1
|
Nicolas L, Mandl H, Schrader F, Long JL. Immunocytochemistry assessment of vocal fold regeneration after cell-based implant in rabbits. Laryngoscope Investig Otolaryngol 2024; 9:e70007. [PMID: 39386157 PMCID: PMC11462588 DOI: 10.1002/lio2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/11/2024] [Indexed: 10/12/2024] Open
Abstract
Objective Cell-based outer vocal fold replacement (COVR) offers a potential treatment for severe vocal fold scarring or cancer reconstruction. Previous work in rabbits using human adipose-derived stem cells (ASC) in fibrin suggested that a hybrid structure emerged within 2 months, containing both implanted and host cells. This project uses immunocytochemistry to better define the phenotypic fate of implanted cells and features of the extracellular environment. Methods Immunocytochemistry was performed on sections collected from rabbits 2 months after COVR implantation or scar surgery. Cellular targets included human leukocyte antigen (HLA), CD31, and smooth muscle actin (SMA). Results HLA was present in all implanted sections and was used to identify human cells. In adjacent sections, HLA-positive cells were identified expressing CD31. SMA was not identified in the same cells as HLA. These markers were also present in injured vocal folds not receiving COVR. SMA protein content did not differ according to treatment. Conclusions Implanted human ASC persist in rabbit vocal folds. Some appear to express CD31, an endothelial marker. Smooth muscle actin, a marker of myofibroblast phenotype, was present in all sections regardless of treatment, and was not identified in hASC. Host cells also infiltrate the structure, producing a hybrid host-graft vocal fold.
Collapse
Affiliation(s)
- Larissa Nicolas
- David Geffen School of Medicine at University of California‐Los AngelesLos AngelesCaliforniaUSA
| | - Hanna Mandl
- David Geffen School of Medicine at University of California‐Los AngelesLos AngelesCaliforniaUSA
| | - Feng Schrader
- Research ServiceGreater Los Angeles VAHSLos AngelesCaliforniaUSA
| | - Jennifer L. Long
- Research ServiceGreater Los Angeles VAHSLos AngelesCaliforniaUSA
- Department of Head and Neck SurgeryDavid Geffen School of Medicine at University of California‐Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
2
|
Ferri-Angulo D, Yousefi-Mashouf H, Michel M, McLeer A, Orgéas L, Bailly L, Sohier J. Versatile fiber-reinforced hydrogels to mimic the microstructure and mechanics of human vocal-fold upper layers. Acta Biomater 2023; 172:92-105. [PMID: 37748548 DOI: 10.1016/j.actbio.2023.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Human vocal folds are remarkable soft laryngeal structures that enable phonation due to their unique vibro-mechanical performances. These properties are tied to their specific fibrous architecture, especially in the upper layers, which comprise a gel-like composite called lamina propria. The lamina propria can withstand large and reversible deformations under various multiaxial loadings. Despite their importance, the relationships between the microstructure of vocal folds and their resulting macroscopic properties remain poorly understood. There is a need for versatile models that encompass their structural complexity while mimicking their mechanical features. In this study, we present a candidate model inspired by histological measurements of the upper layers of human vocal folds. Bi-photonic observations were used to quantify the distribution, orientation, width, and volume fraction of collagen and elastin fibers between histological layers. Using established biomaterials, polymer fiber-reinforced hydrogels were developed to replicate the fibrillar network and ground substance of native vocal fold tissue. To achieve this, jet-sprayed poly(ε-caprolactone) fibrillar mats were successfully impregnated with poly(L-lysine) dendrimers/polyethylene glycol hydrogels. The resulting composites exhibited versatile structural, physical and mechanical properties that could be customized through variations in the chemical formulation of their hydrogel matrix, the microstructural architecture of their fibrous networks (i.e., fiber diameter, orientation and volume fraction) and their assembly process. By mimicking the collagen network of the lamina propria with polymer fibers and the elastin/ground substance with the hydrogel composition, we successfully replicated the non-linear, anisotropic, and viscoelastic mechanical behavior of the vocal-fold upper layers, accounting for inter/intra-individual variations. The development of this mimetic model offers promising avenues for a better understanding of the complex mechanisms involved in voice production. STATEMENT OF SIGNIFICANCE: Human vocal folds are outstanding vibrating soft living tissues allowing phonation. Simple physical models that take into account the histological structure of the vocal fold and recapitulate its mechanical features are scarce. As a result, the relations between tissue components, organisation and vibro-mechanical performances still remain an open question. We describe here the development and the characterization of fiber-reinforced hydrogels inspired from the vocal-fold microstructure. These systems are able to reproduce the mechanics of vocal-fold tissues upon realistic cyclic and large strains under various multi-axial loadings, thus providing a mimetic model to further understand the impact of the fibrous network microstructure in phonation.
Collapse
Affiliation(s)
- Daniel Ferri-Angulo
- MATEIS, CNRS, Université de Lyon, INSA de Lyon, Université Claude Bernard Lyon 1, UMR5510, 69100 Villeurbanne, France
| | - Hamid Yousefi-Mashouf
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France; Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France
| | - Margot Michel
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, University of Lyon, Claude Bernard University Lyon 1, UMR5305 LBTI, 69007 Lyon, France
| | - Anne McLeer
- Univ. Grenoble Alpes, CHU Grenoble Alpes, INSERM U1209, CNRS UMR5309, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Laurent Orgéas
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France
| | - Lucie Bailly
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France
| | - Jérôme Sohier
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS, University of Lyon, Claude Bernard University Lyon 1, UMR5305 LBTI, 69007 Lyon, France.
| |
Collapse
|
3
|
Svistushkin M, Shpichka A, Bikmulina P, Fayzullin A, Zolotova A, Kosheleva N, Selezneva L, Shavkuta B, Lobacheva V, Nikiforova A, Kochetkov P, Kotova S, Starostina S, Shekhter A, Svistunov A, Svistushkin V, Timashev P. Vocal fold restoration after scarring: biocompatibility and efficacy of an MSC-based bioequivalent. Stem Cell Res Ther 2023; 14:303. [PMID: 37865795 PMCID: PMC10590531 DOI: 10.1186/s13287-023-03534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND There is growing interest to application of regenerative medicine approaches in otorhinolaryngological practice, especially in the framework of the therapy of vocal fold (VF) scar lesions. The used conservative and surgical methods, despite the achieved positive outcomes, are frequently unpredictable and do not result in the restoration of the VF's lamina propria's structure, which provides the mechanical properties necessary for vibration. In this connection, the aim of this study was to ascertain the safety and efficacy of a bioequivalent in the treatment of VF scars using a rabbit model of chronic damage. METHODS The bioequivalent consisted of a hydrogel system based on a PEG-fibrin conjugate and human bone marrow-derived MSC. It was characterized and implanted heterotopically into rats and orthotopically into rabbits after VF scar excision. RESULTS We showed that the fabricated bioequivalent consisted of viable cells retaining their metabolic and proliferative activity. While being implanted heterotopically, it had induced the low inflammatory reaction in 7 days and was well tolerated. The orthotopic implantation showed that the gel application was characterized by a lower hemorrhage intensity (p = 0.03945). The intensity of stridor and respiratory rate between the groups in total and between separate groups had no statistically significant difference (p = 0.96 and p = 1; p = 0.9593 and p = 0.97…1, respectively). In 3 days post-implantation, MSC were detected only in the tissues closely surrounding the VF defect. The bioequivalent injection caused that the scar collagen fibers were packed looser and more frequently mutually parallel that is inherent in the native tissue (p = 0.018). In all experimental groups, the fibrous tissue's ingrowth in the adjacent exterior muscle tissue was observed; however, in Group 4 (PEG-Fibrin + MSC), it was much less pronounced than it was in Group 1 (normal saline) (p = 0.008). The difference between the thicknesses of the lamina propria in the control group and in Group 4 was not revealed to be statistically significant (p = 0.995). The Young's modulus of the VF after the bioequivalent implantation (1.15 ± 0.25 kPa) did not statistically significantly differ from the intact VF modulus (1.17 ± 0.45 kPa); therefore, the tissue properties in this group more closely resembled the intact VF. CONCLUSIONS The developed bioequivalent showed to be biocompatible and highly efficient in the restoration of VF's tissue.
Collapse
Affiliation(s)
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Anna Zolotova
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Liliya Selezneva
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Boris Shavkuta
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | | | - Anna Nikiforova
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Peter Kochetkov
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | - Anatoly Shekhter
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | | | | | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.
| |
Collapse
|
4
|
Schlegel P, Yan K, Upadhyaya S, Buyens W, Wong K, Chen A, Faull KF, Al-Hiyari Y, Long J. Tissue-engineered vocal fold replacement in swine: Methods for functional and structural analysis. PLoS One 2023; 18:e0284135. [PMID: 37083641 PMCID: PMC10120936 DOI: 10.1371/journal.pone.0284135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
We have developed a cell-based outer vocal fold replacement (COVR) as a potential therapy to improve voice quality after vocal fold (VF) injury, radiation, or tumor resection. The COVR consists of multipotent human adipose-derived stem cells (hASC) embedded within a three-dimensional fibrin scaffold that resembles vocal fold epithelium and lamina propria layers. Previous work has shown improved wound healing in rabbit studies. In this pilot study in pigs, we sought to develop methods for large animal implantation and phonatory assessment. Feasibility, safety, and structural and functional outcomes of the COVR implant are described. Of eight pigs studied, six animals underwent COVR implantation with harvest between 2 weeks and 6 months. Recovery of laryngeal tissue structure was assessed by vibratory and histologic analyses. Recovery of voice function was assessed by investigating acoustic parameters that were derived specifically for pigs. Results showed improved lamina propria qualities relative to an injured control animal at 6 months. Acoustic parameters reflected voice worsening immediately after surgery as expected; acoustics displayed clear voice recovery in the animal followed for 6 months after COVR. These methods form the basis for a larger-scale long-term pre-clinical safety and efficacy study.
Collapse
Affiliation(s)
- Patrick Schlegel
- Department of Head and Neck Surgery, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
| | - Kenneth Yan
- Department of Otolaryngology/Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Sreenivasa Upadhyaya
- Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium
- SoundTalks N.V, Leuven, Belgium
| | | | - Kirsten Wong
- Department of Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
| | - Anthony Chen
- Department of Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
| | - Kym F. Faull
- Department of Psychiatry & Biobehavioral Sciences, Pasarow Mass Spectrometry Laboratory, Jane & Terry Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
| | - Yazeed Al-Hiyari
- Department of Head and Neck Surgery, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
| | - Jennifer Long
- Department of Head and Neck Surgery, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, California, United States of America
- Surgery and Perioperative Careline, Greater Los Angeles VA Healthcare System, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Svistushkin MV, Kotova S, Shpichka A, Starostina S, Shekhter A, Bikmulina P, Nikiforova A, Zolotova A, Royuk V, Kochetkov PA, Timashev S, Fomin V, Vosough M, Svistushkin V, Timashev P. Stem cell therapy for vocal fold regeneration after scarring: a review of experimental approaches. Stem Cell Res Ther 2022; 13:176. [PMID: 35505357 PMCID: PMC9066721 DOI: 10.1186/s13287-022-02853-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
This review aims at becoming a guide which will help to plan the experimental design and to choose adequate methods to assess the outcomes when testing cell-based products in the treatment of the damaged vocal folds. The requirements to preclinical trials of cell-based products remain rather hazy and dictated by the country regulations. Most parameters like the way the cells are administered, selection of the cell source, selection of a carrier, and design of in vivo studies are decided upon by each research team and may differ essentially between studies. The review covers the methodological aspects of preclinical studies such as experimental models, characterization of cell products, assessment of the study outcome using molecular, morphological and immunohistochemical analyses, as well as measuring the tissue physical properties. The unified recommendations to perform preclinical trials could significantly facilitate the translation of cell-based products into the clinical practice.
Collapse
Affiliation(s)
- Mikhail V Svistushkin
- Department for ENT Diseases, Sechenov University, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | | | - Anatoliy Shekhter
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Polina Bikmulina
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Anna Nikiforova
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Anna Zolotova
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Valery Royuk
- University Hospital No 1, Sechenov University, Moscow, Russia
| | - P A Kochetkov
- Department for ENT Diseases, Sechenov University, Moscow, Russia
| | - Serge Timashev
- National Research Nuclear University «MEPhI», Moscow, Russia
| | - Victor Fomin
- Department of Internal Medicine No 1, Sechenov University, Moscow, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | | | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov University, Moscow, Russia. .,Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
6
|
Li X, Wang H, Xu W. HGF and bFGF Secreted by Adipose-Derived Mesenchymal Stem Cells Revert the Fibroblast Phenotype Caused by Vocal Fold Injury in a Rat Model. J Voice 2020; 36:622-629. [PMID: 32921552 DOI: 10.1016/j.jvoice.2020.08.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate how adipose-derived mesenchymal stem cells (ADSCs), secreted hepatocyte growth factor (HGF), and basic fibroblast growth factor (bFGF) affect the fibroblast phenotype after vocal fold injury. METHODS We cultured primary normal (uninjured) and injured vocal fold fibroblasts (VFFs). A transwell co-culture system of ADSCs and injured VFFs was constructed in vitro, then the effects of HGF or bFGF were inhibited. The proliferation, extracellular matrix (ECM) secretion and transformation of VFFs were observed. RESULTS Compared with uninjured VFFs, the secretion of collagen by injured VFFs increased significantly, hyaluronan synthase 1 (HAS1) secretion decreased, and VFF transformation increased significantly. After co-culture with ADSCs, the proliferation of VFFs was accelerated and the transformation was inhibited. Co-culture inhibited the expression of type I and III collagen and promoted the expression of HAS1. When HGF or bFGF secretion was inhibited, the proliferation of injured VFFs was inhibited. The inhibitory effect on collagen was reduced by both groups, but this was more obvious with the anti-HGF group. The anti-bFGF group had a more prominent effect on HAS1 secretion after injury than the anti-HGF group but the difference was not statistically significant. The inhibition of the transformation of injured VFFs was reduced while α-smooth muscle actin was upregulated, which was more obvious with the anti-HGF group. CONCLUSIONS ADSCs and secreted HGF and bFGF can revert the fibroblast phenotype caused by vocal fold injury. The effects of HGF are more significant than bFGF on collagen secretion and the transformation of VFFs into myofibroblasts. However, bFGF is more effective than HGF in upregulating HAS1.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University; Ministry of Education of China, Beijing, China
| | - Haizhou Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University; Ministry of Education of China, Beijing, China
| | - Wen Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University; Ministry of Education of China, Beijing, China.
| |
Collapse
|
7
|
Kolosova K, Gao Q, Tuznik M, Bouhabel S, Kost KM, Wang H, Li-Jessen NYK, Mongeau L, Wiseman PW. Characterizing Vocal Fold Injury Recovery in a Rabbit Model With Three-Dimensional Virtual Histology. Laryngoscope 2020; 131:1578-1587. [PMID: 32809236 DOI: 10.1002/lary.29028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES/HYPOTHESIS In animal studies of vocal fold scarring and treatment, imaging-based evaluation is most often conducted by tissue slicing and histological staining. Given variation in anatomy, injury type, severity, and sacrifice timepoints, planar histological sections provide limited spatiotemporal details of tissue repair. Three-dimensional (3D) virtual histology may provide additional contextual spatial information, enhancing objective interpretation. The study's aim was to evaluate the suitability of magnetic resonance imaging (MRI), microscale computed tomography (CT), and nonlinear laser-scanning microscopy (NM) as virtual histology approaches for rabbit studies of vocal fold scarring. METHODS A unilateral injury was created using microcup forceps in the left vocal fold of three New Zealand White rabbits. Animals were sacrificed at 3, 10, and 39 days postinjury. ex vivo imaging of excised larynges was performed with MRI, CT, and NM modalities. RESULTS The MRI modality allowed visualization of injury location and morphological internal features with 100-μm spatial resolution. The CT modality provided a view of the injury defect surface with 12-μm spatial resolution. The NM modality with optical clearing resolved second-harmonic generation signal of collagen fibers and two-photon autofluorescence in vocal fold lamina propria, muscle, and surrounding cartilage structures at submicrometer spatial scales. CONCLUSIONS Features of vocal fold injury and wound healing were observed with MRI, CT, and NM. The MRI and CT modalities provided contextual spatial information and dissection guidance, whereas NM resolved extracellular matrix structure. The results serve as a proof of concept to motivate incorporation of 3D virtual histology techniques in future vocal fold injury animal studies. LEVEL OF EVIDENCE NA Laryngoscope, 131:1578-1587, 2021.
Collapse
Affiliation(s)
- Ksenia Kolosova
- Department of Physics, McGill University, Montreal, Quebec, Canada
| | - Qiman Gao
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Marius Tuznik
- Small Animal Imaging Laboratory of the McConnell Brain Imaging Centre at the Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Sarah Bouhabel
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Karen M Kost
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada
| | - Huijie Wang
- Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada
| | - Nicole Y K Li-Jessen
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.,School of Communication Sciences and Disorders, McGill University, Montreal, Quebec, Canada
| | - Luc Mongeau
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, Quebec, Canada.,Department of Mechanical Engineering, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Paul W Wiseman
- Department of Physics, McGill University, Montreal, Quebec, Canada.,Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Dion GR, Guda T, Mukudai S, Bing R, Lavoie JF, Branski RC. Quantifying vocal fold wound-healing biomechanical property changes. Laryngoscope 2020; 130:454-459. [PMID: 31059589 PMCID: PMC7721866 DOI: 10.1002/lary.27999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES Development of novel vocal fold (VF) therapeutics is limited by a lack of standardized, meaningful outcomes. We hypothesize that automated microindentation-based VF biomechanical property mapping matched to histology permits quantitative assessment. STUDY DESIGN Ex vivo. METHODS Twelve anesthetized New Zealand white rabbits underwent endoscopic right VF injury. Larynges were harvested/bisected day 7, 30, or 60 (n = 4/group), with four uninjured controls. Biomechanical measurements (normal force, structural stiffness, and displacement at 1.96 mN) were calculated using automated microindentation mapping (0.3 mm depth, 1.2 mm/s, 2 mm spherical indenter) with a grid overlay (>50 locations weighted toward VF edge, separated into 14 zones). Specimens were marked/fixed/sectioned, and slides matched to measurement points. RESULTS In the injury zone, normal force/structural stiffness (mean, standard deviation [SD]/mean, SD) increased from uninjured (2.2 mN, 0.64/7.4 mN/mm, 2.14) and day 7 (2.7 mN, 0.75/9.0 mN/mm, 2.49) to day 30 (4.3 mN, 2.11/14.2 mN/mm, 7.05) and decreased at 60 days (2.7 mN, 0.77/9.1 mN/mm, 2.58). VF displacement decreased from control (0.28 mm, 0.05) and day 7 (0.26 mm, 0.05) to day 30 (0.20 mm, 0.05), increasing at day 60 (0.25 mm, 0.06). A one-way ANOVA was significant; Tukey's post hoc test confirmed day-30 samples differed from other groups (P < 0.05), consistent across adjacent zones. Zones far from injury remained similar across groups (P = 0.143 to 0.551). These measurements matched qualitative histologic variations. CONCLUSION Quantifiable VF biomechanical properties can be linked to histology. This technological approach is the first to simultaneously correlate functional biomechanics with histology and is ideal for future preclinical studies. LEVEL OF EVIDENCE NA Laryngoscope, 130:454-459, 2020.
Collapse
Affiliation(s)
- Gregory R Dion
- Dental and Craniofacial Trauma Research Department, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Teja Guda
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas
| | - Shigeyuki Mukudai
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | - Renjie Bing
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| | | | - Ryan C Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, New York, U.S.A
| |
Collapse
|
9
|
Alicura Tokgöz S, Saka C, Akın İ, Köybaşıoğlu F, Kılıçaslan S, Çalışkan M, Beşaltı Ö, Çadallı Tatar E. Effects of phenytoin injection on vocal cord healing after mechanical trauma: An experimental study. Turk J Med Sci 2019; 49:1577-1581. [PMID: 31652040 PMCID: PMC7018381 DOI: 10.3906/sag-1903-63] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022] Open
Abstract
Background/aim Phenytoin is an anticonvulsant drug which causes fibroblast proliferation, collagen synthesis, and an increase in epidermal growth factor. Therefore, the aim of the present study is to evaluate the effect of phenytoin injection on the wound healing process in rats with vocal cord injury by histopathological methods. Materials and methods The vocal cords of 10 albino Wistar rats were damaged bilaterally; the left vocal cord was kept as the control group. Phenytoin was injected in the right vocal cord. Ten rats were sacrificed. The thickness of the lamina propria and density of the fibroblast and collagen were evaluated histopathologically. Results Thickness of the lamina propria was 18.0 ± 7.1 µm in the control group, 65.5 ± 10.7 µm in the phenytoin group. The density of fibroblast and collagen were statistically lower in the control group compared the phenytoin group (P < 0.05). Conclusion Phenytoin injection in rats after vocal cord injury significantly increased the thickness of the lamina propria and density of fibroblast and regular and mature collagen in the lamina propria. The findings in our study provide a feasible scientific view for adding phenytoin treatment to vocal cord surgeries in otolaryngology practice, but further studies are needed in order to evaluate the use of phenytoin in preventing the formation of scar tissue and possible effects on vocal cord vibration in humans after vocal cord injury.
Collapse
Affiliation(s)
- Sibel Alicura Tokgöz
- Department of Otorhinolaryngology, University of Health Sciences Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Cem Saka
- Department of Otorhinolaryngology, University of Health Sciences Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - İstemihan Akın
- Department of Otorhinolaryngology, University of Health Sciences Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Fulya Köybaşıoğlu
- Department of Pathology, Faculty of Medicine, Yüksek İhtisas University, Ankara, Turkey
| | - Saffet Kılıçaslan
- Department of Otorhinolaryngology, Düzce Atatürk State Hospital, Düzce, Turkey
| | - Murat Çalışkan
- Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Ömer Beşaltı
- Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Emel Çadallı Tatar
- Department of Otorhinolaryngology, University of Health Sciences Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
10
|
Imaizumi M, Nakamura R, Nakaegawa Y, Dirja BT, Tada Y, Tani A, Sugino T, Tabata Y, Omori K. Regenerative potential of basic fibroblast growth factor contained in biodegradable gelatin hydrogel microspheres applied following vocal fold injury: Early effect on tissue repair in a rabbit model. Braz J Otorhinolaryngol 2019; 87:274-282. [PMID: 31711791 PMCID: PMC9422641 DOI: 10.1016/j.bjorl.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022] Open
Abstract
Introduction Postoperative dysphonia is mostly caused by vocal fold scarring, and careful management of vocal fold surgery has been reported to reduce the risk of scar formation. However, depending on the vocal fold injury, treatment of postoperative dysphonia can be challenging. Objective The goal of the current study was to develop a novel prophylactic regenerative approach for the treatment of injured vocal folds after surgery, using biodegradable gelatin hydrogel microspheres as a drug delivery system for basic fibroblast growth factor. Methods Videoendoscopic laryngeal surgery was performed to create vocal fold injury in 14 rabbits. Immediately following this procedure, biodegradable gelatin hydrogel microspheres with basic fibroblast growth factor were injected in the vocal fold. Two weeks after injection, larynges were excised for evaluation of vocal fold histology and mucosal movement. Results The presence of poor vibratory function was confirmed in the injured vocal folds. Histology and digital image analysis demonstrated that the injured vocal folds injected with gelatin hydrogel microspheres with basic fibroblast growth factor showed less scar formation, compared to the injured vocal folds injected with gelatin hydrogel microspheres only, or those without any injection. Conclusion A prophylactic injection of basic fibroblast growth factor -containing biodegradable gelatin hydrogel microspheres demonstrates a regenerative potential for injured vocal folds in a rabbit model.
Collapse
Affiliation(s)
- Mitsuyoshi Imaizumi
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan.
| | | | - Yuta Nakaegawa
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Bayu Tirta Dirja
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Yasuhiro Tada
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Akiko Tani
- Fukushima Medical University, School of Medicine, Department of Otolaryngology, Fukushima, Japan
| | - Takashi Sugino
- Shizuoka Cancer Center, Division of Pathology, Shizuoka, Japan
| | - Yasuhiko Tabata
- Kyoto University, Institute for Frontier Life and Medical Sciences, Department of Regeneration Science and Engineering, Laboratory of Biomaterials, Kyoto, Japan
| | - Koichi Omori
- Kyoto University, Department of Otolaryngology, Kyoto, Japan
| |
Collapse
|
11
|
Pathophysiology of Fibrosis in the Vocal Fold: Current Research, Future Treatment Strategies, and Obstacles to Restoring Vocal Fold Pliability. Int J Mol Sci 2019; 20:ijms20102551. [PMID: 31137626 PMCID: PMC6567075 DOI: 10.3390/ijms20102551] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Communication by voice depends on symmetrical vibrations within the vocal folds (VFs) and is indispensable for various occupations. VF scarring is one of the main reasons for permanent dysphonia and results from injury to the unique layered structure of the VFs. The increased collagen and decreased hyaluronic acid within VF scars lead to a loss of pliability of the VFs and significantly decreases their capacity to vibrate. As there is currently no definitive treatment for VF scarring, regenerative medicine and tissue engineering have become increasingly important research areas within otolaryngology. Several recent reviews have described the problem of VF scarring and various possible solutions, including tissue engineered cells and tissues, biomaterial implants, stem cells, growth factors, anti-inflammatory cytokines antifibrotic agents. Despite considerable research progress, these technical advances have not been established as routine clinical procedures. This review focuses on emerging techniques for restoring VF pliability using various approaches. We discuss our studies on interactions among adipose-derived stem/stromal cells, antifibrotic agents, and VF fibroblasts using an in vitro model. We also identify some obstacles to advances in research.
Collapse
|
12
|
Nagubothu SR, Sugars RV, Tudzarovski N, Andrén AT, Bottai M, Davies LC, Hertegård S, Le Blanc K. Mesenchymal stromal cells modulate tissue repair responses within the injured vocal fold. Laryngoscope 2019; 130:E21-E29. [PMID: 30835853 DOI: 10.1002/lary.27885] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES/HYPOTHESIS This study aimed to determine whether local injection of human mesenchymal stromal cells (MSC) could modulate the early inflammatory response within injured vocal folds (VFs) to promote wound-healing processes. STUDY DESIGN Experimental xenograft model. METHODS VF injury was surgically induced by bilateral resection of the lamina propria of rabbits, and MSC were immediately injected into the injured area of both VFs. Animals were sacrificed on days 2, 4, and 24. Histological analyses were performed by hematoxylin and eosin, Masson's Trichrome, and elastin staining. Cell death was visualized by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and the M2 macrophage marker, CD163, detected by immunohistochemistry. Persistence of injected MSC was evaluated by fluorescent in situ hybridization (FISH). Quantitative polymerase chain reaction was performed on the contralateral VF. RESULTS Histological examination at days 2 and 4 indicated that MSC were able to reduce tissue inflammation, with gene expression analysis confirming a significant reduction of proinflammatory markers, interleukin (IL)-1β, and IL-8. FISH demonstrated low-level persistence of injected MSC at both time points, and TUNEL confirmed localized cell death at the injury site. Increased levels of CD163+ anti-inflammatory macrophages indicated a change in the immune milieu, supporting wound resolution. Evidence of a more organized collagen matrix suggests that MSC may enhance the production of a functional repair tissue after injury, despite their low-level persistence within the tissue. CONCLUSIONS This study demonstrates that MSC are able to positively modulate the early wound-healing response through resolution of the inflammatory phase and promotion of tissue repair. LEVEL OF EVIDENCE NA Laryngoscope, 130:E21-E29, 2020.
Collapse
Affiliation(s)
| | - Rachael V Sugars
- Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | - Matteo Bottai
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Lindsay C Davies
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Stellan Hertegård
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden.,Department of Otorhinolaryngology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Katarina Le Blanc
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
13
|
King RE, Lau HK, Zhang H, Sidhu I, Christensen MB, Fowler EW, Li L, Jia X, Kiick KL, Thibeault SL. Biocompatibility and Viscoelastic Properties of Injectable Resilin-Like Polypeptide and Hyaluronan Hybrid Hydrogels in Rabbit Vocal Folds. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019; 5:373-386. [DOI: 10.1007/s40883-019-00094-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Svistushkin MV, Kotova SL, Shekhter AB, Svistushkin VM, Akovantseva AA, Frolova AA, Fayzullin AL, Starostina SV, Bezrukov EA, Sukhanov RB, Timashev SF, Butnaru DV, Timashev PS. Collagen fibrillar structures in vocal fold scarring and repair using stem cell therapy: a detailed histological, immunohistochemical and atomic force microscopy study. J Microsc 2019; 274:55-68. [PMID: 30740689 DOI: 10.1111/jmi.12784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
Regenerative medicine opens new opportunities in the repair of cicatricial lesions of the vocal folds. Here, we present a thorough morphological study, with the focus on the collagen structures in the mucosa of the vocal folds, dedicated to the effects of stem cells on the vocal folds repair after cicatricial lesions. We used a conventional experimental model of a mature scar of the rabbit vocal folds, which was surgically excised with a simultaneous implantation of autologous bone marrow-derived mesenchymal stem cells (MSC) into the defect. The restoration of the vocal folds was studied 3 months postimplantation of stem cells and 6 months after the first surgery. The collagen structure assessment included histology, immunohistochemistry and atomic force microscopy (AFM) studies. According to the data of optical microscopy and AFM, as well as to immunohistochemical analysis, MSC implantation into the vocal fold defect leads not only to the general reduction of scarring, normal ratio of collagens type I and type III, but also to a more complete restoration of architecture and ultrastructure of collagen fibres in the mucosa, as compared to the control. The collagen structures in the scar tissue in the vocal folds with implanted MSC are more similar to those in the normal mucosa of the vocal folds than to those of the untreated scars. AFM has proven to be an instrumental technique in the assessment of the ultrastructure restoration in such studies. LAY DESCRIPTION: Regenerative medicine opens new opportunities in the repair of the vocal fold scars. Because collagen is a main component in the vocal fold mucosa responsible for the scar formation and repair, we focus on the collagen structures in the mucosa of the vocal folds, using a thorough morphological study based on histology and atomic force microscopy (AFM). Atomic force microscopy is a scanning microscopic technique which allows revealing the internal structure of a tissue with a resolution up to nanometres. We used a conventional experimental model of a mature scar of the rabbit vocal folds, surgically excised and treated with a mesenchymal stem cells transplant. Our morphological study, primarily AFM, explicitly shows that the collagen structures in the scarred vocal folds almost completely restore after the stem cell treatment. Thus, the modern microscopic methods, and especially AFM are instrumental tools for monitoring the repair of the vocal folds scars.
Collapse
Affiliation(s)
| | - Svetlana L Kotova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,N.N. Semenov Institute of Chemical Physics, Moscow, Russia
| | - Anatoly B Shekhter
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | | | - Anastasia A Akovantseva
- Institute of Photonic Technologies, Research Center 'Crystallography and Photonics', Moscow, Russia
| | | | - Alexey L Fayzullin
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | | | | | | | - Sergey F Timashev
- N.N. Semenov Institute of Chemical Physics, Moscow, Russia.,National Research Nuclear University MEPhI, Moscow, Russia
| | - Denis V Butnaru
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia.,N.N. Semenov Institute of Chemical Physics, Moscow, Russia.,Institute of Photonic Technologies, Research Center 'Crystallography and Photonics', Moscow, Russia
| |
Collapse
|
15
|
Kim CS, Choi H, Kim SW, Sun DI. The Ability of Conditioned Media From Stem Cells to Repair Vocal Fold Injuries. Laryngoscope 2019; 129:1867-1875. [PMID: 30613969 DOI: 10.1002/lary.27679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2018] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study investigated the ability of hypoxia-induced 25-fold concentrated conditioned media (hCM) from human nasal inferior turbinate-derived mesenchymal stem cells (hTMSC) to repair injured vocal folds during the early phase of the wound-healing process. METHODS The vocal fold was injured in Sprague-Dawley rats. Next, hCM from hTMSC (the hCM group) or hTMSC (the hTMSC group) were injected into the injured vocal folds. As a control, saline (the phosphate-buffered saline group) or 25-fold concentrated media (the media group) was injected in the same manner. The vocal folds were harvested for quantitative real-time polymerase chain reaction (PCR) at 1 week and 2 weeks after injury. Histologic evaluation was performed at 3 weeks postinjury. RESULTS In the hCM group at 1 week after injury, PCR showed that the genes encoding hyaluronan synthase (HAS), HAS 1, and HAS 2 were significantly upregulated compared to the media and normal groups. The gene encoding procollagen III was significantly downregulated compared to the media group. Nearly identical results were obtained for the hTMSC group at 1 week after injury. Histological examination showed that the hCM group was similar to or better than the hTMSC group in collagen deposition and hyaluronic acid production. CONCLUSION The injection of hCM into injured vocal folds produced antifibrotic effects in the early phase of wound healing. These effects were equivalent to those produced by the injection of hTMSC. These results provide a foundation for the future clinical use of hCM for vocal fold regeneration. LEVEL OF EVIDENCE NA Laryngoscope, 129:1867-1875, 2019.
Collapse
Affiliation(s)
- Choung-Soo Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunsu Choi
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong-Il Sun
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
16
|
Goel AN, Gowda BS, Veena MS, Shiba TL, Long JL. Adipose-Derived Mesenchymal Stromal Cells Persist in Tissue-Engineered Vocal Fold Replacement in Rabbits. Ann Otol Rhinol Laryngol 2018; 127:962-968. [PMID: 30296832 DOI: 10.1177/0003489418806008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES: Cell therapies using mesenchymal stromal cells (MSCs) have been proposed as a promising new tool for the treatment of vocal fold scarring. However, the mechanisms by which MSCs promote healing as well as their duration of survival within the host vocal fold have yet to be defined. The aim of this work was to assess the persistence of embedded MSCs within a tissue-engineered vocal fold mucosal replacement in a rabbit model of vocal fold injury. METHODS: Male rabbit adipose-derived MSCs were embedded within a 3-dimensional fibrin gel, forming the cell-based outer vocal fold replacement. Four female rabbits underwent unilateral resection of vocal fold epithelium and lamina propria and reconstruction with cell-based outer vocal fold replacement implantation. Polymerase chain reaction and fluorescent in situ hybridization for the sex-determining region of the Y chromosome (SRY-II) in the sex-mismatched donor-recipient pairs sought persistent cells after 4 weeks. RESULTS: A subset of implanted male cells was detected in the implant site at 4 weeks. Many SRY-II-negative cells were also detected at the implant site, presumably representing native female cells that migrated to the area. No SRY-II signal was detected in contralateral control vocal folds. CONCLUSIONS: The emergent tissue after implantation of a tissue-engineered outer vocal fold replacement is derived both from initially embedded adipose-derived stromal cells and infiltrating native cells. Our results suggest this tissue-engineering approach can provide a well-integrated tissue graft with prolonged cell activity for repair of severe vocal fold scars.
Collapse
Affiliation(s)
- Alexander N Goel
- 1 Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bhavani S Gowda
- 1 Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mysore S Veena
- 2 Research Service, Greater Los Angeles Veterans Affairs Hospital System, Los Angeles, CA, USA
| | - Travis L Shiba
- 1 Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jennifer L Long
- 1 Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.,2 Research Service, Greater Los Angeles Veterans Affairs Hospital System, Los Angeles, CA, USA
| |
Collapse
|
17
|
Xu CC, Gao A, Zhang S. An investigation of left-right vocal fold symmetry in rheological and histological properties. Laryngoscope 2018; 128:E359-E364. [PMID: 30098041 DOI: 10.1002/lary.27271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/01/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The primary objective was to investigate the left-right vocal fold symmetry in rheological and histological properties using a rabbit model. The other objective was to develop statistical models for the comparison of rheological properties between paired vocal folds. METHODS Viscoelastic shear properties of six pairs of vocal fold lamina propria specimens were measured over a frequency range of 1 to 250 Hz by a linear, controlled-strain, simple-shear rheometer. The rheological data of the left and right vocal folds was statistically compared using the mixed-effects model approach. Six additional rabbit larynges were histologically analyzed for left-right symmetry in distribution patterns and relative densities of major extracellular matrix constituents. RESULTS There were no significant differences in elastic shear modulus (P = 0.1069) and dynamic viscosity (P = 0.944) of the lamina propria between the two vocal folds of the same larynx. Left-right vocal fold symmetry in densities and distribution patterns of the key molecular constituents was also demonstrated in histological results. CONCLUSION By showing that the left and right vocal folds were rheologically and histologically symmetrical in rabbit, this study validated an underlying assumption made in many previous reports. Statistical models for the analysis of hierarchically correlated left-right vocal fold rheological data were also presented. LEVEL OF EVIDENCE NA. Laryngoscope, 128:E359-E364, 2018.
Collapse
Affiliation(s)
- Chet C Xu
- Department of Otolaryngology-Head and Neck Surgery, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A.,Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Ang Gao
- Graduate Program in Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Song Zhang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| |
Collapse
|
18
|
|
19
|
Activation of the Wnt/β-Catenin Pathway by an Inflammatory Microenvironment Affects the Myogenic Differentiation Capacity of Human Laryngeal Mucosa Mesenchymal Stromal Cells. Stem Cells Dev 2018; 27:771-782. [DOI: 10.1089/scd.2017.0200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
20
|
Kim CS, Choi H, Park KC, Kim SW, Sun DI. The Ability of Human Nasal Inferior Turbinate-Derived Mesenchymal Stem Cells to Repair Vocal Fold Injuries. Otolaryngol Head Neck Surg 2018; 159:335-342. [PMID: 29557254 DOI: 10.1177/0194599818764627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objective This study investigated the ability of implanted human nasal inferior turbinate-derived mesenchymal stem cells (hTMSCs) to repair injured vocal folds. To this end, we used quantitative real-time polymerase chain reaction (PCR) to analyze the early phase of wound healing and histopathological analysis to explore the late phase of wound healing in xenograft animal models. Study Design Prospective animal study. Setting Research laboratory. Subjects and Methods The right-side lamina propria of the vocal fold was injured in 20 rabbits and 30 rats. Next, hTMSCs were implanted into half of the injured vocal folds (hTMSC groups). As a control, phosphate-buffered saline (PBS) was injected into the other half of the injured vocal folds (PBS groups). Rat vocal folds were harvested for polymerase chain reaction (PCR) at 1 week after injury. Rabbit vocal folds were evaluated endoscopically and the larynges harvested for histological and immunohistochemical examination at 2 and 8 weeks after injury. Results In the hTMSC group, PCR showed that hyaluronan synthase ( HAS) 1, HAS 2, and transforming growth factor ( TGF)-β1 were significantly upregulated compared with the PBS group. Procollagen type III ( COL III) messenger RNA expression was significantly upregulated in the PBS group compared with the normal group. Histological analyses showed that hTMSC administration afforded more favorable collagen and hyaluronic acid deposition than was evident in the controls. Implanted hTMSCs were observed in injured vocal folds 2 weeks after implantation. Conclusions Our results show that hTMSCs implantation into injured vocal folds facilitated vocal fold regeneration, with presenting antifibrotic effects.
Collapse
Affiliation(s)
- Choung-Soo Kim
- 1 Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, Republic of Korea
| | - Hyunsu Choi
- 2 Clinical Research Institute, Daejeon St Mary's Hospital, Daejeon, Republic of Korea
| | - Ki Cheol Park
- 2 Clinical Research Institute, Daejeon St Mary's Hospital, Daejeon, Republic of Korea
| | - Sung Won Kim
- 1 Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, Republic of Korea
| | - Dong-Il Sun
- 1 Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seocho-Gu, Seoul, Republic of Korea
| |
Collapse
|
21
|
Chen X, Foote A, Thibeault SL. Cell density, dimethylsulfoxide concentration and needle gauge affect hydrogel-induced bone marrow mesenchymal stromal cell viability. Cytotherapy 2017; 19:1522-1528. [PMID: 28986174 PMCID: PMC5723234 DOI: 10.1016/j.jcyt.2017.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown potential therapeutic benefits for a range of medical disorders and continue to be a focus of intense scientific investigation. Transplantation of MSCs into injured tissue can improve wound healing, tissue regeneration and functional recovery. However, implanted cells rapidly lose their viability or fail to integrate into host tissue. Hydrogel-seeded bone marrow (BM)-MSCs offer improved viability in response to mechanical forces caused by syringe needles, cell density and dimethylsulfoxide (DMSO) concentration, which in turn, will help to clarify which factors are important for enhancing biomaterial-induced cell transplantation efficiency and provide much needed guidance for clinical trials. In this study, under the control of cell density (<2 × 107 cells/mL) and final DMSO concentration (<0.5%), hydrogel-induced BM-MSC viability remained >82% following syringe needle passage by 25- or 27-gauge needles, providing improved cell therapeutic approaches for regenerative medicine.
Collapse
Affiliation(s)
- Xia Chen
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin – Madison, 5105 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275, Phone 6082654316,
| | - Alexander Foote
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin -- Madison, 5118 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275,
| | - Susan L. Thibeault
- Division of Otolaryngology – Head and Neck Surgery, University of Wisconsin -- Madison, 5107 WIMR, 1111 Highland Ave, Madison, Wisconsin 53705-2275, Phone 6082636751,
| |
Collapse
|
22
|
Bartlett RS, Guille JT, Chen X, Christensen MB, Wang SF, Thibeault SL. Mesenchymal stromal cell injection promotes vocal fold scar repair without long-term engraftment. Cytotherapy 2017; 18:1284-96. [PMID: 27637759 DOI: 10.1016/j.jcyt.2016.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/18/2016] [Accepted: 07/24/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Regenerative medicine holds promise for restoring voice in patients with vocal fold scarring. As experimental treatments approach clinical translation, several considerations remain. Our objective was to evaluate efficacy and biocompatibility of four bone marrow mesenchymal stromal cell (BM-MSC) and tunable hyaluronic acid based hydrogel (HyStem-VF) treatments for vocal fold scar using clinically acceptable materials, a preclinical sample size and a dosing comparison. METHODS Vocal folds of 84 rabbits were injured and injected with four treatment variations (BM-MSC, HyStem-VF, and BM-MSC in HyStem-VF at two concentrations) 6 weeks later. Efficacy was assessed with rheometry, real-time polymerase chain reaction (RT-PCR) and histology at 2, 4 and 10 weeks following treatment. Lung, liver, kidney, spleen and vocal folds were screened for biocompatibility by a pathologist. RESULTS AND DISCUSSION Persistent inflammation was identified in all hydrogel-injected groups. The BM-MSC alone treatment appeared to be the most efficacious and safe, providing an early resolution of viscoelasticity, gene expression consistent with desirable extracellular matrix remodeling (less fibronectin, collagen 1α2, collagen 3, procollagen, transforming growth factor [TGF]β1, alpha smooth muscle actin, interleukin-1β, interleukin-17β and tumor necrosis factor [TNF] than injured controls) and minimal inflammation. Human beta actin expression in BM-MSC-treated vocal folds was minimal after 2 weeks, suggesting that paracrine signaling from the BM-MSCs may have facilitated tissue repair.
Collapse
Affiliation(s)
- R S Bartlett
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - J T Guille
- Department of ENT and Head and Neck Surgery, University Hospital of Pointe à Pitre, Guadeloupe, French West Indies
| | - X Chen
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - M B Christensen
- National Center for Voice and Speech, University of Utah, Salt Lake City, Utah, USA
| | - S F Wang
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - S L Thibeault
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
23
|
Mattei A, Magalon J, Bertrand B, Philandrianos C, Veran J, Giovanni A. Cell therapy and vocal fold scarring. Eur Ann Otorhinolaryngol Head Neck Dis 2017; 134:339-345. [PMID: 28689790 DOI: 10.1016/j.anorl.2017.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vocal fold microstructure is complex and can be affected by laryngeal microsurgery, inducing scarring that prevents mechanical uncoupling of epithelium and muscle, leading to vibration disorder and disabling dysphonia. Treatment options presently are few, and often without efficacy for vibration, having only an impact on volume to reduce glottal closure defect. The present review of the literature had two aims: (i) to report the current state of the literature on cell therapy in vocal fold scarring; and (ii) to analyze the therapeutic interest of the adipose-derived stromal vascular fraction in the existing therapeutic armamentarium. A PubMed® search conducted in September 2016 retrieved English or French-language original articles on the use of stem cells to treat vocal fold scarring. Twenty-seven articles published between 2003 and 2016 met the study selection criteria. Mesenchymal stem cells were most widely used, mainly derived from bone marrow or adipose tissue. Four studies were performed in vitro on fibroblasts, and 18 in vivo on animals. End-points comprised: (i) scar analysis (macro- and micro-scopic morphology, viscoelastic properties, extracellular matrix, fibroblasts); and (ii) assessment of stem cell survival and differentiation. The studies testified to the benefit of mesenchymal stem cells, and especially those of adipose derivation. The stromal vascular fraction exhibits properties that might improve results by facilitating production logistics.
Collapse
Affiliation(s)
- A Mattei
- Aix Marseille université, 13000 Marseille, France; Service d'oto-rhino-laryngologie et chirurgie cervicofaciale, La Conception, Assistance publique-Hôpitaux de Marseille, 147, boulevard Baille, 13005 Marseille, France.
| | - J Magalon
- VRCM Inserm UMR 1076, faculté de pharmacie de Marseille, Aix Marseille université, 27, boulevard Jean-Moulin, 13385 Marseille cedex 5, France; Inserm CBT-1409, laboratoire de culture et thérapie cellulaire, La Conception, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - B Bertrand
- Service de chirurgie plastique et réparatrice, La Conception, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - C Philandrianos
- Service de chirurgie plastique et réparatrice, La Conception, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - J Veran
- Inserm CBT-1409, laboratoire de culture et thérapie cellulaire, La Conception, Assistance publique-Hôpitaux de Marseille, 13005 Marseille, France
| | - A Giovanni
- Service d'oto-rhino-laryngologie et chirurgie cervicofaciale, La Conception, Assistance publique-Hôpitaux de Marseille, 147, boulevard Baille, 13005 Marseille, France; CNRS, laboratoire parole et langage, Aix Marseille université, 5, avenue Pasteur, 13100 Aix-en-Provence, France
| |
Collapse
|
24
|
Imaizumi M, Li-Jessen NY, Sato Y, Yang DT, Thibeault SL. Retention of Human-Induced Pluripotent Stem Cells (hiPS) With Injectable HA Hydrogels for Vocal Fold Engineering. Ann Otol Rhinol Laryngol 2017; 126:304-314. [DOI: 10.1177/0003489417691296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective: One prospective treatment option for vocal fold scarring is regeneration with an engineered scaffold containing induced pluripotent stem cells (iPS). In the present study, we investigated the feasibility of utilizing an injectable hyaluronic acid (HA) scaffold encapsulated with human-iPS cell (hiPS) for regeneration of vocal folds. Methods: Thirty athymic nude rats underwent unilateral vocal fold injury. Contralateral vocal folds served as uninjured controls. Hyaluronic acid hydrogel scaffold, HA hydrogel scaffold containing hiPS, and HA hydrogel scaffold containing hiPS with epidermal growth factor (EGF) were injected in both vocal folds immediately after surgery. One and 2 weeks after injection, larynges were excised for histology, immunohistochemistry, and fluorescence in situ hybridization (FISH). Results: Presence of HA hydrogel was confirmed in vocal folds 1 and 2 weeks post injection. The FISH analysis confirmed the presence and viability of hiPS in the injected vocal folds. Histological results demonstrated that vocal folds injected with HA hydrogel scaffold containing EGF demonstrated less fibrosis than those with HA hydrogel only. Conclusions: Human-iPS survived in injured rat vocal folds. The HA hydrogel with hiPS and EGF ameliorated the fibrotic response. Additional work is necessary to optimize hiPS differentiation and further confirm the safety of hiPS for clinical applications.
Collapse
Affiliation(s)
- Mitsuyoshi Imaizumi
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima City, Japan
| | - Nicole Y.K. Li-Jessen
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
| | - Yuka Sato
- Department of Otolaryngology, School of Medicine, Fukushima Medical University, Fukushima City, Japan
| | - David T. Yang
- Department of Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
25
|
Autologous fat injection therapy including a high concentration of adipose-derived regenerative cells in a vocal fold paralysis model: animal pilot study. The Journal of Laryngology & Otology 2016; 130:914-922. [PMID: 27604559 DOI: 10.1017/s0022215116008707] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To verify the effectiveness and safety of the addition of adipose-derived regenerative cells to autologous fat injection therapy. METHODS Unilateral vocal fold paralysis models were made by cutting the right recurrent laryngeal nerve in two pigs. At day 30, 0.5 ml adipose-derived regenerative cells mixed with 1 ml autologous fat was injected into the right vocal fold of one pig, with the other receiving 0.5 ml Ringer's solution mixed with 1 ml autologous fat. At day 120, fibrescopy, laser Doppler flowmeter, computed tomography, vocal function evaluation and histological assessment were conducted. RESULTS Although histological assessment revealed atrophy of the thyroarytenoid muscle fibre in both pigs, there was remarkable hypertrophy of the thyroarytenoid muscle fibre in the area surrounding the adipose-derived regenerative cells injection site. CONCLUSION The addition of a high concentration of adipose-derived regenerative cells to autologous fat injection therapy has the potential to improve the treatment outcome for unilateral vocal fold paralysis.
Collapse
|
26
|
de Bonnecaze G, Chaput B, Woisard V, Uro-Coste E, Swider P, Vergez S, Serrano E, Casteilla L, Planat-Benard V. Adipose stromal cells improve healing of vocal fold scar: Morphological and functional evidences. Laryngoscope 2016; 126:E278-85. [PMID: 27075408 DOI: 10.1002/lary.25867] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/23/2015] [Accepted: 12/15/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVES/HYPOTHESIS Adipose derived stromal cells (ASCs) are abundant and easy to prepare. Such cells may be useful for treating severe vocal disturbance caused by acute vocal fold scars. STUDY DESIGN Prospective animal experiments with controls. METHODS Twenty New-Zealand white rabbits were used in the present study. We evaluated vocal fold healing, with or without injection of autologous ASCs, after acute scarring. A defined lesion was created and the ASCs were immediately injected. Vocal fold regeneration was evaluated histomorphometrically and via viscoelastic analysis using an electrodynamic shaker. RESULTS Six weeks after ASC injection, vocal folds exhibited significantly less inflammation than control folds (P < 0.005). In addition, hypertrophy of the lamina propria and fibrosis were significantly reduced upon ASC injection (P < 0.02). The decrease in viscoelastic parameters was less important in the ASC injected group compared to the noninjected group (P = 0.08). CONCLUSION Injection of autologous ASCs improved vocal fold healing in our preclinical model. Further studies are needed, but this method may be useful in humans. LEVEL OF EVIDENCE NA. Laryngoscope, 126:E278-E285, 2016.
Collapse
Affiliation(s)
- Guillaume de Bonnecaze
- CNRS UMR5273 STROMALab, University of Toulouse, Toulouse Cedex, France.,Université Paul Sabatier de Toulouse, University of Toulouse, Toulouse Cedex, France.,Department of Ear, Nose and Throat Head and Neck Surgery, University of Toulouse, Toulouse Cedex, France
| | - Benoit Chaput
- CNRS UMR5273 STROMALab, University of Toulouse, Toulouse Cedex, France.,Université Paul Sabatier de Toulouse, University of Toulouse, Toulouse Cedex, France.,INSERM U1031, University of Toulouse, Toulouse Cedex, France.,EFS Pyrénées-Méditerranée, University of Toulouse, Toulouse Cedex, France.,Department of Plastic Reconstructive and Aesthetic Surgery, University of Toulouse, Toulouse Cedex, France
| | - Virginie Woisard
- Department of Ear, Nose and Throat Head and Neck Surgery, University of Toulouse, Toulouse Cedex, France
| | | | - Pascal Swider
- Biomechanics Group, IMFT UMR CNRS 5502, Toulouse Cedex, France
| | - Sebastien Vergez
- Department of Ear, Nose and Throat Head and Neck Surgery, University of Toulouse, Toulouse Cedex, France
| | - Elie Serrano
- Department of Ear, Nose and Throat Head and Neck Surgery, University of Toulouse, Toulouse Cedex, France
| | - Louis Casteilla
- CNRS UMR5273 STROMALab, University of Toulouse, Toulouse Cedex, France.,Université Paul Sabatier de Toulouse, University of Toulouse, Toulouse Cedex, France.,INSERM U1031, University of Toulouse, Toulouse Cedex, France.,EFS Pyrénées-Méditerranée, University of Toulouse, Toulouse Cedex, France
| | - Valerie Planat-Benard
- CNRS UMR5273 STROMALab, University of Toulouse, Toulouse Cedex, France.,Université Paul Sabatier de Toulouse, University of Toulouse, Toulouse Cedex, France.,INSERM U1031, University of Toulouse, Toulouse Cedex, France.,EFS Pyrénées-Méditerranée, University of Toulouse, Toulouse Cedex, France
| |
Collapse
|
27
|
Dion GR, Jeswani S, Roof S, Fritz M, Coelho PG, Sobieraj M, Amin MR, Branski RC. Functional assessment of the ex vivo vocal folds through biomechanical testing: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 64:444-453. [PMID: 27127075 DOI: 10.1016/j.msec.2016.04.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 03/21/2016] [Accepted: 04/06/2016] [Indexed: 11/25/2022]
Abstract
The human vocal folds are complex structures made up of distinct layers that vary in cellular and extracellular composition. The mechanical properties of vocal fold tissue are fundamental to the study of both the acoustics and biomechanics of voice production. To date, quantitative methods have been applied to characterize the vocal fold tissue in both normal and pathologic conditions. This review describes, summarizes, and discusses the most commonly employed methods for vocal fold biomechanical testing. Force-elongation, torsional parallel plate rheometry, simple-shear parallel plate rheometry, linear skin rheometry, and indentation are the most frequently employed biomechanical tests for vocal fold tissues and each provide material properties data that can be used to compare native tissue to diseased or treated tissue. Force-elongation testing is clinically useful, as it allows for functional unit testing, while rheometry provides physiologically relevant shear data, and nanoindentation permits micrometer scale testing across different areas of the vocal fold as well as whole organ testing. Thoughtful selection of the testing technique during experimental design to evaluate a hypothesis is critical to optimize biomechanical testing of vocal fold tissues.
Collapse
Affiliation(s)
- Gregory R Dion
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, United States
| | - Seema Jeswani
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, United States
| | - Scott Roof
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, United States
| | - Mark Fritz
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, United States
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, United States
| | - Michael Sobieraj
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, United States
| | - Milan R Amin
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, United States
| | - Ryan C Branski
- NYU Voice Center, Department of Otolaryngology-Head and Neck Surgery, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
28
|
Shiba TL, Hardy J, Luegmair G, Zhang Z, Long JL. Tissue-Engineered Vocal Fold Mucosa Implantation in Rabbits. Otolaryngol Head Neck Surg 2016; 154:679-88. [PMID: 26956198 DOI: 10.1177/0194599816628501] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To assess phonatory function and wound healing of a tissue-engineered vocal fold mucosa (TE-VFM) in rabbits. An "artificial" vocal fold would be valuable for reconstructing refractory scars and resection defects, particularly one that uses readily available autologous cells and scaffold. This work implants a candidate TE-VFM after resecting native epithelium and lamina propria in rabbits. STUDY DESIGN Prospective animal study. SETTING Research laboratory. SUBJECTS AND METHODS Rabbit adipose-derived stem cells were isolated and cultured in three-dimensional fibrin scaffolds to form TE-VFM. Eight rabbits underwent laryngofissure, unilateral European Laryngologic Society type 2 cordectomy, and immediate reconstruction with TE-VFM. After 4 weeks, larynges were excised, phonated, and examined by histology. RESULTS Uniform TE-VFM implants were created, with rabbit mesenchymal cells populated throughout fibrin hydrogels. Rabbits recovered uneventfully after implantation. Phonation was achieved in all, with mucosal waves evident at the implant site. Histology after 4 weeks showed resorbed fibrin matrix, continuous epithelium, and mildly increased collagen relative to contralateral unoperated vocal folds. Elastic fiber appearance was highly variable. Inflammatory cell infiltrate was limited to animals receiving sex-mismatched implants. CONCLUSION TE-VFMs were successfully implanted into 8 rabbits, with minor evidence of scar formation and immune reaction. Vibration was preserved 4 weeks after resecting and reconstructing the complete vocal fold cover layer. Further studies will investigate the mechanism and durability of improvement. TE-VFM with autologous cells is a promising new approach for vocal fold reconstruction.
Collapse
Affiliation(s)
- Travis L Shiba
- Department of Head and Neck Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Jordan Hardy
- Research Service, Department of Veterans Affairs, Los Angeles, California, USA
| | - Georg Luegmair
- Department of Head and Neck Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Zhaoyan Zhang
- Department of Head and Neck Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| | - Jennifer L Long
- Research Service, Department of Veterans Affairs, Los Angeles, California, USA Department of Head and Neck Surgery, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
29
|
Fishman JM, Long J, Gugatschka M, De Coppi P, Hirano S, Hertegard S, Thibeault SL, Birchall MA. Stem cell approaches for vocal fold regeneration. Laryngoscope 2016; 126:1865-70. [PMID: 26774977 DOI: 10.1002/lary.25820] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/20/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES/HYPOTHESIS Current interventions in the management of vocal fold (VF) dysfunction focus on conservative and surgical approaches. However, the complex structure and precise biomechanical properties of the human VF mean that these strategies have their limitations in clinical practice and in some cases offer inadequate levels of success. Regenerative medicine is an exciting development in this field and has the potential to further enhance VF recovery beyond conventional treatments. Our aim in this review is to discuss advances in the field of regenerative medicine; that is, advances in the process of replacing, engineering, or regenerating the VF through utilization of stem cells, with the intention of restoring normal VF structure and function. DATA SOURCES English literature (1946-2015) review. METHODS We conducted a systematic review of MEDLINE for cases and studies of VF tissue engineering utilizing stem cells. RESULTS The three main approaches by which regenerative medicine is currently applied to VF regeneration include cell therapy, scaffold development, and utilization of growth factors. CONCLUSION Exciting advances have been made in stem cell biology in recent years, including use of induced pluripotent stem cells. We expect such advances to be translated into the field in the forthcoming years. Laryngoscope, 126:1865-1870, 2016.
Collapse
Affiliation(s)
- Jonathan M Fishman
- UCL Institute of Child Health, London, United Kingdom.,UCL Ear Institute and Royal National Throat, Nose and Ear Hospital and, London, United Kingdom
| | - Jenny Long
- UCL Institute of Child Health, London, United Kingdom
| | - Markus Gugatschka
- Department of Phoniatrics, ENT University Hospital Graz, Medical University Graz, Graz, Austria
| | | | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Stellan Hertegard
- Department of Otorhinolaryngology, Karolinska Institutet Clintec, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin Institutes for Medical Research, Madison, Wisconsin, U.S.A
| | - Martin A Birchall
- UCL Ear Institute and Royal National Throat, Nose and Ear Hospital and, London, United Kingdom
| |
Collapse
|
30
|
Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar. Stem Cells Int 2016; 2016:9010279. [PMID: 26933440 PMCID: PMC4736582 DOI: 10.1155/2016/9010279] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/05/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022] Open
Abstract
Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC) on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group). We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments.
Collapse
|
31
|
Stem Cell Therapy in Injured Vocal Folds: A Three-Month Xenograft Analysis of Human Embryonic Stem Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:754876. [PMID: 26557696 PMCID: PMC4628720 DOI: 10.1155/2015/754876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/08/2015] [Indexed: 11/29/2022]
Abstract
We have previously shown that human embryonic stem cell (hESC) therapy to injured rabbit vocal folds (VFs) induces human tissue generation with regained VF vibratory capacity. The aims of this study were to test the sustainability of such effect and to what extent derivatives of the transplanted hESCs are propagated in the VFs. The VFs of 14 New Zealand rabbits were injured by a localized resection. HESCs were transplanted to 22 VFs which were analyzed for persistence of hESCs after six weeks and after three months. At three months, the VFs were also analyzed for viscoelasticity, measured as dynamic viscosity and elastic modulus, for the lamina propria (Lp) thickness and relative content of collagen type I. Three months after hESC cell therapy, the dynamic viscosity and elastic modulus of the hESC treated VFs were similar to normal controls and lower than untreated VFs (p ≤ 0.011). A normalized VF architecture, reduction in collagen type I, and Lp thickness were found compared with untreated VFs (p ≤ 0.031). At three months, no derivatives of hESCs were detected. HESCs transplanted to injured rabbit VFs restored the vibratory characteristics of the VFs, with maintained restored function for three months without remaining hESCs or derivatives.
Collapse
|
32
|
Hughes LA, Gaston J, McAlindon K, Woodhouse KA, Thibeault SL. Electrospun fiber constructs for vocal fold tissue engineering: effects of alignment and elastomeric polypeptide coating. Acta Biomater 2015; 13:111-20. [PMID: 25462850 DOI: 10.1016/j.actbio.2014.10.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/03/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022]
Abstract
Vocal fold lamina propria extracellular matrix (ECM) is highly aligned and when injured, becomes disorganized with loss of the tissue's critical biomechanical properties. This study examines the effects of electrospun fiber scaffold architecture and elastin-like polypeptide (ELP4) coating on human vocal fold fibroblast (HVFF) behavior for applications toward tissue engineering the vocal fold lamina propria. Electrospun Tecoflex™ scaffolds were made with aligned and unaligned fibers, and were characterized using scanning electron microscopy and uniaxial tensile testing. ELP4 was successfully adsorbed onto the scaffolds; HVFFs were seeded and their viability, proliferation, morphology and gene expression were characterized. Aligned and unaligned scaffolds had initial elastic moduli of ∼14 MPa, ∼5 MPa and ∼0.3 MPa, ∼0.6 MPa in the preferred and cross-preferred directions, respectively. Scaffold topography had an effect on the orientation of the cells, with HVFFs seeded on aligned scaffolds having a significantly different (p<0.001) angle of orientation than HVFFs cultured on unaligned scaffolds. This same effect and significant difference (p<0.001) was seen on aligned and unaligned scaffolds coated with ELP4. Scaffold alignment and ELP4 coating impacted ECM gene expression. ELP4 coating, and aligned scaffolds upregulated elastin synthesis when tested on day 7 without a concomitant upregulation of collagen III synthesis. Collectively, results indicate that aligned electrospun scaffolds and ELP4 coating are promising candidates in the development of biodegradeable vocal fold lamina propria constructs.
Collapse
Affiliation(s)
- Lindsay A Hughes
- Department of Chemical Engineering, Queen's University, 201 Dupuis Hall, 19 Division Street, Kingston, ON K7L 3N6, Canada
| | - Joel Gaston
- Department of Surgery and Biomedical Engineering, University of Wisconsin-Madison, 5118 WIMR, 1111 Highland Ave, Madison, WI 53705, USA
| | - Katherine McAlindon
- Department of Chemical Engineering, Queen's University, 201 Dupuis Hall, 19 Division Street, Kingston, ON K7L 3N6, Canada
| | - Kimberly A Woodhouse
- Department of Chemical Engineering, Queen's University, 201 Dupuis Hall, 19 Division Street, Kingston, ON K7L 3N6, Canada
| | - Susan L Thibeault
- Departments of Surgery, Biomedical Engineering and Communication Sciences and Disorders, University of Wisconsin-Madison, 5107 WIMR, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
33
|
Latifi N, Miri AK, Mongeau L. Determination of the elastic properties of rabbit vocal fold tissue using uniaxial tensile testing and a tailored finite element model. J Mech Behav Biomed Mater 2014; 39:366-74. [PMID: 25173237 DOI: 10.1016/j.jmbbm.2014.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/05/2014] [Accepted: 07/29/2014] [Indexed: 11/28/2022]
Abstract
The aim of the present study was to quantify the effects of the specimen shape on the accuracy of mechanical properties determined from a shape-specific model generation strategy. Digital images of five rabbit vocal folds (VFs) in their initial undeformed conditions were used to build corresponding specific solid models. The displacement field of the VFs under uniaxial tensile test was then measured over the visible portion of the surface using digital image correlation. A three-dimensional finite element model was built, using ABAQUS, for each solid model, while imposing measured boundary conditions. An inverse-problem method was used, assuming a homogeneous isotropic linear elastic constitutive model. Unknown elastic properties were identified iteratively through an error minimization technique between simulated and measured force-time data. The longitudinal elastic moduli of the five rabbit VFs were calculated and compared to values from a simple analytical method and those obtained by approximating the cross-section as elliptical. The use of shape-specific models significantly reduced the standard deviation of the Young׳s moduli of the tested specimens. However, a non-parametric statistical analysis test, i.e., the Friedman test, yielded no statistically significant differences between the shape-specific method and the elliptic cylindrical finite element model. Considering the required procedures to reconstruct the shape-specific finite element model for each tissue specimen, it might be expedient to use the simpler method when large numbers of tissue specimens are to be compared regarding their Young׳s moduli.
Collapse
Affiliation(s)
- Neda Latifi
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Canada QC H3A 0C3.
| | - Amir K Miri
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Canada QC H3A 0C3.
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Canada QC H3A 0C3.
| |
Collapse
|
34
|
Fishman JM, Wiles K, Lowdell MW, De Coppi P, Elliott MJ, Atala A, Birchall MA. Airway tissue engineering: an update. Expert Opin Biol Ther 2014; 14:1477-91. [PMID: 25102044 DOI: 10.1517/14712598.2014.938631] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Prosthetic materials, autologous tissues, cryopreserved homografts and allogeneic tissues have thus far proven unsuccessful in providing long-term functional solutions to extensive upper airway disease and damage. Research is therefore focusing on the rapidly expanding fields of regenerative medicine and tissue engineering in order to provide stem cell-based constructs for airway reconstruction, substitution and/or regeneration. AREAS COVERED Advances in stem cell technology, biomaterials and growth factor interactions have been instrumental in guiding optimization of tissue-engineered airways, leading to several first-in-man studies investigating stem cell-based tissue-engineered tracheal transplants in patients. Here, we summarize current progress, outstanding research questions, as well as future directions within the field. EXPERT OPINION The complex immune interaction between the transplant and host in vivo is only beginning to be untangled. Recent progress in our understanding of stem cell biology, decellularization techniques, biomaterials and transplantation immunobiology offers the prospect of transplanting airways without the need for lifelong immunosuppression. In addition, progress in airway revascularization, reinnervation and ever-increasingly sophisticated bioreactor design is opening up new avenues for the construction of a tissue-engineered larynx. Finally, 3D printing is a novel technique with the potential to render microscopic control over how cells are incorporated and grown onto the tissue-engineered airway.
Collapse
Affiliation(s)
- Jonathan M Fishman
- UCL Institute of Child Health, Department of Surgery , 30 Guilford Street, London WC1N 1EH , UK +44 07989 331573 ;
| | | | | | | | | | | | | |
Collapse
|
35
|
Fishman JM, Lowdell M, Birchall MA. Stem cell-based organ replacements-airway and lung tissue engineering. Semin Pediatr Surg 2014; 23:119-26. [PMID: 24994525 DOI: 10.1053/j.sempedsurg.2014.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue engineering requires the use of cells seeded onto scaffolds, often in conjunction with bioactive molecules, to regenerate or replace tissues. Significant advances have been made in recent years within the fields of stem cell biology and biomaterials, leading to some exciting developments in airway tissue engineering, including the first use of stem cell-based tissue-engineered tracheal replacements in humans. In addition, recent advances within the fields of scaffold biology and decellularization offer the potential to transplant patients without the use of immunosuppression.
Collapse
Affiliation(s)
- Jonathan M Fishman
- UCL Centre for Stem Cells, Tissue Engineering and Regenerative Medicine, London, UK; The Royal National Throat, Nose and Ear Hospital, London, UK; UCL Ear Institute, University College London, 332 Gray׳s Inn Road, London WC1X 8EE, UK
| | - Mark Lowdell
- Department of Haematology, Royal Free Hospital, UCL, London, UK
| | - Martin A Birchall
- UCL Centre for Stem Cells, Tissue Engineering and Regenerative Medicine, London, UK; The Royal National Throat, Nose and Ear Hospital, London, UK; UCL Ear Institute, University College London, 332 Gray׳s Inn Road, London WC1X 8EE, UK.
| |
Collapse
|
36
|
Imaizumi M, Sato Y, Yang DT, Thibeault SL. In vitro epithelial differentiation of human induced pluripotent stem cells for vocal fold tissue engineering. Ann Otol Rhinol Laryngol 2014; 122:737-47. [PMID: 24592576 DOI: 10.1177/000348941312201203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We determined the feasibility and optimization of differentiating human induced pluripotent stem cells (hiPS) into nonkeratinized stratified squamous epithelial cells for vocal fold engineering. METHODS hiPS were cultured and assessed for differentiation in 3 conditions: a 3-dimensional (3D) hyaluronic acid (HA) hydrogel scaffold, a 3D HA hydrogel scaffold with epidermal growth factor (EGF), and a 3D HA hydrogel scaffold cocultured with human vocal fold fibroblasts (hVFF). After 1, 2, and 4 weeks of cultivation, hiPS were selected for histology, immunohistochemistry, and/or transcript expression analysis. RESULTS At 4 weeks, hiPS cultivated with hVFF or with EGF had significantly decreased levels of Oct 3/4, indicating loss of pluripotency. Immunofluorescence revealed the presence of pancytokeratin and of cytokeratin (CK) 13 and 14 epithelial-associated proteins at 4 weeks after cultivation in hiPS EGF and hiPS hVFF cultures. The transcript expression level of CK14 was significantly increased for hiPS hVFF cultures only and was measured concomitantly with cell morphology that was clearly cohesive and displayed a degree of nuclear polarity suggestive of epithelial differentiation. CONCLUSIONS We found that hiPS cultivated in 3D HA hydrogel with hVFF demonstrated the most robust conversion evidence to date of epithelial differentiation. Further work is necessary to focus on amplification of these progenitors for application in vocal fold regenerative biology.
Collapse
Affiliation(s)
- Mitsuyoshi Imaizumi
- Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuka Sato
- Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David T Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susan L Thibeault
- Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
37
|
Hu R, Ling W, Xu W, Han D. Fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells for vocal fold wound healing. PLoS One 2014; 9:e92676. [PMID: 24664167 PMCID: PMC3963917 DOI: 10.1371/journal.pone.0092676] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Tissue engineering has revealed the potential to regenerate injured vocal folds, and identification of the most suitable seed cells has remained a hot topic of research. The aim of this study was to implant fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells (ADSCs) in a canine acute vocal fold wound model. We then sought to characterize changes in the extracellular matrix (ECM) proteins of vocal fold lamina propria. For this purpose, ADSCs were induced to differentiate into fibroblasts under the regulation of connective tissue growth factor in vitro. Cell surface proteins were identified by immunofluorescence staining. Thirty vocal folds of 17 canines were injured by localized resection and injected with fibroblast-like cells (differentiated ADSCs, dADSCs), ADSCs or vocal fold fibroblasts (VFFs). The morphology of vocal folds was observed, and the characteristics of ECM protein components (collagen, elastin, hyaluronic acid, decorin and fibronectin) were evaluated by immunofluorescence staining from 15 days to 6 months following implantation. The results showed that in vitro, the dADSCs showed morphology and cell surface protein expression similar to those of VFFs. After implantation in vivo, the surfaces of the recipient vocal folds became almost smooth in the dADSCs and ADSCs groups at 6 months but remained slightly concave and stiff in the VFFs group. The elastin fluorescence intensity increased significantly and was maintained at a high level in the dADSCs group. The collagen fluorescence intensity increased slightly in the dADSCs and ADSCs groups, whereas it demonstrated a more irregular arrangement in the VFFs group. The fluorescence intensity of hyaluronic acid, decorin and fibronectin was similar between the three implanted groups. These results indicated that dADSCs may confer an advantage for vocal fold wound healing. Furthermore, dADSCs have the ability to secrete ECM components in vivo, particularly elastin, which may be beneficial for vocal fold vibration recovery.
Collapse
Affiliation(s)
- Rong Hu
- Department of Otorhinolaryngology-Head Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, The People's Republic of China
| | - Wei Ling
- Department of Anatomy, Capital Medical University, Beijing, The People's Republic of China
| | - Wen Xu
- Department of Otorhinolaryngology-Head Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, The People's Republic of China
- * E-mail: (WX); (DH)
| | - Demin Han
- Department of Otorhinolaryngology-Head Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, The People's Republic of China
- * E-mail: (WX); (DH)
| |
Collapse
|
38
|
Kim YM, Oh SH, Choi JS, Lee S, Ra JC, Lee JH, Lim JY. Adipose-derived stem cell-containing hyaluronic acid/alginate hydrogel improves vocal fold wound healing. Laryngoscope 2013; 124:E64-72. [DOI: 10.1002/lary.24405] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/06/2013] [Accepted: 08/26/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Young-Mo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery; Inha University School of Medicine; Incheon
- Translational Research Center; Inha University School of Medicine; Incheon
| | - Se H. Oh
- Department of Nanobiomedical Science and WCU Research Center; Dankook University; Cheonan
| | - Jeong-Seok Choi
- Department of Otorhinolaryngology-Head and Neck Surgery; Inha University School of Medicine; Incheon
- Translational Research Center; Inha University School of Medicine; Incheon
| | - Songyi Lee
- Department of Otorhinolaryngology-Head and Neck Surgery; Inha University School of Medicine; Incheon
- Translational Research Center; Inha University School of Medicine; Incheon
| | - Jeong C. Ra
- Stem Cell Research Center, RNL Bio Co., Ltd.; Seoul
| | - Jin H. Lee
- Department of Advanced Materials; Hannam University; Daejeon Republic of Korea
| | - Jae-Yol Lim
- Department of Otorhinolaryngology-Head and Neck Surgery; Inha University School of Medicine; Incheon
- Translational Research Center; Inha University School of Medicine; Incheon
| |
Collapse
|
39
|
Peng H, Ming L, Yang R, Liu Y, Liang Y, Zhao Y, Jin Y, Deng Z. The use of laryngeal mucosa mesenchymal stem cells for the repair the vocal fold injury. Biomaterials 2013; 34:9026-35. [PMID: 23978518 DOI: 10.1016/j.biomaterials.2013.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/01/2013] [Indexed: 01/02/2023]
Abstract
Stem cell transplantation is a kind of attractive and new approach that complements traditional restorative or surgical techniques for the regeneration of injured or pathologically damaged laryngeal tissues. However, the best cell delivery strategy remains to be identified. The objective of this study was to establish a new strategy to the healing of injured vocal fold, using laryngeal mucosa mesenchymal stem cells differentiating into myofibroblasts or fibroblasts and improving the reconstruction microenvironment in the vocal fold injury as a new alternative as seed cells for laryngeal tissue engineering. After isolation and expansion, cells were identified as adherent mesenchymal cells with substantial proliferation potential in vitro, and were also characterized by flow cytometry. The differentiation potential of mesenchymal cells was maintained during proliferation as confirmed by culturing for adipogenesis, osteogenesis and chondrocyte. When LM-MSC was transplanted into the injured vocal fold, it has the potent differentiated into myofibroblasts and fibroblasts, which could regulate extracellular matrix, block collagen and the fibronectin rapid increased, inhibit the rapidly decrease of elastic fiber and HA, decrease the microenvironment inflammatory reaction, and prevent the formation of vocal fold scar.
Collapse
Affiliation(s)
- Han Peng
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China; Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Lisi C, Hawkshaw MJ, Sataloff RT. Viscosity of Materials for Laryngeal Injection: A Review of Current Knowledge and Clinical Implications. J Voice 2013. [DOI: 10.1016/j.jvoice.2012.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Liang Q, Liu S, Han P, Li X, Li X, Zhao Y, Liang Y, Deng Z, Jin Y. Micronized acellular dermal matrix as an efficient expansion substrate and delivery vehicle of adipose-derived stem cells for vocal fold regeneration. Laryngoscope 2012; 122:1815-25. [PMID: 22565636 DOI: 10.1002/lary.23330] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 03/04/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
Abstract
OBJECTIVES/HYPOTHESIS Cell therapy has been shown to prevent vocal fold scarring and atrophy. However, problems that include the expansion of large numbers of cells in vitro and the poor survival of transplanted cells in vivo must be solved. The aim of this study was to use micronized acellular dermal matrix (MADM) as an expansion substrate of rabbit allogeneic adipose-derived stem cells (ADSCs) and to apply the combination of the matrix and cells, ADSC-MADM, to vocal fold regeneration. STUDY DESIGN Animal experiment. METHODS The proliferation of ADSCs that were cultured on the MADM was evaluated using 3-(4,5-dimethylthizazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfonyl)-2H-tetrazolium, and a rabbit acute vocal fold injury model was established by laser injury. Eighteen New Zealand white rabbits were randomly divided into three groups, which were injected with ADSC-MADM, ADSCs, and MADM, respectively. Morphological analysis was performed by laryngoscope, and histological analyses were indicated by hematoxylin and eosin staining, van Gieson staining, and immunofluorescence. Additionally, the in vivo survival of the ADSCs was determined by CM-Dil cell labeling. RESULTS When compared with a two-dimensional culture, the MADM significantly promoted proliferation of ADSCs. Morphological and histological analyses indicated that, when compared to only using of MAMD or the nontreatment sample, the use of ADSC-MADM or only using ADSCs successfully prevent scarring and atrophy. Moreover, ADSC-MADM exhibited a better therapeutic effect than when only using ADSCs, which was probably due to the MADM significantly enhancing the survival of transplanted ADSCs. CONCLUSIONS MADM could be used as an efficient expansion substrate and delivery vehicle for ADSCs in vocal fold regeneration.
Collapse
Affiliation(s)
- Qiang Liang
- Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bartlett RS, Thibeault SL, Prestwich GD. Therapeutic potential of gel-based injectables for vocal fold regeneration. Biomed Mater 2012; 7:024103. [PMID: 22456756 DOI: 10.1088/1748-6041/7/2/024103] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vocal folds are anatomically and biomechanically unique, thus complicating the design and implementation of tissue engineering strategies for repair and regeneration. Integration of an enhanced understanding of tissue biomechanics, wound healing dynamics and innovative gel-based therapeutics has generated enthusiasm for the notion that an efficacious treatment for vocal fold scarring could be clinically attainable within several years. Fibroblast phenotype and gene expression are mediated by the three-dimensional mechanical and chemical microenvironment at an injury site. Thus, therapeutic approaches need to coordinate spatial and temporal aspects of the wound healing response in an injured vocal tissue to achieve an optimal clinical outcome. Successful gel-based injectables for vocal fold scarring will require a keen understanding of how the native inflammatory response sets into motion the later extracellular matrix remodeling, which in turn will determine the ultimate biomechanical properties of the tissue. We present an overview of the challenges associated with this translation as well as the proposed gel-based injectable solutions.
Collapse
Affiliation(s)
- Rebecca S Bartlett
- Division of Otolaryngology, Head and Neck Surgery, 5107 Wisconsin Institutes for Medical Research, University of Wisconsin, 1111 Highland Avenue, Madison, WI, USA
| | | | | |
Collapse
|
43
|
Hong SJ, Lee SH, Jin SM, Kwon SY, Jung KY, Kim MK, Park H, Lee KW. Vocal fold wound healing after injection of human adipose-derived stem cells in a rabbit model. Acta Otolaryngol 2011; 131:1198-204. [PMID: 21732743 DOI: 10.3109/00016489.2011.599816] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION Injection of injured rabbit vocal folds with human adipose-derived stem cells (hADSCs) led to improved wound healing and fewer signs of scarring as demonstrated by a decreased collagen content in the treated folds compared with the untreated folds. hADSCs remained viable for up to 12 weeks in rabbit vocal folds. OBJECTIVE The aim of this study was to investigate the morphologic and histologic properties of scarred rabbit vocal folds following injection of hADSCs. METHODS This was a randomized, controlled animal study. Twenty-four vocal folds from 12 New Zealand rabbits were scarred using a CO(2) laser and injected with either hADSCs (left vocal fold) or phosphate-buffered saline (right vocal fold). Every 4 weeks for the first 12 weeks after injection, an endoscopic examination was performed to assess the morphology of the vocal folds. Twelve weeks later the animals were euthanized and the tissues were stained for histology. RESULTS In comparison with the right vocal folds, there was significantly less granulation tissue in the hADSCs-injected left vocal folds (p < 0.05). Histological examination revealed excessive collagen deposition and perichondral fibrosis in the right vocal folds, whereas the left vocal folds exhibited better wound healing and less collagen deposition (p < 0.05). Among the 12 specimens injected with hADSCs, 4 specimens demonstrated viable hADSCs under immunofluorescent cytochemistry.
Collapse
|
44
|
Svensson B, Nagubothu SR, Cedervall J, Chan RW, Le Blanc K, Kimura M, Ährlund-Richter L, Tolf A, Hertegård S. Injection of human mesenchymal stem cells improves healing of vocal folds after scar excision--a xenograft analysis. Laryngoscope 2011; 121:2185-90. [PMID: 21898432 DOI: 10.1002/lary.22143] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/04/2011] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Using a xenograft model the aim was to analyze if injection of human mesenchymal stem cells (hMSC) into the rabbit vocal fold (VF), after excision of an established scar, can improve the functional healing of the VF. STUDY DESIGN Prospective design with an experimental xenograft model. METHODS The VFs of 12 New Zealand rabbits were injured by a bilateral localized resection. After 9 weeks the scar after the resection was excised and hMSC were injected into the VFs. After another 10 weeks 10 VFs were dissected and stained for histology. Lamina propria thickness and relative content of collagen type I were measured. Viscoelasticity of 14 VFs at phonatory frequencies was quantified by a simple-shear rheometer. The hMSC survival was determined using a human DNA specific reference probe, that is, FISH analysis. RESULTS The viscoelastic measurements, that is, dynamic viscosity and elastic shear modulus for the hMSC-treated VFs, were found to be similar to those of normal controls and were significantly lower than those of untreated controls (P < .05). A significant reduction in lamina propria thickness was also shown for the hMSC treated VFs compared with the untreated VFs (P < .05). This histologic finding corresponded with the viscoelastic results. No hMSC survived 10 weeks after the injection. CONCLUSIONS Human mesenchymal stem cells injected into the rabbit VF following the excision of a chronic scar, were found to enhance the functional healing of the VF with reduced lamina propria thickness and restored viscoelastic shear properties.
Collapse
Affiliation(s)
- Bengt Svensson
- Department of Otorhinolaryngology, Östersund Hospital, Östersund, Sweden, and Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Creating a neovocal fold or lamina propria by tissue engineering is a potential scheme for treating severe vocal fold scar. Although still investigational, multiple approaches have recently been described in tissue culture or animal models. RECENT FINDINGS Proposed cell types for vocal fold application have been native vocal fold fibroblasts, autologous fibroblasts from nonlaryngeal tissues, and adult-derived stem cells. Scaffolds of interest include decellularized matrix, biological polymers, and synthetic or chemically modified biopolymers. Chemical, mechanical, and spatial signals have been applied, such as hepatocyte growth factor, cyclic stretch, and air interface. Cells, matrix, and signals are combined in an effort to replicate normal vocal fold tissue as closely as possible. Each of these components of vocal fold tissue engineering is discussed here. SUMMARY Multiple tissue engineering approaches hold promise for reproducing functional vocal fold tissue. Scar prevention techniques have been the most successful. Modifying existing scar is more difficult and may necessitate complete scar excision and replacement with a three-dimensional neotissue. Functional assessment in vivo is essential to the ongoing evaluation of techniques.
Collapse
|
46
|
Welham NV, Choi SH, Dailey SH, Ford CN, Jiang JJ, Bless DM. Prospective multi-arm evaluation of surgical treatments for vocal fold scar and pathologic sulcus vocalis. Laryngoscope 2011; 121:1252-60. [PMID: 21557241 DOI: 10.1002/lary.21780] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 11/06/2022]
Abstract
OBJECTIVES/HYPOTHESIS The purpose of this study was to compare the clinical effectiveness of type I thyroplasty, injection laryngoplasty, and graft implantation for the treatment of vocal fold scar and pathologic sulcus vocalis. STUDY DESIGN Prospective, multi-arm, quasi-experimental research design. METHODS Twenty-eight patients with newly diagnosed vocal fold scar and/or pathologic sulcus vocalis were assigned to one of three treatment modalities: type I thyroplasty (n = 9), injection laryngoplasty (n = 9), and graft implantation (n = 10). Psychosocial, auditory-perceptual, acoustic, aerodynamic, and videostroboscopic data were collected pretreatment and at 1, 6, 12, and 18 months posttreatment. RESULTS Type I thyroplasty and graft implantation both resulted in reduced voice handicap with no concomitant improvement in auditory-perceptual, acoustic, aerodynamic, or vocal fold physiologic performance. Injection laryngoplasty resulted in no improvement on any vocal function index. Patients who underwent graft implantation exhibited the slowest improvement trajectory across the 18-month follow-up period. CONCLUSIONS A persistent challenge in this area is that no single treatment modality is successful for the majority of patients, and there is no evidence-based decision algorithm for matching a given treatment to a given patient. Progress therefore requires the identification and categorization of predictive clinical features that can drive evidence-based treatment assignment.
Collapse
Affiliation(s)
- Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison Wisconsin, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Xu W, Hu R, Fan E, Han D. Adipose-Derived Mesenchymal Stem Cells in Collagen—Hyaluronic Acid Gel Composite Scaffolds for Vocal Fold Regeneration. Ann Otol Rhinol Laryngol 2011; 120:123-30. [DOI: 10.1177/000348941112000209] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives: We sought to characterize the changes in the extracellular matrix (ECM) of the lamina propria following the implantation of autologous adipose-derived mesenchymal stem cells (ADSCs) in composite scaffolds in a rabbit vocal fold wound model. Methods: The ADSCs were co-cultured with collagen or hyaluronic acid gel. Each vocal fold was injured by localized resection and injected with ADSC complexes, ADSCs, or scaffolds or left untreated. From 15 days to 12 months, the vocal fold shape and the characteristics of the ECM components were analyzed. Results: With implantation of the ADSC complexes, the collagen content was significantly increased and had a disorderly distribution at 3 months. Subsequently, it began to decrease and reached close to normal by 12 months. The hyaluronic acid content was increased at 40 days, but it was reduced to normal levels and was limited to the superficial and middle layers of the lamina propria over the following 12 months. Fibronectin continued to be scattered in the lamina propria, at peak levels at 40 days, and then decreased over the following 12 months to reach near-normal levels. At 12 months, the vocal folds had a normal surface. Conclusions: ADSC complexes can play a facilitatory role in vocal fold regeneration, regulating the generation and orderly distribution of ECM.
Collapse
|
48
|
Chhetri DK, Berke GS. Injection of cultured autologous fibroblasts for human vocal fold scars. Laryngoscope 2011; 121:785-92. [DOI: 10.1002/lary.21417] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 10/25/2010] [Indexed: 11/07/2022]
|
49
|
Svensson B, Nagubothu RS, Cedervall J, Le Blanc K, Ahrlund-Richter L, Tolf A, Hertegård S. Injection of human mesenchymal stem cells improves healing of scarred vocal folds: analysis using a xenograft model. Laryngoscope 2010; 120:1370-5. [PMID: 20568271 DOI: 10.1002/lary.20926] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVES/HYPOTHESIS The aims were to analyze if improved histological and viscoelastic properties seen after injection of human mesenchymal stem cells (hMSCs) in scarred vocal folds (VFs) of rabbits are sustainable and if the injected hMSCs survive 3 months in the VFs. STUDY DESIGN Experimental xenograft model. METHODS Eighteen VFs of 11 New Zealand white rabbits were scarred by a bilateral localized resection. After 3 months the animals were sacrificed. Twelve VFs were dissected and stained for histology, lamina propria thickness, and relative collagen type I analyses. The hMSCs survival was analyzed using a human DNA-specific reference probe, that is, fluorescence in situ hybridization staining. Viscoelasticity, measured as the dynamic viscosity and elastic modulus, was analyzed in a parallel-plate rheometer for 10 VFs. RESULTS The dynamic viscosity and elastic modulus of hMSC-treated VFs were similar to that of normal controls and significantly improved compared to untreated controls (P < .05). A reduction in lamina propria thickness and relative collagen type 1 content were also shown for the hMSC-treated VFs compared to the untreated VFs (P < .05). The histological pictures corresponded well to the viscoelastic results. No hMSCs survived. CONCLUSIONS Human mesenchymal stem cells injected into a scarred vocal fold of rabbit enhance healing of the vocal fold with reduced lamina propria thickness and collagen type I content and restore the viscoelastic function.
Collapse
Affiliation(s)
- Bengt Svensson
- Department of Otorhinolaryngology, Ostersund Hospital, Ostersund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
50
|
Johnson BQ, Fox R, Chen X, Thibeault S. Tissue regeneration of the vocal fold using bone marrow mesenchymal stem cells and synthetic extracellular matrix injections in rats. Laryngoscope 2010; 120:537-45. [PMID: 20131370 DOI: 10.1002/lary.20782] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVES/HYPOTHESIS To determine the effectiveness of bone marrow mesenchymal stem cell (BM-MSC) transplantation in isolation or within a synthetic extracellular matrix (sECM) for tissue regeneration of the scarred vocal fold lamina propria. METHODS In vitro stability and compatibility of mouse BM-MSC embedded in sECM was assessed by flow cytometry detection of BM-MSC marker expression and proliferation. Eighteen rats were subjected to vocal fold injury bilaterally, followed by 1 month post-treatment with unilateral injections of saline or sECM hydrogel (Extracel; Glycosan BioSystems, Inc., Salt Lake City, UT), green fluorescence protein (GFP)-mouse BM-MSC, or BM-MSC suspended in sECM. Outcomes measured 1 month after treatment included procollagen-III, fibronectin, hyaluronan synthase-III (HAS3), hyaluronidase (HYAL3), smooth muscle actin (SMA), and transforming growth factor-beta 1(TGF-beta1) mRNA expression. The persistence of GFP BM-MSC, proliferation, apoptosis, and myofibroblast differentiation was assessed by immunofluorescence. RESULTS BM-MSC grown in vitro within sECM express Sca-1, are positive for hyaluronan receptor CD44, and continue to proliferate. In the in vivo study, groups injected with BM-MSC had detectable GFP-labeled BM-MSC remaining and showed proliferation and low apoptotic or myofibroblast markers compared to the contralateral side. Embedded BM-MSC in the sECM group exhibited increased levels of procollagen III, fibronectin, and TGF-beta1. BM-MSC within sECM downregulated the expression of SMA compared to BM-MSC alone and exhibited upregulation of HYAL3 and no change in HAS3 compared to saline. CONCLUSIONS Treatment of vocal fold scarring with BM-MSC injected in a sECM displayed the most favorable outcomes in ECM production, hyaluronan metabolism, myofibroblast differentiation, and production of TGF-beta1. Furthermore, the combined treatment had no detectable cytotoxicity and preserved local cell proliferation.
Collapse
Affiliation(s)
- Beatriz Quinchia Johnson
- Division of Otolaryngology-Head and Neck, Department of Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|