the severity of CD has recently attracted great attention. The gut microbiota has been recognized as an important player in the development of CD, and general alterations in the gut microbiome have been established in these patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut microbiome in terms of composition and functionality. However, how specific dietary strategies could modulate the gut microbiota composition and how this would impact host–microbe interactions in CD are still unclear. In this review, we discuss the most recent knowledge on host–microbe interactions and their involvement in CD pathogenesis and severity, and we highlight the most up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the role of the microbiota in gut inflammation and immunity.
Collapse
|
9
|
Kamali Dolatabadi R, Fazeli H, Emami MH, Karbasizade V, Maghool F, Fahim A, Rahimi H. Phenotypicand Genotypic Characterization of Clinical Isolates of Intracellular Adherent–Invasive Escherichia coli Among Different Stages, Family History, and Treated Colorectal Cancer Patients in Iran. Front Cell Infect Microbiol 2022; 12:938477. [PMID: 35899040 PMCID: PMC9309365 DOI: 10.3389/fcimb.2022.938477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
There is increasing evidence showing that microbial dysbiosis impacts the health and cancer risk of the host. An association between adherent–invasive Escherichia coli (AIEC) and colorectal cancer (CRC) has been revealed. Cyclomodulins (CMs) have been receiving increasing attention for carcinogenic changes. In this study, the incidence and features of intracellular AIEC and cyclomodulin-encoding genes were investigated and the phylogenetic grouping and genetic relatedness were evaluated. E. coli strains were isolated from the colorectal biopsies. Adhesion and invasion assays and intramacrophage cell survival test were performed to separate the AIEC isolates. Virulence genotyping for the genes htrA, dsbA, chuA, and lpfA and the cyclomodulin toxins was also conducted. In addition, phylogenetic grouping of the isolates was determined. Subsequently, repetitive element sequence-based PCR (rep-PCR) fingerprinting was performed. A total of 24 AIEC pathovars were isolated from 150 patients. The prevalence rates of htr, dsbA, and lpfA were 70.83% and that of chuA was 91.66%. The frequencies of the cyclomodulin toxins were as follows: cnf1, 29.2%; cnf2, 25%; colibactin, 29.2%; and cdt, 4.2%; cif was not found. Among the AIEC isolates, 4.2%, 4.2%, 54.2%, 29.2%, and 8.3% with phylotypes A or C, B1, B2, D, and E were identified, respectively. Left-sided colon carcinoma and adenocarcinoma T≥1 stage (CRC2) were colonized by B2 phylogroup AIEC-producing CMs more often than the samples from the other groups. Close genetic relatedness was observed in AIEC isolates with rep-PCR.
Collapse
Affiliation(s)
- Razie Kamali Dolatabadi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- *Correspondence: Hossein Fazeli,
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Karbasizade
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Fahim
- Poursina Hakim Digestive Diseases Research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojatollah Rahimi
- Poursina Hakim Digestive Diseases Research center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Nikolakis D, de Voogd FAE, Pruijt MJ, Grootjans J, van de Sande MG, D’Haens GR. The Role of the Lymphatic System in the Pathogenesis and Treatment of Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms23031854. [PMID: 35163775 PMCID: PMC8836364 DOI: 10.3390/ijms23031854] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
Although the number of therapeutic options for the treatment of inflammatory bowel disease (IBD) has increased in recent years, patients suffer from decreased quality of life due to non-response or loss of response to the currently available treatments. An increased understanding of the disease’s etiology could provide novel insights for treatment strategies in IBD. Lymphatic system components are generally linked to immune responses and presumably related to inflammatory diseases pathophysiology. This review aims to summarize findings on immune-mediated mechanisms in lymphoid tissues linked with IBD pathogenesis and (potential) novel treatments. Enhanced innate and adaptive immune responses were observed in mesenteric lymph nodes (MLNs) and other lymphoid structures, such as Peyer’s patches, in patients with IBD and in animal models. Furthermore, the phenomenon of lymphatic obstruction in the form of granulomas in MLNs and lymphatic vessels correlates with disease activity. There is also evidence that abnormalities in the lymphatic stromal components and lymph node microbiome are common in IBD and could be exploited therapeutically. Finally, novel agents targeting lymphocyte trafficking have been added to the treatment armamentarium in the field of IBD. Overall, gut-associated lymphoid tissue plays a key role in IBD immunopathogenesis, which could offer novel therapeutic targets.
Collapse
Affiliation(s)
- Dimitrios Nikolakis
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Onassis Foundation, 4 Aeschinou Street, 10558 Athens, Greece
| | - Floris A. E. de Voogd
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
| | - Maarten J. Pruijt
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
| | - Joep Grootjans
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
| | - Marleen G. van de Sande
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Geert R. D’Haens
- Department of Gastroenterology, Amsterdam Institute for Gastroenterology Endocrinology and Metabolism, Academic Medical Center, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (D.N.); (F.A.E.d.V.); (M.J.P.); (J.G.)
- Correspondence:
| |
Collapse
|
11
|
de Sousa Figueiredo MB, Pradel E, George F, Mahieux S, Houcke I, Pottier M, Fradin C, Neut C, Daniel C, Bongiovanni A, Foligné B, Titécat M. Adherent-Invasive and Non-Invasive Escherichia coli Isolates Differ in Their Effects on Caenorhabditis elegans' Lifespan. Microorganisms 2021; 9:microorganisms9091823. [PMID: 34576719 PMCID: PMC8465672 DOI: 10.3390/microorganisms9091823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 01/09/2023] Open
Abstract
The adherent-invasive Escherichia coli (AIEC) pathotype has been implicated in the pathogenesis of inflammatory bowel diseases in general and in Crohn’s disease (CD) in particular. AIEC strains are primarily characterized by their ability to adhere to and invade intestinal epithelial cells. However, the genetic and phenotypic features of AIEC isolates vary greatly as a function of the strain’s clonality, host factors, and the gut microenvironment. It is thus essential to identify the determinants of AIEC pathogenicity and understand their role in intestinal epithelial barrier dysfunction and inflammation. We reasoned that soil nematode Caenorhabditis elegans (a simple but powerful model of host-bacterium interactions) could be used to study the virulence of AIEC vs. non- AIEC E. coli strains. Indeed, we found that the colonization of C. elegans (strain N2) by E. coli impacted survival in a strain-specific manner. Moreover, the AIEC strains’ ability to invade cells in vitro was linked to the median lifespan in C. elegans (strain PX627). However, neither the E. coli intrinsic invasiveness (i.e., the fact for an individual strain to be characterized as invasive or not) nor AIEC’s virulence levels (i.e., the intensity of invasion, established in % from the infectious inoculum) in intestinal epithelial cells was correlated with C. elegans’ lifespan in the killing assay. Nevertheless, AIEC longevity of C. elegans might be a relevant model for screening anti-adhesion drugs and anti-invasive probiotics.
Collapse
Affiliation(s)
- Maria Beatriz de Sousa Figueiredo
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Elizabeth Pradel
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Fanny George
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Séverine Mahieux
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Isabelle Houcke
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Muriel Pottier
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Chantal Fradin
- Univ. Lille, Inserm, Institut Pasteur de Lille, U1167-RID-AGE, F-59000 Lille, France;
| | - Christel Neut
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
| | - Catherine Daniel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-Center for Infection and Immunity of Lille, F-59000 Lille, France;
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41-UMS 2014-PLBS, F-59000 Lille, France;
| | - Benoît Foligné
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| | - Marie Titécat
- Univ. Lille, Inserm, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, F-59000 Lille, France; (M.B.d.S.F.); (E.P.); (F.G.); (S.M.); (I.H.); (M.P.); (C.N.)
- Correspondence: (B.F.); (M.T.)
| |
Collapse
|
12
|
Greenman NA, Jurgensen SK, Holmes CP, Kapsak CJ, Davis RE, Maza WM, Edemba D, Esser BA, Hise SM, Keen TN, Larson HG, Lockwood DJ, Wang B, Harsh JA, Herrick JB. Genomics of Environmental Salmonella: Engaging Students in the Microbiology and Bioinformatics of Foodborne Pathogens. Front Microbiol 2021; 12:592422. [PMID: 33967968 PMCID: PMC8100199 DOI: 10.3389/fmicb.2021.592422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
We have developed and implemented an undergraduate microbiology course in which students isolate, characterize, and perform whole genome assembly and analysis of Salmonella enterica from stream sediments and poultry litter. In the development of the course and over three semesters, successive teams of undergraduate students collected field samples and performed enrichment and isolation techniques specific for the detection of S. enterica. Eighty-eight strains were confirmed using standard microbiological methods and PCR of the invA gene. The isolates' genomes were Illumina-sequenced by the Center for Food Safety and Applied Nutrition at the FDA and the Virginia state Division of Consolidated Laboratory Services as part of the GenomeTrakr program. Students used GalaxyTrakr and other web- and non-web-based platforms and tools to perform quality control on raw and assembled sequence data, assemble, and annotate genomes, identify antimicrobial resistance and virulence genes, putative plasmids, and other mobile genetic elements. Strains with putative plasmid-borne antimicrobial resistance genes were further sequenced by students in our research lab using the Oxford Nanopore MinIONTM platform. Strains of Salmonella that were isolated include human infectious serotypes such as Typhimurium and Infantis. Over 31 of the isolates possessed antibiotic resistance genes, some of which were located on large, multidrug resistance plasmids. Plasmid pHJ-38, identified in a Typhimurium isolate, is an apparently self-transmissible 183 kb IncA/C2 plasmid that possesses multiple antimicrobial resistance and heavy-metal resistance genes. Plasmid pFHS-02, identified in an Infantis isolate, is an apparently self-transmissible 303 kb IncF1B plasmid that also possesses numerous heavy-metal and antimicrobial resistance genes. Using direct and indirect measures to assess student outcomes, results indicate that course participation contributed to cognitive gains in relevant content knowledge and research skills such as field sampling, molecular techniques, and computational analysis. Furthermore, participants self-reported a deeper interest in scientific research and careers as well as psychosocial outcomes (e.g., sense of belonging and self-efficacy) commonly associated with student success and persistence in STEM. Overall, this course provided a powerful combination of field, wet lab, and computational biology experiences for students, while also providing data potentially useful in pathogen surveillance, epidemiological tracking, and for the further study of environmental reservoirs of S. enterica.
Collapse
Affiliation(s)
- Noah A. Greenman
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Sophie K. Jurgensen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Charles P. Holmes
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Curtis J. Kapsak
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Raechel E. Davis
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - William M. Maza
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Desiree Edemba
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Bethany A. Esser
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Selena M. Hise
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Tara N. Keen
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Hunter G. Larson
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | | | - Brian Wang
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - Joseph A. Harsh
- Department of Biology, James Madison University, Harrisonburg, VA, United States
| | - James B. Herrick
- Department of Biology, James Madison University, Harrisonburg, VA, United States
- Center for Genome and Metagenome Studies, James Madison University, Harrisonburg, VA, United States
| |
Collapse
|
13
|
Mayorgas A, Dotti I, Martínez-Picola M, Esteller M, Bonet-Rossinyol Q, Ricart E, Salas A, Martínez-Medina M. A Novel Strategy to Study the Invasive Capability of Adherent-Invasive Escherichia coli by Using Human Primary Organoid-Derived Epithelial Monolayers. Front Immunol 2021; 12:646906. [PMID: 33854511 PMCID: PMC8039293 DOI: 10.3389/fimmu.2021.646906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last decades, Adherent-Invasive Escherichia coli (AIEC) has been linked to the pathogenesis of Crohn’s Disease. AIEC’s characteristics, as well as its interaction with the gut immune system and its role in intestinal epithelial barrier dysfunction, have been extensively studied. Nevertheless, the currently available techniques to investigate the cross-talk between this pathogen and intestinal epithelial cells (IECs) are based on the infection of immortalized cell lines. Despite their many advantages, cell lines cannot reproduce the conditions in tissues, nor do they reflect interindividual variability or gut location-specific traits. In that sense, the use of human primary cultures, either healthy or diseased, offers a system that can overcome all of these limitations. Here, we developed a new infection model by using freshly isolated human IECs. For the first time, we generated and infected monolayer cultures derived from human colonic organoids to study the mechanisms and effects of AIEC adherence and invasion on primary human epithelial cells. To establish the optimal conditions for AIEC invasion studies in human primary organoid-derived epithelial monolayers, we designed an infection-kinetics study to assess the infection dynamics at different time points, as well as with two multiplicities of infection (MOI). Overall, this method provides a model for the study of host response to AIEC infections, as well as for the understanding of the molecular mechanisms involved in adhesion, invasion and intracellular replication. Therefore, it represents a promising tool for elucidating the cross-talk between AIEC and the intestinal epithelium in healthy and diseased tissues.
Collapse
Affiliation(s)
- Aida Mayorgas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Isabella Dotti
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Marta Martínez-Picola
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Miriam Esteller
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Queralt Bonet-Rossinyol
- Laboratory of Molecular Microbiology, Department of Biology, Universitat de Girona, Girona, Spain
| | - Elena Ricart
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBER-EHD, Barcelona, Spain
| | | |
Collapse
|
14
|
Viennois E, Bretin A, Dubé PE, Maue AC, Dauriat CJG, Barnich N, Gewirtz AT, Chassaing B. Dietary Emulsifiers Directly Impact Adherent-Invasive E. coli Gene Expression to Drive Chronic Intestinal Inflammation. Cell Rep 2020; 33:108229. [PMID: 33027647 PMCID: PMC7539532 DOI: 10.1016/j.celrep.2020.108229] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
Dietary emulsifiers carboxymethylcellulose (CMC) and polysorbate-80 (P80) disturb gut microbiota, promoting chronic inflammation. Mice with minimal microbiota are protected against emulsifiers’ effects, leading us to hypothesize that these compounds might provoke select pathobionts to promote inflammation. Gnotobiotic wild-type (WT) and interleukin-10 (IL-10)−/− mice were colonized with Crohn’s-disease-associated adherent-invasive E. coli (AIEC) and subsequently administered CMC or P80. AIEC colonization of GF and altered Schaedler flora (ASF) mice results in chronic intestinal inflammation and metabolism dysregulations when consuming the emulsifier. In IL-10−/− mice, AIEC mono-colonization results in severe intestinal inflammation in response to emulsifiers. Exposure of AIEC to emulsifiers in vitro increases its motility and ability to adhere to intestinal epithelial cells. Transcriptomic analysis reveals that emulsifiers directly induce expression of clusters of genes that mediate AIEC virulence and promotion of inflammation. To conclude, emulsifiers promote virulence and encroachment of pathobionts, providing a means by which these compounds may drive inflammation in hosts carrying such bacteria. Dietary emulsifiers alter the intestinal microbiota, promoting chronic inflammation Select pathobionts are required to mediate the detrimental effects of emulsifiers Emulsifiers directly induce the expression of bacterial virulence genes Microbiota-based dietary intervention appears warranted
Collapse
Affiliation(s)
- Emilie Viennois
- INSERM, U1149, Center of Research on Inflammation, Université de Paris, Paris, France; Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Alexis Bretin
- Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | | | | | - Charlène J G Dauriat
- INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université de Paris, Paris, France
| | - Nicolas Barnich
- Université Clermont Auvergne/Inserm U1071 USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA; INSERM U1016, team "Mucosal microbiota in chronic inflammatory diseases", CNRS UMR 8104, Université de Paris, Paris, France; Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
15
|
Differential miRNA-Gene Expression in M Cells in Response to Crohn's Disease-Associated AIEC. Microorganisms 2020; 8:microorganisms8081205. [PMID: 32784656 PMCID: PMC7466023 DOI: 10.3390/microorganisms8081205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC), which abnormally colonize the ileal mucosa of Crohn’s disease (CD) patients, are able to invade intestinal epithelial cells (IECs) and translocate through M cells overlying Peyer’s patches. The levels of microRNA (miRNA) and gene expression in IECs and M cells upon AIEC infection have not been investigated. Here, we used human intestinal epithelial Caco-2 monolayers and an in vitro M-cell model of AIEC translocation to analyze comprehensive miRNA and gene profiling under basal condition and upon infection with the reference AIEC LF82 strain. Our results showed that AIEC LF82 translocated through M cells but not Caco-2 monolayers. Both differential gene expression and miRNA profile in M cells compared to Caco-2 cells were obtained. In addition, AIEC infection induces changes in gene and miRNA profiles in both Caco-2 and M cells. In silico analysis showed that certain genes dysregulated upon AIEC infection were potential targets of AIEC-dysregulated miRNAs, suggesting a miRNA-mediated regulation of gene expression during AIEC infection in Caco-2, as well as M cells. This study facilitates the discovery of M cell-specific and AIEC response-specific gene-miRNA signature and enhances the molecular understanding of M cell biology under basal condition and in response to infection with CD-associated AIEC.
Collapse
|
16
|
Costa RFA, Ferrari MLA, Bringer MA, Darfeuille-Michaud A, Martins FS, Barnich N. Characterization of mucosa-associated Escherichia coli strains isolated from Crohn's disease patients in Brazil. BMC Microbiol 2020; 20:178. [PMID: 32576138 PMCID: PMC7310525 DOI: 10.1186/s12866-020-01856-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Background Crohn’s disease (CD) is characterized by chronic inflammation of the human intestine. Several studies have demonstrated that the intestinal mucosa of CD patients in Western countries is abnormally colonized by adherent-invasive Escherichia coli (AIEC) strains. However, no studies to date have focused on the involvement of such E. coli strains in CD patients in Brazil. Here, we characterized E. coli strains associated with the ileal mucosa of Brazilian CD patients (ileal biopsies from 35 subjects, 24 CD patients and 11 controls). Results The colonization level of adherent Enterobacteriaceae associated with the ileal mucosa of CD patients was significantly higher than that of the controls. The proportions of E. coli strains belonging to phylogroups B1 and B2 were two-fold higher in strains isolated from CD patients than in those isolated from controls. CD patients in the active phase harbored 10-fold more E. coli belonging to group B2 than CD patients in remission. Only a few E. coli isolates had invasive properties and the ability to survive within macrophages, but 25% of CD patients in Brazil (6/24) harbored at least one E. coli strain belonging to the AIEC pathobiont. However, fimH sequence analysis showed only a few polymorphisms in the FimH adhesin of strains isolated in this study compared to the FimH adhesin of AIEC collections isolated from European patients. Conclusions Mucosa-associated E. coli strains colonize the intestinal mucosa of Brazilian CD patients. However, the strains isolated from Brazilian CD patients have probably not yet co-evolved with their hosts and therefore have not fully developed a strong adherent-invasive phenotype. Thus, it will be crucial to follow in the future the emergence and evolution of AIEC pathobionts in the Brazilian population.
Collapse
Affiliation(s)
- Rafaella F A Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRAE 2018, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Maria L A Ferrari
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Alfa de Gastroenterologia, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marie-Agnès Bringer
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Arlette Darfeuille-Michaud
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRAE 2018, 28 place Henri Dunant, 63000, Clermont-Ferrand, France
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRAE 2018, 28 place Henri Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
17
|
Chervy M, Barnich N, Denizot J. Adherent-Invasive E. coli: Update on the Lifestyle of a Troublemaker in Crohn's Disease. Int J Mol Sci 2020; 21:E3734. [PMID: 32466328 PMCID: PMC7279240 DOI: 10.3390/ijms21103734] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Besides genetic polymorphisms and environmental factors, the intestinal microbiota is an important factor in the etiology of Crohn's disease (CD). Among microbiota alterations, a particular pathotype of Escherichia coli involved in the pathogenesis of CD abnormally colonizes the intestinal mucosa of patients: the adherent-invasive Escherichia coli (AIEC) pathobiont bacteria, which have the abilities to adhere to and to invade intestinal epithelial cells (IECs), as well as to survive and replicate within macrophages. AIEC have been the subject of many studies in recent years to unveil some genes linked to AIEC virulence and to understand the impact of AIEC infection on the gut and consequently their involvement in CD. In this review, we describe the lifestyle of AIEC bacteria within the intestine, from the interaction with intestinal epithelial and immune cells with an emphasis on environmental and genetic factors favoring their implantation, to their lifestyle in the intestinal lumen. Finally, we discuss AIEC-targeting strategies such as the use of FimH antagonists, bacteriophages, or antibiotics, which could constitute therapeutic options to prevent and limit AIEC colonization in CD patients.
Collapse
Affiliation(s)
- Mélissa Chervy
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
- Institut Universitaire de Technologie, Génie Biologique, 63172 Aubière, France
| | - Jérémy Denizot
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
- Institut Universitaire de Technologie, Génie Biologique, 63172 Aubière, France
| |
Collapse
|
18
|
Study of a classification algorithm for AIEC identification in geographically distinct E. coli strains. Sci Rep 2020; 10:8094. [PMID: 32415168 PMCID: PMC7229014 DOI: 10.1038/s41598-020-64894-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/21/2020] [Indexed: 01/02/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) have been extensively implicated in Crohn’s disease pathogenesis. Currently, AIEC is identified phenotypically, since no molecular marker specific for AIEC exists. An algorithm based on single nucleotide polymorphisms was previously presented as a potential molecular tool to classify AIEC/non-AIEC, with 84% accuracy on a collection of 50 strains isolated in Girona (Spain). Herein, our aim was to determine the accuracy of the tool using AIEC/non-AIEC isolates from different geographical origins and extraintestinal pathogenic E. coli (ExPEC) strains. The accuracy of the tool was significantly reduced (61%) when external AIEC/non-AIEC strains from France, Chile, Mallorca (Spain) and Australia (82 AIEC, 57 non-AIEC and 45 ExPEC strains in total) were included. However, the inclusion of only the ExPEC strains showed that the tool was fairly accurate at differentiating these two close pathotypes (84.6% sensitivity; 79% accuracy). Moreover, the accuracy was still high (81%) for those AIEC/non-AIEC strains isolated from Girona and Mallorca (N = 63); two collections obtained from independent studies but geographically close. Our findings indicate that the presented tool is not universal since it would be only applicable for strains from similar geographic origin and demonstrates the need to include strains from different origins to validate such tools.
Collapse
|
19
|
Camprubí-Font C, Martinez-Medina M. Why the discovery of adherent-invasive Escherichia coli molecular markers is so challenging? World J Biol Chem 2020; 11:1-13. [PMID: 32405343 PMCID: PMC7205867 DOI: 10.4331/wjbc.v11.i1.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 02/05/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains have been extensively related to Crohn’s disease (CD) etiopathogenesis. Higher AIEC prevalence in CD patients versus controls has been reported, and its mechanisms of pathogenicity have been linked to CD physiopathology. In CD, the therapeutic armamentarium remains limited and non-curative; hence, the necessity to better understand AIEC as a putative instigator or propagator of the disease is certain. Nonetheless, AIEC identification is currently challenging because it relies on phenotypic assays based on infected cell cultures which are highly time-consuming, laborious and non-standardizable. To address this issue, AIEC molecular mechanisms and virulence genes have been studied; however, a specific and widely distributed genetic AIEC marker is still missing. The finding of molecular tools to easily identify AIEC could be useful in the identification of AIEC carriers who could profit from personalized treatment. Also, it would significantly promote AIEC epidemiological studies. Here, we reviewed the existing data regarding AIEC genetics and presented those molecular markers that could assist with AIEC identification. Finally, we highlighted the problems behind the discovery of exclusive AIEC biomarkers and proposed strategies to facilitate the search of AIEC signature sequences.
Collapse
Affiliation(s)
- Carla Camprubí-Font
- Laboratory of Molecular Microbiology, Department of Biology, University of Girona, Girona 17003, Spain
| | - Margarita Martinez-Medina
- Laboratory of Molecular Microbiology, Department of Biology, University of Girona, Girona 17003, Spain
| |
Collapse
|
20
|
Barrios-Villa E, Martínez de la Peña CF, Lozano-Zaraín P, Cevallos MA, Torres C, Torres AG, Rocha-Gracia RDC. Comparative genomics of a subset of Adherent/Invasive Escherichia coli strains isolated from individuals without inflammatory bowel disease. Genomics 2019; 112:1813-1820. [PMID: 31689478 DOI: 10.1016/j.ygeno.2019.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
There is increased evidence demonstrating the association between Crohn's Disease (CD), a type of Inflammatory Bowel Disease (IBD), and non-diarrheagenic Adherent/Invasive Escherichia coli (AIEC) isolates. AIEC strains are phenotypically characterized by their adhesion, invasion and intra-macrophage survival capabilities. In the present study, the genomes of five AIEC strains isolated from individuals without IBD (four from healthy donors and one from peritoneal liquid) were sequenced and compared with AIEC prototype strains (LF82 and NRG857c), and with extra-intestinal uropathogenic strain (UPEC CFT073). Non-IBD-AIEC strains showed an Average Nucleotide Identity up to 98% compared with control strains. Blast identities of the five non-IBD-AIEC strains were higher when compared to AIEC and UPEC reference strains than with another E. coli pathotypes, suggesting a relationship between them. The SNPs phylogeny grouped the five non-IBD-AIEC strains in one separated cluster, which indicates the emergence of these strains apart from the AIEC group. Additionally, four genomic islands not previously reported in AIEC strains were identified. An incomplete Type VI secretion system was found in non-IBD-AIEC strains; however, the Type II secretion system was complete. Several groups of genes reported in AIEC strains were searched in the five non-IBD-AIEC strains, and the presence of fimA, fliC, fuhD, chuA, irp2 and cvaC were confirmed. Other virulence factors were detected in non-IBD-AIEC strains, which were absent in AIEC reference strains, including EhaG, non-fimbrial adhesin 1, PapG, F17D-G, YehA/D, FeuC, IucD, CbtA, VgrG-1, Cnf1 and HlyE. Based on the differences in virulence determinants and SNPs, it is plausible to suggest that non-IBD AIEC strains belong to a different pathotype.
Collapse
Affiliation(s)
- Edwin Barrios-Villa
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Claudia Fabiola Martínez de la Peña
- Posgrado en Microbiología, Laboratorio de Biología Molecular de Enteropatógenos, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Patricia Lozano-Zaraín
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rosa Del Carmen Rocha-Gracia
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
| |
Collapse
|
21
|
King SJ, McCole DF. Epithelial-microbial diplomacy: escalating border tensions drive inflammation in inflammatory bowel disease. Intest Res 2019; 17:177-191. [PMID: 30836737 PMCID: PMC6505084 DOI: 10.5217/ir.2018.00170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic conditions of the gastrointestinal tract-the main site of host-microbial interaction in the body. Development of IBD is not due to a single event but rather is a multifactorial process where a patient’s genetic background, behavioral habits, and environmental exposures contribute to disease pathogenesis. IBD patients exhibit alterations to gut bacterial populations “dysbiosis” due to the inflammatory microenvironment, however whether this alteration of the gut microbiota precedes inflammation has not been confirmed. Emerging evidence has highlighted the important role of gut microbes in developing measured immune responses and modulating other host responses such as metabolism. Much of the work on the gut microbiota has been correlative and there is an increasing need to understand the intimate relationship between host and microbe. In this review, we highlight how commensal and pathogenic bacteria interact with host intestinal epithelial cells and explore how altered microenvironments impact these connections.
Collapse
Affiliation(s)
- Stephanie J King
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Declan F McCole
- Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
22
|
Camprubí-Font C, Ewers C, Lopez-Siles M, Martinez-Medina M. Genetic and Phenotypic Features to Screen for Putative Adherent-Invasive Escherichia coli. Front Microbiol 2019; 10:108. [PMID: 30846972 PMCID: PMC6393329 DOI: 10.3389/fmicb.2019.00108] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/18/2019] [Indexed: 01/19/2023] Open
Abstract
To date no molecular tools are available to identify the adherent-invasive Escherichia coli (AIEC) pathotype, which has been associated with Crohn’s disease and colonizes the intestine of different hosts. Current techniques based on phenotypic screening of isolates are extremely time-consuming. The aim of this work was to search for signature traits to assist in rapid AIEC identification. The occurrence of at least 54 virulence genes (VGs), the resistance to 30 antibiotics and the distribution of FimH and ChiA amino acid substitutions was studied in a collection of 48 AIEC and 56 non-AIEC isolated from the intestine of humans and animals. χ2 test was used to find frequency differences according to origin of isolation, AIEC phenotype and phylogroup. Mann–Whitney test was applied to test association with adhesion and invasion indices. Binary logistic regression was performed to search for variables of predictive value. Animal strains (N = 45) were enriched in 12 VGs while 7 VGs were more predominant in human strains (N = 59). The prevalence of 15 VGs was higher in AIEC (N = 49) than in non-AIEC (N = 56) strains, but only pic gene was still differentially distributed when analyzing human and animal strains separately. Among human strains, three additional VGs presented higher frequency in AIEC strains (papGII/III, iss and vat; N = 22) than in non-AIEC strains (N = 37). No differences between AIEC/non-AIEC were found in FimH variants. In contrast, the ChiA sequence of LF82 was shared with the 35.5% of AIEC studied (N = 31) and only with the 7.4% of non-AIEC strains (N = 27; p = 0.027). Binary logistic regression analysis, using as input variables all the VGs and antibiotic resistances tested, revealed that typifying E. coli isolates using pic gene and ampicillin resistance was useful to correctly classify strains according to the phenotype with a 75.5% of accuracy. Although there is not a molecular signature fully specific and sensitive to identify the AIEC pathotype, we propose two features easy to be tested that could assist in AIEC screening. Future work using additional strain collections would be required to assess the applicability of this method.
Collapse
Affiliation(s)
- Carla Camprubí-Font
- Laboratory of Molecular Microbiology, Department of Biology, Universitat de Girona, Girona, Spain
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | - Mireia Lopez-Siles
- Laboratory of Molecular Microbiology, Department of Biology, Universitat de Girona, Girona, Spain
| | | |
Collapse
|
23
|
Metabolic adaptation of adherent-invasive Escherichia coli to exposure to bile salts. Sci Rep 2019; 9:2175. [PMID: 30778122 PMCID: PMC6379400 DOI: 10.1038/s41598-019-38628-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The adherent-invasive Escherichia coli (AIEC), which colonize the ileal mucosa of Crohn’s disease patients, adhere to intestinal epithelial cells, invade them and exacerbate intestinal inflammation. The high nutrient competition between the commensal microbiota and AIEC pathobiont requires the latter to occupy their own metabolic niches to survive and proliferate within the gut. In this study, a global RNA sequencing of AIEC strain LF82 has been used to observe the impact of bile salts on the expression of metabolic genes. The results showed a global up-regulation of genes involved in degradation and a down-regulation of those implicated in biosynthesis. The main up-regulated degradation pathways were ethanolamine, 1,2-propanediol and citrate utilization, as well as the methyl-citrate pathway. Our study reveals that ethanolamine utilization bestows a competitive advantage of AIEC strains that are metabolically capable of its degradation in the presence of bile salts. We observed that bile salts activated secondary metabolism pathways that communicate to provide an energy benefit to AIEC. Bile salts may be used by AIEC as an environmental signal to promote their colonization.
Collapse
|
24
|
Firinci B, Caglar O, Karadeniz E, Ahiskalioglu A, Demirci T, Aydin MD. Mysterious effects of olfactory pathway lesions on intestinal immunodeficiency targeting Peyer's patches: The first experimental study. Med Hypotheses 2019; 125:31-36. [PMID: 30902148 DOI: 10.1016/j.mehy.2019.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/05/2019] [Accepted: 02/09/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Although olfaction has been considered as important neuroimmunomodulatory foundation, there is no satisfying analytical information between neurohistomorphological features olfactory networks and intestinal immune system hardwares. We studied if the olfactory bulb lesions (OBL) may rely on histopathological features of intestinal lymphatic Peyer's patches in an animal model. METHODS Thirty-two rats were grouped as control (Group I, n = 8), SHAM (Group II, n = 7) and OBL (Group III, n = 17) respectively; and followed eight weeks and animals were decapitated. The olfactory bulbs and intestines were extracted. Specimens stained with hematoxylin/eosin and GFAP methods and analyzed Stereologically to evaluate volume loss of olfactory bulbs and Peyer's patches volumes (PV) of intestines per cubic millimeter and compared with each other's statistically. RESULTS The mean olfactory bulbs volumes were estimated as 3.65 ± 0.32/mm3 in group I, 3.12 ± 0.20/mm3 in group II and 2.21 ± 0.15/mm3 in group III (p < 0.0005 Group III vs. I and II). The mean of PV were estimated as; (9 ± 2) × 106 µm3/cm3 in Group-I, (12 ± 3) × 106 µm3/cm3 in Group-II; and (23 ± 4) × 106 µm3/cm3 in group-III (p < 0.005 Group II vs. I, p < 0.0005 Group III vs. I-II). CONCLUSIONS OBL could rely on intestinal immunodeficiency causing by olfaction loss induced denervation injury of Peyer's patches.
Collapse
Affiliation(s)
- Binali Firinci
- Ataturk University, Medical Faculty, Department of Pediatric Surgery, Erzurum, Turkey
| | - Ozgur Caglar
- Ataturk University, Medical Faculty, Department of Pediatric Surgery, Erzurum, Turkey
| | - Erdem Karadeniz
- Ataturk University, Medical Faculty, Department of General Surgery, Erzurum, Turkey
| | - Ali Ahiskalioglu
- Ataturk University, Medical Faculty, Department of Anesthesiology and Reanimation, Erzurum, Turkey
| | - Tuba Demirci
- Ataturk University, Medical Faculty, Department of Histology, Erzurum, Turkey
| | - Mehmet Dumlu Aydin
- Ataturk University, Medical Faculty, Department of Neurosurgery, Erzurum, Turkey.
| |
Collapse
|
25
|
Renouf MJ, Cho YH, McPhee JB. Emergent Behavior of IBD-Associated Escherichia coli During Disease. Inflamm Bowel Dis 2019; 25:33-44. [PMID: 30321333 DOI: 10.1093/ibd/izy312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases are becoming increasingly common throughout the world, both in developed countries and increasingly in rapidly developing countries. Multiple lines of evidence point to a role for the microbial composition of the gastrointestinal tract in the etiology of IBD, but to date, attempts to define a specific microbial cause for IBD have proved unsuccessful. Microbial 16S rRNA profiling shows that IBD patients have elevated levels of Enterobacteriaceae, in particular Escherichia coli, and reduced levels of Faecalibacterium prausnitzii. The observed E. coli have been assigned to a specific pathovar, adherent-invasive E. coli (AIEC). Adherent-invasive E. coli are a genomically heterogenous group, and whereas many groups have attempted to identify specific genetic markers that differentiate AIEC from non-AIEC strains, very few concrete genetic associations have been uncovered. Here, we highlight the advantages of applying a phenotyping approach to the study of these organisms, rather than solely depending on a sequencing or genomic-based screening strategy because virulence-associated phenotypes exhibit behaviors of emergent systems. In this respect, attempts at genetic reductionism are prone to failure because there are numerous metabolic, regulatory or genetic paths that can underlie these virulence-associated behaviors. Here, we review these IBD-associated phenotypes in E. coli and make recommendations for experimental approaches to advance our understanding of IBD-associated bacteria more generally. With advances in high-throughput screening and nongenetically based metabolomic characterization of IBD-associated bacteria, we anticipate a fuller understanding of how altered microbial communities contribute to the development of IBD.
Collapse
Affiliation(s)
| | - Youn Hee Cho
- Department of Chemistry and Biology, Ryerson University, Toronto ON, Canada
| | - Joseph B McPhee
- Department of Chemistry and Biology, Ryerson University, Toronto ON, Canada
| |
Collapse
|
26
|
Sharp RC, Naser ES, Alcedo KP, Qasem A, Abdelli LS, Naser SA. Development of multiplex PCR and multi-color fluorescent in situ hybridization ( m-FISH) coupled protocol for detection and imaging of multi-pathogens involved in inflammatory bowel disease. Gut Pathog 2018; 10:51. [PMID: 30534203 PMCID: PMC6280354 DOI: 10.1186/s13099-018-0278-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022] Open
Abstract
Background Several pathogens have been debated to play a role in inflammatory bowel disease (IBD) including Crohn's disease (CD). None of these pathogens have been investigated together in same clinical samples. We developed a multiplex PCR and multi-color fluorescent in situ hybridization (m-FISH) protocols for simultaneous detection of CD-associated pathogens including Mycobacterium avium subspecies paratuberculosis (MAP), Klebsiella pneumoniae, and adherent-invasive Escherichia coli strain LF82. Methods The multiplex PCR is based on 1-h DNAzol® extraction protocol modified for rapid extraction of bacterial DNA from culture, blood, and intestinal biopsies. Oligonucleotide primers sequences unique to these pathogens were evaluated individually and in combinations using bioinformatics and experimental approaches. m-FISH was based on fluorescent-tagged oligonucleotides and confocal scanning laser microscopy (CSLM). Results Following several attempts, the concentration of the oligonucleotide primers and DNA templates and the PCR annealing temperatures were optimized. Multiplex PCR analyses revealed excellent amplification signal in trials where a single primer set and combinations of two and three primers sets were tested against a mixture of DNA from three different bacteria or a mixture of three bacterial cultures mixed in one tube before DNA extraction. Slides with individual and mixtures of bacterial cultures and intestinal tissue sections from IBD patients were tested by m-FISH and the CSLM images verified multiplex PCR results detected on 3% agarose gel. Conclusion We developed a 4-h multiplex PCR protocol, which was validated by m-FISH images, capable of detecting up to four genes from major pathogens associated with CD. The new protocol should serve as an excellent tool to support efforts to study multi-pathogens involved in CD and other autoimmune disease.
Collapse
Affiliation(s)
- Robert C Sharp
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| | - Ebraheem S Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| | - Karel P Alcedo
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| | - Ahmad Qasem
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| | - Latifa S Abdelli
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| | - Saleh A Naser
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4110 Libra Drive, Orlando, FL USA
| |
Collapse
|
27
|
Fang X, Monk JM, Nurk S, Akseshina M, Zhu Q, Gemmell C, Gianetto-Hill C, Leung N, Szubin R, Sanders J, Beck PL, Li W, Sandborn WJ, Gray-Owen SD, Knight R, Allen-Vercoe E, Palsson BO, Smarr L. Metagenomics-Based, Strain-Level Analysis of Escherichia coli From a Time-Series of Microbiome Samples From a Crohn's Disease Patient. Front Microbiol 2018; 9:2559. [PMID: 30425690 PMCID: PMC6218438 DOI: 10.3389/fmicb.2018.02559] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Dysbiosis of the gut microbiome, including elevated abundance of putative leading bacterial triggers such as E. coli in inflammatory bowel disease (IBD) patients, is of great interest. To date, most E. coli studies in IBD patients are focused on clinical isolates, overlooking their relative abundances and turnover over time. Metagenomics-based studies, on the other hand, are less focused on strain-level investigations. Here, using recently developed bioinformatic tools, we analyzed the abundance and properties of specific E. coli strains in a Crohns disease (CD) patient longitudinally, while also considering the composition of the entire community over time. In this report, we conducted a pilot study on metagenomic-based, strain-level analysis of a time-series of E. coli strains in a left-sided CD patient, who exhibited sustained levels of E. coli greater than 100X healthy controls. We: (1) mapped out the composition of the gut microbiome over time, particularly the presence of E. coli strains, and found that the abundance and dominance of specific E. coli strains in the community varied over time; (2) performed strain-level de novo assemblies of seven dominant E. coli strains, and illustrated disparity between these strains in both phylogenetic origin and genomic content; (3) observed that strain ST1 (recovered during peak inflammation) is highly similar to known pathogenic AIEC strains NC101 and LF82 in both virulence factors and metabolic functions, while other strains (ST2-ST7) that were collected during more stable states displayed diverse characteristics; (4) isolated, sequenced, experimentally characterized ST1, and confirmed the accuracy of the de novo assembly; and (5) assessed growth capability of ST1 with a newly reconstructed genome-scale metabolic model of the strain, and showed its potential to use substrates found abundantly in the human gut to outcompete other microbes. In conclusion, inflammation status (assessed by the blood C-reactive protein and stool calprotectin) is likely correlated with the abundance of a subgroup of E. coli strains with specific traits. Therefore, strain-level time-series analysis of dominant E. coli strains in a CD patient is highly informative, and motivates a study of a larger cohort of IBD patients.
Collapse
Affiliation(s)
- Xin Fang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan M Monk
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Sergey Nurk
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Margarita Akseshina
- St. Petersburg Academic University, Russian Academy of Sciences, St. Petersburg, Russia
| | - Qiyun Zhu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Christopher Gemmell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Connor Gianetto-Hill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Nelly Leung
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jon Sanders
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Paul L Beck
- Division of Gastroenterology, University of Calgary, Calgary, AB, Canada
| | - Weizhong Li
- Human Longevity Inc., San Diego, CA, United States.,J. Craig Venter Institute, La Jolla, CA, United States
| | - William J Sandborn
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States.,Inflammatory Bowel Disease Center, University of California, San Diego, La Jolla, CA, United States
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Larry Smarr
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States.,California Institute for Telecommunications and Information Technology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
28
|
Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, Barnich N, Ng SC, Colombel JF. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018; 67:574-587. [PMID: 29141957 DOI: 10.1136/gutjnl-2017-314903] [Citation(s) in RCA: 338] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/20/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Intestinal microbiome dysbiosis has been consistently described in patients with IBD. In the last decades, Escherichia coli, and the adherent-invasive E coli (AIEC) pathotype in particular, has been implicated in the pathogenesis of IBD. Since the discovery of AIEC, two decades ago, progress has been made in unravelling these bacteria characteristics and its interaction with the gut immune system. The mechanisms of adhesion of AIEC to intestinal epithelial cells (via FimH and cell adhesion molecule 6) and its ability to escape autophagy when inside macrophages are reviewed here. We also explore the existing data on the prevalence of AIEC in patients with Crohn's disease and UC, and the association between the presence of AIEC and disease location, activity and postoperative recurrence. Finally, we highlight potential therapeutic strategies targeting AIEC colonisation of gut mucosa, including the use of phage therapy, bacteriocins and antiadhesive molecules. These strategies may open new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Carolina Palmela
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Caroline Chevarin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Zhilu Xu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Joana Torres
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Gwladys Sevrin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Robert Hirten
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
29
|
Comparative genomics reveals new single-nucleotide polymorphisms that can assist in identification of adherent-invasive Escherichia coli. Sci Rep 2018; 8:2695. [PMID: 29426864 PMCID: PMC5807354 DOI: 10.1038/s41598-018-20843-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/24/2018] [Indexed: 01/19/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) have been involved in Crohn’s disease (CD). Currently, AIEC are identified by time-consuming techniques based on in vitro infection of cell lines to determine their ability to adhere to and invade intestinal epithelial cells as well as to survive and replicate within macrophages. Our aim was to find signature sequences that can be used to identify the AIEC pathotype. Comparative genomics was performed between three E. coli strain pairs, each pair comprised one AIEC and one non-AIEC with identical pulsotype, sequence type and virulence gene carriage. Genetic differences were further analysed in 22 AIEC and 28 non-AIEC isolated from CD patients and controls. The strain pairs showed similar genome structures, and no gene was specific to AIEC. Three single nucleotide polymorphisms displayed different nucleotide distributions between AIEC and non-AIEC, and four correlated with increased adhesion and/or invasion indices. Here, we present a classification algorithm based on the identification of three allelic variants that can predict the AIEC phenotype with 84% accuracy. Our study corroborates the absence of an AIEC-specific genetic marker distributed across all AIEC strains. Nonetheless, point mutations putatively involved in the AIEC phenotype can be used for the molecular identification of the AIEC pathotype.
Collapse
|
30
|
Abstract
The human gut is home to trillions of bacteria and provides the scaffold for one of the most complex microbial ecosystems in nature. Inflammatory bowel diseases, such as Crohn's disease, involve a compositional shift in the microbial constituents of this ecosystem with a marked expansion of Enterobacteriaceae, particularly Escherichia coli. Adherent-invasive E. coli (AIEC) strains are frequently isolated from the biopsies of Crohn's patients, where their ability to elicit inflammation suggests a possible role in Crohn's pathology. Here, we consider the origins of the AIEC pathovar and discuss how risk factors associated with Crohn's disease might influence AIEC colonization dynamics within the host to alter the overall disease potential of the microbial community.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Alexander Oberc
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,CONTACT Brian K. Coombes , Department of Biochemistry and Biomedical Sciences, McMaster University, MDCL 2319, Hamilton, ON Canada L8S 4K1
| |
Collapse
|
31
|
O'Brien CL, Bringer MA, Holt KE, Gordon DM, Dubois AL, Barnich N, Darfeuille-Michaud A, Pavli P. Comparative genomics of Crohn's disease-associated adherent-invasive Escherichia coli. Gut 2017; 66:1382-1389. [PMID: 27196580 DOI: 10.1136/gutjnl-2015-311059] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Adherent-invasive Escherichia coli (AIEC) are a leading candidate bacterial trigger for Crohn's disease (CD). The AIEC pathovar is defined by in vitro cell-line assays examining specific bacteria/cell interactions. No molecular marker exists for their identification. Our aim was to identify a molecular property common to the AIEC phenotype. DESIGN 41 B2 phylogroup E. coli strains were isolated from 36 Australian subjects: 19 patients with IBD and 17 without. Adherence/invasion assays were conducted using the I-407 epithelial cell line and survival/replication assays using the THP-1 macrophage cell line. Cytokine secretion tumour necrosis factor ((TNF)-α, interleukin (IL) 6, IL-8 and IL-10) was measured using ELISA. The genomes were assembled and annotated, and cluster analysis performed using CD-HIT. The resulting matrices were analysed to identify genes unique/more frequent in AIEC strains compared with non-AIEC strains. Base composition differences and clustered regularly interspaced palindromic repeat (CRISPR) analyses were conducted. RESULTS Of all B2 phylogroup strains assessed, 79% could survive and replicate in macrophages. Among them, 11/41 strains (5 CD, 2 UCs, 5 non-IBD) also adhere to and invade epithelial cells, a phenotype assigning them to the AIEC pathovar. The AIEC strains were phylogenetically heterogeneous. We did not identify a gene (or nucleic acid base composition differences) common to all, or the majority of, AIEC. Cytokine secretion and CRISPRs were not associated with the AIEC phenotype. CONCLUSIONS Comparative genomic analysis of AIEC and non-AIEC strains did not identify a molecular property exclusive to the AIEC phenotype. We recommend a broader approach to the identification of the bacteria-host interactions that are important in the pathogenesis of Crohn's disease.
Collapse
Affiliation(s)
- Claire L O'Brien
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,Gastroenterology and Hepatology Unit, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Marie-Agnès Bringer
- INRA UMR1324, CNRS UMR6265, Université Bourgogne-Franche-Comté, Centre des Sciences du Goût et de l'Alimentation, Dijon, France.,UMR1071 Inserm/University of Auvergne, INRA USC2018, M2iSH, Clermont-Ferrand, France
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - David M Gordon
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anaëlle L Dubois
- UMR1071 Inserm/University of Auvergne, INRA USC2018, M2iSH, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR1071 Inserm/University of Auvergne, INRA USC2018, M2iSH, Clermont-Ferrand, France
| | | | - Paul Pavli
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia.,Gastroenterology and Hepatology Unit, Canberra Hospital, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
32
|
Shawki A, McCole DF. Mechanisms of Intestinal Epithelial Barrier Dysfunction by Adherent-Invasive Escherichia coli. Cell Mol Gastroenterol Hepatol 2017; 3:41-50. [PMID: 28174756 PMCID: PMC5247418 DOI: 10.1016/j.jcmgh.2016.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022]
Abstract
Pathobiont expansion, such as that of adherent-invasive Escherichia coli (AIEC), is an emerging factor associated with inflammatory bowel disease. The intestinal epithelial barrier is the first line of defense against these pathogens. Inflammation plays a critical role in altering the epithelial barrier and is a major factor involved in promoting the expansion and pathogenesis of AIEC. AIEC in turn can exacerbate intestinal epithelial barrier dysfunction by targeting multiple elements of the barrier. One critical element of the epithelial barrier is the tight junction. Increasing evidence suggests that AIEC may selectively target protein components of tight junctions, leading to increased barrier permeability. This may represent one mechanism by which AIEC could contribute to the development of inflammatory bowel disease. This review article discusses potential mechanisms by which AIEC can disrupt epithelial tight junction function and intestinal barrier function.
Collapse
Key Words
- AIEC, adherent-invasive Escherichia coli
- AJ, adherens junction
- AJC, apical junctional complex
- BP, bacterial peptidoglycans
- CD, Crohn’s disease
- CEACAM6, carcinoembryonic antigen–related cell-adhesion molecule
- IBD, inflammatory bowel disease
- IEC, intestinal epithelial cell
- IFN, interferon
- IL, interleukin
- Inflammatory Bowel Disease
- Intestinal Permeability
- JAM-A, junctional adhesion molecule-A
- LPF, long polar fimbriae
- MLC, myosin light chain
- MLCK, myosin light chain kinase
- NF-κB, nuclear factor-κB
- NOD2, nucleotide-binding oligomerization domain 2
- PDZ, PSD95-DlgA-zonula occludens-1 homology domain
- TJ, tight junction
- TNF, tumor necrosis factor
- Tight Junctions
- UC, ulcerative colitis
- ZO, zonula occludens
Collapse
Affiliation(s)
| | - Declan F. McCole
- Division of Biomedical Sciences, University of California Riverside, Riverside, California
| |
Collapse
|
33
|
Abstract
The pathophysiology of Crohn's disease (CD), a chronic inflammatory bowel disease, remains imperfectly elucidated. Consequently, the therapeutic armamentarium remains limited and has not changed the natural history of CD hitherto. Accordingly, physicians need to identify new therapeutic targets to be able to alter the intestinal damage. The most recent hypothesis considered CD as resulting from an abnormal interaction between microbiota and host immune system influenced by genetics and environmental factors. Several experimental and genetic evidence point out intestinal macrophages in CD etiology. An increase of macrophages number and the presence of granulomas are especially observed in the intestinal mucosa of patients with CD. These macrophages could be defective and particularly in responses to infectious agents like CD-associated Escherichia coli. This review focuses on, what is currently known regarding the role of macrophages, macrophages/E. coli interaction, and the impact of CD therapies on macrophages in CD. We also speculate that macrophages modulation could lead to important translational implications in CD with the end goal of promoting gut health.
Collapse
|
34
|
Dysbiosis in intestinal inflammation: Cause or consequence. Int J Med Microbiol 2016; 306:302-309. [PMID: 27012594 DOI: 10.1016/j.ijmm.2016.02.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota encompasses hundreds of bacterial species that constitute a relatively stable ecosystem. Alteration in the microbiota composition may arise from infections, immune defects, metabolic alterations, diet or antibiotic treatment. Dysbiosis is considered as an alteration in microbiota community structure and/or function, capable of causing/driving a detrimental distortion of microbe-host homeostasis. A variety of pathologies are associated with changes in the community structure and function of the gut microbiota, suggesting a link between dysbiosis and disease etiology. With an emphasis in this review on inflammatory bowel diseases (IBD), the non-trivial question is whether dysbiosis is the cause or consequence of inflammation. It is important to understand whether changes in microbial ecosystems are causally linked to the pathology and to what extend disease risk is predicable based on characteristic changes in community structure and/or function. Local changes in tissue integrity associated with focal areas of inflammation may result in the selection of a dysbiotic bacterial community associated with the propagation of a disease phenotype. This review outlines the role of dysbiosis in intestinal inflammation with particular focus on IBD-relevant gnotobiotic mouse models, the factors implicated in the development of dysbiosis and the means available to investigate dysbiosis in the context of human diseases.
Collapse
|