1
|
Di Sole F, Laghmani K, Babich V. Editorial: Renal physiology: epithelial cell mechanics. Front Physiol 2024; 15:1428778. [PMID: 38895517 PMCID: PMC11184071 DOI: 10.3389/fphys.2024.1428778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Affiliation(s)
- Francesca Di Sole
- Physiology and Pharmacology Department, Des Moines University, Des Moines, IA, United States
| | - Kamel Laghmani
- INSERM U1138, Centre National de la Recherche Scientifique, ERL8228, Paris, France
| | - Victor Babich
- Physiology and Pharmacology Department, Des Moines University, Des Moines, IA, United States
- Department of Liberal Arts and Sciences, Mercy College of Health Sciences, Des Moines, IA, United States
| |
Collapse
|
2
|
Liu H, Sun Q, Ding Z, Shi W, Wang WH, Zhang C. Adenosine stimulates the basolateral 50 pS K + channel in renal proximal tubule via adenosine-A1 receptor. Front Physiol 2023; 14:1242975. [PMID: 37700760 PMCID: PMC10493268 DOI: 10.3389/fphys.2023.1242975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background: The basolateral potassium channels play an important role in maintaining the membrane transport in the renal proximal tubules (PT) and adenosine receptors have been shown to regulate the trans-epithelial Na+ absorption in the PT. The aim of the present study is to explore whether adenosine also regulates the basolateral K+ channel of the PT and to determine the adenosine receptor type and the signaling pathway which mediates the effect of adenosine on the K+ channel. Methods: We have used the single channel recording to examine the basolateral K+ channel activity in the proximal tubules of the mouse kidney. All experiments were performed in cell-attached patches. Results: Single channel recording has detected a 50 pS inwardly-rectifying K+ channel with high channel open probability and this 50 pS K+ channel is a predominant type K+ channel in the basolateral membrane of the mouse PT. Adding adenosine increased 50 pS K+ channel activity in cell-attached patches, defined by NPo (a product of channel Numbers and Open Probability). The adenosine-induced stimulation of the 50 pS K+ channel was absent in the PT pretreated with DPCPX, a selective inhibitor of adenosine A1 receptor. In contrast, adenosine was still able to stimulate the 50 pS K+ channel in the PT pretreated with CP-66713, a selective adenosine A2 receptor antagonist. This suggests that the stimulatory effect of adenosine on the 50 pS K+ channel of the PT was mediated by adenosine-A1 receptor. Moreover, the effect of adenosine on the 50 pS K+ channel was blocked in the PT pretreated with U-73122 or Calphostin C, suggesting that adenosine-induced stimulation of the 50 pS K+ channels of the PT was due to the activation of phospholipase C (PLC) and protein kinase C (PKC) pathway. In contrast, the inhibition of phospholipase A2 (PLA2) with AACOCF3 or inhibition of protein kinase A (PKA) with H8 failed to block the adenosine-induced stimulation of the 50 pS K+ channel of the PT. Conclusion: We conclude that adenosine activates the 50 pS K+ channels in the basolateral membrane of PT via adenosine-A1 receptor. Furthermore, the effect of adenosine on the 50 pS K+ channel is mediated by PLC-PKC signaling pathway.
Collapse
Affiliation(s)
- Hao Liu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Qi Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Zheng Ding
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Wensen Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Chengbiao Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Zaika O, Tomilin VN, Pochynyuk O. Adenosine inhibits the basolateral Cl - ClC-K2/b channel in collecting duct intercalated cells. Am J Physiol Renal Physiol 2020; 318:F870-F877. [PMID: 31984792 DOI: 10.1152/ajprenal.00572.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine plays an important role in various aspects of kidney physiology, but the specific targets and mechanisms of actions are not completely understood. The collecting duct has the highest expression of adenosine receptors, particularly adenosine A1 receptors (A1Rs). Interstitial adenosine levels are greatly increased up to a micromolar range in response to dietary salt loading. We have previously shown that the basolateral membrane of principal cells has primarily K+ conductance mediated by Kir4.1/5.1 channels to mediate K+ recycling and to set up a favorable driving force for Na+/K+ exchange (47). Intercalated cells express the Cl- ClC-K2/b channel mediating transcellular Cl- reabsorption. Using patch-clamp electrophysiology in freshly isolated mouse collecting ducts, we found that acute application of adenosine reversely inhibits ClC-K2/b open probability from 0.31 ± 0.04 to 0.17 ± 0.06 and to 0.10 ± 0.05 for 1 and 10 µM, respectively. In contrast, adenosine (10 µM) had no measureable effect on Kir4.1/5.1 channel activity in principal cells. The inhibitory effect of adenosine on ClC-K2/b was abolished in the presence of the A1R blocker 8-cyclopentyl-1,3-dipropylxanthine (10 µM). Consistently, application of the A1R agonist N6-cyclohexyladenosine (1 µM) recapitulated the inhibitory action of adenosine on ClC-K2/b open probability. The effects of adenosine signaling in the collecting duct were independent from its purinergic counterpartner, ATP, having no measurable actions on ClC-K2/b and Kir4.1/5.1. Overall, we demonstrated that adenosine selectively inhibits ClC-K2/b activity in intercalated cells by targeting A1Rs. We propose that inhibition of transcellular Cl- reabsorption in the collecting duct by adenosine would aid in augmenting NaCl excretion during high salt intake.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
4
|
Babich V, Vadnagara K, Di Sole F. Adenosine A 2A receptor blocks the A 1 receptor inhibition of renal Na + transport and oxygen consumption. J Cell Physiol 2019; 234:13917-13930. [PMID: 30633335 DOI: 10.1002/jcp.28074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/18/2018] [Indexed: 11/11/2022]
Abstract
A high renal oxygen (O2 ) need is primarily associated with the renal tubular O2 consumption (VO2 ) necessary for a high rate of sodium (Na+ ) transport. Limited O2 availability leads to increased levels of adenosine, which regulates the kidney via activation of both A1 and A2A adenosine receptors (A1R and A2AR, respectively). The relative contributions of A1R and A2AR to the regulation of renal Na+ transport and VO2 have not been determined. We demonstrated that A1R activation has a dose-dependent biphasic effect on both renal Na+ /H+ exchanger-3 (NHE3), a major player in Na+ transport, and VO2 . Here, we report concentration-dependent effects of adenosine: less than 5 × 10-7 M adenosine-stimulated NHE3 activity; between 5 × 10-7 M and 10-5 M adenosine-inhibited NHE3 activity; and greater than 10-5 M adenosine reversed the change in NHE3 activity (returned to baseline). A1R activation mediated the activation and inhibition of NHE3 activity, whereas 10-4 M adenosine had no effect on the NHE3 activity due to A2AR activation. The following occurred when A1R and A2AR were activated: (a) Blockade of the A2AR receptor restored the NHE3 inhibition mediated by A1R activation, (b) the NHE-dependent effect on VO2 mediated by A1R activation became NHE independent, and (c) A2AR bound to A1R. In summary, A1R affects VO2 via NHE-dependent mechanisms, whereas A2AR acts via NHE-independent mechanisms. When both A1R and A2AR are activated, the A2AR effect on NHE3 and VO2 predominates, possibly via an A1R-A2AR protein interaction. A2AR-A1R heterodimerization is proposed as the molecular mechanism enabling the NHE-independent control of renal VO2 .
Collapse
Affiliation(s)
- Victor Babich
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, Iowa.,School of Liberal Arts and Sciences, Mercy College of Health Sciences, Des Moines, Iowa.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Komal Vadnagara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Francesca Di Sole
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, Iowa.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Dos Santos IF, Sheriff S, Amlal S, Ahmed RPH, Thakar CV, Amlal H. Adenine acts in the kidney as a signaling factor and causes salt- and water-losing nephropathy: early mechanism of adenine-induced renal injury. Am J Physiol Renal Physiol 2019; 316:F743-F757. [PMID: 30623725 DOI: 10.1152/ajprenal.00142.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chronic adenine feeding is extensively used to develop animal models of chronic renal failure with metabolic features resembling those observed in humans. However, the mechanism by which adenine induces renal failure is poorly understood. In this study, we examined the early effects of adenine on water metabolism and salt balance in rats placed in metabolic cages and fed control or adenine-containing diets for 7 days. Molecular and functional studies demonstrated that adenine-fed rats exhibited a significant reduction in food intake, polyuria, polydipsia, decreased urine osmolality, and increased salt wasting. These effects are independent of changes in food intake and result from a coordinated downregulation of water channel aquaporin-2 (AQP2) and salt transporter (Na+-K+-Cl- cotransporter 2; NKCC2) in the collecting duct and medullary thick ascending limb, respectively. As a result, adenine-fed rats exhibited massive volume depletion, as indicated by a significant body weight loss, increased blood urea nitrogen, and increased hematocrit and hemoglobin levels, all of which were significantly corrected with NaCl replacement. Adenine-induced urinary concentrating defect was not corrected by exogenous arginine vasopressin (AVP), and it correlated with reduced cAMP production in vivo and in vitro. In conclusion, adenine acts on renal tubules as a signaling molecule and causes nephrogenic diabetes insipidus with salt wasting, at least, by directly interfering with AVP V2 receptor signaling with subsequent downregulation of NKCC2 and AQP2 in the kidney. The combination of renal fluid loss and decreased food intake with subsequent massive volume depletion likely plays an important role in the development of early prerenal failure that progresses to chronic kidney disease in long-term adenine feeding.
Collapse
Affiliation(s)
- Ingrid F Dos Santos
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Sulaiman Sheriff
- Department of Surgery, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Sihame Amlal
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Rafeeq P H Ahmed
- Department of Pathology, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Charuhas V Thakar
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Hassane Amlal
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
6
|
Battistone MA, Nair AV, Barton CR, Liberman RN, Peralta MA, Capen DE, Brown D, Breton S. Extracellular Adenosine Stimulates Vacuolar ATPase-Dependent Proton Secretion in Medullary Intercalated Cells. J Am Soc Nephrol 2017; 29:545-556. [PMID: 29222395 DOI: 10.1681/asn.2017060643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Acidosis is an important complication of AKI and CKD. Renal intercalated cells (ICs) express the proton pumping vacuolar H+-ATPase (V-ATPase) and are extensively involved in acid-base homeostasis. H+ secretion in type A intercalated cells (A-ICs) is regulated by apical vesicle recycling and stimulated by cAMP. In other cell types, cAMP is increased by extracellular agonists, including adenosine, through purinergic receptors. Adenosine is a Food and Drug Administration-approved drug, but very little is known about the effect of adenosine on IC function. Therefore, we investigated the role of adenosine in the regulation of V-ATPase in ICs. Intravenous treatment of mice with adenosine or agonists of ADORA2A and ADORA2B purinergic P1 receptors induced V-ATPase apical membrane accumulation in medullary A-ICs but not in cortical A-ICs or other IC subtypes. Both receptors are located in A-IC apical membranes, and adenosine injection increased urine adenosine concentration and decreased urine pH. Cell fractionation showed that adenosine or an ADORA2A or ADORA2B agonist induced V-ATPase translocation from vesicles to the plasma membrane and increased protein kinase A (PKA)-dependent protein phosphorylation in purified medullary ICs that were isolated from mice. Either ADORA2A or ADORA2B antagonists or the PKA inhibitor mPKI blocked these effects. Finally, a fluorescence pH assay showed that adenosine activates V-ATPase in isolated medullary ICs. Our study shows that medullary A-ICs respond to luminal adenosine through ADORA2A and ADORA2B receptors in a cAMP/PKA pathway-dependent mechanism to induce V-ATPase-dependent H+ secretion.
Collapse
Affiliation(s)
- Maria A Battistone
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil V Nair
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claire R Barton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rachel N Liberman
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria A Peralta
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
7
|
Luan H, Wu P, Wang M, Sui H, Fan L, Gu R. Effects of adenosine stimulation on the mRNA expression of CLCNKB in the basolateral medullary thick ascending limb of the rat kidney. Mol Med Rep 2016; 14:4391-4398. [PMID: 27748841 DOI: 10.3892/mmr.2016.5781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 08/06/2016] [Indexed: 11/06/2022] Open
Abstract
Adenosine is a molecule produced by several organs within the body, including the kidneys, where it acts as an autoregulatory factor. It mediates ion transport in several nephron segments, including the proximal tubule and the thick ascending limb (TAL). Ion transport is dictated in part by anionic chloride channels, which regulate crucial kidney functions, including the reabsorption of Na+ and Cl‑, urine concentration, and establishing and maintaining the corticomedullary osmotic gradient. The present study investigated the effects of adenosine on the mRNA expression of chloride voltage‑gated channel Kb (CLCNKB), a candidate gene involved in hypertension, which encodes for the ClC‑Kb channel. Medullary thick ascending limb (mTAL) tubules were isolated from the rat kidney, and primary cultures of mTAL cells from the mTAL tubules were established. The cells were treated with adenosine and the mRNA expression of CLCNKB was detected by reverse transcription‑quantitative polymerase chain reaction. The cells were also treated with pathways inhibitors (H8 and AACOCF3), and the protein expression of cyclic adenosine 3',5'‑monophosphate (cAMP)‑protein kinase A (PKA) and phospholipase A2 (PLA2) by were analyzed by western blotting. The findings indicated that adenosine increased the mRNA expression of CLCNKB in primary cultures of medullary TAL cells, and this stimulatory effect was regulated by the cAMP‑PKA and PLA2‑arachidonic acid (AA) pathways. The present study showed that adenosine affected the mRNA expression of CLCNKB, initially through the cAMP‑PKA pathway and then the PLA2‑AA pathway.
Collapse
Affiliation(s)
- Haiyan Luan
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Peng Wu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Mingxiao Wang
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hongyu Sui
- Department of Physiology, Basic Medical School, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Lili Fan
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Ruimin Gu
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
8
|
Peters E, Geraci S, Heemskerk S, Wilmer MJ, Bilos A, Kraenzlin B, Gretz N, Pickkers P, Masereeuw R. Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate. Br J Pharmacol 2015. [PMID: 26222228 DOI: 10.1111/bph.13261] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Recently, two phase-II trials demonstrated improved renal function in critically ill patients with sepsis-associated acute kidney injury treated with the enzyme alkaline phosphatase. Here, we elucidated the dual active effect on renal protection of alkaline phosphatase. EXPERIMENTAL APPROACH The effect of human recombinant alkaline phosphatase (recAP) on LPS-induced renal injury was studied in Sprague-Dawley rats. Renal function was assessed by transcutaneous measurement of FITC-sinistrin elimination in freely moving, awake rats. The mechanism of action of recAP was further investigated in vitro using conditionally immortalized human proximal tubular epithelial cells (ciPTEC). KEY RESULTS In vivo, LPS administration significantly prolonged FITC-sinistrin half-life and increased fractional urea excretion, which was prevented by recAP co-administration. Moreover, recAP prevented LPS-induced increase in proximal tubule injury marker, kidney injury molecule-1 expression and excretion. In vitro, LPS-induced production of TNF-α, IL-6 and IL-8 was significantly attenuated by recAP. This effect was linked to dephosphorylation, as enzymatically inactive recAP had no effect on LPS-induced cytokine production. RecAP-mediated protection resulted in increased adenosine levels through dephosphorylation of LPS-induced extracellular ADP and ATP. Also, recAP attenuated LPS-induced increased expression of adenosine A2A receptor. However, the A2A receptor antagonist ZM-241385 did not diminish the effects of recAP. CONCLUSIONS AND IMPLICATIONS These results indicate that the ability of recAP to reduce renal inflammation may account for the beneficial effect observed in septic acute kidney injury patients, and that dephosphorylation of ATP and LPS are responsible for this protective effect.
Collapse
Affiliation(s)
- E Peters
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - S Geraci
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - S Heemskerk
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands.,Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - M J Wilmer
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - A Bilos
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - B Kraenzlin
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - N Gretz
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - P Pickkers
- Department of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - R Masereeuw
- Department of Pharmacology and Toxicology, Radboud university medical center, Nijmegen, The Netherlands.,Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| |
Collapse
|
9
|
Babich V, Vadnagara K, Di Sole F. Dual Effect of Adenosine A1Receptor Activation on Renal O2Consumption. J Cell Physiol 2015; 230:3093-104. [DOI: 10.1002/jcp.25050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 05/18/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Victor Babich
- Department of Medicine; University of Maryland School of Medicine; Maryland
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas Texas
- Physiology and Pharmacology Department; Des Moines University; Iowa
| | - Komal Vadnagara
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas Texas
| | - Francesca Di Sole
- Department of Medicine; University of Maryland School of Medicine; Maryland
- Department of Internal Medicine; University of Texas Southwestern Medical Center; Dallas Texas
- Physiology and Pharmacology Department; Des Moines University; Iowa
| |
Collapse
|
10
|
Burnstock G, Evans LC, Bailey MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10:71-101. [PMID: 24265071 PMCID: PMC3944043 DOI: 10.1007/s11302-013-9400-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
The involvement of purinergic signalling in kidney physiology and pathophysiology is rapidly gaining recognition and this is a comprehensive review of early and recent publications in the field. Purinergic signalling involvement is described in several important intrarenal regulatory mechanisms, including tuboglomerular feedback, the autoregulatory response of the glomerular and extraglomerular microcirculation and the control of renin release. Furthermore, purinergic signalling influences water and electrolyte transport in all segments of the renal tubule. Reports about purine- and pyrimidine-mediated actions in diseases of the kidney, including polycystic kidney disease, nephritis, diabetes, hypertension and nephrotoxicant injury are covered and possible purinergic therapeutic strategies discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
11
|
Peters E, Heemskerk S, Masereeuw R, Pickkers P. Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients. Am J Kidney Dis 2014; 63:1038-48. [PMID: 24462020 DOI: 10.1053/j.ajkd.2013.11.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023]
Abstract
Acute kidney injury (AKI) is a common disease in the intensive care unit and accounts for high morbidity and mortality. Sepsis, the predominant cause of AKI in this setting, involves a complex pathogenesis in which renal inflammation and hypoxia are believed to play an important role. A new therapy should be aimed at targeting both these processes, and the enzyme alkaline phosphatase, with its dual mode of action, might be a promising candidate. First, alkaline phosphatase is able to reduce inflammation through dephosphorylation and thereby detoxification of endotoxin (lipopolysaccharide), which is an important mediator of sepsis. Second, adenosine triphosphate, released during cellular stress caused by inflammation and hypoxia, has detrimental effects but can be converted by alkaline phosphatase into adenosine with anti-inflammatory and tissue-protective effects. These postulated beneficial effects of alkaline phosphatase have been confirmed in animal experiments and two phase 2a clinical trials showing that kidney function improved in critically ill patients with sepsis-associated AKI. Because renal inflammation and hypoxia also are observed commonly in AKI induced by other causes, it would be of interest to investigate the therapeutic effect of alkaline phosphatase in these nephropathies as well.
Collapse
Affiliation(s)
- Esther Peters
- Department of Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne Heemskerk
- Department of Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
12
|
Kuczeriszka M, Dobrowolski L, Walkowska A, Sadowski J, Kompanowska-Jezierska E. Adenosine Effects on Renal Function in the Rat: Role of Sodium Intake and Cytochrome P450. ACTA ACUST UNITED AC 2013; 123:1-5. [DOI: 10.1159/000353705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022]
|
13
|
Bagrov YY, Manusova NB. Disease from the point of view of evolution. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012040135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Ribeiro MC, Costa-Alves MS, Wengert M, Meyer-Fernandes JR, Zancan P, Caruso-Neves C, Pinheiro AAS. Characterization of ecto-ATPase activity in the surface of LLC-PK1 cells and its modulation by ischemic conditions. Biochim Biophys Acta Gen Subj 2012; 1820:2030-6. [PMID: 23000490 DOI: 10.1016/j.bbagen.2012.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/04/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND The concentration of extracellular nucleotides is regulated by enzymes that have their catalytic site facing the extracellular space, the so-called ecto-enzymes. METHODS We used LLC-PK1 cells, a well-characterized porcine renal proximal tubule cell line, to biochemically characterize ecto-ATPase activity in the luminal surface. The [γ-(32)P]Pi released after reaction was measured in aliquots of the supernatant by liquid scintillation. RESULTS This activity was linear with time up to 20min of reaction and stimulated by divalent metals. The ecto-ATPase activity measured in the presence of 5mM MgCl(2) was (1) optimum at pH 8, (2) insensitive to different inhibitors of intracellular ATPases, (3) inhibited by 1mM suramin, an inhibitor of ecto-ATPases, (4) sensitive to high concentrations of sodium azide (NaN(3)) and (5) also able to hydrolyze ADP in the extracellular medium. The ATP:ADP hydrolysis ratio calculated was 4:1. The ecto-ADPase activity was also inhibited by suramin and NaN(3). The dose-response of ATP revealed a hyperbolic profile with maximal velocity of 25.2±1.2nmol Pixmg(-1)xmin(-1) and K(0.5) of 0.07±0.01mM. When cells were submitted to ischemia, the E-NTPDase activity was reduced with time, achieving 71% inhibition at 60min of ischemia. CONCLUSION Our results suggest that the ecto-ATPase activity of LLC-PK1 cells has the characteristics of a type 3 E-NTPDase which is inhibited by ischemia. GENERAL SIGNIFICANCE This could represent an important pathophysiologic mechanism that explains the increase in ATP concentration in the extracellular milieu in the proximal tubule during ischemia.
Collapse
Affiliation(s)
- M C Ribeiro
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Abreu LDADS, Kawano PR, Yamamoto H, Damião R, Fugita OEH. Comparative study between trimetazidine and ice slush hypothermia in protection against renal ischemia/reperfusion injury in a porcine model. Int Braz J Urol 2012; 37:649-56. [PMID: 22099266 DOI: 10.1590/s1677-55382011000500013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2011] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The aim of the study was to compare the effects of renal ice slush hypothermia and the use of trimetazidine in the protection against ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS Fifteen farm pigs were submitted to left kidney ischemia and right nephrectomy during the same procedure. Animals were divided into three groups. Group 1 was submitted to warm ischemia; Group 2 was submitted to cold ischemia with ice slush; and Group 3 received trimetazidine 20 mg one day and 4 hours before surgery. Ischemia time was 120 minutes in all three groups. Serum creatinine (SCr) and plasma iohexol clearance (CLioh) were measured before surgery and on postoperative days (PODs) 1,3,7, and 14. Semi-quantitative analyses of histological alterations were performed by a pathologist. A p value of < 0.05 was considered significant. RESULTS All groups showed elevation of serum creatinine in the first week. Serum creatinine was higher in Group 3 in the first and third postoperative days (Mean Cr: 5.5 and 8.1 respectively). Group 2 showed a lower increase in creatinine and a lower decrease in iohexol clearance than the others. Renal function stabilized in the fourteenth POD in all three groups. Analyses of histological alterations did not reach statistical significance between groups. CONCLUSION Trimetazidine did not show protection against renal I/R injury in comparison to warm ischemia or hypothermia in a porcine model submitted to 120 minutes of renal ischemia.
Collapse
|
16
|
Di Sole F, Vadnagara K, Moe OW, Babich V. Calcineurin homologous protein: a multifunctional Ca2+-binding protein family. Am J Physiol Renal Physiol 2012; 303:F165-79. [PMID: 22189947 PMCID: PMC3404583 DOI: 10.1152/ajprenal.00628.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 05/17/2012] [Indexed: 12/13/2022] Open
Abstract
The calcineurin homologous protein (CHP) belongs to an evolutionarily conserved Ca(2+)-binding protein subfamily. The CHP subfamily is composed of CHP1, CHP2, and CHP3, which in vertebrates share significant homology at the protein level with each other and between other Ca(2+)-binding proteins. The CHP structure consists of two globular domains containing from one to four EF-hand structural motifs (calcium-binding regions composed of two helixes, E and F, joined by a loop), the myristoylation, and nuclear export signals. These structural features are essential for the function of the three members of the CHP subfamily. Indeed, CHP1-CHP3 have multiple and diverse essential functions, ranging from the regulation of the plasma membrane Na(+)/H(+) exchanger protein function, to carrier vesicle trafficking and gene transcription. The diverse functions attributed to the CHP subfamily rendered an understanding of its action highly complex and often controversial. This review provides a comprehensive and organized examination of the properties and physiological roles of the CHP subfamily with a view to revealing a link between CHP diverse functions.
Collapse
Affiliation(s)
- Francesca Di Sole
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-8885, USA.
| | | | | | | |
Collapse
|
17
|
Riksen NP, Rongen GA. Targeting adenosine receptors in the development of cardiovascular therapeutics. Expert Rev Clin Pharmacol 2012; 5:199-218. [PMID: 22390562 DOI: 10.1586/ecp.12.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine receptor stimulation has negative inotropic and dromotropic actions, reduces cardiac ischemia-reperfusion injury and remodeling, and prevents cardiac arrhythmias. In the vasculature, adenosine modulates vascular tone, reduces infiltration of inflammatory cells and generation of foam cells, and may prevent the development of atherosclerosis as a result. Modulation of insulin sensitivity may further add to the anti-atherosclerotic properties of adenosine signaling. In the kidney, adenosine plays an important role in tubuloglomerular feedback and modulates tubular sodium reabsorption. The challenge is to take advantage of the beneficial actions of adenosine signaling while preventing its potential adverse effects, such as salt retention and sympathoexcitation. Drugs that interfere with adenosine formation and elimination or drugs that allosterically enhance specific adenosine receptors seem to be most promising to meet this challenge.
Collapse
Affiliation(s)
- Niels P Riksen
- Department of Pharmacology-Toxicology 149 and Internal Medicine 463, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | |
Collapse
|
18
|
Hu CAA, Klopfer EI, Ray PE. Human apolipoprotein L1 (ApoL1) in cancer and chronic kidney disease. FEBS Lett 2012; 586:947-55. [PMID: 22569246 DOI: 10.1016/j.febslet.2012.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/28/2012] [Accepted: 03/01/2012] [Indexed: 02/09/2023]
Abstract
Human apolipoprotein L1 (ApoL1) possesses both extra- and intra-cellular functions crucial in host defense and cellular homeostatic mechanisms. Alterations in ApoL1 function due to genetic, environmental, and lifestyle factors have been associated with African sleeping sickness, atherosclerosis, lipid disorders, obesity, schizophrenia, cancer, and chronic kidney disease (CKD). Importantly, two alleles of APOL1 carrying three coding-sequence variants have been linked to CKD, particularly in Sub-Saharan Africans and African Americans. Intracellularly, elevated ApoL1 can induce autophagy and autophagy-associated cell death, which may be critical in the maintenance of cellular homeostasis in the kidney. Similarly, ApoL1 may protect kidney cells against renal cell carcinoma (RCC). We summarize the role of ApoL1 in RCC and CKD, highlighting the critical function of ApoL1 in autophagy.
Collapse
Affiliation(s)
- Chien-An A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico, Health Sciences Center, Albuquerque, NM 87131-0001, USA.
| | | | | |
Collapse
|
19
|
Mayeux PR, MacMillan-Crow LA. Pharmacological targets in the renal peritubular microenvironment: implications for therapy for sepsis-induced acute kidney injury. Pharmacol Ther 2012; 134:139-55. [PMID: 22274552 DOI: 10.1016/j.pharmthera.2012.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023]
Abstract
One of the most frequent and serious complications to develop in septic patients is acute kidney injury (AKI), a disorder characterized by a rapid failure of the kidneys to adequately filter the blood, regulate ion and water balance, and generate urine. AKI greatly worsens the already poor prognosis of sepsis and increases cost of care. To date, therapies have been mostly supportive; consequently there has been little change in the mortality rates over the last decade. This is due, at least in part, to the delay in establishing clinical evidence of an infection and the associated presence of the systemic inflammatory response syndrome and thus, a delay in initiating therapy. A second reason is a lack of understanding regarding the mechanisms leading to renal injury, which has hindered the development of more targeted therapies. In this review, we summarize recent studies, which have examined the development of renal injury during sepsis and propose how changes in the peritubular capillary microenvironment lead to and then perpetuate microcirculatory failure and tubular epithelial cell injury. We also discuss a number of potential therapeutic targets in the renal peritubular microenvironment, which may prevent or lessen injury and/or promote recovery.
Collapse
Affiliation(s)
- Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
20
|
Lee YJ, Kim MO, Ryu JM, Han HJ. Regulation of SGLT expression and localization through Epac/PKA-dependent caveolin-1 and F-actin activation in renal proximal tubule cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:971-82. [PMID: 22230192 DOI: 10.1016/j.bbamcr.2011.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 12/07/2011] [Accepted: 12/21/2011] [Indexed: 11/29/2022]
Abstract
This study demonstrated that exchange proteins directly activated by cAMP (Epac) and protein kinase A (PKA) by 8-bromo (8-Br)-adenosine 3',5'-cyclic monophosphate (cAMP) stimulated [(14)C]-α-methyl-D-glucopyranoside (α-MG) uptake through increased sodium-glucose cotransporters (SGLTs) expression and translocation to lipid rafts in renal proximal tubule cells (PTCs). In PTCs, SGLTs were colocalized with lipid raft caveolin-1 (cav-1), disrupted by methyl-β-cyclodextrin (MβCD). Selective activators of Epac or PKA, 8-Br-cAMP, and forskolin stimulated expressions of SGLTs and α-MG uptake in PTCs. In addition, 8-Br-cAMP-induced PKA and Epac activation increased phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB), which were involved in expressions of SGLTs. Furthermore, 8-Br-cAMP stimulated SGLTs translocation to lipid rafts via filamentous actin (F-actin) organization, which was blocked by cytochalasin D. In addition, cav-1 and SGLTs stimulated by 8-Br-cAMP were detected in lipid rafts, which were blocked by cytochalasin D. Furthermore, 8-Br-cAMP-induced SGLTs translocation and α-MG uptake were attenuated by inhibition of cav-1 activation with cav-1 small interfering RNA (siRNA) and inhibition of F-actin organization with TRIO and F-actin binding protein (TRIOBP). In conclusion, 8-Br-cAMP stimulated α-MG uptake via Epac and PKA-dependent SGLTs expression and trafficking through cav-1 and F-actin in PTCs.
Collapse
Affiliation(s)
- Yu Jin Lee
- Department of Veterinary Physiology, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | |
Collapse
|
21
|
|
22
|
Abstract
This chapter describes the effects of the natural methylxanthines caffeine and theophylline on kidney function. Theophylline in particular was used traditionally to increase urine out put until more potent diuretics became available in the middle of the last century. The mildly diuretic actions of both methylxanthines are mainly the result of inhibition of tubular fluid reabsorption along the renal proximal tubule. Based upon the use of specific adenosine receptor antagonists and the observation of a complete loss of diuresis in mice with targeted deletion of the A1AR gene, transport inhibition by methylxanthines is mediated mainly by antagonism of adenosine A1 receptors (A1AR) in the proximal tubule. Methylxanthines are weak renal vasodilators, and they act as competitive antagonists against adenosine-induced preglomerular vasoconstriction. Caffeine and theophylline stimulate the secretion of renin by inhibition of adenosine receptors and removal of the general inhibitory brake function of endogenous adenosine. Since enhanced intrarenal adenosine levels lead to reduced glomerular filtration rate in several pathological conditions theophylline has been tested for its therapeutic potential in the renal impairment following administration of nephrotoxic substances such as radiocontrast media, cisplatin, calcineurin inhibitors or following ischemia-reperfusion injury. In experimental animals functional improvements have been observed in all of these conditions, but available clinical data in humans are insufficient to affirm a definite therapeutic efficacy of methylxanthines in the prevention of nephrotoxic or postischemic renal injury.
Collapse
Affiliation(s)
- Hartmut Osswald
- Department of Pharmacology and Toxicology, University of Tübingen, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | | |
Collapse
|
23
|
Effect of low sodium intake and β-blockade on renin synthesis and secretion in mice with unilateral ureteral ligation. Hypertens Res 2010; 33:1258-63. [PMID: 20882029 DOI: 10.1038/hr.2010.167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We previously reported that sodium depletion increased renin secretion from the normal kidney in mice. We postulated that the combined procedures of sodium depletion and β-adrenoceptor blockade would affect the activity of the renin-angiotensin system. To test this hypothesis, we investigated the interaction of low sodium intake (LSI) and propranolol (PRO) on renin synthesis and secretion. To prevent the influence of tubule flow on renin secretion, mice with a left hydronephrotic kidney were used. LSI increased plasma renin concentration (PRC) 5.6-fold in the right renal vein (P<0.01). There was no net increase of PRC in the left renal vein. Tissue renin concentration (TRC) was elevated 3.6-fold and 1.3-fold in the right and left kidneys (P<0.01), respectively. After administration of PRO, PRC decreased by 34% in the right renal vein and 47% in the aorta (P<0.05); TRC was reduced by 37.5% in the right and 29.3% in the hydronephrotic kidneys (P<0.05). The combination of LSI and PRO increased PRC 3.4-fold and 1.8-fold in the right (P<0.01) and left renal veins (P<0.05), respectively. TRC increased 3.4-fold in the right (P<0.01) but only 61% in the left kidneys (P<0.05). The pattern in change of renin mRNA levels was similar to TRC but the absolute amount was smaller. There were correlations between PRC and renin mRNA, and between TRC and renin mRNA in both kidneys (P<0.001). Thus, LSI increased renin synthesis in both kidneys. However, there was no apparent renin secretion in the hydronephrotic kidney. PRO treatment suppressed renin synthesis and renin secretion, irrespective of hydronephrosis and LSI. The macula densa is critical for renin secretion under all of the circumstances studied.
Collapse
|
24
|
Praetorius HA, Leipziger J. Intrarenal purinergic signaling in the control of renal tubular transport. Annu Rev Physiol 2010; 72:377-93. [PMID: 20148681 DOI: 10.1146/annurev-physiol-021909-135825] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Renal tubular epithelial cells receive hormonal input that regulates volume and electrolyte homeostasis. In addition, numerous intrarenal, local signaling agonists have appeared on the stage of renal physiology. One such system is that of intrarenal purinergic signaling. This system involves all the elements necessary for agonist-mediated intercellular communication. ATP is released from epithelial cells, which activates P2 receptors in the apical and basolateral membrane and thereby modulates tubular transport. Termination of the signal is conducted via the breakdown of ATP to adenosine. Recent far-reaching advances indicate that ATP is often used as a local transmitter for classical sensory transduction. This transmission apparently also applies to sensory functions in the kidney. Locally released ATP is involved in sensing of renal tubular flow or in detecting the distal tubular load of NaCl at the macula densa. This review describes the relevant aspects of local, intrarenal purinergic signaling and outlines its integrative concepts.
Collapse
Affiliation(s)
- Helle A Praetorius
- Department of Physiology and Biophysics, The Water and Salt Research Center, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
25
|
Rajagopal M, Pao AC. Adenosine activates a2b receptors and enhances chloride secretion in kidney inner medullary collecting duct cells. Hypertension 2010; 55:1123-8. [PMID: 20308611 DOI: 10.1161/hypertensionaha.109.143404] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the kidney, defects in the regulation of urine salt excretion can result in extracellular fluid volume expansion, leading to salt-sensitive hypertension. Previous studies have demonstrated that, when rats are maintained on a high sodium chloride (NaCl) diet, adenosine production increases in the renal medulla with parallel changes in adenosine receptor expression. These studies suggest that adenosine signaling in the kidney can respond to high NaCl loading; however, the functional consequences of these changes in adenosine signaling are not clear. We used the immortalized cell line mIMCD-K2, a murine model system for the renal inner medullary collecting duct, to study the direct effects of adenosine on NaCl transport across the inner medullary collecting duct epithelium with an Ussing chamber system. When epithelial Na(+) channels were inhibited, the addition of adenosine to the apical side of mIMCD-K2 cell sheets stimulated short-circuit current in a dose-dependent manner. This increase in short-circuit current was inhibited by a cystic fibrosis transmembrane conductance regulator Cl(-) channel inhibitor. Pharmacological studies with a panel of adenosine receptor agonists and antagonists demonstrated that adenosine activates apical A2b adenosine receptors to enhance the short-circuit current. Furthermore, adenosine application to mIMCD-K2 cell sheets increased intracellular cAMP, whereas inhibition of protein kinase A completely blocked the adenosine response. Together, our findings indicate that adenosine stimulates Cl(-) secretion through the cystic fibrosis transmembrane conductance regulator in mIMCD-K2 cells by activating apical A2b receptors and signaling through cAMP/protein kinase A. We propose that this adenosine receptor pathway may provide one mechanism for enhancing urine NaCl excretion in the setting of high dietary NaCl intake.
Collapse
Affiliation(s)
- Madhumitha Rajagopal
- Division of Nephrology, Department of Medicine, Stanford University, 780 Welch Rd, Suite 106, Palo Alto, CA 94304, USA
| | | |
Collapse
|