1
|
Fayyaz A, Ejaz SA, Alsfouk BA, Ejaz SR. Investigation of 3-Phenylcoumarin Derivatives as Potential Multi-target Inhibitors for Human Cholinesterases and Monoamine oxidases: A Computational Approach. Appl Biochem Biotechnol 2024; 196:8389-8409. [PMID: 38874841 DOI: 10.1007/s12010-024-04996-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Alzheimer's disease (AD) is the predominant etiology of dementia, impacting a global population of approximately 50 million individuals. In the field of medicinal chemistry, there have been notable advancements in the utilization of monoamine oxidase (MAO) and cholinesterase (ChE) inhibitors for the purpose of addressing the neurotransmitter shortage associated with Alzheimer's disease (AD). A selection of previously synthesized 3-Phenylcoumarin derivatives (5a-m) were selected for examination in the pursuit of potential multi-targeting inhibitors of MAO-A, MAO-B, AChE, and BChE. The stability and reactivity of the compounds were investigated through the utilization of density functional theory (DFT) simulations. Subsequently, a CoMFA technique, grounded in 3D-QSAR principles, was employed to construct a model and predict the inhibitory properties of analogues belonging to the class of 3-phenylcoumarin derivatives. Through the application of molecular docking methodologies, we have employed predictive analyses to determine the potential binding interactions and stability of the drugs under investigation. The results obtained from the present investigation indicate that the 3-phenylcoumarin derivatives possess a reactive electronic characteristic that is crucial for their anti-cholinesterase activity. Compound 5a demonstrated a noteworthy binding score with AChE, BChE, MAO-A and MAO-B, respectively, indicating a robust binding affinity.
Collapse
Affiliation(s)
- Ammara Fayyaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Syeda Rabia Ejaz
- Department of Physics, The Government Sadiq College Women University, Bahawalpur, 63100, Pakistan
| |
Collapse
|
2
|
Lai W, Luo R, Tang Y, Yu Z, Zhou B, Yang Z, Brown J, Hong G. Salidroside directly activates HSC70, revealing a new role for HSC70 in BDNF signalling and neurogenesis after cerebral ischemia. Phytother Res 2024; 38:2619-2640. [PMID: 38488455 DOI: 10.1002/ptr.8178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 02/11/2024] [Indexed: 06/13/2024]
Abstract
Salidroside, a principal bioactive component of Rhodiola crenulata, is neuroprotective across a wide time window in stroke models. We investigated whether salidroside induced neurogenesis after cerebral ischemia and aimed to identify its primary molecular targets. Rats, subjected to transient 2 h of middle cerebral artery occlusion (MCAO), received intraperitoneal vehicle or salidroside ± intracerebroventricular HSC70 inhibitor VER155008 or TrkB inhibitor ANA-12 for up to 7 days. MRI, behavioural tests, immunofluorescent staining and western blotting measured effects of salidroside. Reverse virtual docking and enzymatic assays assessed interaction of salidroside with purified recombinant HSC70. Salidroside dose-dependently decreased cerebral infarct volumes and neurological deficits, with maximal effects by 50 mg/kg/day. This dose also improved performance in beam balance and Morris water maze tests. Salidroside significantly increased BrdU+/nestin+, BrdU+/DCX+, BrdU+/NeuN+, BrdU-/NeuN+ and BDNF+ cells in the peri-infarct cortex, with less effect in striatum and no significant effect in the subventricular zone. Salidroside was predicted to bind with HSC70. Salidroside dose-dependently increased HSC70 ATPase and HSC70-dependent luciferase activities, but it did not activate HSP70. HSC70 immunoreactivity concentrated in the peri-infarct cortex and was unchanged by salidroside. However, VER155008 prevented salidroside-dependent increases of neurogenesis, BrdU-/NeuN+ cells and BDNF+ cells in peri-infarct cortex. Salidroside also increased BDNF protein and p-TrkB/TrkB ratio in ischemic brain, changes prevented by VER155008 and ANA-12, respectively. Additionally, ANA-12 blocked salidroside-dependent neurogenesis and increased BrdU-/NeuN+ cells in the peri-infarct cortex. Salidroside directly activates HSC70, thereby stimulating neurogenesis and neuroprotection via BDNF/TrkB signalling after MCAO. Salidroside and similar activators of HSC70 might provide clinical therapies for ischemic stroke.
Collapse
Affiliation(s)
- Wenfang Lai
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Luo
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuheng Tang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhengshuang Yu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Binbin Zhou
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zelin Yang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - John Brown
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guizhu Hong
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
3
|
Hoffman GR, Olson MG, Schoffstall AM, Estévez RF, Van den Eynde V, Gillman PK, Stabio ME. Classics in Chemical Neuroscience: Selegiline, Isocarboxazid, Phenelzine, and Tranylcypromine. ACS Chem Neurosci 2023; 14:4064-4075. [PMID: 37966854 DOI: 10.1021/acschemneuro.3c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
The discovery of monoamine oxidase inhibitors (MAOIs) in the 1950s marked a significant breakthrough in medicine, creating a powerful new category of drug: the antidepressant. In the years and decades that followed, MAOIs have been used in the treatment of several pathologies including Parkinson's disease, Alzheimer's disease, and various cancers and as anti-inflammatory agents. Despite once enjoying widespread use, MAOIs have dwindled in popularity due to side effects, food-drug interactions, and the introduction of other antidepressant drug classes such as tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs). The recently published prescriber's guide for the use of MAOIs in treating depression has kindled a resurgence of their use in the clinical space. It is therefore timely to review key aspects of the four "classic" MAOIs: high-dose selegiline, isocarboxazid, phenelzine, and tranylcypromine. This review discusses their chemical synthesis, metabolism, pharmacology, adverse effects, and the history and importance of these drugs within the broader field of chemical neuroscience.
Collapse
Affiliation(s)
- Gavin R Hoffman
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Madeline G Olson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
| | - Allen M Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| | - Ryan F Estévez
- Department of Psychiatry, University of Central Florida, 4000 Central Florida Boulevard, Orlando, Florida 32816, United States
- Tampa Bay Neurobehavior Institute, 6311 Sheldon Road, Tampa Bay, Florida 33615, United States
| | - Vincent Van den Eynde
- PsychoTropical Research, Bucasia, Queensland 4740, Australia
- Department of Psychiatry, RadboudUMC, 6500 Nijmegen, The Netherlands
| | - Peter K Gillman
- PsychoTropical Research, Bucasia, Queensland 4740, Australia
| | - Maureen E Stabio
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, 13001 E. 17th Place, Aurora, Colorado 80045, United States
| |
Collapse
|
4
|
Azevedo AR, Cordeiro P, Strelow DN, de Andrade KN, Neto MRS, Goetze Fiorot R, Brüning CA, Braga AL, Lião LM, Bortolatto CF, Neto JSS, Nascimento V. Green Approach for the Synthesis of Chalcogenyl- 2,3-dihydrobenzofuran Derivatives Through Allyl-phenols/ Naphthols and Their Potential as MAO-B Inhibitors. Chem Asian J 2023:e202300586. [PMID: 37733585 DOI: 10.1002/asia.202300586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/30/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
This work presents the design, synthesis, and MAO-B inhibitor activity of a series of chalcogenyl-2,3-dihydrobenzofurans derivatives. Using solvent- and metal-free methodology, a series of chalcogen-containing dihydrobenzofurans 7-9 was obtained with yields ranging from 40% to 99%, using an I2 /DMSO catalytic system. All compounds were fully structurally characterized using 1 H and 13 C NMR analysis, and the unprecedented compounds were additionally analyzed using high-resolution mass spectrometry (HRMS). In addition, the mechanistic proposal that iodide is the most likely species to act in the transfer of protons along the reaction path was studied through theoretical calculations. Finally, the compounds 7b-e, 8a-e, and 9a showed great promise as inhibitors against MAO-B activity.
Collapse
Affiliation(s)
- Amanda R Azevedo
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Niterói, Institute of Chemistry, Campus do Valonguinho, 24020-141, RJ, Brazil
| | - Pâmella Cordeiro
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Niterói, Institute of Chemistry, Campus do Valonguinho, 24020-141, RJ, Brazil
| | - Dianer N Strelow
- Molecular Biochemistry and Neuropharmacology Laboratory (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas Pelotas, 96010-900, RS, Brazil
| | - Karine N de Andrade
- Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense Niterói, Outeiro São João Batista, s/n, 24020-141, RJ, Brazil
| | - Marcos R S Neto
- LabSelen, Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, 88040-900, SC, Brazil
| | - Rodolfo Goetze Fiorot
- Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense Niterói, Outeiro São João Batista, s/n, 24020-141, RJ, Brazil
| | - César A Brüning
- Molecular Biochemistry and Neuropharmacology Laboratory (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas Pelotas, 96010-900, RS, Brazil
| | - Antonio L Braga
- LabSelen, Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, 88040-900, SC, Brazil
| | - Luciano M Lião
- LabRMN, Chemistry Institute, Federal University of Goiás Goiânia, 74690-900, GO, Brazil
| | - Cristiani F Bortolatto
- Molecular Biochemistry and Neuropharmacology Laboratory (LABIONEM), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas Pelotas, 96010-900, RS, Brazil
| | - José S S Neto
- LabRMN, Chemistry Institute, Federal University of Goiás Goiânia, 74690-900, GO, Brazil
| | - Vanessa Nascimento
- SupraSelen Laboratory, Department of Organic Chemistry, Universidade Federal Fluminense, Niterói, Institute of Chemistry, Campus do Valonguinho, 24020-141, RJ, Brazil
| |
Collapse
|
5
|
Pant A, Vasundhara M. Endophytic fungi: a potential source for drugs against central nervous system disorders. Braz J Microbiol 2023; 54:1479-1499. [PMID: 37165297 PMCID: PMC10485218 DOI: 10.1007/s42770-023-00997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
Neuroprotection is one of the important protection methods against neuronal cells and tissue damage caused by neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and multiple sclerosis. Various bioactive compounds produced by medicinal plants can potentially treat central nervous system (CNS) disorders. Apart from these resources, endophytes also produce diverse secondary metabolites capable of protecting the CNS. The bioactive compounds produced by endophytes play essential roles in enhancing the growth factors, antioxidant defence functions, diminishing neuroinflammatory, and apoptotic pathways. The efficacy of compounds produced by endophytic fungi was also evaluated by enzymes, cell lines, and in vivo models. Acetylcholine esterase (AChE) inhibition is frequently used to assess in vitro neuroprotective activity along with cytotoxicity-induced neuronal cell lines. Some of drugs, such as tacrine, donepezil, rivastigmine, galantamine, and other compounds, are generally used as reference standards. Furthermore, clinical trials are required to confirm the role of these natural compounds in neuroprotection efficacy and evaluate their safety profile. This review illustrates the production of various bioactive compounds produced by endophytic fungi and their role in preventing neurodegeneration.
Collapse
Affiliation(s)
- Anushree Pant
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - M Vasundhara
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
6
|
Bustin KA, Shishikura K, Chen I, Lin Z, McKnight N, Chang Y, Wang X, Li JJ, Arellano E, Pei L, Morton PD, Gregus AM, Buczynski MW, Matthews ML. Phenelzine-based probes reveal Secernin-3 is involved in thermal nociception. Mol Cell Neurosci 2023; 125:103842. [PMID: 36924917 PMCID: PMC10247460 DOI: 10.1016/j.mcn.2023.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil®). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N-terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.
Collapse
Affiliation(s)
- Katelyn A Bustin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyosuke Shishikura
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irene Chen
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA
| | - Zongtao Lin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nate McKnight
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuxuan Chang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xie Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jing Jing Li
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric Arellano
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic and State University, Blacksburg, VA, 24060, USA
| | - Ann M Gregus
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA.
| | - Matthew W Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, VA 24061, USA.
| | - Megan L Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Bustin KA, Shishikura K, Chen I, Lin Z, McKnight N, Chang Y, Wang X, Li JJ, Arellano E, Pei L, Morton PD, Gregus AM, Buczynski MW, Matthews ML. Phenelzine-based probes reveal Secernin-3 is involved in thermal nociception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526866. [PMID: 36778412 PMCID: PMC9915563 DOI: 10.1101/2023.02.02.526866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil ® ). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N -terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.
Collapse
|
8
|
Pharmacological neuroprotection and clinical trials of novel therapies for neonatal peri-intraventricular hemorrhage: a comprehensive review. Acta Neurol Belg 2022; 122:305-314. [PMID: 35182373 DOI: 10.1007/s13760-022-01889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/31/2022] [Indexed: 11/01/2022]
Abstract
Peri-intraventricular hemorrhage (PIVH) is a serious condition for preterm infants, caused by traumatic or spontaneous rupture of the germinal matrix (GM) capillary network in the cerebral ventricles. It is a common source of morbidity and mortality in neonates, and risk correlates with earlier delivery, low birth weight, maternal-fetal infection, and vital sign derangements, among others. PIVH typically occurs in the first 72 h of life, and symptoms, when present, manifest most commonly within the first week of life. Prevention remains the primary goal in management, predominantly via prolonging of gestation. Current therapy protocols are center-dependent without consistent consensus guidelines, but infant positioning, homeostatic stabilization, and neuroprotection offer potential options. In this update of pharmacologic neuroprotective therapies for PIVH, we highlight commonly utilized therapies and review the investigative literature. Further multi-institutional clinical trials and basic research studies are required.
Collapse
|
9
|
Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorg Chem 2021; 116:105301. [PMID: 34492558 DOI: 10.1016/j.bioorg.2021.105301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023]
Abstract
A combination of several pharmacophores in one molecule has been successfully used for multi-target-directed ligands (MTDL) design. New propargylamine substituted derivatives combined with salicylic and cinnamic scaffolds were designed and synthesized as potential cholinesterases and monoamine oxidases (MAOs) inhibitors. They were evaluated invitro for inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE) using Ellman's method. All the compounds act as dual inhibitors. Most of the derivatives are stronger inhibitors of AChE, the best activity showed 5-bromo-N-(prop-2-yn-1-yl)salicylamide 1e (IC50 = 8.05 µM). Carbamates (4-bromo-2-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2d and 2,4-dibromo-6-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2e were selective and the most active for BuChE (25.10 and 26.09 µM). 4-Bromo-2-[(prop-2-yn-1-ylimino)methyl]phenol 4a was the most potent inhibitor of MAOs (IC50 of 3.95 and ≈10 µM for MAO-B and MAO-A, respectively) along with a balanced inhibition of both cholinesterases being a real MTDL. The mechanism of action was proposed, and binding modes of the hits were studied by molecular docking on human enzymes. Some of the derivatives also exhibited antioxidant properties. Insilico prediction of physicochemical parameters affirm that the molecules would be active after oral administration and able to reach brain tissue.
Collapse
|
10
|
Ostadkarampour M, Putnins EE. Monoamine Oxidase Inhibitors: A Review of Their Anti-Inflammatory Therapeutic Potential and Mechanisms of Action. Front Pharmacol 2021; 12:676239. [PMID: 33995107 PMCID: PMC8120032 DOI: 10.3389/fphar.2021.676239] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic inflammatory diseases are debilitating, affect patients' quality of life, and are a significant financial burden on health care. Inflammation is regulated by pro-inflammatory cytokines and chemokines that are expressed by immune and non-immune cells, and their expression is highly controlled, both spatially and temporally. Their dysregulation is a hallmark of chronic inflammatory and autoimmune diseases. Significant evidence supports that monoamine oxidase (MAO) inhibitor drugs have anti-inflammatory effects. MAO inhibitors are principally prescribed for the management of a variety of central nervous system (CNS)-associated diseases such as depression, Alzheimer's, and Parkinson's; however, they also have anti-inflammatory effects in the CNS and a variety of non-CNS tissues. To bolster support for their development as anti-inflammatories, it is critical to elucidate their mechanism(s) of action. MAO inhibitors decrease the generation of end products such as hydrogen peroxide, aldehyde, and ammonium. They also inhibit biogenic amine degradation, and this increases cellular and pericellular catecholamines in a variety of immune and some non-immune cells. This decrease in end product metabolites and increase in catecholamines can play a significant role in the anti-inflammatory effects of MAO inhibitors. This review examines MAO inhibitor effects on inflammation in a variety of in vitro and in vivo CNS and non-CNS disease models, as well as their anti-inflammatory mechanism(s) of action.
Collapse
Affiliation(s)
- Mahyar Ostadkarampour
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| | - Edward E Putnins
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Overview of the Neuroprotective Effects of the MAO-Inhibiting Antidepressant Phenelzine. Cell Mol Neurobiol 2021; 42:225-242. [PMID: 33839994 PMCID: PMC8732914 DOI: 10.1007/s10571-021-01078-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Phenelzine (PLZ) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. This multifaceted drug has a number of pharmacological and neurochemical effects in addition to inhibition of MAO, and findings on these effects have contributed to a body of evidence indicating that PLZ also has neuroprotective/neurorescue properties. These attributes are reviewed in this paper and include catabolism to the active metabolite β-phenylethylidenehydrazine (PEH) and effects of PLZ and PEH on the GABA-glutamate balance in brain, sequestration of reactive aldehydes, and inhibition of primary amine oxidase. Also discussed are the encouraging findings of the effects of PLZ in animal models of stroke, spinal cord injury, traumatic brain injury, and multiple sclerosis, as well other actions such as reduction of nitrative stress, reduction of the effects of a toxin on dopaminergic neurons, potential anticonvulsant actions, and effects on brain-derived neurotrophic factor, neural cell adhesion molecules, an anti-apoptotic factor, and brain levels of ornithine and N-acetylamino acids.
Collapse
|
12
|
Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, Sosa-Hernández JE, Parra-Arroyo L, López-Pacheco IY, Barceló D, Iqbal HNM, Parra-Saldívar R. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143722. [PMID: 33221013 DOI: 10.1016/j.scitotenv.2020.143722] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023]
Abstract
Antidepressants are drugs with a direct action on the brain's biochemistry through their interaction with the neurotransmitters, such as dopamine, norepinephrine, and serotonin. The increasing worldwide contamination from these drugs may be witnessed through their increasing presence in the urban water cycle. Furthermore, their occurrence has been detected in non-urban water, such as rivers and oceans. Some endemic aquatic animals, such as certain fish and mollusks, have bioaccumulated different antidepressant drugs in their tissues. This problem will increase in the years to come because the present COVID-19 pandemic has increased the general worldwide occurrence of depression and anxiety, triggering the consumption of antidepressants and, consequently, their presence in the environment. This work provides information on the occurrence of the most administrated antidepressants in urban waters, wastewater treatment plants, rivers, and oceans. Furthermore, it provides an overview of the analytical approaches currently used to detect each antidepressant presented. Finally, the ecotoxicological effect of antidepressants on several in vivo models are listed. Considering the information provided in this review, there is an urgent need to test the presence of antidepressant members of the MAOI and TCA groups. Furthermore, incorporating new degradation/immobilization technologies in WWTPs will be useful to stop the increasing occurrence of these drugs in the environment.
Collapse
Affiliation(s)
| | - Mario E Barocio
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research, Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz N M Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
13
|
Hong A, Tu LC, Yang I, Lim KM, Nam SJ. Marine natural products with monoamine oxidase (MAO) inhibitory activity. PHARMACEUTICAL BIOLOGY 2020; 58:716-720. [PMID: 32697127 PMCID: PMC7470022 DOI: 10.1080/13880209.2020.1790618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Research interest in monoamine oxidase (MAO) as a promising drug target for neurodegenerative diseases has a long history. However, efforts to develop MAO inhibitors (MAOIs) from marine sources have been limited, despite the increasing number of interesting marine natural products. OBJECTIVE To review the potential of marine natural products as MAOIs source, including their activities and selectivity on MAO. METHODS Public databases such as SciFinder, MarinLit and PubMed were systematically searched from 1991 until Dec 2019. MAO and MAOI were the key terms searched combined with marine natural products and marine. RESULTS Six classes of marine natural products with good selectivity between the two MAO subtypes were organized with their selectivity and sources. CONCLUSIONS This is the first review to investigate the potential of marine natural products as MAOIs source. Despite the small number of known MAOIs from marine sources, marine natural products are potential leads for the further development of MAOI drugs with novel chemical frames and good selectivity.
Collapse
Affiliation(s)
- Ahreum Hong
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Le Cam Tu
- Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, Republic of Korea
- CONTACT Inho Yang Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan49112, Republic of Korea
| | - Kyung-Min Lim
- Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
- Kyung-Min Lim Graduate School of Industrial Pharmaceutical Sciences, Ewha Womans University, Seoul03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
- Sang-Jip Nam Department of Chemistry and Nanoscience, Ewha Womans University, Seoul03760, Republic of Korea
| |
Collapse
|
14
|
Drechsel J, Kyrousi C, Cappello S, Sieber SA. Tranylcypromine specificity for monoamine oxidase is limited by promiscuous protein labelling and lysosomal trapping. RSC Chem Biol 2020; 1:209-213. [PMID: 34458760 PMCID: PMC8341850 DOI: 10.1039/d0cb00048e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
Monoamine oxidases MAOA and MAOB catalyze important cellular functions such as the deamination of neurotransmitters. Correspondingly, MAO inhibitors are used for the treatment of severe neuropsychiatric disorders such as depression. A commonly prescribed drug against refractory depression is tranylcypromine, however, the side effects are poorly understood. In order to decipher putative off-targets, we synthesized two tranylcypromine probes equipped with either an alkyne moiety or an alkyne-diazirine minimal photocrosslinker for in situ proteome profiling. Surprisingly, LC–MS/MS analysis revealed low enrichment of MAOA and relatively promiscuous labeling of proteins. Photoprobe labeling paired with fluorescent imaging studies revealed lysosomal trapping which could be largely reverted by the addition of lysosomotropic drugs. Chemical proteomics and cellular imaging reveal lysosomal trapping of tranylcypromine which can be largely reverted by the addition of lysosomotropic drugs.![]()
Collapse
Affiliation(s)
- Jonas Drechsel
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Christina Kyrousi
- Max Planck Institute of Psychiatry Kraepelinstraße 2 80804 Munich Germany
| | - Silvia Cappello
- Max Planck Institute of Psychiatry Kraepelinstraße 2 80804 Munich Germany
| | - Stephan A Sieber
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
15
|
Bae HJ, Sowndhararajan K, Park HB, Kim SY, Kim S, Kim DH, Choi JW, Jang DS, Ryu JH, Park SJ. Danshensu attenuates scopolamine and amyloid-β-induced cognitive impairments through the activation of PKA-CREB signaling in mice. Neurochem Int 2019; 131:104537. [PMID: 31425745 DOI: 10.1016/j.neuint.2019.104537] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is an important chronic neurodegenerative disorder and is mainly associated with cognitive dysfunction. At present, bioactive compounds from traditional medicinal plants have received much attention for the enhancement of cognitive function. Danshensu, a phenolic acid isolated from herbal medicines, has various pharmacological activities in the central nervous system, including anxiolytic-like and neuroprotective properties. The present study aimed to investigate the ameliorating effects of danshensu on scopolamine- and amyloid-β (Aβ) protein-induced cognitive impairments in mice. Danshensu (3 and 10 mg/kg, p.o.) effectively ameliorated scopolamine-induced cognitive dysfunction in mice, as measured in passive avoidance and Y-maze tasks. In a mechanistic study, danshensu inhibited monoamine oxidase A (MAO-A) activity but not MAO-B. Additionally, danshensu treatment increased the dopamine level and the phosphorylation levels of protein kinase A (PKA) and cAMP response element binding protein (CREB), in the cortex of the brain. Furthermore, the ameliorating effect of danshensu against scopolamine-induced cognitive impairment was fully blocked by H89, a PKA inhibitor. Finally, danshensu also ameliorated Aβ-induced cognitive impairments in an animal model of AD. The results revealed that danshensu treatment significantly improved scopolamine and Aβ-induced cognitive impairments in mice by facilitation of dopamine signaling cascade such as PKA and CREB due to MAO-A inhibition. Thus, danshensu could be used as a promising therapeutic agent for preventing and treating AD.
Collapse
Affiliation(s)
- Ho Jung Bae
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.
| | - Kandhasamy Sowndhararajan
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea; Department of Botany, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India.
| | - Hyeon-Bae Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - So-Yeon Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - Songmun Kim
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences and Institute of Convergence Bio-Health, Dong-A University, Busan, Republic of Korea.
| | - Ji Woong Choi
- Laboratory of Neuropharmacology, College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea.
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea; Department of Oriental Pharmaceutical Science, Kyung Hee University, Seoul, Republic of Korea.
| | - Se Jin Park
- School of Natural Resources and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
16
|
Ferraz CAA, de Oliveira Júnior RG, Picot L, da Silva Almeida JRG, Nunes XP. Pre-clinical investigations of β-carboline alkaloids as antidepressant agents: A systematic review. Fitoterapia 2019; 137:104196. [PMID: 31175948 DOI: 10.1016/j.fitote.2019.104196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022]
Abstract
Depressive disorders remain a current public health problem whose prevalence has increased in the past decades. In the constant search for new therapeutic alternatives, β-carboline alkaloids have been identified as good candidates for new antidepressant drugs. In this systematic review, we summarized all pre-clinical investigations involving the use of natural or semisynthetic β-carboline in depression models. A literature search was conducted in August 2018, using PubMed, Scopus and Science Direct databases. All reports were carefully analyzed, and data extraction was conducted through standardized forms. Methodological quality assessment of in vivo studies was also performed. The entire systematic review was performed according to PRISMA statement. From a total of 373 articles, 26 met all inclusion criteria. In vitro and in vivo studies have evaluated a wide variety of β-carbolines through enzymatic and binding assays, and acute or chronic animal models. Most of the in vivo and in vitro studies is concentrated on two molecules: harman and harmine. They have been investigated in several animal models and some mechanisms of action have been proposed for their antidepressant activity. In general, β-carbolines modulate 5-HT and GABA systems, promote neurogenesis, induce neuroendocrine response and restore astrocytic function, being effective when administrated acutely or chronically in different animal models, including chronic mild stress protocols. In short, β-carbolines are multi-target antidepressant compounds and may be useful in the treatment of depressive disorders.
Collapse
Affiliation(s)
- Christiane Adrielly Alves Ferraz
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina 56304-917, Brazil
| | | | - Laurent Picot
- Littoral Environnement et Sociétés (LIENSs), Université de La Rochelle, UMRi CNRS 7266, La Rochelle 17042, France
| | | | - Xirley Pereira Nunes
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina 56304-917, Brazil.
| |
Collapse
|
17
|
Müller T, Möhr JD. Pharmacokinetics of monoamine oxidase B inhibitors in Parkinson’s disease: current status. Expert Opin Drug Metab Toxicol 2019; 15:429-435. [DOI: 10.1080/17425255.2019.1607292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Berlin, Germany
| | - Jan-Dominique Möhr
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Berlin, Germany
| |
Collapse
|
18
|
Baker G, Matveychuk D, MacKenzie EM, Holt A, Wang Y, Kar S. Attenuation of the effects of oxidative stress by the MAO-inhibiting antidepressant and carbonyl scavenger phenelzine. Chem Biol Interact 2019; 304:139-147. [PMID: 30857888 DOI: 10.1016/j.cbi.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
Phenelzine (β-phenylethylhydrazine) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. It possesses a number of important pharmacological properties which may alter the effects of oxidative stress. After conducting a comprehensive literature search, the authors of this review paper aim to provide an overview and discussion of the mechanisms by which phenelzine may attenuate oxidative stress. It inhibits γ-aminobutyric acid (GABA) transaminase, resulting in elevated brain GABA levels, inhibits both MAO and primary amine oxidase and, due to its hydrazine-containing structure, reacts chemically to sequester a number of reactive aldehydes (e.g. acrolein and 4-hydroxy-2-nonenal) proposed to be implicated in oxidative stress in a number of neurodegenerative disorders. Phenelzine is unusual in that it is both an inhibitor of and a substrate for MAO, the latter action producing at least one active metabolite, β-phenylethylidenehydrazine (PEH). This metabolite inhibits GABA transaminase, is a very weak inhibitor of MAO but a strong inhibitor of primary amine oxidase, and sequesters aldehydes. Phenelzine may ameliorate the effects of oxidative stress by reducing formation of reactive metabolites (aldehydes, hydrogen peroxide, ammonia/ammonia derivatives) produced by the interaction of MAO with biogenic amines, by sequestering various other reactive aldehydes and by inhibiting primary amine oxidase. In PC12 cells treated with the neurotoxin MPP+, phenelzine has been reported to reduce several adverse effects of MPP+. It has also been reported to reduce lipid peroxidative damage induced in plasma and platelet proteins by peroxynitrite. In animal models, phenelzine has a neuroprotective effect in global ischemia and in cortical impact traumatic brain injury. Recent studies reported in the literature on the possible involvement of acrolein in spinal cord injury and multiple sclerosis indicate that phenelzine can attenuate adverse effects of acrolein in these models. Results from studies in our laboratories on effects of phenelzine and PEH on primary amine oxidase (which catalyzes formation of toxic aldehydes and is overexpressed in Alzheimer's disease), on sequestration of the toxic aldehyde acrolein, and on reduction of acrolein-induced toxicity in mouse cortical neurons are also reported.
Collapse
Affiliation(s)
- Glen Baker
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Dmitriy Matveychuk
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Erin M MacKenzie
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Andrew Holt
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada.
| | - Yanlin Wang
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada; Department of Medicine (Neurology), University of Alberta, Edmonton, Canada.
| | - Satyabrata Kar
- Department of Psychiatry (Neurochemical Research Unit), University of Alberta, Edmonton, Canada; Department of Medicine (Neurology), University of Alberta, Edmonton, Canada.
| |
Collapse
|
19
|
Abstract
Monoamine oxidases A and B (MAO A and B) are mammalian flavoenzymes bound to the outer mitochondrial membrane. They were discovered almost a century ago and they have been the subject of many biochemical, structural and pharmacological investigations due to their central role in neurotransmitter metabolism. Currently, the treatment of Parkinson's disease involves the use of selective MAO B inhibitors such as rasagiline and safinamide. MAO inhibition was shown to exert a general neuroprotective effect as a result of the reduction of oxidative stress produced by these enzymes, which seems to be relevant also in non-neuronal contexts. MAOs were successfully expressed as recombinant proteins in Pichia pastoris, which allowed a thorough biochemical and structural characterization. These enzymes are characterized by a globular water-soluble main body that is anchored to the mitochondrial membrane through a C-terminal α-helix, similar to other bitopic membrane proteins. In both MAO A and MAO B the enzyme active site consists of a hydrophobic cavity lined by residues that are conserved in the two isozymes, except for few details that determine substrate and inhibitor specificity. In particular, human MAO B features a dual-cavity active site whose conformation depends on the size of the bound ligand. This article provides a comprehensive and historical review of MAOs and the state-of-the-art of these enzymes as membrane drug targets.
Collapse
Affiliation(s)
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
20
|
Effects of 3-Hydroxypyridine and Succinic Acid Derivatives on Monoamine Oxidase Activity In Vitro. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1760-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Tripathi AC, Upadhyay S, Paliwal S, Saraf SK. Privileged scaffolds as MAO inhibitors: Retrospect and prospects. Eur J Med Chem 2018; 145:445-497. [PMID: 29335210 DOI: 10.1016/j.ejmech.2018.01.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/01/2017] [Accepted: 01/01/2018] [Indexed: 12/24/2022]
Abstract
This review aims to be a comprehensive, authoritative, critical, and readable review of general interest to the medicinal chemistry community because it focuses on the pharmacological, chemical, structural and computational aspects of diverse chemical categories as monoamine oxidase inhibitors (MAOIs). Monoamine oxidases (MAOs), namely MAO-A and MAO-B represent an enormously valuable class of neuronal enzymes embodying neurobiological origin and functions, serving as potential therapeutic target in neuronal pharmacotherapy, and hence we have coined the term "Neurozymes" which is being introduced for the first time ever. Nowadays, therapeutic attention on MAOIs engrosses two imperative categories; MAO-A inhibitors, in certain mental disorders such as depression and anxiety, and MAO-B inhibitors, in neurodegenerative disorders like Alzheimer's disease (AD) and Parkinson's disease (PD). The use of MAOIs declined due to some potential side effects, food and drug interactions, and introduction of other classes of drugs. However, curiosity in MAOIs is reviving and the recent developments of new generation of highly selective and reversible MAOIs, have renewed the therapeutic prospective of these compounds. The initial section of the review emphasizes on the detailed classification, structural and binding characteristics, therapeutic potential, current status and future challenges of the privileged pharmacophores. However, the chemical prospective of privileged scaffolds such as; aliphatic and aromatic amines, amides, hydrazines, azoles, diazoles, tetrazoles, indoles, azines, diazines, xanthenes, tricyclics, benzopyrones, and more interestingly natural products, along with their conclusive SARs have been discussed in the later segment of review. The last segment of the article encompasses some patents granted in the field of MAOIs, in a simplistic way.
Collapse
Affiliation(s)
- Avinash C Tripathi
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Savita Upadhyay
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India
| | - Sarvesh Paliwal
- Pharmacy Department, Banasthali Vidyapith, Banasthali, Tonk 304022, Rajasthan, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, UP, India.
| |
Collapse
|
22
|
Elufioye TO, Berida TI, Habtemariam S. Plants-Derived Neuroprotective Agents: Cutting the Cycle of Cell Death through Multiple Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:3574012. [PMID: 28904554 PMCID: PMC5585568 DOI: 10.1155/2017/3574012] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022]
Abstract
Neuroprotection is the preservation of the structure and function of neurons from insults arising from cellular injuries induced by a variety of agents or neurodegenerative diseases (NDs). The various NDs including Alzheimer's, Parkinson's, and Huntington's diseases as well as amyotropic lateral sclerosis affect millions of people around the world with the main risk factor being advancing age. Each of these diseases affects specific neurons and/or regions in the brain and involves characteristic pathological and molecular features. Hence, several in vitro and in vivo study models specific to each disease have been employed to study NDs with the aim of understanding their underlying mechanisms and identifying new therapeutic strategies. Of the most prevalent drug development efforts employed in the past few decades, mechanisms implicated in the accumulation of protein-based deposits, oxidative stress, neuroinflammation, and certain neurotransmitter deficits such as acetylcholine and dopamine have been scrutinized in great detail. In this review, we presented classical examples of plant-derived neuroprotective agents by highlighting their structural class and specific mechanisms of action. Many of these natural products that have shown therapeutic efficacies appear to be working through the above-mentioned key multiple mechanisms of action.
Collapse
Affiliation(s)
| | - Tomayo Ireti Berida
- Department of Pharmacognosy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, UK
| |
Collapse
|
23
|
Korábečný J, Nepovimová E, Cikánková T, Špilovská K, Vašková L, Mezeiová E, Kuča K, Hroudová J. Newly Developed Drugs for Alzheimer's Disease in Relation to Energy Metabolism, Cholinergic and Monoaminergic Neurotransmission. Neuroscience 2017; 370:191-206. [PMID: 28673719 DOI: 10.1016/j.neuroscience.2017.06.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022]
Abstract
Current options for Alzheimer's disease (AD) treatment are based on administration of cholinesterase inhibitors (donepezil, rivastigmine, galantamine) and/or memantine, acting as an N-methyl-D-aspartate (NMDA). Therapeutic approaches vary and include novel cholinesterase inhibitors, modulators of NMDA receptors, monoamine oxidase (MAO) inhibitors, immunotherapeutics, modulators of mitochondrial permeability transition pores (mPTP), amyloid-beta binding alcohol dehydrogenase (ABAD) modulators, antioxidant agents, etc. The novel trends of AD therapy are focused on multiple targeted ligands, where mostly ChE inhibition is combined with additional biological properties, positively affecting neuronal energy metabolism as well as mitochondrial functions, and possessing antioxidant properties. The present review summarizes newly developed drugs targeting cholinesterase and MAO, as well as drugs affecting mitochondrial functions.
Collapse
Affiliation(s)
- Jan Korábečný
- Biomedical Research Centre, University Hospital Hradec Kralové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Eugenie Nepovimová
- Biomedical Research Centre, University Hospital Hradec Kralové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Katarína Špilovská
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
| | - Lucie Vašková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Eva Mezeiová
- Biomedical Research Centre, University Hospital Hradec Kralové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Kamil Kuča
- Biomedical Research Centre, University Hospital Hradec Kralové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.
| |
Collapse
|
24
|
Svob Strac D, Pivac N, Smolders IJ, Fogel WA, De Deurwaerdere P, Di Giovanni G. Monoaminergic Mechanisms in Epilepsy May Offer Innovative Therapeutic Opportunity for Monoaminergic Multi-Target Drugs. Front Neurosci 2016; 10:492. [PMID: 27891070 PMCID: PMC5102907 DOI: 10.3389/fnins.2016.00492] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
A large body of experimental and clinical evidence has strongly suggested that monoamines play an important role in regulating epileptogenesis, seizure susceptibility, convulsions, and comorbid psychiatric disorders commonly seen in people with epilepsy (PWE). However, neither the relative significance of individual monoamines nor their interaction has yet been fully clarified due to the complexity of these neurotransmitter systems. In addition, epilepsy is diverse, with many different seizure types and epilepsy syndromes, and the role played by monoamines may vary from one condition to another. In this review, we will focus on the role of serotonin, dopamine, noradrenaline, histamine, and melatonin in epilepsy. Recent experimental, clinical, and genetic evidence will be reviewed in consideration of the mutual relationship of monoamines with the other putative neurotransmitters. The complexity of epileptic pathogenesis may explain why the currently available drugs, developed according to the classic drug discovery paradigm of "one-molecule-one-target," have turned out to be effective only in a percentage of PWE. Although, no antiepileptic drugs currently target specifically monoaminergic systems, multi-target directed ligands acting on different monoaminergic proteins, present on both neurons and glia cells, may represent a new approach in the management of seizures, and their generation as well as comorbid neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | | | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, University of MaltaMsida, Malta
| |
Collapse
|
25
|
Brunschweiger A, Koch P, Schlenk M, Rafehi M, Radjainia H, Küppers P, Hinz S, Pineda F, Wiese M, Hockemeyer J, Heer J, Denonne F, Müller CE. 8-Substituted 1,3-dimethyltetrahydropyrazino[2,1- f ]purinediones: Water-soluble adenosine receptor antagonists and monoamine oxidase B inhibitors. Bioorg Med Chem 2016; 24:5462-5480. [DOI: 10.1016/j.bmc.2016.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/15/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
|
26
|
García-Fuster MJ, García-Sevilla JA. Effects of anti-depressant treatments on FADD and p-FADD protein in rat brain cortex: enhanced anti-apoptotic p-FADD/FADD ratio after chronic desipramine and fluoxetine administration. Psychopharmacology (Berl) 2016; 233:2955-71. [PMID: 27259485 DOI: 10.1007/s00213-016-4342-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/20/2016] [Indexed: 12/27/2022]
Abstract
RATIONALE Fas-associated death domain (FADD) is an adaptor of death receptors that can also induce anti-apoptotic actions through its phosphorylated form (p-FADD). Activation of monoamine receptors, indirect targets of classic anti-depressant drugs (ADs), reduced FADD and increased p-FADD and p-FADD/FADD ratio in brain. OBJECTIVES To ascertain whether ADs, which indirectly regulate monoamine receptors, modulate FADD protein forms to promote anti-apoptotic actions. METHODS The effects of selected norepinephrine transporter (NET), serotonin transporter (SERT), monoamine oxidase (MAO) inhibitors, atypical ADs, and electroconvulsive shock (ECS) or behavioral procedures (forced swim test, FST) on FADD forms and pro-survival FADD-like interleukin-1β-converting enzyme-inhibitory protein (FLIP-L) and phosphoprotein enriched in astrocytes of 15 kDa (p-PEA-15) contents were assessed in rat brain cortex by western blot analysis. RESULTS Acute NET (e.g., nisoxetine) but not SERT (e.g., fluoxetine) inhibitors decreased cortical FADD (up to 37 %) and increased p-FADD/FADD ratio (up to 1.9-fold). Nisoxetine effects were prevented by α2-antagonist RX-821002, suggesting the involvement of presynaptic α2-autoreceptors. Immobility time in the FST correlated with increases of pro-apoptotic FADD and decreases of anti-apoptotic p-FADD. The MAO-A/B inhibitor phenelzine decreased FADD (up to 33 %) and increased p-FADD (up to 65 %) and p-FADD/FADD (up to 2.4-fold). Other MAO inhibitors (clorgyline, Ro 41-1049, rasagiline), atypical ADs (ketamine and mirtazapine), or ECS did not modulate cortical FADD. Chronic (14 days) desipramine and fluoxetine, but not phenelzine, increased p-FADD (up to 59 %), p-FADD/FADD ratio (up to 1.8-fold), and pro-survival p-PEA-15 (up to 46 %) in rat brain cortex. CONCLUSIONS Multifunctional FADD protein, through an increased p-FADD/FADD ratio, could participate in the mechanisms of anti-apoptotic actions induced by ADs.
Collapse
Affiliation(s)
- M Julia García-Fuster
- Neurobiology of Drug Abuse Group, IUNICS/IdISPa, University of the Balearic Islands, Cra. Valldemossa km 7.5, E-07122, Palma de Mallorca, Spain. .,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain.
| | - Jesús A García-Sevilla
- Laboratory of Neuropharmacology, IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain.,Redes Temáticas de Investigación Cooperativa en Salud-Red de Trastornos Adictivos (RETICS-RTA), ISCIII, Madrid, Spain
| |
Collapse
|
27
|
Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond. Future Med Chem 2016; 7:609-29. [PMID: 25921401 DOI: 10.4155/fmc.15.12] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Much progress has been made in designing analogues that can potentially confer neuroprotection against debilitating neurodegenerative disorders, yet the multifactorial pathogenesis of this cluster of diseases remains a stumbling block for the successful design of an 'ultimate' drug. However, with the growing popularity of the "one drug, multiple targets" paradigm, many researchers have successfully synthesized and evaluated drug-like molecules incorporating a propargylamine function that shows potential to serve as multifunctional drugs or multitarget-directed ligands. It is the aim of this review to highlight the reported activities of these propargylamine derivatives and their prospect to serve as drug candidates for the treatment of neurodegenerative disorders.
Collapse
|
28
|
Dietary Phenolic Compounds Interfere with the Fate of Hydrogen Peroxide in Human Adipose Tissue but Do Not Directly Inhibit Primary Amine Oxidase Activity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2427618. [PMID: 26881018 PMCID: PMC4736399 DOI: 10.1155/2016/2427618] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022]
Abstract
Resveratrol has been reported to inhibit monoamine oxidases (MAO). Many substrates or inhibitors of neuronal MAO interact also with other amine oxidases (AO) in peripheral organs, such as semicarbazide-sensitive AO (SSAO), known as primary amine oxidase, absent in neurones, but abundant in adipocytes. We asked whether phenolic compounds (resveratrol, pterostilbene, quercetin, and caffeic acid) behave as MAO and SSAO inhibitors. AO activity was determined in human adipose tissue. Computational docking and glucose uptake assays were performed in 3D models of human AO proteins and in adipocytes, respectively. Phenolic compounds fully inhibited the fluorescent detection of H2O2 generated during MAO and SSAO activation by tyramine and benzylamine. They also quenched H2O2-induced fluorescence in absence of biological material and were unable to abolish the oxidation of radiolabelled tyramine and benzylamine. Thus, phenolic compounds hampered H2O2 detection but did not block AO activity. Only resveratrol and quercetin partially impaired MAO-dependent [(14)C]-tyramine oxidation and behaved as MAO inhibitors. Phenolic compounds counteracted the H2O2-dependent benzylamine-stimulated glucose transport. This indicates that various phenolic compounds block downstream effects of H2O2 produced by biogenic or exogenous amine oxidation without directly inhibiting AO. Phenolic compounds remain of interest regarding their capacity to limit oxidative stress rather than inhibiting AO.
Collapse
|
29
|
Kumar B, Sheetal S, Mantha AK, Kumar V. Recent developments on the structure–activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Adv 2016. [DOI: 10.1039/c6ra00302h] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Development of MAO inhibitors as effective drug candidates for the management and/or treatment of different neurological disorders.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Laboratory of Organic and Medicinal Chemistry
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India-151001
| | - Sheetal Sheetal
- Laboratory of Organic and Medicinal Chemistry
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India-151001
| | - Anil K. Mantha
- Centre for Animal Sciences
- School of Basic and Applied Sciences
- Central University of Punjab
- Bathinda
- India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India-151001
| |
Collapse
|
30
|
Rios-Solis L, Mothia B, Yi S, Zhou Y, Micheletti M, Lye G. High throughput screening of monoamine oxidase (MAO-N-D5) substrate selectivity and rapid kinetic model generation. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Neuroprotective effects of the monoamine oxidase inhibitor tranylcypromine and its amide derivatives against Aβ(1-42)-induced toxicity. Eur J Pharmacol 2015; 764:256-263. [PMID: 26162702 DOI: 10.1016/j.ejphar.2015.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 11/21/2022]
Abstract
Monoamine oxidase (MAO) enzymes play a central role in the pathogenesis of Alzheimer's disease (AD) and MAO inhibitors (MAOIs) are antidepressant drugs currently studied for their neuroprotective properties in neurodegenerative disorders. In the present work MAOIs such as tranylcypromine [trans-(+)-2-phenylcyclopropanamine, TCP] and its amide derivatives, TCP butyramide (TCP-But) and TCP acetamide (TCP-Ac), were tested for their ability to protect cortical neurons challenged with synthetic amyloid-β (Aβ)-(1-42) oligomers (100 nM) for 48 h. TCP significantly prevented Aβ-induced neuronal death in a concentration-dependent fashion and was maximally protective only at 10 µM. TCP-But was maximally protective in mixed neuronal cultures at 1 µM, a lower concentration compared to TCP, whereas the new derivative, TCP-Ac, was more efficacious than TCP and TCP-But and significantly protected cortical neurons against Aβ toxicity at nanomolar concentrations (100 nM). Experiments carried out with the Thioflavin-T (Th-T) fluorescence assay for fibril formation showed that TCP and its amide derivatives influenced the early events of the Aβ aggregation process in a concentration-dependent manner. TCP-Ac was more effective than TCP-But and TCP in slowing down the Aβ(1-42) aggregates formation through a lengthening at the lag phase. In our experimental model co-incubation of Aβ(1-42) oligomers with TCP-Ac was able to almost completely prevent Aβ-induced neurodegeneration. These results suggest that inhibition of Aβ oligomer-mediated aggregation significantly contributes to the overall neuroprotective activity of TCP-Ac and also raise the possibility that TCP, and in particular the new compound TCP-Ac, might represent new pharmacological tools to yield neuroprotection in AD.
Collapse
|
32
|
Sturza A, Duicu OM, Vaduva A, Dănilă MD, Noveanu L, Varró A, Muntean DM. Monoamine oxidases are novel sources of cardiovascular oxidative stress in experimental diabetes. Can J Physiol Pharmacol 2015; 93:555-61. [PMID: 25996256 DOI: 10.1139/cjpp-2014-0544] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is widely recognized as the most severe metabolic disease associated with increased cardiovascular morbidity and mortality. The generation of reactive oxygen species (ROS) is a major event causally linked to the development of cardiovascular complications throughout the evolution of DM. Recently, monoamine oxidases (MAOs) at the outer mitochondrial membrane, with 2 isoforms, MAO-A and MAO-B, have emerged as novel sources of constant hydrogen peroxide (H2O2) production in the cardiovascular system via the oxidative deamination of biogenic amines and neurotransmitters. Whether MAOs are mediators of endothelial dysfunction in DM is unknown, and so we studied this in a streptozotocin-induced rat model of diabetes. MAO expression (mRNA and protein) was increased in both arterial samples and hearts isolated from the diabetic animals. Also, H2O2 production (ferrous oxidation - xylenol orange assay) in aortic samples was significantly increased, together with an impairment of endothelium-dependent relaxation (organ-bath studies). MAO inhibitors (clorgyline and selegiline) attenuated ROS production by 50% and partially normalized the endothelium-dependent relaxation in diseased vessels. In conclusion, MAOs, in particular the MAO-B isoform, are induced in aortas and hearts in the streptozotocin-induced diabetic rat model and contribute, via the generation of H2O2, to the endothelial dysfunction associated with experimental diabetes.
Collapse
Affiliation(s)
- Adrian Sturza
- a Department of Pathophysiology, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, 14, Tudor Vladimirescu st., 300173 Timişoara, Romania.,c Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - Oana M Duicu
- a Department of Pathophysiology, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, 14, Tudor Vladimirescu st., 300173 Timişoara, Romania.,c Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - Adrian Vaduva
- b Department of Morphopathology, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - Maria D Dănilă
- a Department of Pathophysiology, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, 14, Tudor Vladimirescu st., 300173 Timişoara, Romania.,c Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - Lavinia Noveanu
- a Department of Pathophysiology, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, 14, Tudor Vladimirescu st., 300173 Timişoara, Romania.,c Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - András Varró
- d Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Danina M Muntean
- a Department of Pathophysiology, Faculty of Medicine, "Victor Babeş" University of Medicine and Pharmacy, 14, Tudor Vladimirescu st., 300173 Timişoara, Romania.,c Center for Translational Research and Systems Medicine, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
33
|
Pretorius E, Swanepoel AC, Buys AV, Vermeulen N, Duim W, Kell DB. Eryptosis as a marker of Parkinson's disease. Aging (Albany NY) 2014; 6:788-819. [PMID: 25411230 PMCID: PMC4247384 DOI: 10.18632/aging.100695] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/24/2014] [Indexed: 12/20/2022]
Abstract
A major trend in recent Parkinson's disease (PD) research is the investigation of biological markers that could help in identifying at-risk individuals or to track disease progression and response to therapies. Central to this is the knowledge that inflammation is a known hallmark of PD and of many other degenerative diseases. In the current work, we focus on inflammatory signalling in PD, using a systems approach that allows us to look at the disease in a more holistic way. We discuss cyclooxygenases, prostaglandins, thromboxanes and also iron in PD. These particular signalling molecules are involved in PD pathophysiology, but are also very important in an aberrant coagulation/hematology system. We present and discuss a hypothesis regarding the possible interaction of these aberrant signalling molecules implicated in PD, and suggest that these molecules may affect the erythrocytes of PD patients. This would be observable as changes in the morphology of the RBCs and of PD patients relative to healthy controls. We then show that the RBCs of PD patients are indeed rather dramatically deranged in their morphology, exhibiting eryptosis (a kind of programmed cell death). This morphological indicator may have useful diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Albe C Swanepoel
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Antoinette V Buys
- Microscopy and Microanalysis Unit, University of Pretoria, Arcadia 0007, South Africa
| | - Natasha Vermeulen
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Wiebren Duim
- Department of Neurology Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, Lancs, UK
| |
Collapse
|
34
|
Carpéné C, Gomez-Zorita S, Gupta R, Grès S, Rancoule C, Cadoudal T, Mercader J, Gomez A, Bertrand C, Iffiu-Soltész Z. Combination of low dose of the anti-adipogenic agents resveratrol and phenelzine in drinking water is not sufficient to prevent obesity in very-high-fat diet-fed mice. Eur J Nutr 2014; 53:1625-35. [PMID: 24531732 DOI: 10.1007/s00394-014-0668-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/05/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Resveratrol inhibits lipid accumulation but suffers from limited bioavailability. The anti-depressive agent phenelzine limits adipogenesis in various models of cultured preadipocytes, and this hydrazine derivative also inhibits de novo lipogenesis in mature adipocytes. It was therefore tested whether resveratrol effects on adiposity reduction and glucose tolerance improvement could be reinforced by co-administration with phenelzine. METHODS Mice fed a very-high-fat diet (VHFD, 60% calories as fat) were subjected to drinking solution containing low dose of resveratrol (0.003%) and/or 0.02% phenelzine for 12 weeks. Body fat content, glucose tolerance, food and water consumption were checked during treatment while fat depot mass was determined at the end of supplementation. Direct influence of the agents on lipogenesis and glucose uptake was tested in adipocytes. RESULTS Epididymal fat depots were reduced in mice drinking phenelzine alone or with resveratrol. No limitation of body weight gain or body fat content was observed in the groups drinking resveratrol or phenelzine, separately or in combination. The altered glucose tolerance and the increased fat body composition of VHFD-fed mice were not reversed by resveratrol and/or phenelzine. Such lack of potentiation between resveratrol and phenelzine prompted us to verify in vitro their direct effects on mouse adipocytes. Both molecules inhibited de novo lipogenesis, but did not potentiate each other at 10 or 100 μM. Only resveratrol inhibited hexose uptake in a manner that was not improved by phenelzine. CONCLUSIONS Phenelzine has no interest to be combined with low doses of resveratrol for treating/preventing obesity, when considering the VHFD mouse model.
Collapse
Affiliation(s)
- C Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale, U 1048, Team 3, CHU Rangueil, Université de Toulouse, UPS, 31432, Toulouse Cedex 4, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Koch P, Akkari R, Brunschweiger A, Borrmann T, Schlenk M, Küppers P, Köse M, Radjainia H, Hockemeyer J, Drabczyńska A, Kieć-Kononowicz K, Müller CE. 1,3-Dialkyl-substituted tetrahydropyrimido[1,2-f]purine-2,4-diones as multiple target drugs for the potential treatment of neurodegenerative diseases. Bioorg Med Chem 2013; 21:7435-52. [PMID: 24139167 DOI: 10.1016/j.bmc.2013.09.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 09/17/2013] [Indexed: 11/29/2022]
Abstract
Adenosine receptors and monoamine oxidases are drug targets for neurodegenerative diseases such as Parkinson's and Alzheimer's disease. In the present study we prepared a library of 55 mostly novel tetrahydropyrimido[2,1-f]purinediones with various substituents in the 1- and 3-position (1,3-dimethyl, 1,3-diethyl, 1,3-dipropyl, 1-methyl-3-propargyl) and broad variation in the 9-position. A synthetic strategy to obtain 3-propargyl-substituted tetrahydropyrimido[2,1-f]purinedione derivatives was developed. The new compounds were evaluated for their interaction with all four adenosine receptor subtypes and for their ability to inhibit monoamine oxidases (MAO). Introduction of mono- or di-chloro-substituted phenyl, benzyl or phenethyl residues at N9 of the 1,3-dimethyl series led to the discovery of a novel class of potent MAO-B inhibitors, the most potent compound being 9-(3,4-dichlorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione (21g, IC(50) human MAO-B: 0.0629 μM), which displayed high selectivity versus the other investigated targets. Potent dually active A1/A2A adenosine receptor antagonists were identified, for example, 9-benzyl-1-methyl-3-propargyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)dione (19f, Ki, human receptors, A1: 0.249 μM, A2A: 0.253 μM). Several compounds showed triple-target inhibition, the best compound being 9-(2-methoxybenzyl)-1-methyl-3-(prop-2-ynyl)-6,7,8,9-tetrahydro pyrimido [1,2-f]purine-2,4(1H,3H)-dione (19g, Ki A1: 0.605 μM, Ki A2A: 0.417 μM, IC(50) MAO-B: 1.80 μM). Compounds inhibiting several different targets involved in neurodegeneration may exhibit additive or even synergistic effects in vivo.
Collapse
Affiliation(s)
- Pierre Koch
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Benson CA, Wong G, Tenorio G, Baker GB, Kerr BJ. The MAO inhibitor phenelzine can improve functional outcomes in mice with established clinical signs in experimental autoimmune encephalomyelitis (EAE). Behav Brain Res 2013; 252:302-11. [DOI: 10.1016/j.bbr.2013.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 12/18/2022]
|
37
|
Trillo L, Das D, Hsieh W, Medina B, Moghadam S, Lin B, Dang V, Sanchez MM, De Miguel Z, Ashford JW, Salehi A. Ascending monoaminergic systems alterations in Alzheimer's disease. translating basic science into clinical care. Neurosci Biobehav Rev 2013; 37:1363-79. [PMID: 23707776 DOI: 10.1016/j.neubiorev.2013.05.008] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 01/23/2023]
Abstract
Extensive neuropathological studies have established a compelling link between abnormalities in structure and function of subcortical monoaminergic (MA-ergic) systems and the pathophysiology of Alzheimer's disease (AD). The main cell populations of these systems including the locus coeruleus, the raphe nuclei, and the tuberomamillary nucleus undergo significant degeneration in AD, thereby depriving the hippocampal and cortical neurons from their critical modulatory influence. These studies have been complemented by genome wide association studies linking polymorphisms in key genes involved in the MA-ergic systems and particular behavioral abnormalities in AD. Importantly, several recent studies have shown that improvement of the MA-ergic systems can both restore cognitive function and reduce AD-related pathology in animal models of neurodegeneration. This review aims to explore the link between abnormalities in the MA-ergic systems and AD symptomatology as well as the therapeutic strategies targeting these systems. Furthermore, we will examine possible mechanisms behind basic vulnerability of MA-ergic neurons in AD.
Collapse
Affiliation(s)
- Ludwig Trillo
- Department of Physiology, School of Medicine, National University of San Agustin, Arequipa, Peru
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The amine oxidase inhibitor phenelzine limits lipogenesis in adipocytes without inhibiting insulin action on glucose uptake. J Neural Transm (Vienna) 2012; 120:997-1003. [DOI: 10.1007/s00702-012-0951-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/04/2012] [Indexed: 12/22/2022]
|