1
|
Zhang B, Hu Y, Du H, Han S, Ren L, Cheng H, Wang Y, Gao X, Zheng S, Cui Q, Tian L, Liu T, Sun J, Chai R. Tissue engineering strategies for spiral ganglion neuron protection and regeneration. J Nanobiotechnology 2024; 22:458. [PMID: 39085923 PMCID: PMC11293049 DOI: 10.1186/s12951-024-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haoliang Du
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Shanying Han
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Ren
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yusong Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Gao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Tingting Liu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
2
|
Andrade da Silva LH, Heuer RA, Roque CB, McGuire TL, Hosoya T, Kimura H, Tamura K, Matsuoka AJ. Enhanced survival of hypoimmunogenic otic progenitors following intracochlear xenotransplantation: repercussions for stem cell therapy in hearing loss models. Stem Cell Res Ther 2023; 14:83. [PMID: 37046329 PMCID: PMC10099643 DOI: 10.1186/s13287-023-03304-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Stem cell replacement holds the potential for sensorineural hearing loss (SNHL) treatment. However, its translation into clinical practice requires strategies for improving stem cell survival following intracochlear transplantation. Considering recent findings showing that the inner ear contains a resident population of immune cells, we hypothesized that immune evasion would improve the survival and residence time of transplanted stem cells in the cochlea, potentially leading to better outcomes. To test this, we leveraged genetic engineering techniques to develop hypoimmunogenic human-induced pluripotent stem cells (hi-iPSC), which lack human leukocyte antigen expression. We found that gene editing does not affect the biological properties of hi-iPSCs, including their capacity to differentiate into otic neural progenitors (ONPs). Compared to wild-type ONPs, more hypoimmunogenic ONPs (derived from hi-iPSCs) were found in the inner ear of immunocompetent mice ten days following cochlear xenotransplantation. This approach may open a new avenue for experimental and clinical SNHL treatments.
Collapse
Affiliation(s)
- Luisa H Andrade da Silva
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rachel A Heuer
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christian B Roque
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Kouichi Tamura
- Kobe Research Institute, HEALIOS K.K., Kobe, Hyogo, Japan
| | - Akihiro J Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA.
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Evanston, IL, USA.
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA.
- Department of Otolaryngology and Head and Neck Surgery, University of California San Diego, 9444 Medical Center Drive, MC7895, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Genetic Mechanism Study of Auditory Phoenix Spheres and Transcription Factors Prediction for Direct Reprogramming by Bioinformatics. Int J Mol Sci 2022; 23:ijms231810287. [PMID: 36142199 PMCID: PMC9499413 DOI: 10.3390/ijms231810287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Hearing loss is the most common irreversible sensory disorder. By delivering regenerative cells into the cochlea, cell-based therapy provides a novel strategy for hearing restoration. Recently, newly-identified phoenix cells have drawn attention due to their nearly unlimited self-renewal and neural differentiation capabilities. They are a promising cell source for cell therapy and a potential substitute for induced pluripotent stem cells (iPSCs) in many in vitro applications. However, the underlying genomic mechanism of their self-renewal capabilities is largely unknown. The aim of this study was to identify hub genes and potential molecular mechanisms between differentiated and undifferentiated phoenix cells and predict transcription factors (TFs) for direct reprogramming. Material and Methods: The datasets were downloaded from the ArrayExpress database. Samples of differentiated and undifferentiated phoenix cells with three biological replicates were utilised for bioinformatic analysis. Differentially expressed genes (DEGs) were screened and the Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were investigated. The gene set enrichment analysis (GSEA) was conducted to verify the enrichment of four self-defined gene set collections, followed by protein-protein interaction (PPI) network construction and subcluster analysis. The prediction of TFs for direct reprogramming was performed based on the TRANSFAC database. Results: Ten hub genes were identified to be the key candidates for self-renewal. Ten TFs were predicted as the direct reprogramming factors. This study provides a theoretical foundation for understanding phoenix cells and clues for direct reprogramming, which would stimulate further experiments and clinical applications in hearing research and treatment.
Collapse
|
4
|
Li M, Mu Y, Cai H, Wu H, Ding Y. Application of New Materials in Auditory Disease Treatment. Front Cell Neurosci 2022; 15:831591. [PMID: 35173583 PMCID: PMC8841849 DOI: 10.3389/fncel.2021.831591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Auditory diseases are disabling public health problems that afflict a significant number of people worldwide, and they remain largely incurable until now. Driven by continuous innovation in the fields of chemistry, physics, and materials science, novel materials that can be applied to hearing diseases are constantly emerging. In contrast to conventional materials, new materials are easily accessible, inexpensive, non-invasive, with better acoustic therapy effects and weaker immune rejection after implantation. When new materials are used to treat auditory diseases, the wound healing, infection prevention, disease recurrence, hair cell regeneration, functional recovery, and other aspects have been significantly improved. Despite these advances, clinical success has been limited, largely due to issues regarding a lack of effectiveness and safety. With ever-developing scientific research, more novel materials will be facilitated into clinical use in the future.
Collapse
|
5
|
Zhang L, Chen S, Sun Y. Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea. Front Cell Neurosci 2022; 15:814891. [PMID: 35069120 PMCID: PMC8766678 DOI: 10.3389/fncel.2021.814891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most prevalent sensory deficits in humans, and approximately 360 million people worldwide are affected. The current treatment option for severe to profound hearing loss is cochlear implantation (CI), but its treatment efficacy is related to the survival of spiral ganglion neurons (SGNs). SGNs are the primary sensory neurons, transmitting complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus. In mammals, SGNs have very limited regeneration ability, and SGN loss causes irreversible hearing loss. In most cases of SNHL, SGN damage is the dominant pathogenesis, and it could be caused by noise exposure, ototoxic drugs, hereditary defects, presbycusis, etc. Tremendous efforts have been made to identify novel treatments to prevent or reverse the damage to SGNs, including gene therapy and stem cell therapy. This review summarizes the major causes and the corresponding mechanisms of SGN loss and the current protection strategies, especially gene therapy and stem cell therapy, to promote the development of new therapeutic methods.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Kaboodkhani R, Mehrabani D, Karimi-Busheri F. Achievements and Challenges in Transplantation of Mesenchymal Stem Cells in Otorhinolaryngology. J Clin Med 2021; 10:2940. [PMID: 34209041 PMCID: PMC8267672 DOI: 10.3390/jcm10132940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/15/2022] Open
Abstract
Otorhinolaryngology enrolls head and neck surgery in various tissues such as ear, nose, and throat (ENT) that govern different activities such as hearing, breathing, smelling, production of vocal sounds, the balance, deglutition, facial animation, air filtration and humidification, and articulation during speech, while absence of these functions can lead to high morbidity and even mortality. Conventional therapies for head and neck damaged tissues include grafts, transplants, and artificial materials, but grafts have limited availability and cause morbidity in the donor site. To improve these limitations, regenerative medicine, as a novel and rapidly growing field, has opened a new therapeutic window in otorhinolaryngology by using cell transplantation to target the healing and replacement of injured tissues. There is a high risk of rejection and tumor formation for transplantation of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs); mesenchymal stem cells (MSCs) lack these drawbacks. They have easy expansion and antiapoptotic properties with a wide range of healing and aesthetic functions that make them a novel candidate in otorhinolaryngology for craniofacial defects and diseases and hold immense promise for bone tissue healing; even the tissue sources and types of MSCs, the method of cell introduction and their preparation quality can influence the final outcome in the injured tissue. In this review, we demonstrated the anti-inflammatory and immunomodulatory properties of MSCs, from different sources, to be safely used for cell-based therapies in otorhinolaryngology, while their achievements and challenges have been described too.
Collapse
Affiliation(s)
- Reza Kaboodkhani
- Otorhinolaryngology Research Center, Department of Otorhinolaryngology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71936-36981, Iran;
| | - Davood Mehrabani
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-74731, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
7
|
Sekiya T, Holley MC. Cell Transplantation to Restore Lost Auditory Nerve Function is a Realistic Clinical Opportunity. Cell Transplant 2021; 30:9636897211035076. [PMID: 34498511 PMCID: PMC8438274 DOI: 10.1177/09636897211035076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hearing is one of our most important means of communication. Disabling hearing loss (DHL) is a long-standing, unmet problem in medicine, and in many elderly people, it leads to social isolation, depression, and even dementia. Traditionally, major efforts to cure DHL have focused on hair cells (HCs). However, the auditory nerve is also important because it transmits electrical signals generated by HCs to the brainstem. Its function is critical for the success of cochlear implants as well as for future therapies for HC regeneration. Over the past two decades, cell transplantation has emerged as a promising therapeutic option for restoring lost auditory nerve function, and two independent studies on animal models show that cell transplantation can lead to functional recovery. In this article, we consider the approaches most likely to achieve success in the clinic. We conclude that the structure and biochemical integrity of the auditory nerve is critical and that it is important to preserve the remaining neural scaffold, and in particular the glial scar, for the functional integration of donor cells. To exploit the natural, autologous cell scaffold and to minimize the deleterious effects of surgery, donor cells can be placed relatively easily on the surface of the nerve endoscopically. In this context, the selection of donor cells is a critical issue. Nevertheless, there is now a very realistic possibility for clinical application of cell transplantation for several different types of hearing loss.
Collapse
Affiliation(s)
- Tetsuji Sekiya
- Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Neurological Surgery, Hikone Chuo Hospital, Hikone, Japan
- Tetsuji Sekiya, Department of Otolaryngology, Head and Neck Surgery, Kyoto University Graduate School of Medicine, 606-8507 Kyoto, Japan,.
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Firth Court, Sheffield, England
| |
Collapse
|
8
|
Kanzaki S, Toyoda M, Umezawa A, Ogawa K. Application of Mesenchymal Stem Cell Therapy and Inner Ear Regeneration for Hearing Loss: A Review. Int J Mol Sci 2020; 21:ijms21165764. [PMID: 32796705 PMCID: PMC7460950 DOI: 10.3390/ijms21165764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023] Open
Abstract
Inner and middle ear disorders are the leading cause of hearing loss, and are said to be among the greatest risk factors of dementia. The use of regenerative medicine for the treatment of inner ear disorders may offer a potential alternative to cochlear implants for hearing recovery. In this paper, we reviewed recent research and clinical applications in middle and inner ear regeneration and cell therapy. Recently, the mechanism of inner ear regeneration has gradually been elucidated. "Inner ear stem cells," which may be considered the precursors of various cells in the inner ear, have been discovered in the cochlea and vestibule. Research indicates that cells such as hair cells, neurons, and spiral ligaments may form promising targets for inner ear regenerative therapies by the transplantation of stem cells, including mesenchymal stem cells. In addition, it is necessary to develop tests for the clinical monitoring of cell transplantation. Real-time imaging techniques and hearing rehabilitation techniques are also being investigated, and cell therapy has found clinical application in cochlear implant techniques.
Collapse
Affiliation(s)
- Sho Kanzaki
- Department of Otolaryngology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
- Correspondence:
| | - Masashi Toyoda
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan;
| | - Akihiro Umezawa
- National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan;
| | - Kaoru Ogawa
- Department of Otolaryngology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan;
| |
Collapse
|
9
|
Heuer RA, Nella KT, Chang HT, Coots KS, Oleksijew AM, Roque CB, Silva LHA, McGuire TL, Homma K, Matsuoka AJ. Three-Dimensional Otic Neuronal Progenitor Spheroids Derived from Human Embryonic Stem Cells. Tissue Eng Part A 2020; 27:256-269. [PMID: 32580647 DOI: 10.1089/ten.tea.2020.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stem cell-replacement therapies have been proposed as a potential tool to treat sensorineural hearing loss by aiding the regeneration of spiral ganglion neurons (SGNs) in the inner ear. However, transplantation procedures have yet to be explored thoroughly to ensure proper cell differentiation and optimal transplant procedures. We hypothesized that the aggregation of human embryonic stem cell (hESC)-derived otic neuronal progenitor (ONP) cells into a multicellular form would improve their function and their survival in vivo post-transplantation. We generated hESC-derived ONP spheroids-an aggregate form conducive to differentiation, transplantation, and prolonged cell survival-to optimize conditions for their transplantation. Our findings indicate that these cell spheroids maintain the molecular and functional characteristics similar to those of ONP cells, which are upstream in the SGN lineage. Moreover, our phenotypical, electrophysiological, and mechanical data suggest an optimal spheroid transplantation point after 7 days of in vitro three-dimensional (3D) culture. We have also developed a feasible transplantation protocol for these spheroids using a micropipette aided by a digital microinjection system. In summary, the present work demonstrates that the transplantation of ONP cells in spheroid form into the inner ear through micropipette 7 days after seeding for 3D spheroid culture is an expedient and viable method for stem cell replacement therapies in the inner ear.
Collapse
Affiliation(s)
- Rachel A Heuer
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kevin T Nella
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hsiang-Tsun Chang
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kyle S Coots
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andrew M Oleksijew
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Christian B Roque
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Luisa H A Silva
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kazuaki Homma
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Hugh Knowles Center for Hearing Research and Northwestern University, Evanston, Illinois, USA
| | - Akihiro J Matsuoka
- Department of Otolaryngology and Head and Neck Surgery and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Hugh Knowles Center for Hearing Research and Northwestern University, Evanston, Illinois, USA.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
10
|
Chang HT, Heuer RA, Oleksijew AM, Coots KS, Roque CB, Nella KT, McGuire TL, Matsuoka AJ. An engineered three-dimensional stem cell niche in the inner ear by applying a nanofibrillar cellulose hydrogel with a sustained-release neurotrophic factor delivery system. Acta Biomater 2020; 108:111-127. [PMID: 32156626 PMCID: PMC7198367 DOI: 10.1016/j.actbio.2020.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/01/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022]
Abstract
Although the application of human embryonic stem cells (hESCs) in stem cell-replacement therapy remains promising, its potential is hindered by a low cell survival rate in post-transplantation within the inner ear. Here, we aim to enhance the in vitro and in vivo survival rate and neuronal differentiation of otic neuronal progenitors (ONPs) by generating an artificial stem cell niche consisting of three-dimensional (3D) hESC-derived ONP spheroids with a nanofibrillar cellulose hydrogel and a sustained-release brain-derivative neurotrophic factor delivery system. Our results demonstrated that the transplanted hESC-derived ONP spheroids survived and neuronally differentiated into otic neuronal lineages in vitro and in vivo and also extended neurites toward the bony wall of the cochlea 90 days after the transplantation without the use of immunosuppressant medication. Our data in vitro and in vivo presented here provide sufficient evidence that we have established a robust, reproducible protocol for in vivo transplantation of hESC-derived ONPs to the inner ear. Using our protocol to create an artificial stem cell niche in the inner ear, it is now possible to work on integrating transplanted hESC-derived ONPs further and also to work toward achieving functional auditory neurons generated from hESCs. Our findings suggest that the provision of an artificial stem cell niche can be a future approach to stem cell-replacement therapy for inner-ear regeneration. STATEMENT OF SIGNIFICANCE: Inner ear regeneration utilizing human embryonic stem cell-derived otic neuronal progenitors (hESC-derived ONPs) has remarkable potential for treating sensorineural hearing loss. However, the local environment of the inner ear requires a suitable stem cell niche to allow hESC-derived ONP engraftment as well as neuronal differentiation. To overcome this obstacle, we utilized three-dimensional spheroid formation (direct contact), nanofibrillar cellulose hydrogel (extracellular matrix), and a neurotrophic factor delivery system to artificially create a stem cell niche in vitro and in vivo. Our in vitro and in vivo data presented here provide sufficient evidence that we have established a robust, reproducible protocol for in vivo transplantation of hESC-derived ONPs to the inner ear.
Collapse
Affiliation(s)
- Hsiang-Tsun Chang
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Rachel A Heuer
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew M Oleksijew
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyle S Coots
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Christian B Roque
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kevin T Nella
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Akihiro J Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA; Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, IL 60201, USA.
| |
Collapse
|
11
|
Van De Water TR. Historical Aspects of Gene Therapy and Stem Cell Therapy in the Treatment of Hearing and Balance Disorder. Anat Rec (Hoboken) 2020; 303:390-407. [DOI: 10.1002/ar.24332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas R. Van De Water
- Cochlear Implant Research Program, Department of Otolaryngology, University of Miami Ear InstituteUniversity of Miami Miller School of Medicine Miami Florida
| |
Collapse
|
12
|
Van De Water TR. A Regenerative Medicine Approach to the Treatment of Hearing, Balance, and Olfactory Disorders: What Is in the Future for Otolaryngology? Anat Rec (Hoboken) 2020; 303:385-389. [PMID: 31916408 DOI: 10.1002/ar.24337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
Regenerative medicine is being applied to many fields of medicine and is now starting to be considered and developed for application to treat hearing, balance, olfaction, and voice disorders. This special issue of the Anatomical Record with a series of over 20 papers covers many aspects of gene and stem cell therapies as they are developed for clinical applications in both in vitro and in vivo laboratory studies. These studies cover a wide range of approaches from gene editing in zebrafish with the latest technology (i.e., CRISPR/Cas9) to the isolation of human inner ear progenitor cells, to tracking transplanted human umbilical cord stem cells in mini pigs, to the in vitro building of graft tissues to repair tracheal defects with adipose tissue-derived stem cells. Anat Rec, 303:385-389, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Thomas R Van De Water
- Cochlear Implant Research Program, Department of Otolaryngology, University of Miami Ear Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
13
|
Kondo T, Saigo S, Ugawa S, Kato M, Yoshikawa Y, Miyoshi N, Tanabe K. Prebiotic effect of fructo-oligosaccharides on the inner ear of DBA/2 J mice with early-onset progressive hearing loss. J Nutr Biochem 2019; 75:108247. [PMID: 31707282 DOI: 10.1016/j.jnutbio.2019.108247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/08/2019] [Accepted: 09/10/2019] [Indexed: 01/01/2023]
Abstract
Nutrition and dietary habits contribute to the onset and progression of sensorineural hearing loss (SNHL). Fructo-oligosaccharides (FOS) are non-digestible oligosaccharides and are known as prebiotics, which enhance short-chain fatty acid (SCFA) production and antioxidant activity. Although a substantial number of studies have shown that FOS play a role in the prevention of lifestyle-related diseases as prebiotics, little is known about the effects on the inner ear. The purpose of this study is to investigate the effect of FOS on gene expression and spiral ganglion neuron (SGN) protection in the inner ear of DBA/2 J mice, which is a model for early-onset progressive hearing loss. DBA/2 J mice were fed either control diet or FOS diet contained 10% (w/w) of FOS for 8 weeks. Analysis of mice fed the FOS diet revealed a change in intestinal flora including an inversion of the ratio of Bacteroidetes and Firmicutes, which was followed by a significant increase in SCFAs in the cecum and a decrease in an oxidative stress marker in the serum. In the inner ear, gene expression of neurotrophin, brain-derived neurotrophic factor (BDNF), its receptor, tyrosine kinase receptor b (Trkb), and the SCFA receptor, free fatty acid receptor 3 (FFAR3), were increased by FOS. In addition, the survival rate of SGNs in the inner ear was maintained in FOS-fed mice. Altogether, these results suggest that a compositional variation of the intestinal flora due to a prebiotic effect may be involved in the progression of SNHL.
Collapse
Affiliation(s)
- Takako Kondo
- Department of Food Science and Nutrition, Faculty of Human Life and Environmental Sciences, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-ku, Nagoya, Aichi 467-8610, Japan.
| | - Saori Saigo
- Department of Food Science and Nutrition, Faculty of Human Life and Environmental Sciences, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-ku, Nagoya, Aichi 467-8610, Japan.
| | - Shinya Ugawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Nagoya City University, 1Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
| | - Mai Kato
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yuto Yoshikawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Kenichi Tanabe
- Department of Food Science and Nutrition, Faculty of Human Life and Environmental Sciences, Nagoya Women's University, 3-40 Shioji-cho, Mizuho-ku, Nagoya, Aichi 467-8610, Japan.
| |
Collapse
|
14
|
Omichi R, Shibata SB, Morton CC, Smith RJH. Gene therapy for hearing loss. Hum Mol Genet 2019; 28:R65-R79. [PMID: 31227837 PMCID: PMC6796998 DOI: 10.1093/hmg/ddz129] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common sensory disorder. Its underlying etiologies include a broad spectrum of genetic and environmental factors that can lead to hearing loss that is congenital or late onset, stable or progressive, drug related, noise induced, age related, traumatic or post-infectious. Habilitation options typically focus on amplification using wearable or implantable devices; however exciting new gene-therapy-based strategies to restore and prevent SNHL are actively under investigation. Recent proof-of-principle studies demonstrate the potential therapeutic potential of molecular agents delivered to the inner ear to ameliorate different types of SNHL. Correcting or preventing underlying genetic forms of hearing loss is poised to become a reality. Herein, we review molecular therapies for hearing loss such as gene replacement, antisense oligonucleotides, RNA interference and CRISPR-based gene editing. We discuss delivery methods, techniques and viral vectors employed for inner ear gene therapy and the advancements in this field that are paving the way for basic science research discoveries to transition to clinical trials.
Collapse
Affiliation(s)
- Ryotaro Omichi
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Seiji B Shibata
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester Academic Health Science Centre, Manchester M139NT, UK
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Otolaryngology—Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Abbas L, Rivolta MN. The use of animal models to study cell transplantation in neuropathic hearing loss. Hear Res 2019; 377:72-87. [DOI: 10.1016/j.heares.2019.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/29/2023]
|
16
|
Kurtenbach S, Goss GM, Goncalves S, Choi R, Hare JM, Chaudhari N, Goldstein BJ. Cell-Based Therapy Restores Olfactory Function in an Inducible Model of Hyposmia. Stem Cell Reports 2019; 12:1354-1365. [PMID: 31155504 PMCID: PMC6565856 DOI: 10.1016/j.stemcr.2019.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cell-based therapies have been proposed as a strategy to replace damaged tissues, especially in the nervous system. A primary sensory modality, olfaction, is impaired in 12% of the US population, but lacks treatment options. We report here the development of a novel mouse model of inducible hyposmia and demonstrate that purified tissue-specific stem cells delivered intranasally engraft to produce olfactory neurons, achieving recovery of function. Adult mice were rendered hyposmic by conditional deletion of the ciliopathy-related IFT88 gene in the olfactory sensory neuron lineage and following experimentally induced olfactory injury, received either vehicle or stem cell infusion intranasally. Engraftment-derived olfactory neurons were identified histologically, and functional improvements were measured via electrophysiology and behavioral assay. We further explored mechanisms in culture that promote expansion of engraftment-competent adult olfactory basal progenitor cells. These findings provide a basis for translational research on propagating adult tissue-specific sensory progenitor cells and testing their therapeutic potential. A novel mouse model of inducible olfactory loss was used to test stem cell therapy Purified adult tissue-specific stem cells can engraft and restore olfaction Culture expansion of engraftment-competent stem cells was examined via RNA-seq
Collapse
Affiliation(s)
- Sarah Kurtenbach
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Biomedical Research Building, Room 809, Miami, FL 33136, USA; Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Garrett M Goss
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Biomedical Research Building, Room 809, Miami, FL 33136, USA; Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Stefania Goncalves
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rhea Choi
- Medical Scientist Training Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Biomedical Research Building, Room 809, Miami, FL 33136, USA; Department of Medicine, Division of Cardiology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nirupa Chaudhari
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bradley J Goldstein
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Biomedical Research Building, Room 809, Miami, FL 33136, USA; Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Graduate Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
17
|
Engraftment of Human Stem Cell-Derived Otic Progenitors in the Damaged Cochlea. Mol Ther 2019; 27:1101-1113. [PMID: 31005598 DOI: 10.1016/j.ymthe.2019.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
Most cases of sensorineural deafness are caused by degeneration of hair cells. Although stem/progenitor cell therapy is becoming a promising treatment strategy in a variety of organ systems, cell engraftment in the adult mammalian cochlea has not yet been demonstrated. In this study, we generated human otic progenitor cells (hOPCs) from induced pluripotent stem cells (iPSCs) in vitro and identified these cells by the expression of known otic markers. We showed successful cell transplantation of iPSC-derived-hOPCs in an in vivo adult guinea pig model of ototoxicity. The delivered hOPCs migrated throughout the cochlea, engrafted in non-sensory regions, and survived up to 4 weeks post-transplantation. Some of the engrafted hOPCs responded to environmental cues within the cochlear sensory epithelium and displayed molecular features of early sensory differentiation. We confirmed these results with hair cell progenitors derived from Atoh1-GFP mice as donor cells. These mouse otic progenitors transplanted using the same in vivo delivery system migrated into damaged cochlear sensory epithelium and adopted a partial sensory cell fate. This is the first report of the survival and differentiation of hOPCs in ototoxic-injured mature cochlear epithelium, and it should stimulate further research into cell-based therapies for treatment of deafness.
Collapse
|
18
|
Eshraghi AA, Jung HD, Mittal R. Recent Advancements in Gene and Stem Cell-Based Treatment Modalities: Potential Implications in Noise-Induced Hearing Loss. Anat Rec (Hoboken) 2019; 303:516-526. [PMID: 30859735 DOI: 10.1002/ar.24107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/24/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
Noise-induced hearing loss (NIHL) poses a significant burden on not only the economics of health care but also the quality of life of an individual, as we approach an unprecedented age of longevity. In this article, we will delineate the current landscape of management of NIHL. We discuss the most recent results from in vitro and in vivo studies that determine the effectiveness of established pharmacotherapy such as corticosteroid and potential emerging therapies like N-acetyl cysteine and neurotrophins (NTs), as well as highlight ongoing clinical trials for these therapeutic agents. We present an overview of how the recent advancements in the field of gene-based and stem cell-based therapies can help in developing effective therapeutic strategies for NIHL. Gene-based therapies have shown exciting results demonstrating cochlear cellular regeneration using Atoh1, NRF2 as well as NT gene therapy employing viral vectors. In addition, we will discuss the recent advancements in genome-editing technologies, such as CRISPR/Cas9, and its potential role in NIHL therapy. We will further discuss the current state of stem cell therapy as it pertains to treating neurodegenerative conditions including NIHL. Embryonic stem cells, adult-derived stem cells, and induced pluripotent stem cells all represent an enticing reservoir of replacing damaged cells as a result of NIHL. Finally, we will discuss the barriers that need to be overcome to translate these promising treatment modalities to the clinical practice in pursuit of improving quality of life of patients having NIHL. Anat Rec, 303:516-526, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Hyunseo D Jung
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
19
|
Stem Cells: A New Hope for Hearing Loss Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:165-180. [PMID: 30915707 DOI: 10.1007/978-981-13-6123-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Permanent hearing loss was considered which cannot be cured since cochlear hair cells and primary afferent neurons cannot be regenerated. In recent years, due to the in-depth study of stem cell and its therapeutic potential, regenerating auditory sensory cells is made possible. By using two strategies of endogenous stem cell activation and exogenous stem cell transplantation, researchers hope to find methods to restore hearing function. However, there are complex factors that need to be considered in the in vivo application of stem cell therapy, such as stem cell-type choice, signaling pathway regulations, transplantation approaches, internal environment of the cochlea, and external stimulation. After years of investigations, some theoretic progress has been made in the treatment of hearing loss using stem cells, but there are also many problems which limited its application that need to be solved. Understanding the future perspective of stem cell therapy in hearing loss, solving the encountered problems, and promoting its development are the common goals of audiological researchers. In this review, we present critical experimental findings of stem cell therapy on treatment of hearing loss and intend to bring hope to researchers and patients.
Collapse
|
20
|
Young E, Westerberg B, Yanai A, Gregory-Evans K. The olfactory mucosa: a potential source of stem cells for hearing regeneration. Regen Med 2018; 13:581-593. [PMID: 30113240 DOI: 10.2217/rme-2018-0009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The olfactory mucosa contains cells that enable it to generate new neurons and other supporting cells throughout life, allowing it to replace cells of the mucosa that have been damaged by exposure to various insults. In this article, we discuss the different types of stem cell found within the olfactory mucosa and their properties. In particular, the mesenchymal-like cells found within the lamina propria will be reviewed in detail. In addition, we discuss potential applications of olfactory-derived stem cells toward hearing regeneration secondary to either inner hair cell loss or primary or secondary auditory nerve degeneration.
Collapse
Affiliation(s)
- Emily Young
- Department of Ophthalmology, Eye Care Centre, University of British Columbia, Vancouver, Canada
| | - Brian Westerberg
- Department of Otolaryngology, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Anat Yanai
- Department of Ophthalmology, Eye Care Centre, University of British Columbia, Vancouver, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology, Eye Care Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Ouabain Does Not Induce Selective Spiral Ganglion Cell Degeneration in Guinea Pigs. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1568414. [PMID: 30151372 PMCID: PMC6091334 DOI: 10.1155/2018/1568414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/24/2018] [Accepted: 06/28/2018] [Indexed: 11/17/2022]
Abstract
Round window membrane (RWM) application of ouabain is known to selectively destroy type I spiral ganglion cells (SGCs) in cochleas of several rodent species, while leaving hair cells intact. This protocol has been used in rats and Mongolian gerbils, but observations in the guinea pig are conflicting. This is why we reinvestigated the effect of ouabain on the guinea pig cochlea. Ouabain solutions of different concentrations were placed, in a piece of gelfoam, upon the RWM of the right cochleas. Auditory function was assessed using acoustically evoked auditory brainstem responses (aABR). Finally, cochleas were fixed and processed for histological examination. Due to variability within treatment groups, histological data was pooled and three categories based upon general histological observations were defined: cochleas without outer hair cell (OHC) and SGC loss (Category 1), cochleas with OHC loss only (Category 2), and cochleas with OHC and SGC loss (Category 3). Animals treated with 1 mM or 10 mM ouabain showed shifts in hearing thresholds, corresponding with varying histological changes in their cochleas. Most cochleas exhibited complete outer hair cell loss in the basal and middle turns, while some had no changes, together with either moderate or near-complete loss of SGCs. Neither loss of inner hair cells nor histological changes of the stria vascularis were observed in any of the animals. Cochleas in Category 1 had normal aABRs and morphology. On average, in Category 2 OHC loss was 46.0±5.7%, SGC loss was below threshold, ABR threshold shift was 44.9±2.7 dB, and ABR wave II amplitude was decreased by 17.1±3.8 dB. In Category 3 OHC loss was 68.3±6.9%, SGC loss was 49.4±4.3%, ABR threshold shift was 39.0±2.4 dB, and ABR amplitude was decreased by 15.8±1.6 dB. Our results show that ouabain does not solely destroy type I SGCs in the guinea pig cochlea.
Collapse
|
22
|
Lee MY, Park YH. Potential of Gene and Cell Therapy for Inner Ear Hair Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8137614. [PMID: 30009175 PMCID: PMC6020521 DOI: 10.1155/2018/8137614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is caused by the loss of sensory hair cells (HCs) or a damaged afferent nerve pathway to the auditory cortex. The most common option for the treatment of sensorineural hearing loss is hearing rehabilitation using hearing devices. Various kinds of hearing devices are available but, despite recent advancements, their perceived sound quality does not mimic that of the "naïve" cochlea. Damage to crucial cochlear structures is mostly irreversible and results in permanent hearing loss. Cochlear HC regeneration has long been an important goal in the field of hearing research. However, it remains challenging because, thus far, no medical treatment has successfully regenerated cochlear HCs. Recent advances in genetic modulation and developmental techniques have led to novel approaches to generating HCs or protecting against HC loss, to preserve hearing. In this review, we present and review the current status of two different approaches to restoring or protecting hearing, gene therapy, including the newly introduced CRISPR/Cas9 genome editing, and stem cell therapy, and suggest the future direction.
Collapse
Affiliation(s)
- Min Yong Lee
- Department of Otorhinolaryngology and Head & Neck Surgery, Dankook University Hospital, Cheonan, Chungnam, Republic of Korea
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
23
|
Matsuoka AJ, Sayed ZA, Stephanopoulos N, Berns EJ, Wadhwani AR, Morrissey ZD, Chadly DM, Kobayashi S, Edelbrock AN, Mashimo T, Miller CA, McGuire TL, Stupp SI, Kessler JA. Creating a stem cell niche in the inner ear using self-assembling peptide amphiphiles. PLoS One 2017; 12:e0190150. [PMID: 29284013 PMCID: PMC5746215 DOI: 10.1371/journal.pone.0190150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/09/2017] [Indexed: 11/23/2022] Open
Abstract
The use of human embryonic stem cells (hESCs) for regeneration of the spiral ganglion will require techniques for promoting otic neuronal progenitor (ONP) differentiation, anchoring of cells to anatomically appropriate and specific niches, and long-term cell survival after transplantation. In this study, we used self-assembling peptide amphiphile (PA) molecules that display an IKVAV epitope (IKVAV-PA) to create a niche for hESC-derived ONPs that supported neuronal differentiation and survival both in vitro and in vivo after transplantation into rodent inner ears. A feature of the IKVAV-PA gel is its ability to form organized nanofibers that promote directed neurite growth. Culture of hESC-derived ONPs in IKVAV-PA gels did not alter cell proliferation or viability. However, the presence of IKVAV-PA gels increased the number of cells expressing the neuronal marker beta-III tubulin and improved neurite extension. The self-assembly properties of the IKVAV-PA gel allowed it to be injected as a liquid into the inner ear to create a biophysical niche for transplanted cells after gelation in vivo. Injection of ONPs combined with IKVAV-PA into the modiolus of X-SCID rats increased survival and localization of the cells around the injection site compared to controls. Human cadaveric temporal bone studies demonstrated the technical feasibility of a transmastoid surgical approach for clinical intracochlear injection of the IKVAV-PA/ONP combination. Combining stem cell transplantation with injection of self-assembling PA gels to create a supportive niche may improve clinical approaches to spiral ganglion regeneration.
Collapse
Affiliation(s)
- Akihiro J. Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, United States of America
- Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| | - Zafar A. Sayed
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nicholas Stephanopoulos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, United States of America
| | - Eric J. Berns
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Anil R. Wadhwani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Zachery D. Morrissey
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Duncan M. Chadly
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shun Kobayashi
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Alexandra N. Edelbrock
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Tomoji Mashimo
- The Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Charles A. Miller
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Tammy L. McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Samuel I. Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, United States of America
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Chemistry, Northwestern University, Evanston, Illinois, United States of America
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - John A. Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| |
Collapse
|
24
|
Chen J, Guan L, Zhu H, Xiong S, Zeng L, Jiang H. Transplantation of mouse-induced pluripotent stem cells into the cochlea for the treatment of sensorineural hearing loss. Acta Otolaryngol 2017. [PMID: 28643534 DOI: 10.1080/00016489.2017.1342045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONCLUSION Mouse-induced pluripotent stem cells (iPSCs) could differentiate into hair cell-like cells and spiral ganglion-like cells after transplantation into mouse cochleae, but it cannot improve the auditory brain response (ABR) thresholds in short term. OBJECTIVE To evaluate the potential of iPSCs for use as a source of transplants for the treatment of sensorineural hearing loss (SNHL). METHODS Establishing SNHL mice model, then injecting the iPSCs or equal volume DMEM basic medium into the cochleae, respectively. Immunofluorescence staining and reverse transcription-polymerase chain reaction (RT-PCR) were used to assess the survival, migration, differentiation of the transplanted iPSCs in cochleae and then recorded the ABR threshold in different time. Hematoxylin-eosin (HE) staining was used to observe the teratoma formation. RESULTS Four weeks after transplantation, CM-Di1-labeled iPSCs could be found in the modiolus and Rosenthal's canal (RC), and some of them could expressed auditory hair cell markers or spiral ganglion neuron makers in group A, but not found in group B and C. As to the ABR threshold, no significance differences were found between pre- with postoperative in group A or B. In our study, no teratoma was observed in the cochleae.
Collapse
Affiliation(s)
- Jing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lina Guan
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hengtao Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shan Xiong
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongqun Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Zhang ZJ, Guan HX, Yang K, Xiao BK, Liao H, Jiang Y, Zhou T, Hua QQ. Dose-dependent effects of ouabain on spiral ganglion neurons and Schwann cells in mouse cochlea. Acta Otolaryngol 2017; 137:1017-1023. [PMID: 28503992 DOI: 10.1080/00016489.2017.1324217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aimed in fully investigating the toxicities of ouabain to mouse cochlea and the related cellular environment, and providing an optimal animal model system for cell transplantation in the treatment of auditory neuropathy (AN) and sensorineural hearing loss (SNHL). METHODS Different dosages of ouabain were applied to mouse round window. The auditory brainstem responses and distortion product otoacoustic emissions were used to evaluate the cochlear function. The immunohistochemical staining and cochlea surface preparation were performed to detect the spiral ganglion neurons (SGNs), Schwann cells and hair cells. RESULTS Ouabain at the dosages of 0.5 mM, 1 mM and 3 mM selectively and permanently destroyed SGNs and their functions, while leaving the hair cells relatively intact. Ouabain at 3 mM resulted in the most severe SGNs loss and induced significant loss of Schwann cells started as early as 7 days and with further damages at 14 and 30 days after ouabain exposure. CONCLUSIONS The application of ouabain to mouse round window induces damages of SGNs and Schwann cells in a dose- and time-dependent manner, this study established a reliable and accurate animal model system of AN and SNHL.
Collapse
Affiliation(s)
- Zhi-Jian Zhang
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong-Xia Guan
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kun Yang
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo-Kui Xiao
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Liao
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Jiang
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Zhou
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing-Quan Hua
- Department of Otolaryngology – Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
26
|
Mittal R, Nguyen D, Patel AP, Debs LH, Mittal J, Yan D, Eshraghi AA, Van De Water TR, Liu XZ. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration. Front Mol Neurosci 2017; 10:236. [PMID: 28824370 PMCID: PMC5534485 DOI: 10.3389/fnmol.2017.00236] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Amit P. Patel
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Luca H. Debs
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Adrien A. Eshraghi
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Thomas R. Van De Water
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Xue Z. Liu
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
- Department of Otolaryngology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
27
|
Lee MY, Hackelberg S, Green KL, Lunghamer KG, Kurioka T, Loomis BR, Swiderski DL, Duncan RK, Raphael Y. Survival of human embryonic stem cells implanted in the guinea pig auditory epithelium. Sci Rep 2017; 7:46058. [PMID: 28387239 PMCID: PMC5384248 DOI: 10.1038/srep46058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/10/2017] [Indexed: 01/05/2023] Open
Abstract
Hair cells in the mature cochlea cannot spontaneously regenerate. One potential approach for restoring hair cells is stem cell therapy. However, when cells are transplanted into scala media (SM) of the cochlea, they promptly die due to the high potassium concentration. We previously described a method for conditioning the SM to make it more hospitable to implanted cells and showed that HeLa cells could survive for up to a week using this method. Here, we evaluated the survival of human embryonic stem cells (hESC) constitutively expressing GFP (H9 Cre-LoxP) in deaf guinea pig cochleae that were pre-conditioned to reduce potassium levels. GFP-positive cells could be detected in the cochlea for at least 7 days after the injection. The cells appeared spherical or irregularly shaped, and some were aggregated. Flushing SM with sodium caprate prior to transplantation resulted in a lower proportion of stem cells expressing the pluripotency marker Oct3/4 and increased cell survival. The data demonstrate that conditioning procedures aimed at transiently reducing the concentration of potassium in the SM facilitate survival of hESCs for at least one week. During this time window, additional procedures can be applied to initiate the differentiation of the implanted hESCs into new hair cells.
Collapse
Affiliation(s)
- Min Young Lee
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA.,Department of Otorhinolaryngology and Head &Neck Surgery, Dankook University Hospital, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam, 31116, Korea
| | - Sandra Hackelberg
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Kari L Green
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Kelly G Lunghamer
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Takaomi Kurioka
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Benjamin R Loomis
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - R Keith Duncan
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Otolaryngology - Head and Neck Surgery, The University of Michigan Medical School, MSRB-3, Rm. 9301 1150 W. Medical Center Dr. Ann Arbor, MI 48109-5648, USA
| |
Collapse
|
28
|
Jang S, Cho HH, Kim SH, Lee KH, Cho YB, Park JS, Jeong HS. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs. Neural Regen Res 2016; 11:994-1000. [PMID: 27482231 PMCID: PMC4962600 DOI: 10.4103/1673-5374.184503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/30/2022] Open
Abstract
Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks' balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs.
Collapse
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Song-Hee Kim
- Department of Physiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong-Bum Cho
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jong-Seong Park
- Department of Physiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
29
|
Efficacy of Human Adipose Tissue-Derived Stem Cells on Neonatal Bilirubin Encephalopathy in Rats. Neurotox Res 2016; 29:514-24. [PMID: 26818600 DOI: 10.1007/s12640-016-9599-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/04/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
Abstract
Kernicterus is a neurological syndrome associated with indirect bilirubin accumulation and damages to the basal ganglia, cerebellum and brain stem nuclei particularly the cochlear nucleus. To mimic haemolysis in a rat model such that it was similar to what is observed in a preterm human, we injected phenylhydrazine in 7-day-old rats to induce haemolysis and then infused sulfisoxazole into the same rats at day 9 to block bilirubin binding sites in the albumin. We have investigated the effectiveness of human adiposity-derived stem cells as a therapeutic paradigm for perinatal neuronal repair in a kernicterus animal model. The level of total bilirubin, indirect bilirubin, brain bilirubin and brain iron was significantly increased in the modelling group. There was a significant decreased in all severity levels of the auditory brainstem response test in the two modelling group. Akinesia, bradykinesia and slip were significantly declined in the experience group. Apoptosis in basal ganglia and cerebellum were significantly decreased in the stem cell-treated group in comparison to the vehicle group. All severity levels of the auditory brainstem response tests were significantly decreased in 2-month-old rats. Transplantation results in the substantial alleviation of walking impairment, apoptosis and auditory dysfunction. This study provides important information for the development of therapeutic strategies using human adiposity-derived stem cells in prenatal brain damage to reduce potential sensori motor deficit.
Collapse
|
30
|
Park YH. Stem Cell Therapy for Sensorineural Hearing Loss, Still Alive? J Audiol Otol 2015; 19:63-7. [PMID: 26413570 PMCID: PMC4582452 DOI: 10.7874/jao.2015.19.2.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022] Open
Abstract
In mammals, the auditory system, which includes the cochlea, has a very complex structure harboring many types of cells performing different functions. Among these cells are the auditory hair cells (HCs), which are terminally and well differentiated unique cells which have lost their regenerative potential after development. The auditory HCs are easily damaged by aging as well as during episodes of ototoxicity and acoustic trauma. HCs damages typically occur in the early stage of injury and can result a permanent hearing loss. Recently, there have been tremendous developments from stem cells (SCs) research involving sensorineural hearing loss, but several limitations and obstacles persist in allowing these developments from continuing onto clinical applications. This review discusses the recent advances in SC research in sensorineural hearing loss with the subsequent sections discussing the possible hurdles and limitations that currently preclude their clinical application.
Collapse
Affiliation(s)
- Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
31
|
Neural-induced human mesenchymal stem cells promote cochlear cell regeneration in deaf Guinea pigs. Clin Exp Otorhinolaryngol 2015; 8:83-91. [PMID: 26045904 PMCID: PMC4451547 DOI: 10.3342/ceo.2015.8.2.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/11/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022] Open
Abstract
Objectives In mammals, cochlear hair cell loss is irreversible and may result in a permanent sensorineural hearing loss. Secondary to this hair cell loss, a progressive loss of spiral ganglion neurons (SGNs) is presented. In this study, we have investigated the effects of neural-induced human mesenchymal stem cells (NI-hMSCs) from human bone marrow on sensory neuronal regeneration from neomycin treated deafened guinea pig cochleae. Methods HMSCs were isolated from the bone marrow which was obtained from the mastoid process during mastoidectomy for ear surgery. Following neural induction with basic fibroblast growth factor and forskolin, we studied the several neural marker and performed electrophysiological analysis. NI-hMSCs were transplanted into the neomycin treated deafened guinea pig cochlea. Engraftment of NI-hMSCs was evaluated immunohistologically at 8 weeks after transplantation. Results Following neural differentiation, hMSCs expressed high levels of neural markers, ionic channel markers, which are important in neural function, and tetrodotoxin-sensitive voltage-dependent sodium currents. After transplantation into the scala tympani of damaged cochlea, NI-hMSCs-injected animals exhibited a significant increase in the number of SGNs compared to Hanks balanced salt solution-injected animals. Transplanted NI-hMSCs were found within the perilymphatic space, the organ of Corti, along the cochlear nerve fibers, and in the spiral ganglion. Furthermore, the grafted NI-hMSCs migrated into the spiral ganglion where they expressed the neuron-specific marker, NeuN. Conclusion The results show the potential of NI-hMSCs to give rise to replace the lost cochlear cells in hearing loss mammals.
Collapse
|
32
|
Gunewardene N, Bergen NV, Crombie D, Needham K, Dottori M, Nayagam BA. Directing human induced pluripotent stem cells into a neurosensory lineage for auditory neuron replacement. Biores Open Access 2014; 3:162-75. [PMID: 25126480 PMCID: PMC4120935 DOI: 10.1089/biores.2014.0019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Emerging therapies for sensorineural hearing loss include replacing damaged auditory neurons (ANs) using stem cells. Ultimately, it is important that these replacement cells can be patient-matched to avoid immunorejection. As human induced pluripotent stem cells (hiPSCs) can be obtained directly from the patient, they offer an opportunity to generate patient-matched neurons for transplantation. Here, we used an established neural induction protocol to differentiate two hiPSC lines (iPS1 and iPS2) and one human embryonic stem cell line (hESC; H9) toward a neurosensory lineage in vitro. Immunocytochemistry and qRT-PCR were used to analyze the expression of key markers involved in AN development at defined time points of differentiation. The hiPSC- and hESC-derived neurosensory progenitors expressed the dorsal hindbrain marker (PAX7), otic placodal marker (PAX2), proneurosensory marker (SOX2), ganglion neuronal markers (NEUROD1, BRN3A, ISLET1, ßIII-tubulin, Neurofilament kDa 160), and sensory AN markers (GATA3 and VGLUT1) over the time course examined. The hiPSC- and hESC-derived neurosensory progenitors had the highest expression levels of the sensory neural markers at 35 days in vitro. Furthermore, the neurons generated from this assay were found to be electrically active. While all cell lines analyzed produced functional neurosensory-like progenitors, variabilities in the levels of marker expression were observed between hiPSC lines and within samples of the same cell line, when compared with the hESC controls. Overall, these findings indicate that this neural assay was capable of differentiating hiPSCs toward a neurosensory lineage but emphasize the need for improving the consistency in the differentiation of hiPSCs into the required lineages.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Department of Otolaryngology, University of Melbourne , East Melbourne, Victoria, Australia
| | - Nicole Van Bergen
- Centre for Eye Research Australia, University of Melbourne , East Melbourne, Victoria, Australia
| | - Duncan Crombie
- Centre for Eye Research Australia, University of Melbourne , East Melbourne, Victoria, Australia
| | - Karina Needham
- Department of Otolaryngology, University of Melbourne , East Melbourne, Victoria, Australia
| | - Mirella Dottori
- Centre for Neural Engineering, University of Melbourne , Parkville, Victoria, Australia
| | - Bryony A Nayagam
- Centre for Eye Research Australia, University of Melbourne , East Melbourne, Victoria, Australia . ; Department of Audiology and Speech Pathology, University of Melbourne , Parkville, Victoria, Australia . ; Bionics Institute, University of Melbourne , East Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Skoloudik L, Chrobok V, Kalfert D, Koci Z, Filip S. Multipotent mesenchymal stromal cells in otorhinolaryngology. Med Hypotheses 2014; 82:769-73. [DOI: 10.1016/j.mehy.2014.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/02/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022]
|
34
|
Park YH, Wilson KF, Ueda Y, Tung Wong H, Beyer LA, Swiderski DL, Dolan DF, Raphael Y. Conditioning the cochlea to facilitate survival and integration of exogenous cells into the auditory epithelium. Mol Ther 2014; 22:873-80. [PMID: 24394296 PMCID: PMC3982491 DOI: 10.1038/mt.2013.292] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/23/2013] [Indexed: 12/30/2022] Open
Abstract
The mammalian auditory epithelium (AE) cannot replace supporting cells and hair cells once they are lost. Therefore, sensorineural hearing loss associated with missing cells is permanent. This inability to regenerate critical cell types makes the AE a potential target for cell replacement therapies such as stem cell transplantation. Inserting stem cells into the AE of deaf ears is a complicated task due to the hostile, high potassium environment of the scala media in the cochlea, and the robust junctional complexes between cells in the AE that resist stem cell integration. Here, we evaluate whether temporarily reducing potassium levels in the scala media and disrupting the junctions in the AE make the cochlear environment more receptive and facilitate survival and integration of transplanted cells. We used sodium caprate to transiently disrupt the AE junctions, replaced endolymph with perilymph, and blocked stria vascularis pumps with furosemide. We determined that these three steps facilitated survival of HeLa cells in the scala media for at least 7 days and that some of the implanted cells formed a junctional contact with native AE cells. The data suggest that manipulation of the cochlear environment facilitates survival and integration of exogenously transplanted HeLa cells in the scala media.
Collapse
Affiliation(s)
- Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, KHRI, The University of Michigan, Ann Arbor, MI, USA
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, 33 Munwha Ro, Daesa Dong, Jung Gu, Daejeon, Korea
- Brain Research Institute, College of Medicine, Chungnam National University, 33 Munwha Ro, Daesa Dong, Jung Gu, Daejeon, Korea
| | - Kevin F. Wilson
- Division of Otolaryngology, University of Utah, 50 North Medical Dr.3C120 SOM, Salt Lake City, UT, USA
| | - Yoshihisa Ueda
- Department of Otolaryngology-Head and Neck Surgery, Kurume University School of Medicine, 67 Asahi-Machi, Kurume, Fukuoka, Japan
| | - Hiu Tung Wong
- Department of Otolaryngology-Head and Neck Surgery, KHRI, The University of Michigan, Ann Arbor, MI, USA
| | - Lisa A. Beyer
- Department of Otolaryngology-Head and Neck Surgery, KHRI, The University of Michigan, Ann Arbor, MI, USA
| | - Donald L. Swiderski
- Department of Otolaryngology-Head and Neck Surgery, KHRI, The University of Michigan, Ann Arbor, MI, USA
| | - David F. Dolan
- Department of Otolaryngology-Head and Neck Surgery, KHRI, The University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, KHRI, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Bas E, Van De Water TR, Lumbreras V, Rajguru S, Goss G, Hare JM, Goldstein BJ. Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion. Stem Cells Dev 2013; 23:502-14. [PMID: 24172073 DOI: 10.1089/scd.2013.0274] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A loss of sensory hair cells or spiral ganglion neurons from the inner ear causes deafness, affecting millions of people. Currently, there is no effective therapy to repair the inner ear sensory structures in humans. Cochlear implantation can restore input, but only if auditory neurons remain intact. Efforts to develop stem cell-based treatments for deafness have demonstrated progress, most notably utilizing embryonic-derived cells. In an effort to bypass limitations of embryonic or induced pluripotent stem cells that may impede the translation to clinical applications, we sought to utilize an alternative cell source. Here, we show that adult human mesenchymal-like stem cells (MSCs) obtained from nasal tissue can repair spiral ganglion loss in experimentally lesioned cochlear cultures from neonatal rats. Stem cells engraft into gentamicin-lesioned organotypic cultures and orchestrate the restoration of the spiral ganglion neuronal population, involving both direct neuronal differentiation and secondary effects on endogenous cells. As a physiologic assay, nasal MSC-derived cells engrafted into lesioned spiral ganglia demonstrate responses to infrared laser stimulus that are consistent with those typical of excitable cells. The addition of a pharmacologic activator of the canonical Wnt/β-catenin pathway concurrent with stem cell treatment promoted robust neuronal differentiation. The availability of an effective adult autologous cell source for inner ear tissue repair should contribute to efforts to translate cell-based strategies to the clinic.
Collapse
Affiliation(s)
- Esperanza Bas
- 1 Department of Otolaryngology, University of Miami Miller School of Medicine , Miami, Florida
| | | | | | | | | | | | | |
Collapse
|
36
|
Ouabain-induced apoptosis in cochlear hair cells and spiral ganglion neurons in vitro. BIOMED RESEARCH INTERNATIONAL 2013; 2013:628064. [PMID: 24228256 PMCID: PMC3818842 DOI: 10.1155/2013/628064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/16/2013] [Indexed: 11/20/2022]
Abstract
Ouabain is a common tool to explore the pathophysiological changes in adult mammalian cochlea in vivo. In prior studies, locally administering ouabain via round window membrane demonstrated that the ototoxic effects of ouabain in vivo varied among mammalian species. Little is known about the ototoxic effects in vitro. Thus, we prepared cochlear organotypic cultures from postnatal day-3 rats and treated these cultures with ouabain at 50, 500, and 1000 μM for different time to elucidate the ototoxic effects of ouabain in vitro and to provide insights that could explain the comparative ototoxic effects of ouabain in vivo. Degeneration of cochlear hair cells and spiral ganglion neurons was evaluated by hair-cell staining and neurofilament labeling, respectively. Annexin V staining was used to detect apoptotic cells. A quantitative RT-PCR apoptosis-focused gene array determined changes in apoptosis-related genes. The results showed that ouabain-induced damage in vitro was dose and time dependent. 500 μM ouabain and 1000 μM ouabain were destructively traumatic to both spiral ganglion neurons and cochlear hair cells in an apoptotic signal-dependent pathway. The major apoptotic pathways in ouabain-induced spiral ganglion neuron apoptosis culminated in the stimulation of the p53 pathway and triggering of apoptosis by a network of proapoptotic signaling pathways.
Collapse
|
37
|
He Y, Zhang PZ, Sun D, Mi WJ, Zhang XY, Cui Y, Jiang XW, Mao XB, Qiu JH. Wnt1 from cochlear schwann cells enhances neuronal differentiation of transplanted neural stem cells in a rat spiral ganglion neuron degeneration model. Cell Transplant 2013; 23:747-60. [PMID: 23809337 DOI: 10.3727/096368913x669761] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Although neural stem cell (NSC) transplantation is widely expected to become a therapy for nervous system degenerative diseases and injuries, the low neuronal differentiation rate of NSCs transplanted into the inner ear is a major obstacle for the successful treatment of spiral ganglion neuron (SGN) degeneration. In this study, we validated whether the local microenvironment influences the neuronal differentiation of transplanted NSCs in the inner ear. Using a rat SGN degeneration model, we demonstrated that transplanted NSCs were more likely to differentiate into microtubule-associated protein 2 (MAP2)-positive neurons in SGN-degenerated cochleae than in control cochleae. Using real-time quantitative PCR and an immunofluorescence assay, we also proved that the expression of Wnt1 (a ligand of Wnt signaling) increases significantly in Schwann cells in the SGN-degenerated cochlea. We further verified that NSC cultures express receptors and signaling components for Wnts. Based on these expression patterns, we hypothesized that Schwann cell-derived Wnt1 and Wnt signaling might be involved in the regulation of the neuronal differentiation of transplanted NSCs. We verified our hypothesis in vitro using a coculture system. We transduced a lentiviral vector expressing Wnt1 into cochlear Schwann cell cultures and cocultured them with NSC cultures. The coculture with Wnt1-expressing Schwann cells resulted in a significant increase in the percentage of NSCs that differentiated into MAP2-positive neurons, whereas this differentiation-enhancing effect was prevented by Dkk1 (an inhibitor of the Wnt signaling pathway). These results suggested that Wnt1 derived from cochlear Schwann cells enhanced the neuronal differentiation of transplanted NSCs through Wnt signaling pathway activation. Alterations of the microenvironment deserve detailed investigation because they may help us to conceive effective strategies to overcome the barrier of the low differentiation rate of transplanted NSCs.
Collapse
Affiliation(s)
- Ya He
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jongkamonwiwat N, Rivolta MN. The Development of a Stem Cell Therapy for Deafness. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
39
|
Needham K, Minter RL, Shepherd RK, Nayagam BA. Challenges for stem cells to functionally repair the damaged auditory nerve. Expert Opin Biol Ther 2013; 13:85-101. [PMID: 23094991 PMCID: PMC3543850 DOI: 10.1517/14712598.2013.728583] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION In the auditory system, a specialized subset of sensory neurons are responsible for correctly relaying precise pitch and temporal cues to the brain. In individuals with severe-to-profound sensorineural hearing impairment these sensory auditory neurons can be directly stimulated by a cochlear implant, which restores sound input to the brainstem after the loss of hair cells. This neural prosthesis therefore depends on a residual population of functional neurons in order to function effectively. AREAS COVERED In severe cases of sensorineural hearing loss where the numbers of auditory neurons are significantly depleted, the benefits derived from a cochlear implant may be minimal. One way in which to restore function to the auditory nerve is to replace these lost neurons using differentiated stem cells, thus re-establishing the neural circuit required for cochlear implant function. Such a therapy relies on producing an appropriate population of electrophysiologically functional neurons from stem cells, and on these cells integrating and reconnecting in an appropriate manner in the deaf cochlea. EXPERT OPINION Here we review progress in the field to date, including some of the key functional features that stem cell-derived neurons would need to possess and how these might be enhanced using electrical stimulation from a cochlear implant.
Collapse
Affiliation(s)
- Karina Needham
- University of Melbourne, Department of Otolaryngology, East Melbourne, Australia.
| | | | | | | |
Collapse
|
40
|
Gunewardene N, Dottori M, Nayagam BA. The convergence of cochlear implantation with induced pluripotent stem cell therapy. Stem Cell Rev Rep 2012; 8:741-54. [PMID: 21956409 DOI: 10.1007/s12015-011-9320-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
According to 2010 estimates from The National Institute on Deafness and other Communication Disorders, approximately 17% (36 million) American adults have reported some degree of hearing loss. Currently, the only clinical treatment available for those with severe-to-profound hearing loss is a cochlear implant, which is designed to electrically stimulate the auditory nerve in the absence of hair cells. Whilst the cochlear implant has been revolutionary in terms of providing hearing to the severe-to-profoundly deaf, there are variations in cochlear implant performance which may be related to the degree of degeneration of auditory neurons following hearing loss. Hence, numerous experimental studies have focused on enhancing the efficacy of cochlear implants by using neurotrophins to preserve the auditory neurons, and more recently, attempting to replace these dying cells with new neurons derived from stem cells. As a result, several groups are now investigating the potential for both embryonic and adult stem cells to replace the degenerating sensory elements in the deaf cochlea. Recent advances in our knowledge of stem cells and the development of induced pluripotency by Takahashi and Yamanaka in 2006, have opened a new realm of science focused on the use of induced pluripotent stem (iPS) cells for therapeutic purposes. This review will provide a broad overview of the potential benefits and challenges of using iPS cells in combination with a cochlear implant for the treatment of hearing loss, including differentiation of iPS cells into an auditory neural lineage and clinically relevant transplantation approaches.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Department of Otolaryngology, University of Melbourne, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
41
|
Up-regulation of stromal cell-derived factor-1 enhances migration of transplanted neural stem cells to injury region following degeneration of spiral ganglion neurons in the adult rat inner ear. Neurosci Lett 2012; 534:101-6. [PMID: 23219799 DOI: 10.1016/j.neulet.2012.11.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/15/2012] [Accepted: 11/04/2012] [Indexed: 11/21/2022]
Abstract
Neural stem cell (NSC) transplantation into the cochlea is widely used for the treatment of spiral ganglion neuron (SGN) degenerative disease and injury in the animal models, but the migration of the transplanted NSCs to the injury region is difficult and the mechanism is still unclear. In this study, we aimed to validate whether the SGN-degenerated cochlear microenvironment plays a role in the NSC migration and investigated whether stromal cell-derived factor-1 (SDF-1) was involved in the NSCs migration. Using a rat SGN degeneration model, we demonstrated that the transplanted NSCs are more likely to migrate to the injury region during the early post-injury (EPI) than the late post-injury (LPI) stage and the control cochlea. We found that the expressions of SDF-1 increased transiently after SGN degeneration. Additionally, we showed that the NSCs express CXCR4, a receptor for SDF-1. We observed that the region to which the transplanted NSC localized coincides with the region where the SDF-1 is highly expressed following the degeneration of SGNs. Finally, we observed that the increased SDF-1 is derived from the Schwann cells in the SGN-degenerated model. These results suggest that SDF-1, which is derived from cochlear Schwann cells and up-regulated in the early injury microenvironment, plays a beneficial role in the NSC migration to the injury region. Optimizing SDF-1 expression in the host microenvironment or increasing the CXCR4 expression of the donor stem cells may improve the migration efficiency of transplanted cells toward the injury region in the cochlea.
Collapse
|
42
|
Fu Y, Ding D, Jiang H, Salvi R. Ouabain-induced cochlear degeneration in rat. Neurotox Res 2012; 22:158-69. [PMID: 22476946 DOI: 10.1007/s12640-012-9320-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 03/14/2012] [Accepted: 03/21/2012] [Indexed: 12/25/2022]
Abstract
Ouabain, a potent inhibitor of the Na+/K+-ATPase pump, selectively destroys spiral ganglion neurons (SGNs) in gerbils and mice, whereas in guinea pigs it preferentially damages cochlear hair cells. To elucidate the effects of ouabain on the rat inner ear, a species widely used in research, 5 μl of 1 or 10 mM ouabain was applied to the round window membrane. Distortion product otoacoustic emissions (DPOAE) and auditory brainstem responses (ABR) were used to identify functional deficits in hair cells and neurons, respectively, and histological techniques were used to characterize cochlear pathologies. High-frequency ABR thresholds were elevated after treatment with 1 mM ouabain, whereas DPOAEs remained normal. In contrast, 10 mM ouabain increased ABR thresholds and reduced DPOAE amplitudes. Consistent with the physiological changes, 1 mM ouabain only damaged the SGNs and auditory nerve fibers in the basal turn of the cochlea whereas 10 mM ouabain destroyed both SGNs and cochlear hair cells; damage was greatest near the base and decreased toward the apex. The nuclei of degenerating SGNs and hair cells were condensed and fragmented and many cells were TUNEL-positive, morphological features of apoptotic cell death. Thus, ouabain-induced cochlear degeneration in rats is apoptotic and concentration dependent; low concentrations preferentially damage SGNs in the base of the cochlea, producing an animal model of partial auditory neuropathy, whereas high concentrations damage both hair cells and SGNs with damage decreasing from the base toward the apex.
Collapse
Affiliation(s)
- Yong Fu
- Department of Otorhinolaryngology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | | | | | | |
Collapse
|
43
|
Gerbils. THE LABORATORY RABBIT, GUINEA PIG, HAMSTER, AND OTHER RODENTS 2012. [PMCID: PMC7158315 DOI: 10.1016/b978-0-12-380920-9.00052-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The gerbil is usually nonaggressive and is one of the easiest rodents to maintain and handle. Its disposition, curious nature, relative freedom from naturally occurring infectious diseases, and adaptability to its environment have contributed to its popularity as a laboratory animal. Gerbils are found in deserts and semiarid geographical regions of the world. The Mongolian gerbils that are available today originated from 20 pairs of captured animals that were maintained in 1935 in a closed, random-bred colony at the Kitasato Institute in Japan. Gerbils have several unique anatomical and physiological features. Mature gerbils are smaller than rats, but larger than mice. Mongolian gerbils are attracted to saliva and use salivary cues to discriminate between siblings and nonsiblings, and females use oral cues in the selection of sociosexual partners. Gerbils have been used as experimental models in a number of areas of biomedical research. Gerbils are excellent subjects for laboratory animal research as they are susceptible to bacterial, viral, and parasitic pathogens that affect humans and other species. Gerbils may have spontaneous seizures secondary to stress such as handling, cage change, abrupt noises, or changes in the environment. Cystic ovaries are seen commonly in female gerbils over 1 year of age. Gerbils have unique characteristics, which make them appropriate for a number of animal models. Classically, gerbils have been used in research involving stroke, parasitology, infectious diseases, epilepsy, brain development and behavior, and hearing.
Collapse
|
44
|
Shibata SB, Budenz CL, Bowling SA, Pfingst BE, Raphael Y. Nerve maintenance and regeneration in the damaged cochlea. Hear Res 2011; 281:56-64. [PMID: 21596129 PMCID: PMC3196294 DOI: 10.1016/j.heares.2011.04.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/22/2011] [Accepted: 04/23/2011] [Indexed: 12/22/2022]
Abstract
Following the onset of sensorineural hearing loss, degeneration of mechanosensitive hair cells and spiral ganglion cells (SGCs) in humans and animals occurs to variable degrees, with a trend for greater neural degeneration with greater duration of deafness. Emergence of the cochlear implant prosthesis has provided much needed aid to many hearing impaired patients and has become a well-recognized therapy worldwide. However, ongoing peripheral nerve fiber regression and subsequent degeneration of SGC bodies can reduce the neural targets of cochlear implant stimulation and diminish its function. There is increasing interest in bio-engineering approaches that aim to enhance cochlear implant efficacy by preventing SGC body degeneration and/or regenerating peripheral nerve fibers into the deaf sensory epithelium. We review the advancements in maintaining and regenerating nerves in damaged animal cochleae, with an emphasis on the therapeutic capacity of neurotrophic factors delivered to the inner ear after an insult. Additionally, we summarize the histological process of neuronal degeneration in the inner ear and describe different animal models that have been employed to study this mechanism. Research on enhancing the biological infrastructure of the deafened cochlea in order to improve cochlear implant efficacy is of immediate clinical importance.
Collapse
Affiliation(s)
- Seiji B. Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Cameron L. Budenz
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Sara A. Bowling
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Bryan E. Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| |
Collapse
|
45
|
Kondo T, Matsuoka AJ, Shimomura A, Koehler KR, Chan RJ, Miller JM, Srour EF, Hashino E. Wnt signaling promotes neuronal differentiation from mesenchymal stem cells through activation of Tlx3. Stem Cells 2011; 29:836-46. [PMID: 21374761 DOI: 10.1002/stem.624] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wnt/β-catenin signaling promotes neural differentiation by activation of the neuron-specific transcription factors, Neurogenin1 (Ngn1), NeuroD, and Brn3a, in the nervous system. As neurons in cranial sensory ganglia and dorsal root ganglia transiently express Ngn1, NeuroD, and Brn3a during embryonic development, we hypothesized that Wnt proteins could instructively promote a sensory neuronal fate from mesenchymal stem cells (MSCs) directed to differentiate into neurons. Consistent with our hypothesis, Wnt1 induced expression of sensory neuron markers including Ngn1, NeuroD, and Brn3a, as well as glutamatergic markers in neurally induced MSCs in vitro and promoted engraftment of transplanted MSCs in the inner ear bearing selective loss of sensory neurons in vivo. Given the consensus function of T-cell leukemia 3 (Tlx3), as a glutamatergic selector gene, we postulated that the effects of canonical Wnt signaling on sensory neuron and glutamatergic marker gene expression in MSCs may be mediated by Tlx3. We first confirmed that Wnt1 indeed upregulates Tlx3 expression, which can be suppressed by canonical Wnt inhibitors. Next, our chromatin immunoprecipitation assays revealed that T-cell factor 3/4, Wnt-activated DNA binding proteins, interact with a regulatory region of Tlx3 in MSCs after neural induction. Furthermore, we demonstrated that forced expression of Tlx3 in MSCs induced sensory and glutamatergic neuron markers after neural induction. Together, these results identify Tlx3 as a novel target for canonical Wnt signaling that confers somatic stem cells with a sensory neuron phenotype upon neural induction.
Collapse
Affiliation(s)
- Takako Kondo
- Department of Otolaryngology-Head and Neck Surgery, Stark Neurosciences Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pandit SR, Sullivan JM, Egger V, Borecki AA, Oleskevich S. Functional Effects of Adult Human Olfactory Stem Cells on Early-Onset Sensorineural Hearing Loss. Stem Cells 2011; 29:670-7. [DOI: 10.1002/stem.609] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Cho YB, Cho HH, Jang S, Jeong HS, Park JS. Transplantation of neural differentiated human mesenchymal stem cells into the cochlea of an auditory-neuropathy guinea pig model. J Korean Med Sci 2011; 26:492-8. [PMID: 21468255 PMCID: PMC3069567 DOI: 10.3346/jkms.2011.26.4.492] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/08/2011] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the effects of transplanted neural differentiated human mesenchymal stem cells (hMSCs) in a guinea pig model of auditory neuropathy. In this study, hMSCs were pretreated with a neural-induction protocol and transplanted into the scala tympani of the guinea pig cochlea 7 days after ouabain injury. A control model was made by injection of Hanks balanced salt solution alone into the scala tympani of the guinea pig cochlea 7 days after ouabain injury. We established the auditory neuropathy guinea pig model using 1 mM ouabain application to the round window niche. After application of ouabain to the round window niche, degeneration of most spiral ganglion neurons (SGNs) without the loss of hair cells within the organ of Corti and increasing the auditory brain responses (ABR) threshold were found. After transplantation of neural differentiated hMSCs, the number of SGNs was increased, and some of the SGNs expressed immunoreactivity with human nuclear antibody under confocal laser scanning microscopy. ABR results showed mild hearing recovery after transplantation. Based on an auditory neuropathy animal model, these findings suggest that it may be possible to replace degenerated SGNs by grafting stem cells into the scala tympani.
Collapse
Affiliation(s)
- Yong-Bum Cho
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Korea
- Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| | - Hyong-Ho Cho
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju, Korea
- Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
- Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, Korea
- Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
- Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, Korea
- Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| | - Jong-Seong Park
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
- Brain Korea 21 Project, Center for Biomedical Human Resources at Chonnam National University, Gwangju, Korea
- Research Institute of Medical Sciences, Chonnam National University, Gwangju, Korea
| |
Collapse
|
48
|
The Development of a Stem Cell Therapy for Deafness. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
Jiao Y, Novozhilova E, Karlén A, Muhr J, Olivius P. Olfactory ensheathing cells promote neurite outgrowth from co-cultured brain stem slice. Exp Neurol 2010; 229:65-71. [PMID: 20974131 DOI: 10.1016/j.expneurol.2010.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/19/2010] [Accepted: 10/15/2010] [Indexed: 01/01/2023]
Abstract
Cell therapy aiming at the replacement of degenerated neurons is a very attractive approach. By using an established in vitro organotypic brain stem (BS) slice culture we screen for candidate donor cells, some of them being further functionally assessed in in vivo models of sensorineural hearing loss. Both in vitro and in vivo systems show that implanted cells face challenges of survival, targeted migration, differentiation and functional integration with the host tissue. Low success rates are possibly due to the lack of necessary neurotrophic factors, adhesion molecules and guiding cues. Olfactory ensheathing cells (OECs) have been shown to express a number of neurotrophic factors and to promote axonal growth through cell to cell interactions. In the present study we co-cultured OECs with organotypic BS slice in order to see if OECs can serve as a facilitator when screening candidate donor cells in an organotypic culture setup. Here we show that OECs when co-cultured with the auditory BS slice not only promote neurite outgrowth from the cochlear nucleus (CN) region of the BS slice but also support cells by having BS slice axons growing along their processes. These findings further suggest that OECs may enhance survival and targeted migration of candidate donor cells suitable for cell therapy in vitro and in vivo. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Yu Jiao
- Center for Hearing and Communication Research, Karolinska University Hospital, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
50
|
Shibata SB, Raphael Y. Future approaches for inner ear protection and repair. JOURNAL OF COMMUNICATION DISORDERS 2010; 43:295-310. [PMID: 20430401 PMCID: PMC2905731 DOI: 10.1016/j.jcomdis.2010.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/28/2010] [Accepted: 02/01/2010] [Indexed: 05/29/2023]
Abstract
UNLABELLED Health care professionals tending to patients with inner ear disease face inquiries about therapy options, including treatments that are being developed for future use but not yet available. The devastating outcome of sensorineural hearing loss, combined with the permanent nature of the symptoms, make these inquiries demanding and frequent. The vast information accessible online and the publicity for breakthroughs in research add to patient requests for access to advanced and innovative therapies, even before these are available for clinical use. This can sometimes be taxing on the health care provider who is in contact with the patients. Here we aim to equip the provider with information about some of the progress made for protective and reparative approaches for treating inner ears. LEARNING OUTCOMES (1) Readers will be able to explain why hearing loss is irreversible and common, (2) readers will be able to explain the importance of protective measures and the progress made in discovery and design of novel biological protective molecules, (3) readers will be able to describe reparative approaches currently under investigation (such as tissue engineering), the main difficulties in the design of such therapies and the major hurdles that remain for making novel technologies clinically viable, and (4) readers will be able to explain to their patients some of the progress in developing new treatments without making the promise of imminent clinical use. With this information, readers will be able to guide patients to make better choices for their treatment and to guide students toward research in this exciting field.
Collapse
Affiliation(s)
- Seiji B. Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| |
Collapse
|