1
|
Sarkar S, Han JX, Azzopardi K, Dhar P, Saeed MA, Day S, Ranganathan S, Sutton P. Protease-activated receptor 1 in the pathogenesis of cystic fibrosis. BMJ Open Respir Res 2025; 12:e002960. [PMID: 39832889 DOI: 10.1136/bmjresp-2024-002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND The most common cause of death in those with cystic fibrosis (CF) is respiratory failure due to bronchiectasis resulting from repeated cycles of respiratory infection and inflammation. Protease-activated receptor 1 (PAR1) is a cell surface receptor activated by serine proteases including neutrophil elastase, which is recognised as a potent modulator of inflammation. While PAR1 is known to play an important role in regulating inflammation, nothing is known about any potential role of this receptor in CF pathogenesis. METHODS PAR1 (PAR1-/- ) and intestinal-corrected CFTR (Cftr-/- ) deficient mice were crossed to generate double knock-out (DKO) mutants lacking both PAR1 and CFTR, as well as matching sibling single mutant and wildtype (WT) littermate controls. Mice were weighed weekly to 15 weeks of age; then, the lungs and intestines were examined. RESULTS Cftr-deficient mice gained body weight at a significantly slower rate than WT controls and presented with no lung inflammation, but had increased weights of their ilea and proximal colons. DKO mice (lacking both CFTR and PAR1) gained body weight at a similar rate to Cftr-/- mice but only gained weight in their proximal colons. Weight gain in the ilea of Cftr-/- but not DKO mice was associated with increased ileal levels in the pro-inflammatory cytokine interleukin (IL)-6. CONCLUSIONS This study provides the first evidence of PAR1 contributing to the pathological effects of Cftr deficiency in the intestine and suggests a possible effect of PAR1 on the regulation of IL-6 in CF pathogenesis.
Collapse
Affiliation(s)
- Sohinee Sarkar
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Jia-Xi Han
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Kristy Azzopardi
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Poshmaal Dhar
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Muhammad A Saeed
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Sophie Day
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Sarath Ranganathan
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Philip Sutton
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Jannati S, Patnaik R, Banerjee Y. Beyond Anticoagulation: A Comprehensive Review of Non-Vitamin K Oral Anticoagulants (NOACs) in Inflammation and Protease-Activated Receptor Signaling. Int J Mol Sci 2024; 25:8727. [PMID: 39201414 PMCID: PMC11355043 DOI: 10.3390/ijms25168727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/02/2024] Open
Abstract
Non-vitamin K oral anticoagulants (NOACs) have revolutionized anticoagulant therapy, offering improved safety and efficacy over traditional agents like warfarin. This review comprehensively examines the dual roles of NOACs-apixaban, rivaroxaban, edoxaban, and dabigatran-not only as anticoagulants, but also as modulators of inflammation via protease-activated receptor (PAR) signaling. We highlight the unique pharmacotherapeutic properties of each NOAC, supported by key clinical trials demonstrating their effectiveness in preventing thromboembolic events. Beyond their established anticoagulant roles, emerging research suggests that NOACs influence inflammation through PAR signaling pathways, implicating factors such as factor Xa (FXa) and thrombin in the modulation of inflammatory responses. This review synthesizes current evidence on the anti-inflammatory potential of NOACs, exploring their impact on inflammatory markers and conditions like atherosclerosis and diabetes. By delineating the mechanisms by which NOACs mediate anti-inflammatory effects, this work aims to expand their therapeutic utility, offering new perspectives for managing inflammatory diseases. Our findings underscore the broader clinical implications of NOACs, advocating for their consideration in therapeutic strategies aimed at addressing inflammation-related pathologies. This comprehensive synthesis not only enhances understanding of NOACs' multifaceted roles, but also paves the way for future research and clinical applications in inflammation and cardiovascular health.
Collapse
Affiliation(s)
- Shirin Jannati
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Rajashree Patnaik
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
| | - Yajnavalka Banerjee
- Yajnavalkaa Banerrji Research Group, College of Medicine and Health Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai P.O. Box 505055, United Arab Emirates; (S.J.); (R.P.)
- Centre for Medical Education, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
3
|
Saeed MA, Peng B, Kim K, Rawat K, Kuehm LM, Siegel ZR, Borkowski A, Habib N, Van Tine B, Sheikh N, Tuyen V, Thorek DLJ, Fehniger TA, Pachynski RK. High-Dimensional Analyses Reveal IL15 Enhances Activation of Sipuleucel-T Lymphocyte Subsets and Reverses Immunoresistance. Cancer Immunol Res 2024; 12:559-574. [PMID: 38407894 DOI: 10.1158/2326-6066.cir-23-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Sipuleucel-T (sip-T) is the only FDA-approved autologous cellular immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). To elucidate parameters of the response profile to this therapy, we report high-dimensional analyses of sip-T using cytometry by time of flight (CyTOF) and show a lymphoid predominance, with CD3+ T cells constituting the highest proportion (median ∼60%) of sip-T, followed by B cells, and natural killer (NK) and NKT cells. We hypothesized that treatment of sip-T with homeostatic cytokines known to activate/expand effector lymphocytes could augment efficacy against prostate tumors. Of the cytokines tested, IL15 was the most effective at enhancing activation and proliferation of effector lymphocytes, as well as augmenting tumor cytotoxicity in vitro. Co-culture of sip-T with IL15 and control or prostate-relevant antigens showed substantial activation and expansion of CD8+ T cells and NKT cells in an antigen-specific manner. Adoptive transfer of IL15-treated sip-T into NSG mice resulted in more potent prostate tumor growth inhibition compared with control sip-T. Evaluation of tumor-infiltrating lymphocytes revealed a 2- to 14-fold higher influx of sip-T and a significant increase in IFNγ producing CD8+ T cells and NKT cells within the tumor microenvironment in the IL15 group. In conclusion, we put forward evidence that IL15 treatment can enhance the functional antitumor immunity of sip-T, providing rationale for combining IL15 or IL15 agonists with sip-T to treat patients with mCRPC.
Collapse
Affiliation(s)
- Muhammad A Saeed
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Bo Peng
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Kevin Kim
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Kavita Rawat
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lindsey M Kuehm
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Zoe R Siegel
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ariel Borkowski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nabih Habib
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Brian Van Tine
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | | | - Vu Tuyen
- Dendreon Pharmaceuticals LLC, Seattle, Washington
| | - Daniel L J Thorek
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Todd A Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St Louis, Missouri
| | - Russell K Pachynski
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Bursky Center for Human Immunology and Immunotherapy, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
4
|
Li X, Kurahara LH, Zhao Z, Zhao F, Ishikawa R, Ohmichi K, Li G, Yamashita T, Hashimoto T, Hirano M, Sun Z, Hirano K. Therapeutic Effect of Proteinase-Activated Receptor-1 Antagonist on Colitis-Associated Carcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 18:105-131. [PMID: 38614455 PMCID: PMC11127032 DOI: 10.1016/j.jcmgh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease is associated with carcinogenesis, which limits the prognosis of the patients. The local expression of proteinases and proteinase-activated receptor 1 (PAR1) increases in inflammatory bowel disease. The present study investigated the therapeutic effects of PAR1 antagonism on colitis-associated carcinogenesis. METHODS A colitis-associated carcinogenesis model was prepared in mice by treatment with azoxymethane (AOM) and dextran sulfate sodium (DSS). PAR1 antagonist E5555 was administered in long- and short-term protocol, starting on the day of AOM injection and 1 week after completing AOM/DSS treatment, respectively. The fecal samples were collected for metagenome analysis of gut microbiota. The intestinal myofibroblasts of the Crohn's disease patients were used to elucidate underlying cellular mechanisms. Caco-2 cells were used to investigate a possible source of PAR1 agonist proteinases. RESULTS AOM/DSS model showed weight loss, diarrhea, tumor development, inflammation, fibrosis, and increased production of inflammatory cytokines. The β-diversity, but not α-diversity, of microbiota significantly differed between AOM/DSS and control mice. E5555 alleviated these pathological changes and altered the microbiota β-diversity in AOM/DSS mice. The thrombin expression was up-regulated in tumor and non-tumor areas, whereas PAR1 mRNA expression was higher in tumor areas compared with non-tumor areas. E5555 inhibited thrombin-triggered elevation of cytosolic Ca2+ concentration and ERK1/2 phosphorylation, as well as IL6-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in intestinal myofibroblasts. Caco-2 cell-conditioned medium contained immunoreactive thrombin, which cleaved the recombinant protein containing the extracellular domain of PAR1 at the thrombin cleavage site. CONCLUSIONS PAR1 antagonism is proposed to be a novel therapeutic strategy for treatment of inflammatory bowel disease and its associated carcinogenesis.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Lin-Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Zhixin Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ryo Ishikawa
- Department of Diagnostic Pathology, Kagawa University Hospital, Kagawa University, Kagawa, Japan
| | - Kiyomi Ohmichi
- Department of Diagnostic Pathology, Kagawa University Hospital, Kagawa University, Kagawa, Japan
| | - Gaopeng Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tetsuo Yamashita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Mayumi Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
5
|
Hou JJ, Ding L, Yang T, Yang YF, Jin YP, Zhang XP, Ma AH, Qin YH. The proteolytic activity in inflammatory bowel disease: insight from gut microbiota. Microb Pathog 2024; 188:106560. [PMID: 38272327 DOI: 10.1016/j.micpath.2024.106560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic, recurrent inflammatory disease caused by the destruction of the intestinal mucosal epithelium that affects a growing number of people worldwide. Although the etiology of IBD is complex and still elucidated, the role of dysbiosis and dysregulated proteolysis is well recognized. Various studies observed altered composition and diversity of gut microbiota, as well as increased proteolytic activity (PA) in serum, plasma, colonic mucosa, and fecal supernatant of IBD compared to healthy individuals. The imbalance of intestinal microecology and intestinal protein hydrolysis were gradually considered to be closely related to IBD. Notably, the pivotal role of intestinal microbiota in maintaining proteolytic balance received increasing attention. In summary, we have speculated a mesmerizing story, regarding the hidden role of PA and microbiota-derived PA hidden in IBD. Most importantly, we provided the diagnosis and therapeutic targets for IBD as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Liang Ding
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Tao Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yan-Fei Yang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Ping Jin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Xiao-Ping Zhang
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - A-Huo Ma
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China
| | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People's Hospital, Shaoxing, PR China.
| |
Collapse
|
6
|
Jiang Y, Lu L. New insight into the agonism of protease-activated receptors as an immunotherapeutic strategy. J Biol Chem 2024; 300:105614. [PMID: 38159863 PMCID: PMC10810747 DOI: 10.1016/j.jbc.2023.105614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
The activation and mobilization of immune cells play a crucial role in immunotherapy. Existing therapeutic interventions, such as cytokines administration, aim to enhance immune cell activity. However, these approaches usually result in modest effectiveness and toxic side effects, thereby restricting their clinical application. Protease-activated receptors (PARs), a subfamily of G protein-coupled receptors, actively participate in the immune system by directly activating immune cells. The activation of PARs by proteases or synthetic ligands can modulate immune cell behavior, signaling, and responses to treat immune-related diseases, suggesting the significance of PARs agonism in immunotherapy. However, the agonism of PARs in therapeutical applications remains rarely discussed, since it has been traditionally considered that PARs activation facilitates disease progressions. This review aims to comprehensively summarize the activation, rather than inhibition, of PARs in immune-related physiological responses and diseases. Additionally, we will discuss the emerging immunotherapeutic potential of PARs agonism, providing a new strategic direction for PARs-mediated immunotherapy.
Collapse
Affiliation(s)
- Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Lei Lu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
7
|
Sibia RS, Sood A, Subedi A, Sharma A, Mittal A, Singh G, Singh TG, Jaura RS, Goyal S. Elevated serum PAR-1 levels as an emerging biomarker of inflammation to predict the dengue infection severity. J Med Virol 2023; 95:e28152. [PMID: 36109338 DOI: 10.1002/jmv.28152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
The present study was designed to check the serum levels of protease-activated receptor (PAR-1) in patients during different phases of dengue severity. Moreover, a correlation between serum PAR-1 levels and hematological parameters, inflammatory cytokine levels, and liver functional changes was also determined. Based on the World Health Organization criteria, the study population was divided into: nonsevere dengue fever (DF; n = 30), severe dengue hemorrhagic fever (DHF; n = 19), and severe dengue shock syndrome (DSS; n = 11). The platelet count (PLT) and hematocrit (HCT) were analyzed using an automated hematology analyzer and liver function enzymes aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphate (ALP), bilirubin were checked by auto-analyzer using diagnostic kits. Moreover, the levels of inflammatory mediators C-reactive protein (CRP), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-17 (IL-17), and PAR-1 were determined using respective ELISA kits. The HCT levels were elevated and platelet count decreased significantly during dengue complications (DHF and DSS) compared to the DF patients, while the levels of liver functional biomarkers AST, ALT, ALP, and bilirubin remained elevated in DHF and DSS groups than in the corresponding DF group. Similarly, the inflammatory cytokine levels of CRP, TNF-α, IL-6, and IL-17 in DHF and DSS subjects were markedly increased when observed against DF subjects. Notably, the PAR-1 levels were significantly elevated in DHF and DSS groups than in the DF group and positively correlated with changes in HCT levels, inflammatory biomarkers, and liver enzymes. Our findings conclude that PAR-1 levels persistently increased with the severity of the dengue infection and are strongly associated with various clinical manifestations. Thus, PAR-1 levels can be used as a diagnostic marker for assessing dengue severity.
Collapse
Affiliation(s)
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Arshula Subedi
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushya Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anirudh Mittal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | | | | - Sanjay Goyal
- Government Medical College, Patiala, Punjab, India
| |
Collapse
|
8
|
Lv J, Liu J, Chao G, Zhang S. PARs in the inflammation-cancer transformation of CRC. Clin Transl Oncol 2022; 25:1242-1251. [PMID: 36547764 DOI: 10.1007/s12094-022-03052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the common malignancies with a global trend of increasing incidence and mortality. There is an urgent need to identify new predictive markers and therapeutic targets for the treatment of CRC. Protease-activated receptors (PARs) are a class of G-protein-coupled receptors, with currently identified subtypes including PAR1, PAR2, PAR3 and PAR4. Increasingly, studies suggest that PARs play an important role in the growth and metastasis of CRC. By targeting multiple signaling pathways may contribute to the pathogenesis of CRC. In this review, we first describe recent studies on the role of PARs in CRC inflammation-cancer transformation, focusing on the important role of PARs in signaling pathways associated with inflammation-cancer transformation, and summarize the progress of research on PARs-targeted drugs.
Collapse
Affiliation(s)
- Jianyu Lv
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Jinguo Liu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, Hanghou, China.
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
9
|
Goyal S, Sood A, Gautam I, Pradhan S, Mondal P, Singh G, Jaura RS, Singh TG, Sibia RS. Serum protease-activated receptor (PAR-1) levels as a potential biomarker for diagnosis of inflammation in type 2 diabetic patients. Inflammopharmacology 2022; 30:1843-1851. [PMID: 35974263 DOI: 10.1007/s10787-022-01049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inflammation is a prominent clinical manifestation in type 2 diabetes mellitus (T2DM) patients, often associated with insulin resistance, metabolic dysregulation, and other complications. AIM OF THE STUDY The present study has been designed to check the serum levels of PAR-1 and correlate with various clinical manifestations and inflammatory cytokines levels in type 2 diabetic subjects. MATERIAL AND METHODS The study population was divided into two groups, healthy volunteers (n = 15): normal glycated hemoglobin (HbA1c) (4.26 ± 0.55) and type 2 diabetic subjects (n = 30): HbA1c levels (7.80 ± 2.41). The serum levels of PAR-1 (ELISA method) were studied in both groups and correlated with demographic parameters age, weight, body mass index (BMI), and conventional inflammation biomarkers like C-reactive protein (CRP), interleukin 6 (IL-6), interleukin 8 (IL-8), and tumour necrosis factor-alpha (TNF-α). RESULTS The demographic variables including the body weight (77.38 ± 10.00 vs. controls 55.26 ± 6.99), BMI (29.39 ± 3.61 vs. controls 25.25 ± 4.01), glycemic index HbA1c (7.80 ± 2.41 vs. controls 4.26 ± 0.55) were found to be statistically increased in T2DM subjects than the healthy control group. The levels of various inflammatory biomarkers and PAR-1 were significantly elevated in T2DM groups in comparison to healthy volunteers. The univariate and multivariate regression analysis revealed that elevated PAR-1 levels positively correlated with increased body weight, BMI, HbA1c, and inflammatory cytokines. CONCLUSION Our findings indicate that the elevated serum PAR-1 levels serve as an independent predictor of inflammation in T2DM subjects and might have prognostic value for determining T2DM progression.
Collapse
Affiliation(s)
- Sanjay Goyal
- Government Medical College, Patiala, Punjab, India
| | - Ankita Sood
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | - Isha Gautam
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | - Soumyadip Pradhan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | - Puskar Mondal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | - Gaaminepreet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India.
| | - Ravinder Singh Jaura
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh-Patiala National Highway (NH-64), Tehsil, Rajpura District, Patiala, 140401, Punjab, India
| | | |
Collapse
|
10
|
Chen KJ, Huang YL, Kuo LM, Chen YT, Hung CF, Hsieh PW. Protective role of casuarinin from Melastoma malabathricum against a mouse model of 5-fluorouracil-induced intestinal mucositis: Impact on inflammation and gut microbiota dysbiosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154092. [PMID: 35430483 DOI: 10.1016/j.phymed.2022.154092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND 5-FU-induced intestinal mucositis (FUIIM) is a common gastrointestinal side effect of chemotherapy, leading to gastric pain in clinical cancer patients. In a previous study, we demonstrated that neutrophil elastase (NE) inhibitors could alleviate FUIIM and manipulate the homeostasis of the gut microbiota. The root of Melastoma malabathricum, also called Ye-Mu-Dan, has been used as a traditional Chinese medicine for gastrointestinal disease. Water extract of the roots of M. malabathricum exhibits an inhibitory effect on NE, with an IC50 value of 9.13 μg/ml. PURPOSE In this study, we aimed to isolate an anti-NE compound from the root of M. malabathricum and to determine the protective effect of the bioactive component on a mouse model of FUIIM with respect to tissue damage, inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. METHODS A water extract of the roots of M. malabathricum was prepared and its major bioactive compound, was identified using bioactivity-guided fractionation. The effects of samples on the inhibition of NE activity were evaluated using enzymatic assays. To evaluate the effects of the bioactive compound in an FUIIM animal model, male C57BL/6 mice treated with or without casuarinin (50 and 100 mg/kg/day, p.o.), and then received of 5-fluorouracil (50 mg/kg/day) intraperitoneally for 5 days to induce FUIIM. Histopathological staining was used to monitor the tissue damage, proliferation of intestinal crypts, and expression of tight junction proteins. The inflammation score was estimated by determining the levels of oxidative stress, neutrophil-related proteases, and proinflammatory cytokines in tissue and serum. The ecology of the gut microbiota was evaluated using 16S rRNA gene sequencing. RESULTS Casuarinin had the most potent and selective effect against NE, with an IC50 value of 2.79 ± 0.07 μM. Casuarinin (100 mg/kg/day, p.o.) significantly improved 5-FU-induced body weight loss together with food intake reduction, and it also significantly reversed villus atrophy, restored the proliferative activity of the intestinal crypts, and suppressed inflammation and intestinal barrier dysfunction in the mouse model of FUIIM. Casuarinin also reversed 5-FU-induced gut microbiota dysbiosis, particularly the abundance of Actinobacteria, Candidatus Arthromitus, and Lactobacillus murinus, and the Firmicutes-to-Bacteroidetes ratio. CONCLUSION This study firstly showed that casuarinin isolated from the root part of M. malabathricum could be used as a NE inhibitor, whereas it could improve FUIIM by modulating inflammation, intestinal barrier dysfunction, and gut microbiota dysbiosis. In summary, exploring anti-NE natural product may provide a way to find candidate for improvement of FUIIM.
Collapse
Affiliation(s)
- Kung-Ju Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Yu-Ling Huang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Liang-Mou Kuo
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yi-Ting Chen
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan; Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Zhuo X, Wu Y, Fu X, Liang X, Xiang Y, Li J, Mao C, Jiang Y. The Yin‐Yang roles of protease‐activated receptors in inflammatory signalling and diseases. FEBS J 2022; 289:4000-4020. [DOI: 10.1111/febs.16406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/26/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Zhuo
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yue Wu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiujuan Fu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Xiaoyu Liang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuxin Xiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Jianbin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Canquan Mao
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| | - Yuhong Jiang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu China
| |
Collapse
|
12
|
Jacenik D, Fichna J, Małecka-Wojciesko E, Mokrowiecka A. Protease-Activated Receptors - Key Regulators of Inflammatory Bowel Diseases Progression. J Inflamm Res 2022; 14:7487-7497. [PMID: 35002281 PMCID: PMC8721023 DOI: 10.2147/jir.s335502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis and course of inflammatory bowel diseases are related to both immune system disorders and dysfunction of colon permeability. Moreover, co-existing diseases in patients with Crohn's disease and ulcerative colitis are identified. Currently, there are some therapeutic strategies that affect the function of cytokine/s causing inflammation in the intestinal wall. However, additional approaches which target other components of inflammatory bowel diseases pathogenesis are still needed. Accumulating evidence suggests that proteases and protease-activated receptors seem to be responsible for colitis progression. Experimental and observational studies showed alteration of protease-activated receptors expression in the colon of patients with Crohn's disease and ulcerative colitis. Furthermore, it was suggested that the expression of protease-activated receptors correlated with inflammatory bowel diseases activity. Moreover, regulation of protease-activated receptors seems to be responsible for the modulation of colitis and clinical manifestation of inflammatory bowel diseases. In this review, we present the current state of knowledge about the contribution of protease-activated receptors to Crohn's disease and ulcerative colitis and its implications for diagnosis and treatment.
Collapse
Affiliation(s)
- Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Anna Mokrowiecka
- Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
13
|
Activated Protein C Protects against Murine Contact Dermatitis by Suppressing Protease-Activated Receptor 2. Int J Mol Sci 2022; 23:ijms23010516. [PMID: 35008942 PMCID: PMC8745259 DOI: 10.3390/ijms23010516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with excessive inflammation and defective skin barrier function. Activated protein C (APC) is a natural anticoagulant with anti-inflammatory and barrier protective functions. However, the effect of APC on AD and its engagement with protease activated receptor (PAR)1 and PAR2 are unknown. Methods: Contact hypersensitivity (CHS), a model for human AD, was induced in PAR1 knockout (KO), PAR2KO and matched wild type (WT) mice using 2,4-dinitrofluorobenzene (DNFB). Recombinant human APC was administered into these mice as preventative or therapeutic treatment. The effect of APC and PAR1KO or PARKO on CHS was assessed via measurement of ear thickness, skin histologic changes, inflammatory cytokine levels, Th cell phenotypes and keratinocyte function. Results: Compared to WT, PAR2KO but not PAR1KO mice displayed less severe CHS when assessed by ear thickness; PAR1KO CHS skin had less mast cells, lower levels of IFN-γ, IL-4, IL-17 and IL-22, and higher levels of IL-1β, IL-6 and TGF-β1, whereas PAR2KO CHS skin only contained lower levels of IL-22 and IgE. Both PAR1KO and PAR2KO spleen cells had less Th1/Th17/Th22/Treg cells. In normal skin, PAR1 was present at the stratum granulosum and spinosum, whereas PAR2 at the upper layers of the epidermis. In CHS, however, the expression of PAR1 and PAR2 were increased and spread to the whole epidermis. In vitro, compared to WT cells, PAR1KO keratinocytes grew much slower, had a lower survival rate and higher para permeability, while PAR2KO cells grew faster, were resistant to apoptosis and para permeability. APC inhibited CHS as a therapeutic but not as a preventative treatment only in WT and PAR1KO mice. APC therapy reduced skin inflammation, suppressed epidermal PAR2 expression, promoted keratinocyte growth, survival, and barrier function in both WT and PAR1KO cells, but not in PAR2KO cells. Conclusions: APC therapy can mitigate CHS. Although APC acts through both PAR1 and PAR2 to regulate Th and mast cells, suppression of clinical disease in mice is achieved mainly via inhibition of PAR2 alone. Thus, APC may confer broad therapeutic benefits as a disease-modifying treatment for AD.
Collapse
|
14
|
Motta JP, Deraison C, Le Grand S, Le Grand B, Vergnolle N. PAR-1 Antagonism to Promote Gut Mucosa Healing in Crohn's Disease Patients: A New Avenue for CVT120165. Inflamm Bowel Dis 2021; 27:S33-S37. [PMID: 34791291 DOI: 10.1093/ibd/izab244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/17/2022]
Abstract
A new paradigm has been added for the treatment of inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. In addition to resolving symptoms and inflammatory cell activation, the objective of tissue repair and mucosal healing is also now considered a primary goal. In the search of mediators that would be responsible for delayed mucosal healing, protease-activated receptor-1 (PAR-1) has emerged as a most interesting target. Indeed, in Crohn's disease, the endogenous PAR-1 agonist thrombin is drastically activated. Activation of PAR-1 is known to be associated with epithelial dysfunctions that hamper mucosal homeostasis. This review gathers the scientific evidences of a potential role for PAR-1 in mucosal damage and mucosal dysfunctions associated with chronic intestinal inflammation. The potential clinical benefits of PAR-1 antagonism to promote mucosal repair in CD patients are discussed. Targeted local delivery of a PAR-1 antagonist molecule such as CVT120165, a formulated version of the FDA-approved PAR-1 antagonist vorapaxar, at the mucosa of Crohn's disease patients could be proposed as a new indication for IBD that could be rapidly tested in clinical trials.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France.,CVasThera, Arobase Castres-Mazamet, Castres, France
| | - Celine Deraison
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France
| | | | | | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France.,Departments of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| |
Collapse
|
15
|
De bruyn M, Ceuleers H, Hanning N, Berg M, De Man JG, Hulpiau P, Hermans C, Stenman UH, Koistinen H, Lambeir AM, De Winter BY, De Meester I. Proteolytic Cleavage of Bioactive Peptides and Protease-Activated Receptors in Acute and Post-Colitis. Int J Mol Sci 2021; 22:10711. [PMID: 34639054 PMCID: PMC8509398 DOI: 10.3390/ijms221910711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
The protease activity in inflammatory bowel disease (IBD) and irritable bowel syndrome has been studied extensively using synthetic fluorogenic substrates targeting specific sets of proteases. We explored activities in colonic tissue from a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis rat model by investigating the cleavage of bioactive peptides. Pure trypsin- and elastase-like proteases on the one hand and colonic tissue from rats with TNBS-induced colitis in the acute or post-inflammatory phase on the other, were incubated with relevant peptides to identify their cleavage pattern by mass spectrometry. An increased cleavage of several peptides was observed in the colon from acute colitis rats. The tethered ligand (TL) sequences of peptides mimicking the N-terminus of protease-activated receptors (PAR) 1 and 4 were significantly unmasked by acute colitis samples and these cleavages were positively correlated with thrombin activity. Increased cleavage of β-endorphin and disarming of the TL-sequence of the PAR3-based peptide were observed in acute colitis and linked to chymotrypsin-like activity. Increased processing of the enkephalins points to the involvement of proteases with specificities different from trypsin- or chymotrypsin-like enzymes. In conclusion, our results suggest thrombin, chymotrypsin-like proteases and a set of proteases with different specificities as potential therapeutic targets in IBD.
Collapse
Affiliation(s)
- Michelle De bruyn
- Laboratory of Medical Biochemistry, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (A.-M.L.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| | - Hannah Ceuleers
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
| | - Nikita Hanning
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
| | - Maya Berg
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| | - Joris G. De Man
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
| | - Paco Hulpiau
- Bioinformatics Knowledge Center (BiKC), Howest University of Applied Sciences, 8000 Bruges, Belgium; (P.H.); (C.H.)
| | - Cedric Hermans
- Bioinformatics Knowledge Center (BiKC), Howest University of Applied Sciences, 8000 Bruges, Belgium; (P.H.); (C.H.)
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (U.-H.S.); (H.K.)
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; (U.-H.S.); (H.K.)
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (A.-M.L.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| | - Benedicte Y. De Winter
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, 2610 Wilrijk, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, 2610 Wilrijk, Belgium; (M.D.b.); (A.-M.L.)
- Infla-Med, Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; (H.C.); (N.H.); (M.B.); (J.G.D.M.); (B.Y.D.W.)
| |
Collapse
|
16
|
Kim HN, Triplet EM, Radulovic M, Bouchal S, Kleppe LS, Simon WL, Yoon H, Scarisbrick IA. The thrombin receptor modulates astroglia-neuron trophic coupling and neural repair after spinal cord injury. Glia 2021; 69:2111-2132. [PMID: 33887067 PMCID: PMC8672305 DOI: 10.1002/glia.24012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/15/2022]
Abstract
Excessive activation of the thrombin receptor, protease activated receptor 1 (PAR1) is implicated in diverse neuropathologies from neurodegenerative conditions to neurotrauma. PAR1 knockout mice show improved outcomes after experimental spinal cord injury (SCI), however information regarding the underpinning cellular and molecular mechanisms is lacking. Here we demonstrate that genetic blockade of PAR1 in female mice results in improvements in sensorimotor co-ordination after thoracic spinal cord lateral compression injury. We document improved neuron preservation with increases in Synapsin-1 presynaptic proteins and GAP43, a growth cone marker, after a 30 days recovery period. These improvements were coupled to signs of enhanced myelin resiliency and repair, including increases in the number of mature oligodendrocytes, their progenitors and the abundance of myelin basic protein. These significant increases in substrates for neural recovery were accompanied by reduced astrocyte (Serp1) and microglial/monocyte (CD68 and iNOS) pro-inflammatory markers, with coordinate increases in astrocyte (S100A10 and Emp1) and microglial (Arg1) markers reflective of pro-repair activities. Complementary astrocyte-neuron co-culture bioassays suggest astrocytes with PAR1 loss-of-function promote both neuron survival and neurite outgrowth. Additionally, the pro-neurite outgrowth effects of switching off astrocyte PAR1 were blocked by inhibiting TrkB, the high affinity receptor for brain derived neurotrophic factor. Altogether, these studies demonstrate unique modulatory roles for PAR1 in regulating glial-neuron interactions, including the capacity for neurotrophic factor signaling, and underscore its position at neurobiological intersections critical for the response of the CNS to injury and the capacity for regenerative repair and restoration of function.
Collapse
Affiliation(s)
- Ha Neui Kim
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Erin M. Triplet
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Samantha Bouchal
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Laurel S. Kleppe
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Whitney L. Simon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
| | - Isobel A. Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester MN 55905
- Department of Physiology and Biomedical Engineering, Rochester MN 55905
- Neuroscience Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester MN 55905
| |
Collapse
|
17
|
Xue M, Lin H, Liang HPH, McKelvey K, Zhao R, March L, Jackson C. Deficiency of protease-activated receptor (PAR) 1 and PAR2 exacerbates collagen-induced arthritis in mice via differing mechanisms. Rheumatology (Oxford) 2021; 60:2990-3003. [PMID: 33823532 DOI: 10.1093/rheumatology/keaa701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES Protease-activated receptor (PAR) 1 and PAR2 have been implicated in RA, however their exact role is unclear. Here, we detailed the mechanistic impact of these receptors on the onset and development of inflammatory arthritis in murine CIA and antigen-induced arthritis (AIA) models. METHODS CIA or AIA was induced in PAR1 or PAR2 gene knockout (KO) and matched wild type mice. The onset and development of arthritis was monitored clinically and histologically. Immune cells, cytokines and MMPs were detected by ELISA, zymography, flow cytometry, western blot or immunohistochemistry. RESULTS In CIA, PAR1KO and PAR2KO exacerbated arthritis, in opposition to their effects in AIA. These deficient mice had high plasma levels of IL-17, IFN-γ, TGF-β1 and MMP-13, and lower levels of TNF-α; T cells and B cells were higher in both KO spleen and thymus, and myeloid-derived suppressor cells were lower only in PAR1KO spleen, when compared with wild type cells. Th1, Th2 and Th17 cells were lower in PAR1KO spleens cells, whereas Th1 and Th2 cells were lower and Th17 cells higher in both KO thymus cells, when compared with wild type cells. PAR1KO synovial fibroblasts proliferated faster and produced the most abundant MMP-9 amongst three type cells in the control, lipopolysaccharides or TNF stimulated conditions. CONCLUSION This is the first study demonstrated that deficiency of PAR1 or PAR2 aggravates inflammatory arthritis in CIA. Furthermore, the protective functions of PAR1 and PAR2 in CIA likely occur via differing mechanisms involving immune cell differentiation and cytokines/MMPs.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| | - Haiyan Lin
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| | - Hai Po Helena Liang
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| | - Kelly McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ruilong Zhao
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| | - Lyn March
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| | - Christopher Jackson
- Sutton Arthritis Research Laboratory, Institute of Bone and Joint Research, Sydney, NSW, Australia
| |
Collapse
|
18
|
Wilkinson H, Leonard H, Chen D, Lawrence T, Robson M, Goossens P, McVey JH, Dorling A. PAR-1 signaling on macrophages is required for effective in vivo delayed-type hypersensitivity responses. iScience 2021; 24:101981. [PMID: 33458623 PMCID: PMC7797913 DOI: 10.1016/j.isci.2020.101981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Delayed-type hypersensitivity (DTH) responses underpin chronic inflammation. Using a model of oxazolone-induced dermatitis and a combination of transgenic mice, adoptive cell transfer, and selective agonists/antagonists against protease activated receptors, we show that that PAR-1 signaling on macrophages by thrombin is required for effective granuloma formation. Using BM-derived macrophages (BMMs) in vitro, we show that thrombin signaling induced (a) downregulation of cell membrane reverse cholesterol transporter ABCA1 and (b) increased expression of IFNγ receptor and enhanced co-localization within increased areas of cholesterol-rich membrane microdomains. These two key phenotypic changes combined to make thrombin-primed BMMs sensitive to M1 polarization by 1000-fold less IFNγ, compared to resting BMMs. We confirm that changes in ABCA1 expression were directly responsible for the exquisite sensitivity to IFNγ in vitro and for the impact on granuloma formation in vivo. These data indicate that PAR-1 signaling plays a hitherto unrecognized and critical role in DTH responses.
Collapse
Affiliation(s)
- Hannah Wilkinson
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Hugh Leonard
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Daxin Chen
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Toby Lawrence
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London SE1 9RT, UK
| | - Michael Robson
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229HX Maastricht, the Netherlands
| | - John H McVey
- School of Bioscience & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Anthony Dorling
- Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, Guy's Hospital, London SE1 9RT, UK
| |
Collapse
|
19
|
Dudzińska E, Strachecka A, Gil-Kulik P, Kocki J, Bogucki J, Shemedyuk N, Gryzinska M. Influence of the Treatment Used in Inflammatory Bowel Disease on the Protease Activities. Int J Gen Med 2020; 13:1633-1642. [PMID: 33380821 PMCID: PMC7767739 DOI: 10.2147/ijgm.s267036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022] Open
Abstract
Introduction There is growing evidence that intestinal proteases have a role in the pathogenesis of gastrointestinal inflammatory diseases. Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative colitis (UC), has an additional source of proteases represented by infiltrated and activated inflammatory cells. The aim of our study was to determine proteolytic system activity in patients with CD and UC. We limited the number of proteases tested by determining proteases active in acidic, neutral and alkaline pH. Materials and Methods The study included 40 patients with IBD – 20 CD patients and 20 UC patients. The control group consisted of 20 healthy subjects. Among the 20 CD patients, 17 were treated with aminosalicylates, 14 with azathioprine, and 4 with corticosteroids, while 8 patients were undergoing biological treatment. Among the 20 UC patients, 19 were treated with aminosalicylates, 8 with azathioprine, and 3 with corticosteroids. The total protein concentration was assayed by the Lowry method. The optimal pH was assayed in pH from 2.2 to 12.8, separated by 0.2 intervals. Proteolytic activities were determined against different substrates (gelatine, haemoglobin, ovalbumin, albumin, cytochrome C, and casein), and haemoglobin was the optimal substrate. Protease activities were determined according to Anson method. Determination of the activities of natural inhibitors of acidic, neutral and alkaline proteases is based on the Lee and Lin method. Results Decreases were observed in the activities of acid proteases (pH 5), alkaline proteases (pH 7), and neutral proteases (pH 7.6 and 8.6) in the groups of CD patients in remission in comparison with the active phase. In the group of patients with biologically treated CD patients, acid protease activity (pH 5.0) was lower than in CD patients not receiving biological treatment. Activities of neutral (pH 7.0) and alkaline (pH 7.6 and 8.6) proteases in the plasma of patients with UC in remission were lower in comparison to the active phase. Activities of acid (pH 5.0) and alkaline (8.6) protease inhibitors were higher in CD patients in the active phase in comparison to remission. In UC patients with exacerbation of the disease, the activity of alkaline (pH 8.6) protease inhibitors was increased compared to remission. Conclusion 1. Our research may suggest that the immunomodulatory treatment used in IBD, aimed at reducing the level of leukocytes and reduction of inflammation, may contribute to a reduction in protease activity. 2. The decrease of protease activities in patients with CD and UC in remission may be a marker suggesting the patients’ response to the treatment.
Collapse
Affiliation(s)
- Ewa Dudzińska
- Chair of Public Health, Medical University of Lublin, Lublin 20-093, Poland
| | - Aneta Strachecka
- Subdepartment of General and Molecular Genetics, Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin 20-950, Poland
| | - Paulina Gil-Kulik
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, Lublin 20-080, Poland
| | - Janusz Kocki
- Chair of Medical Genetics, Department of Clinical Genetics, Medical University of Lublin, Lublin 20-080, Poland
| | - Jacek Bogucki
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Lublin 20-093, Poland
| | - Natalya Shemedyuk
- Department Biotechnology and Radiology, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Lviv 79010, Ukraine
| | - Magdalena Gryzinska
- Subdepartment of General and Molecular Genetics, Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, Lublin 20-950, Poland
| |
Collapse
|
20
|
Inhibition of the activation of γδT17 cells through PPARγ-PTEN/Akt/GSK3β/NFAT pathway contributes to the anti-colitis effect of madecassic acid. Cell Death Dis 2020; 11:752. [PMID: 32929062 PMCID: PMC7490397 DOI: 10.1038/s41419-020-02969-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
Type-17 immune response, mediated mainly by IL-17, plays a critical role in ulcerative colitis. Previously, we showed that madecassic acid (MA), the main active ingredient of Centella asiatica herbs for anti-colitis effect, ameliorated dextran sulfate sodium (DSS)-induced mouse colitis through reducing the level of IL-17. Here, we explore the effect of MA on the activation of γδT17 cells, an alternative source of IL-17 in colitis. In DSS-induced colitis mice, oral administration of MA decreased the number of γδT17 cells and attenuated the inflammation in the colon, and the anti-colitis effect of MA was significantly counteracted by redundant γδT17 cells, suggesting that the decrease in γδT17 cells is important for the anti-colitis effect of MA. In vitro, MA could inhibit the activation but not the proliferation of γδT17 cells at concentrations without evident cytotoxicity. Antibody microarray profiling showed that the inhibition of MA on the activation of γδT17 cells involved PPARγ–PTEN/Akt/GSK3β/NFAT signals. In γδT17 cells, MA could reduce the nuclear localization of NFATc1 through inhibiting Akt phosphorylation to promote GSK3β activation. Moreover, it was confirmed that MA inhibited the Akt/GSK3β/NFATc1 pathway and the activation of γδT17 cells through activating PPARγ to increase PTEN expression and phosphorylation. The correlation between activation of PPARγ, decrease in γδT17 cell number, and amelioration of colitis by MA was validated in mice with DSS-induced colitis. In summary, these findings reveal that MA inhibits the activation of γδT17 cells through PPARγ–PTEN/Akt/GSK3β/NFAT pathway, which contributes to the amelioration of colitis.
Collapse
|
21
|
Solà-Tapias N, Vergnolle N, Denadai-Souza A, Barreau F. The Interplay Between Genetic Risk Factors and Proteolytic Dysregulation in the Pathophysiology of Inflammatory Bowel Disease. J Crohns Colitis 2020; 14:1149-1161. [PMID: 32090263 DOI: 10.1093/ecco-jcc/jjaa033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Crohn's disease [CD] and ulcerative colitis [UC] are the two main forms of inflammatory bowel disease [IBD]. Previous studies reported increased levels of proteolytic activity in stool and tissue samples from IBD patients, whereas the re-establishment of the proteolytic balance abrogates the development of experimental colitis. Furthermore, recent data suggest that IBD occurs in genetically predisposed individuals who develop an abnormal immune response to intestinal microbes once exposed to environmental triggers. In this review, we highlight the role of proteases in IBD pathophysiology, and we showcase how the main cellular pathways associated with IBD influence proteolytic unbalance and how functional proteomics are allowing the unambiguous identification of dysregulated proteases in IBD, paving the way to the development of new protease inhibitors as a new potential treatment.
Collapse
Affiliation(s)
- Núria Solà-Tapias
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Alexandre Denadai-Souza
- Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Leuven, Belgium
| | - Frédérick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
22
|
Tomuschat C, O'Donnell AM, Coyle D, Puri P. Increased protease activated receptors in the colon of patients with Hirschsprung's disease. J Pediatr Surg 2020; 55:1488-1494. [PMID: 31859043 DOI: 10.1016/j.jpedsurg.2019.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE The pathophysiology of Hirschsprung's associated enterocolitis (HAEC) is not understood. Abnormal intestinal motility and altered intestinal epithelial barrier function have been suggested to play a key role in the causation of HAEC. Protease-activated receptors (PARs) 1 and 2, have been implicated in inflammatory reactions, intestinal permeability and modulation of motility in the gut. METHODS We investigated PAR-1 and PAR-2 protein expression in aganglionic and ganglionic regions of patients with Hirschsprung's Disease (HSCR) (n = 10) versus normal control colon (n = 10). Protein distribution was assessed by using immunofluorescence and confocal microscopy. Gene and protein expression were quantified using quantitative real-time polymerase chain reaction (qPCR), western blot analysis, and densitometry. RESULTS qPCR and Western blot analysis revealed that PAR-1 and PAR-2 expression was significantly increased in ganglionic and aganglionic bowel in HSCR compared to controls (p < 0.003). Confocal microscopy revealed strong PAR-1 and PAR-2 expression in smooth muscles, interstitial cells of Cajal (ICCs), platelet-derived growth factor-alpha receptor-positive (PDGFRα+) cells, enteric neurons and epithelium in the ganglionic and aganglionic bowel compared to controls. CONCLUSION Increased PAR-1 and PAR-2 expression in the colon of patients with HSCR suggests that excessive local release of PAR activating proteases may trigger inflammatory responses leading to HAEC.
Collapse
Affiliation(s)
- Christian Tomuschat
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.
| | - Anne Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - David Coyle
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; School of Medicine and Medical Science and Conway Institute of Biomedical Research, University College Dublin, Ireland
| |
Collapse
|
23
|
Role of proteinase-activated receptors 1 and 2 in nonsteroidal anti-inflammatory drug enteropathy. Pharmacol Rep 2020; 72:1347-1357. [DOI: 10.1007/s43440-020-00119-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
|
24
|
Boucher AA, Rosenfeldt L, Mureb D, Shafer J, Sharma BK, Lane A, Crowther RR, McKell MC, Whitt J, Alenghat T, Qualls J, Antoniak S, Mackman N, Flick MJ, Steinbrecher KA, Palumbo JS. Cell type-specific mechanisms coupling protease-activated receptor-1 to infectious colitis pathogenesis. J Thromb Haemost 2020; 18:91-103. [PMID: 31539206 PMCID: PMC7026906 DOI: 10.1111/jth.14641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/29/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Protease-activated receptor-1 (PAR-1) plays a major role in multiple disease processes, including colitis. Understanding the mechanisms coupling PAR-1 to disease pathogenesis is complicated by the fact that PAR-1 is broadly expressed across multiple cell types. OBJECTIVE Determine the specific contributions of PAR-1 expressed by macrophages and colonic enterocytes to infectious colitis. METHODS Mice carrying a conditional PAR-1 allele were generated and bred to mice expressing Cre recombinase in a myeloid- (PAR-1ΔM ) or enterocyte-specific (PAR-1ΔEPI ) fashion. Citrobacter rodentium colitis pathogenesis was analyzed in mice with global PAR-1 deletion (PAR-1-/- ) and cell type-specific deletions. RESULTS Constitutive deletion of PAR-1 had no significant impact on weight loss, crypt hypertrophy, crypt abscess formation, or leukocyte infiltration in Citrobacter colitis. However, colonic shortening was significantly blunted in infected PAR-1-/- mice, and these animals exhibited decreased local levels of IL-1β, IL-22, IL-6, and IL-17A. In contrast, infected PAR-1ΔM mice lost less weight and had fewer crypt abscesses relative to controls. PAR-1ΔM mice had diminished CD3+ T cell infiltration into colonic tissue, but macrophage and CD4+ T cell infiltration were similar to controls. Also contrasting results in global knockouts, PAR-1ΔM mice exhibited lower levels of IL-1β, but not Th17-related cytokines (ie, IL-22, IL-6, IL-17A). Infected PAR-1ΔEPI mice exhibited increased crypt hypertrophy and crypt abscess formation, but local cytokine elaboration was similar to controls. CONCLUSIONS These studies reveal complex, cell type-specific roles for PAR-1 in modulating the immune response to Citrobacter colitis that are not readily apparent in analyses limited to mice with global PAR-1 deficiency.
Collapse
Affiliation(s)
- Alexander A. Boucher
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Leah Rosenfeldt
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Duaa Mureb
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jessica Shafer
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bal Krishan Sharma
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Adam Lane
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rebecca R. Crowther
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Melanie C. McKell
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jordan Whitt
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Theresa Alenghat
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joseph Qualls
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Silvio Antoniak
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kris A. Steinbrecher
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joseph S. Palumbo
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
25
|
Citrobacter rodentium-host-microbiota interactions: immunity, bioenergetics and metabolism. Nat Rev Microbiol 2019; 17:701-715. [PMID: 31541196 DOI: 10.1038/s41579-019-0252-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Citrobacter rodentium is an extracellular enteric mouse-specific pathogen used to model infections with human pathogenic Escherichia coli and inflammatory bowel disease. C. rodentium injects type III secretion system effectors into intestinal epithelial cells (IECs) to target inflammatory, metabolic and cell survival pathways and establish infection. While the host responds to infection by activating innate and adaptive immune signalling, required for clearance, the IECs respond by rapidly shifting bioenergetics to aerobic glycolysis, which leads to oxygenation of the epithelium, an instant expansion of mucosal-associated commensal Enterobacteriaceae and a decline of obligate anaerobes. Moreover, infected IECs reprogramme intracellular metabolic pathways, characterized by simultaneous activation of cholesterol biogenesis, import and efflux, leading to increased serum and faecal cholesterol levels. In this Review we summarize recent advances highlighting the intimate relationship between C. rodentium pathogenesis, metabolism and the gut microbiota.
Collapse
|
26
|
High Expression and Clinical Significance of Elafin in Colorectal Cancer. Gastroenterol Res Pract 2019; 2019:4946824. [PMID: 31281349 PMCID: PMC6590570 DOI: 10.1155/2019/4946824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The decrease of Elafin is associated with several inflammatory diseases. Exogenous Elafin may be a treatment for IBD. Little data has shown the expression of Elafin in patients of colorectal cancer. Here, we tried to explore Elafin expression in human tissues of colorectal cancer. METHODS We examined the protein expression of Elafin in human tissues of adjacent nontumor and colorectal tumor by immunohistochemistry (IHC) or quantitative real-time polymerase chain reaction (qRT-PCR), then analyzed the clinical and RNA-seq data presented in The Cancer Genome Atlas (TCGA) database to confirm the relationship between Elafin levels and colorectal tumor. RESULTS Of the 88 paired samples, 68 colorectal cancer tissues indicated a high expression of Elafin compared with 52 matched adjacent noncancerous tissues. And the mRNA levels of Elafin in 35 paired tissues showed a similar trend. The RNA-seq and clinical data were available in 438 colorectal cancer tissues and 41 normal tissues in TCGA database. The RNA-seq data showed that Elafin mRNA was upregulated about twofold in colorectal cancer samples as compared to adjacent noncancerous samples (176.42 ± 402.13 vs. 96.75 ± 150.07; P = 0.208). No statistically significant correlation was found between the Elafin expression and the age, gender, tumor invasive stage, lymph node metastasis, and distant metastasis both at the protein and mRNA levels. However, the Elafin expression was correlated with clinical stage based on the AJCC guidelines at protein levels but not mRNA levels. CONCLUSIONS Elafin was upregulated in patients of colorectal cancer, resulting to potential limitations for exogenous Elafin treatment.
Collapse
|
27
|
Soloviova K, Fox EC, Dalton JP, Caffrey CR, Davies SJ. A secreted schistosome cathepsin B1 cysteine protease and acute schistosome infection induce a transient T helper 17 response. PLoS Negl Trop Dis 2019; 13:e0007070. [PMID: 30653492 PMCID: PMC6353221 DOI: 10.1371/journal.pntd.0007070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/30/2019] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
The natural history of schistosome infection in the mammalian host is determined by CD4+ T helper responses mounted against different parasite life cycle stages. A T helper 2 (TH2) response to schistosome eggs is required for host survival and establishment of chronic infection. However, a TH2 cell-derived cytokine also contributes to an immune milieu that is conducive to schistosome growth and development. Thus, the same responses that allow for host survival have been co-opted by schistosomes to facilitate parasite development and transmission, underscoring the significance of CD4+ T cell responses to both worms and eggs in the natural history of schistosome infection. Here we show that a cathepsin B1 cysteine protease secreted by schistosome worms not only induces TH2 responses, but also TH1 and TH17 responses, by a mechanism that is dependent on the proteolytic activity of the enzyme. Further investigation revealed that, in addition to the expected TH1 and TH2 responses, acute schistosome infection also induces a transient TH17 response that is rapidly down-regulated at the onset of oviposition. TH17 responses are implicated in the development of severe egg-induced pathology. The regulation of worm-induced TH17 responses during acute infection could therefore influence the expression of high and low pathology states as infection progresses. Schistosomiasis, a neglected tropical disease caused by parasites of the genus Schistosoma, is prevalent throughout the developing world, with more than 230 million people infected. Left untreated, schistosome infection may cause relatively mild disease with some morbidity, or, in a minority of cases, result in severe pathology and death. These variable outcomes are recapitulated in animal models, where the natural history of schistosome infection is profoundly influenced by the responses of host CD4+ T helper cells. Type 2 CD4+ T cell (TH2) responses, which allow for host survival by limiting pathology, have ironically also been co-opted by schistosomes to promote parasite development. On the other hand, TH17 responses have been implicated in the development of severe pathology, in both experimentally infected animals and naturally infected humans. Here we show that a schistosome proteolytic enzyme (SmCB1), produced in the parasite gut and released into the bloodstream, induces both TH2 and TH17 responses by a mechanism that requires the enzyme’s inherent proteolytic activity. Further investigation revealed that acute schistosome infection also induces a transient TH17 response that is rapidly down-regulated once parasite egg-laying commences. Regulation of TH17 responses during early infection may help determine whether mild or severe pathology develops as the infection progresses.
Collapse
Affiliation(s)
- Kateryna Soloviova
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ellen C. Fox
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - John P. Dalton
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Stephen J. Davies
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Sung TS, Lu H, Sung J, Yeom JH, Perrino BA, Koh SD. The functional role of protease-activated receptors on contractile responses by activation of Ca 2+ sensitization pathways in simian colonic muscles. Am J Physiol Gastrointest Liver Physiol 2018; 315:G921-G931. [PMID: 30260688 PMCID: PMC6336947 DOI: 10.1152/ajpgi.00255.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
It has been known that activation of protease-activated receptors (PARs) affects gastrointestinal motility. In this study, we tested the effects of PAR agonists on electrical and contractile responses and Ca2+ sensitization pathways in simian colonic muscles. The Simian colonic muscle was initially hyperpolarized by PAR agonists. After the transient hyperpolarization, simian colonic muscle repolarized to the control resting membrane potential (RMP) without a delayed depolarization. Apamin significantly reduced the initial hyperpolarization, suggesting that activation of small conductance Ca2+-activated K+ (SK) channels is involved in the initial hyperpolarization. In contractile experiments, PAR agonists caused an initial relaxation followed by an increase in contractions. These delayed contractile responses were not matched with the electrical responses that showed no after depolarization of the RMP. To investigate the possible involvement of Rho-associated protein kinase 2 (ROCK) pathways in the PAR effects, muscle strips were treated with ROCK inhibitors, which significantly reduced the PAR agonist-induced contractions. Furthermore, PAR agonists increased MYPT1 phosphorylation, and ROCK inhibitors completely blocked MYPT1 phosphorylation. PAR agonists alone had no effect on CPI-17 phosphorylation. In the presence of apamin, PAR agonists significantly increased CPI-17 phosphorylation, which was blocked by protein kinase C (PKC) inhibitors suggesting that Ca2+ influx is increased by apamin and is activating PKC. In conclusion, these studies show that PAR activators induce biphasic responses in simian colonic muscles. The initial inhibitory responses by PAR agonists are mainly mediated by activation of SK channels and delayed contractile responses are mainly mediated by the CPI-17 and ROCK Ca2+ sensitization pathways in simian colonic muscles. NEW & NOTEWORTHY In the present study, we found that the contractile responses of simian colonic muscles to protease-activated receptor (PAR) agonists are different from the previously reported contractile responses of murine colonic muscles. Ca2+ sensitization pathways mediate the contractile responses of simian colonic muscles to PAR agonists without affecting the membrane potential. These findings emphasize novel mechanisms of PAR agonist-induced contractions possibly related to colonic dysmotility in inflammatory bowel disease.
Collapse
Affiliation(s)
- Tae Sik Sung
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Hongli Lu
- 2Department of Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juno Sung
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Jong Hoon Yeom
- 3Department of Anesthesiology and Pain Medicine, Hanyang University, Seoul, Republic of Korea
| | - Brian A. Perrino
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- 1Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|