1
|
Fu CH, Chen CH, Lin YH, Lee CW, Tsai LK, Tang SC, Shun CT, Jeng JS. High fibrin and platelet clot predicts stroke recurrence or mortality after thrombectomy in patients with active cancer. J Neurointerv Surg 2025:jnis-2024-022033. [PMID: 39216988 DOI: 10.1136/jnis-2024-022033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Fibrin and platelet (FP)-rich clots have been shown to be associated with cancer-related stroke. This study aims to investigate the prognostic role of thrombus composition in clinical outcomes among cancer patients who experienced stroke and received endovascular thrombectomy (EVT). METHODS We included acute ischemic stroke patients who underwent EVT between March 2015 and November 2021. These patients were categorized into three groups: those with active cancer, those with non-active cancer, and those without cancer. The percentages of FP in clots were quantified under hematoxylin and eosin staining. The primary outcome was defined as any stroke recurrence or mortality within 90 days following the index stroke event. RESULTS A total of 420 patients with retrieved clots were included in the study. This cohort comprised 50 patients with active cancer, 23 patients with non-active cancer, and 347 patients without cancer. The percentage of FP was significantly higher in thrombi retrieved from patients with active cancer compared with the other two groups. Patients in the active cancer group exhibited a higher rate of the primary outcome compared with the other groups. After adjusting for clinical variables, a higher percentage of FP in thrombi remained significantly associated with the primary outcome in the active cancer group (adjusted odds ratio (aOR) =1.03 (1.00-1.06), P=0.028), but not in the other two groups. CONCLUSION Among stroke patients receiving EVT, thrombi with a higher percentage of FP not only identify individuals with active cancer but also predict stroke recurrence or mortality within 90 days.
Collapse
Affiliation(s)
- Chuan-Hsiu Fu
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
| | - Chih-Hao Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Heng Lin
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Wei Lee
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Forensic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
2
|
Hansda S, Das H. Insights into Cancer-Associated Thrombosis Leading Towards Ischemic Stroke. BIOLOGY 2025; 14:50. [PMID: 39857281 PMCID: PMC11762743 DOI: 10.3390/biology14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Stroke leads to significant disability in most patients, whereas cancer elevates the occurrence of stroke. The incidence of cancer-associated stroke (CAS) is projected to rise as a result of improvements in cancer therapies. Various forms of cancer have been demonstrated to be linked to ischemic stroke. Cancer might influence stroke pathophysiology either directly or through coagulation that creates a hypercoagulative state, in addition to infections. Treatment methods for cancer, including chemotherapy, radiotherapy, and surgery, have all been demonstrated to increase the risk of stroke as well. This review discusses the subtypes, epidemiology, pathophysiology, mechanisms of stroke within cancer patients, biomarkers, and signaling pathways of stroke in cancer while providing vital information on the involved transcription factors, treatment, and management of patients with cancer-associated ischemic stroke. Atherosclerosis, extracellular vesicles (EVs), and signaling biomolecules can also affect CAS. Overall, stroke is a significant and not uncommon complication of cancer, and there is an immediate demand for neurologists and oncologists to create strategies for screening and preventing strokes in cancer patients.
Collapse
Affiliation(s)
| | - Hiranmoy Das
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
3
|
Lami V, Nieri D, Pagnini M, Gattini M, Donati C, De Santis M, Cipriano A, Bazzan E, Sbrana A, Celi A, Neri T. Circulating, Extracellular Vesicle-Associated Tissue Factor in Cancer Patients with and without Venous Thromboembolism. Biomolecules 2025; 15:83. [PMID: 39858477 PMCID: PMC11762650 DOI: 10.3390/biom15010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer is characterized by chronic inflammation and hypercoagulability, with an excess of venous thromboembolism (VTE). Tissue factor, the initiator of blood coagulation, circulates associated with extracellular vesicles (EV-TF). Studies investigating EV-TF between cancer-associated and non-cancer-associated VTE are lacking. We therefore compared EV-TF in unprovoked VTE (U-VTE), cancer-associated VTE (C-VTE), and cancer without VTE (C-w/o VTE). We also investigated interleukin-6 (IL-6) levels between the same groups. The final population included 68 patients (U-VTE: n = 15; C-VTE: n = 24; C-w/o VTE: n = 29). All patients with VTE were enrolled within 48 h of diagnosis; non-VTE patients were recruited in the oncologic outpatient services. EV were isolated by differential centrifugation from 4 mL of peripheral blood; the final EV pellet (16,000× g for 45 min) was resuspended in 100 μL saline and tested for TF using a one-step clotting assay. There was a statistically significant difference for higher EV-TF in C-VTE and C-w/o VTE compared to U-VTE (p = 0.024; Kruskal-Wallis test). There was no significant difference between C-VTE and C-w/o VTE. Moreover, we did not find any difference in IL-6 levels. These preliminary data suggest that cancer represents, per se, a strong driver of EV-TF generation.
Collapse
Affiliation(s)
- Valentina Lami
- UO Medicina d’Urgenza e Pronto Soccorso, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (V.L.)
| | - Dario Nieri
- UO Pneumologia, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (D.N.); (A.C.)
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
| | - Marta Pagnini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, University of Pisa, 56126 Pisa, Italy
| | - Mario Gattini
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
| | - Claudia Donati
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
| | - Mariella De Santis
- Dipartimento Cardio Toraco Vascolare, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Alessandro Cipriano
- UO Medicina d’Urgenza e Pronto Soccorso, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (V.L.)
| | - Erica Bazzan
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy;
| | - Andrea Sbrana
- Dipartimento di Oncologia, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy;
| | - Alessandro Celi
- UO Pneumologia, Azienda Ospedaliero-Universitaria Pisana, 56124 Pisa, Italy; (D.N.); (A.C.)
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, University of Pisa, 56126 Pisa, Italy
| | - Tommaso Neri
- Dipartimento di Patologia Chirurgica, Medica, Molecolare e dell’Area Critica, University of Pisa, 56126 Pisa, Italy; (M.P.); (M.G.); (C.D.)
- Centro Dipartimentale di Biologia Cellulare Cardiorespiratoria, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
4
|
Yang S, Zhao M, Feng Y, Zhang X, Li Q, Jiang W, Wang D. Exploring the molecular mechanism of Toddalia asiatica (L.) lam on the treatment of thrombosis based on zebrafish models, network pharmacology and experimental verification. Fitoterapia 2024; 179:106224. [PMID: 39321855 DOI: 10.1016/j.fitote.2024.106224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Toddalia asiatica (L.) Lam. (TA) is a traditional folk medicine of ethnic minorities in the southwest of China. It is widely used in the treatment of dispersing blood stasis and activating blood. However, the effective substance and pharmacological mechanism have not been fully elucidated. The zebrafish larvae were treated with Phenylhydrazine (PHZ) to establish a thrombus model, and the staining intensity of zebrafish red blood cells was analyzed. The antithrombotic activity of TA was verified for the first time, and it was found that the inhibition rate of TA on thrombosis was up to 60.85 %. The chemical ingredients of TA were collected by combining UPLC-HRMS analysis and the literature research. Network pharmacology revealed that six key targets were obtained, which including TNF, AKT1, EGFR, PTGS2, PPARG, and IFNG. It showed that the PI3K-Akt pathway was a core signaling pathway. Coagulation factor III(TF), playing an important role in the process of hemostasis and thrombosis, which ranks high in the PPI network. Moreover, the results of molecular docking showed that the active components had a strong binding force with TF, which indicated that TF might be the key target of TA in treating thrombosis. In vitro experiments showed that TA could inhibit TNF-α-induced high expression of TF in EA.hy926 cells. In addition, TA could inhibit TNF-α-activated expression of Akt, IκBα and P65 protein phosphorylation in PI3K-Akt pathway. The results showed that TA had antithrombotic activity and exerted an antithrombotic effect by inhibiting the expression of TF through the PI3K-Akt-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Songqin Yang
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China
| | - Mao Zhao
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China
| | - Yuhan Feng
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China
| | - Xia Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China
| | - Qiuhong Li
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China
| | - Wenwen Jiang
- School of Pharmaceutical Sciences, Guizhou University, Guizhou, Guiyang 550025, PR China..
| | - Daoping Wang
- Key Laboratory of Natural Products Chemistry of Guizhou Academy of Sciences, Guiyang 550014, China..
| |
Collapse
|
5
|
Bonifay A, Cointe S, Plantureux L, Lacroix R, Dignat-George F. Update on Tissue Factor Detection in Blood in 2024: A Narrative Review. Hamostaseologie 2024; 44:368-376. [PMID: 39442509 DOI: 10.1055/a-2381-6854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Tissue factor (TF) is a transmembrane protein essential for hemostasis. Different forms of active TF circulate in the blood, either as a component of blood cells and extracellular vesicles (EVs) or as a soluble plasma protein. Accumulating experimental and clinical evidence suggests that TF plays an important role in thrombosis. Many in-house and commercially available assays have been developed to measure TF-dependent procoagulant activity or antigen in blood and have shown promising results for the prediction of disease outcomes or the occurrence of thrombosis events in diseases such as cancer or infectious coagulopathies. This review addresses the different assays that have been published for measuring circulating TF antigen and/or activity in whole blood, cell-free plasma, and EVs and discusses the main preanalytical and analytical parameters that impact results and their interpretation, highlighting their strengths and limitations. In the recent decade, EVTF assays have been significantly developed. Among them, functional assays that use a blocking anti-TF antibody or immunocapture to measure EVTF activity have higher specificity and sensitivity than antigen assays. However, there is still a high variability between assays. Standardization and automatization are prerequisites for the measurement of EVTF in clinical laboratories.
Collapse
Affiliation(s)
- Amandine Bonifay
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Sylvie Cointe
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Léa Plantureux
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
| | - Romaric Lacroix
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| | - Françoise Dignat-George
- Aix-Marseille University, C2VN, INSERM 1263, INRAE 1260, Marseille, France
- Department of Hematology, Biogénopôle, CHU La Timone, APHM, Marseille, France
| |
Collapse
|
6
|
Willems RAL, Biesmans C, Campello E, Simioni P, de Laat B, de Vos-Geelen J, Roest M, Ten Cate H. Cellular Components Contributing to the Development of Venous Thrombosis in Patients with Pancreatic Cancer. Semin Thromb Hemost 2024; 50:429-442. [PMID: 38049115 DOI: 10.1055/s-0043-1777304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive type of cancer and has a poor prognosis. Patients with PDAC are at high risk of developing thromboembolic events, which is a leading cause of morbidity and mortality following cancer progression. Plasma-derived coagulation is the most studied process in cancer-associated thrombosis. Other blood components, such as platelets, red blood cells, and white blood cells, have been gaining less attention. This narrative review addresses the literature on the role of cellular components in the development of venous thromboembolism (VTE) in patients with PDAC. Blood cells seem to play an important role in the development of VTE. Altered blood cell counts, i.e., leukocytosis, thrombocytosis, and anemia, have been found to associate with VTE risk. Tumor-related activation of leukocytes leads to the release of tissue factor-expressing microvesicles and the formation of neutrophil extracellular traps, initiating coagulation and forming a scaffold for thrombi. Tissue factor-expressing microvesicles are also thought to be released by PDAC cells. PDAC cells have been shown to stimulate platelet activation and aggregation, proposedly via the secretion of podoplanin and mucins. Hypofibrinolysis, partially explained by increased plasminogen activator inhibitor-1 activity, is observed in PDAC. In short, PDAC-associated hypercoagulability is a complex and multifactorial process. A better understanding of cellular contributions to hypercoagulability might lead to the improvement of diagnostic tests to identify PDAC patients at highest risk of VTE.
Collapse
Affiliation(s)
- Ruth Anne Laura Willems
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - Charlotte Biesmans
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elena Campello
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Paolo Simioni
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Bas de Laat
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Maastricht, The Netherlands
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Judith de Vos-Geelen
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark Roest
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Hugo Ten Cate
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Maastricht, The Netherlands
| |
Collapse
|
7
|
Englisch C, Moik F, Thaler J, Koder S, Mackman N, Preusser M, Pabinger I, Ay C. Tissue factor pathway inhibitor is associated with risk of venous thromboembolism and all-cause mortality in patients with cancer. Haematologica 2024; 109:1128-1136. [PMID: 37822244 PMCID: PMC10985431 DOI: 10.3324/haematol.2023.283581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
Venous thromboembolism (VTE) is a common complication in patients with cancer. Data on the role of natural inhibitors of coagulation for occurrence of cancer-associated VTE are limited, thus, we investigated the association of tissue factor pathway inhibitor (TFPI) with risk of VTE and all-cause mortality in patients with cancer. Total TFPI antigen levels were measured with a commercially available enzyme-linked immunosorbant assay in patients included in the Vienna Cancer and Thrombosis Study, a prospective observational cohort study with the primary outcome VTE. Competing risk analysis and Cox regression analysis were performed to explore the association of TFPI levels with VTE and all-cause mortality. TFPI was analyzed in 898 patients (median age 62 years; interquartile range [IQR], 53-68; 407 (45%) women). Sixty-seven patients developed VTE and 387 died (24-month cumulative risk 7.5% and 42.1%, respectively). Patients had median TFPI levels at study inclusion of 56.4 ng/mL (IQR, 45.7-70.0), with highest levels in tumor types known to have a high risk of VTE (gastroesophageal, pancreatic and brain cancer: 62.0 ng/mL; IQR, 52.0-75.0). In multivariable analysis adjusting for age, sex, cancer type and stage, TFPI levels were associated with VTE risk (subdistribution hazard ratio per doubling =1.63, 95% confidence interval [CI]: 1.03-2.57). When patients with high and intermediate/low VTE risk were analyzed separately, the association remained independently associated in the high risk group only (subdistribution hazard ratio =2.63, 95% CI: 1.40-4.94). TFPI levels were independently associated with all-cause mortality (hazard ratio =2.36, 95% CI: 1.85-3.00). In cancer patients increased TFPI levels are associated with VTE risk, specifically in patients with high-risk tumor types, and with all-cause mortality.
Collapse
Affiliation(s)
- Cornelia Englisch
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Florian Moik
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna, Austria; Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz
| | - Johannes Thaler
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Silvia Koder
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna; Vienna.
| |
Collapse
|
8
|
Stepanenko T, Sofińska K, Wilkosz N, Dybas J, Wiercigroch E, Bulat K, Szczesny-Malysiak E, Skirlińska-Nosek K, Seweryn S, Chwiej J, Lipiec E, Marzec KM. Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) in label-free characterization of erythrocyte membranes and extracellular vesicles at the nano-scale and molecular level. Analyst 2024; 149:778-788. [PMID: 38109075 DOI: 10.1039/d3an01658g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The manuscript presents the potential of surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) for label-free characterization of extracellular microvesicles (EVs) and their isolated membranes derived from red blood cells (RBCs) at the nanoscale and at the single-molecule level, providing detection of a few individual amino acids, protein and lipid membrane compartments. The study shows future directions for research, such as investigating the use of the mentioned techniques for the detection and diagnosis of diseases. We demonstrate that SERS and TERS are powerful techniques for identifying the biochemical composition of EVs and their membranes, allowing the detection of small molecules, lipids, and proteins. Furthermore, extracellular vesicles released from red blood cells (REVs) can be broadly classified into exosomes, microvesicles, and apoptotic bodies, based on their size and biogenesis pathways. Our study specifically focuses on microvesicles that range from 100 to 1000 nanometres in diameter, as presented in AFM images. Using SERS and TERS spectra obtained for REVs and their membranes, we were able to characterize the chemical and structural properties of microvesicle membranes with high sensitivity and specificity. This information may help better distinguish and categorize different types of EVs, leading to a better understanding of their functions and potential biomedical applications.
Collapse
Affiliation(s)
- Tetiana Stepanenko
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, National Synchrotron Radiation Centre SOLARIS, Czerwone Maki 98 Str., 30-392 Krakow, Poland
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Kamila Sofińska
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Natalia Wilkosz
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Jakub Dybas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Ewelina Wiercigroch
- Jagiellonian Center of Innovation, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Katarzyna Bulat
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Ewa Szczesny-Malysiak
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics, Bobrzyńskiego 14 Str., 30-348 Krakow, Poland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Sara Seweryn
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Lojasiewicza 11, Krakow, Poland
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Joanna Chwiej
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Ewelina Lipiec
- Jagiellonian University, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Katarzyna M Marzec
- AGH University of Krakow, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
- Łukasiewicz Research Network - Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Krakow, Poland.
| |
Collapse
|
9
|
Tavares V, Neto BV, Marques IS, Assis J, Pereira D, Medeiros R. Cancer-associated thrombosis: What about microRNAs targeting the tissue factor coagulation pathway? Biochim Biophys Acta Rev Cancer 2024; 1879:189053. [PMID: 38092078 DOI: 10.1016/j.bbcan.2023.189053] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Cancer patients are often diagnosed with venous thromboembolism (VTE), a cardiovascular disease that substantially decreases their quality of life and survival rate. Haemostasis in these patients is deregulated, which is reflected in the common presentation of a blood hypercoagulation state. Despite the inconsistent results, existing evidence suggests that the expression of microRNAs (miRNAs) is deregulated in the context of venous thrombogenesis in the general population. However, few miRNAs are known to be linked to cancer-associated VTE due to the lack of studies with oncological patients. Parallelly, coagulation factor III, also known as tissue factor (TF), tissue factor pathway inhibitor 1 (TFPI1) and tissue factor pathway inhibitor 2 (TFPI2) have been proposed to have a central role in cancer-associated VTE and tumour progression. Yet, contrary to what was expected, the role of miRNAs targeting the TF coagulation pathway (or extrinsic coagulation pathway) is poorly explored in cancer-induced thrombogenesis. In this review, in addition to miRNAs implicated in VTE, TF and TFPI1/2-targeting miRNAs were revised. Future studies should clarify the implications of these non-coding RNAs in tumour coagulome.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal; Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Beatriz Vieira Neto
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| | - Inês Soares Marques
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Sciences of University of Porto (FCUP), 4169-007 Porto, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP) / RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Deolinda Pereira
- Oncology Department, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/ Pathology and Laboratory Medicine Dep., Clinical Pathology SV/ RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) / Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal; Faculty of Medicine of University of Porto (FMUP), 4200-072 Porto, Portugal; Abel Salazar Institute for the Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal; Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| |
Collapse
|
10
|
Muse O, Patell R, Peters CG, Yang M, El-Darzi E, Schulman S, Falanga A, Marchetti M, Russo L, Zwicker JI, Flaumenhaft R. The unfolded protein response links ER stress to cancer-associated thrombosis. JCI Insight 2023; 8:e170148. [PMID: 37651191 PMCID: PMC10629814 DOI: 10.1172/jci.insight.170148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
Thrombosis is a common complication of advanced cancer, yet the cellular mechanisms linking malignancy to thrombosis are poorly understood. The unfolded protein response (UPR) is an ER stress response associated with advanced cancers. A proteomic evaluation of plasma from patients with gastric and non-small cell lung cancer who were monitored prospectively for venous thromboembolism demonstrated increased levels of UPR-related markers in plasma of patients who developed clots compared with those who did not. Release of procoagulant activity into supernatants of gastric, lung, and pancreatic cancer cells was enhanced by UPR induction and blocked by antagonists of the UPR receptors inositol-requiring enzyme 1α (IRE1α) and protein kinase RNA-like endoplasmic reticulum kinase (PERK). Release of extracellular vesicles bearing tissue factor (EVTFs) from pancreatic cancer cells was inhibited by siRNA-mediated knockdown of IRE1α/XBP1 or PERK pathways. Induction of UPR did not increase tissue factor (TF) synthesis, but rather stimulated localization of TF to the cell surface. UPR-induced TF delivery to EVTFs was inhibited by ADP-ribosylation factor 1 knockdown or GBF1 antagonism, verifying the role of vesicular trafficking. Our findings show that UPR activation resulted in increased vesicular trafficking leading to release of prothrombotic EVTFs, thus providing a mechanistic link between ER stress and cancer-associated thrombosis.
Collapse
Affiliation(s)
- Oluwatoyosi Muse
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rushad Patell
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian G. Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Moua Yang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Emale El-Darzi
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sol Schulman
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Anna Falanga
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Marina Marchetti
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Russo
- Immunohematology and Transfusion Medicine, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Jeffrey I. Zwicker
- Hematology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Leung LL, Myles T, Morser J. Thrombin Cleavage of Osteopontin and the Host Anti-Tumor Immune Response. Cancers (Basel) 2023; 15:3480. [PMID: 37444590 PMCID: PMC10340489 DOI: 10.3390/cancers15133480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Osteopontin (OPN) is a multi-functional protein that is involved in various cellular processes such as cell adhesion, migration, and signaling. There is a single conserved thrombin cleavage site in OPN that, when cleaved, yields two fragments with different properties from full-length OPN. In cancer, OPN has tumor-promoting activity and plays a role in tumor growth and metastasis. High levels of OPN expression in cancer cells and tumor tissue are found in various types of cancer, including breast, lung, prostate, ovarian, colorectal, and pancreatic cancer, and are associated with poor prognosis and decreased survival rates. OPN promotes tumor progression and invasion by stimulating cell proliferation and angiogenesis and also facilitates the metastasis of cancer cells to other parts of the body by promoting cell adhesion and migration. Furthermore, OPN contributes to immune evasion by inhibiting the activity of immune cells. Thrombin cleavage of OPN initiates OPN's tumor-promoting activity, and thrombin cleavage fragments of OPN down-regulate the host immune anti-tumor response.
Collapse
Affiliation(s)
- Lawrence L. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.L.L.); (T.M.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
12
|
Aharon A, Dangot A, Kinaani F, Zavaro M, Bannon L, Bar-Lev T, Keren-Politansky A, Avivi I, Jacob G. Extracellular Vesicles of COVID-19 Patients Reflect Inflammation, Thrombogenicity, and Disease Severity. Int J Mol Sci 2023; 24:ijms24065918. [PMID: 36982991 PMCID: PMC10054500 DOI: 10.3390/ijms24065918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Severe COVID-19 infections present with cytokine storms, hypercoagulation, and acute respiratory distress syndrome, with extracellular vesicles (EVs) being involved in coagulation and inflammation. This study aimed to determine whether coagulation profiles and EVs reflect COVID-19 disease severity. Thirty-six patients with symptomatic COVID-19 infection with mild/moderate/severe disease (12 in each group) were analyzed. Sixteen healthy individuals served as controls. Coagulation profiles and EV characteristics were tested by nanoparticle tracking analysis (NTA), flow cytometry, and Western blot. While coagulation factors VII, V, VIII, and vWF were comparable, significant differences were found in patients' D-Dimer/fibrinogen/free protein S levels compared to controls. Severe patients' EVs displayed higher percentages of small EVs (<150 nm) with increased expression of exosome marker CD63. Severe patients' EVs displayed high levels of platelet markers (CD41) and coagulation factors (tissue factor activity, endothelial protein C receptor). EVs of patients with moderate/severe disease expressed significantly higher levels of immune cell markers (CD4/CD8/CD14) and contained higher levels of IL-6. We demonstrated that EVs, but not the coagulation profile, may serve as biomarkers for COVID-19 severity. EVs demonstrated elevated levels of immune- and vascular-related markers in patients with moderate/severe disease, and may play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Anat Aharon
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Ayelet Dangot
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Fadi Kinaani
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Mor Zavaro
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Lian Bannon
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Tali Bar-Lev
- Hematology Research Laboratory, Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| | | | - Irit Avivi
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Hematology Department, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| | - Giris Jacob
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Department of Medicine F, Tel-Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
- Recanati Center, Tel-Aviv Sourasky Medical Center, Tel Aviv 69978, Israel
| |
Collapse
|
13
|
Girard TJ, Antunes L, Zhang N, Amrute JM, Subramanian R, Eldem I, Remy KE, Mazer M, Erlich EC, Cruchaga C, Steed AL, Randolph GJ, Di Paola J. Peripheral blood mononuclear cell tissue factor (F3 gene) transcript levels and circulating extracellular vesicles are elevated in severe coronavirus 2019 (COVID-19) disease. J Thromb Haemost 2023; 21:629-638. [PMID: 36696180 PMCID: PMC9773443 DOI: 10.1016/j.jtha.2022.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with excessive coagulation, thrombosis, and mortality. OBJECTIVE To provide insight into mechanisms that contribute to excessive coagulation in coronavirus 2019 (COVID-19) disease. PATIENTS/METHODS Blood from COVID-19 patients was investigated for coagulation-related gene expression and functional activities. RESULTS Single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from severe COVID-19 patients revealed a 5.2-fold increase in tissue factor (TF [F3 gene]) transcript expression levels (P < .05), the trigger of extrinsic coagulation; a 7.7-fold increase in C1-inhibitor (SERPING1 gene; P < .01) transcript expression levels, an inhibitor of intrinsic coagulation; and a 4.4-fold increase in anticoagulant thrombomodulin (TM [THBD gene]) transcript expression levels (P < .001). Bulk RNA-seq analysis of sorted CD14+ monocytes on an independent cohort of COVID-19 patients confirmed these findings (P < .05). Indicative of excessive coagulation, 41% of COVID-19 patients' plasma samples contained high D-dimer levels (P < .0001); of these, 19% demonstrated extracellular vesicle TF activity (P = .109). COVID-19 patients' ex vivo plasma-based thrombin generation correlated positively with D-dimer levels (P < .01). Plasma procoagulant extracellular vesicles were elevated ∼9-fold in COVID-19 patients (P < .01). Public scRNA-seq data sets from bronchoalveolar lung fluid and our peripheral blood mononuclear cell scRNA-seq data show CD14+ monocytes/macrophages TF transcript expression levels are elevated in severe but not mild or moderate COVID-19 patients. CONCLUSIONS Beyond local lung injury, SARS-CoV-2 infection increases systemic TF (F3) transcript levels and elevates circulating extracellular vesicles that likely contribute to disease-associated coagulation, thrombosis, and related mortality.
Collapse
Affiliation(s)
- Thomas J Girard
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lilian Antunes
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nan Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junedh M Amrute
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Renumathi Subramanian
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irem Eldem
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kenneth E Remy
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Monty Mazer
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emma C Erlich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashley L Steed
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jorge Di Paola
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
14
|
Akinbo DB, Ajayi OI. Thrombotic Pathogenesis and Laboratory Diagnosis in Cancer Patients, An Update. Int J Gen Med 2023; 16:259-272. [PMID: 36711430 PMCID: PMC9879027 DOI: 10.2147/ijgm.s385772] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/04/2023] [Indexed: 01/23/2023] Open
Abstract
Cancer-associated thrombosis (CAT) is a leading cause of mortality in cancer patients and its incidence varies in different parts of the world. Venous thromboembolism (VTE) is a prominent manifestation of CAT, and significantly impacts morbidity and survival compared to arterial thrombosis in cancer patients. Several risk factors for developing VTE such as chemotherapy and immobilization have also been found co-existing with cancer patients and contributing to the increased risk of VTE in cancer patients than in non-cancer patients. This review highlights recent mechanisms in the pathogenesis of hypercoagulable syndromes associated with cancer, multiple mechanisms implicated in promoting cancer-associated thrombosis and their diagnostic approaches. Cancer cells interact with every part of the hemostatic system; generating their own procoagulant factors, through stimulation of the prothrombotic properties of other blood cell components or the initiation of clotting by cancer therapies which can all directly activate the coagulation cascade and contribute to the VTE experienced in CAT. It is our hope that the multiple interconnections between the hemostatic system and cancer biology and the improved biomarkers reported in this study can be relevant in establishing a predictive model for VTE, optimize early detection of asymptomatic microthrombosis for more personalized prophylactic strategies and incorporate effective therapeutic options and patient management to reduce mortality and morbidity, and improve the quality of life of affected cancer patients.
Collapse
Affiliation(s)
- David Bolaji Akinbo
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Afe Babalola University, Ado – Ekiti, Ekiti State, Nigeria,Department of Food, Nutrition, Dietetics and Health, College of Health and Human Sciences, Kansas State University, Manhattan, KS, USA,Correspondence: David Bolaji Akinbo, Email
| | - Olutayo Ifedayo Ajayi
- Department of Physiology, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
15
|
Tissue factor in cancer-associated thromboembolism: possible mechanisms and clinical applications. Br J Cancer 2022; 127:2099-2107. [PMID: 36097177 PMCID: PMC9467428 DOI: 10.1038/s41416-022-01968-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2023] Open
Abstract
Venous and arterial thromboses, called as cancer-associated thromboembolism (CAT), are common complications in cancer patients that are associated with high mortality. The cell-surface glycoprotein tissue factor (TF) initiates the extrinsic blood coagulation cascade. TF is overexpressed in cancer cells and is a component of extracellular vesicles (EVs). Shedding of TF+EVs from cancer cells followed by association with coagulation factor VII (fVII) can trigger the blood coagulation cascade, followed by cancer-associated venous thromboembolism in some cancer types. Secretion of TF is controlled by multiple mechanisms of TF+EV biogenesis. The procoagulant function of TF is regulated via its conformational change. Thus, multiple steps participate in the elevation of plasma procoagulant activity. Whether cancer cell-derived TF is maximally active in the blood is unclear. Numerous mechanisms other than TF+EVs have been proposed as possible causes of CAT. In this review, we focused on a wide variety of regulatory and shedding mechanisms for TF, including the effect of SARS-CoV-2, to provide a broad overview for its role in CAT. Furthermore, we present the current technical issues in studying the relationship between CAT and TF.
Collapse
|
16
|
Chen YJ, Dong RG, Zhang MM, Sheng C, Guo PF, Sun J. Cancer-related stroke: Exploring personalized therapy strategies. Brain Behav 2022; 12:e2738. [PMID: 35938982 PMCID: PMC9480895 DOI: 10.1002/brb3.2738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cancer and ischemic stroke are two common diseases that threaten human health and have become the main causes of death in the world. It is estimated that one-in-ten patients with ischemic stroke have concomitant cancer, and this incidence is expected to increase as improvements in medical technology extends the life expectancy of cancer patients. DISCUSSION Cancer-related stroke (CRS) refers to unexplained ischemic stroke in patients with active cancer that cannot be explained by current stroke mechanisms. Available evidence suggests that CRS accounts for 5-10% of embolic stroke of undetermined source (ESUS). Although the incidence of CRS is gradually increasing, its underlying pathogenesis remains unclear. Also, there is no consensus on acute treatment and secondary prevention of stroke. CONCLUSION In this review, we retrospectively analyzed the incidence, mechanisms of CRS, its potential as a new stroke subtype, options for acute treatment, secondary prevention strategies, and disease progression, with the aim of attempting to explore personalized therapy strategies.
Collapse
Affiliation(s)
- Yu-Jie Chen
- Department of Neurological Rehabilitation, Xuzhou Central Hospital, Xuzhou city, P.R. China
| | - Rui-Guo Dong
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou city, P.R. China
| | - Meng-Meng Zhang
- Department of Neurological Rehabilitation, Xuzhou Central Hospital, Xuzhou city, P.R. China
| | - Chao Sheng
- Department of Neurological Rehabilitation, Xuzhou Central Hospital, Xuzhou city, P.R. China
| | - Peng-Fei Guo
- Department of Neurological Rehabilitation, Xuzhou Central Hospital, Xuzhou city, P.R. China
| | - Jie Sun
- Department of Neurological Rehabilitation, Xuzhou Central Hospital, Xuzhou city, P.R. China
| |
Collapse
|
17
|
Al-Koussa H, AlZaim I, El-Sabban ME. Pathophysiology of Coagulation and Emerging Roles for Extracellular Vesicles in Coagulation Cascades and Disorders. J Clin Med 2022; 11:jcm11164932. [PMID: 36013171 PMCID: PMC9410115 DOI: 10.3390/jcm11164932] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
The notion of blood coagulation dates back to the ancient Greek civilization. However, the emergence of innovative scientific discoveries that started in the seventeenth century formulated the fundamentals of blood coagulation. Our understanding of key coagulation processes continues to evolve, as novel homeostatic and pathophysiological aspects of hemostasis are revealed. Hemostasis is a dynamic physiological process, which stops bleeding at the site of injury while maintaining normal blood flow within the body. Intrinsic and extrinsic coagulation pathways culminate in the homeostatic cessation of blood loss, through the sequential activation of the coagulation factors. Recently, the cell-based theory, which combines these two pathways, along with newly discovered mechanisms, emerged to holistically describe intricate in vivo coagulation mechanisms. The complexity of these mechanisms becomes evident in coagulation diseases such as hemophilia, Von Willebrand disease, thrombophilia, and vitamin K deficiency, in which excessive bleeding, thrombosis, or unnecessary clotting, drive the development and progression of diseases. Accumulating evidence implicates cell-derived and platelet-derived extracellular vesicles (EVs), which comprise microvesicles (MVs), exosomes, and apoptotic bodies, in the modulation of the coagulation cascade in hemostasis and thrombosis. As these EVs are associated with intercellular communication, molecular recycling, and metastatic niche creation, emerging evidence explores EVs as valuable diagnostic and therapeutic approaches in thrombotic and prothrombotic diseases.
Collapse
Affiliation(s)
- Houssam Al-Koussa
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Marwan E. El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, The American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
- Correspondence: ; Tel.: +961-01-350-000 (ext. 4765)
| |
Collapse
|
18
|
Abstract
Tissue factor (TF), an initiator of extrinsic coagulation pathway, is positively correlated with venous thromboembolism (VTE) of tumor patients. Beyond thrombosis, TF plays a vital role in tumor progression. TF is highly expressed in cancer tissues and circulating tumor cell (CTC), and activates factor VIIa (FVIIa), which increases tumor cells proliferation, angiogenesis, epithelial-mesenchymal transition (EMT) and cancer stem cells(CSCs) activity. Furthermore, TF and TF-positive microvesicles (TF+MVs) activate the coagulation system to promote the clots formation with non-tumor cell components (e.g., platelets, leukocytes, fibrin), which makes tumor cells adhere to clots to form CTC clusters. Then, tumor cells utilize clots to cause its reducing fluid shear stress (FSS), anoikis resistance, immune escape, adhesion, extravasation and colonization. Herein, we review in detail that how TF signaling promotes tumor metastasis, and how TF-targeted therapeutic strategies are being in the preclinical and clinical trials.
Collapse
|
19
|
Melnichnikova O, Zhilenkova Y, Sirotkina O, Zolotova E, Pishchulov K, Tastanbekov M, Paltsev A, Simakova M. Circulating Small Extracellular Vesicles Profiling and Thrombin Generation as Potential Markers of Thrombotic Risk in Glioma Patients. Front Cardiovasc Med 2022; 9:789937. [PMID: 35811733 PMCID: PMC9259782 DOI: 10.3389/fcvm.2022.789937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction Patients with glioma (GM) are at a high risk of venous thromboembolism (VTE). The role of microvesiculation in the cancer-associated thrombosis mechanisms has been previously demonstrated. This study aimed to evaluate the relative abundance of extracellular vesicles (EVs) and thrombin generation (TG) in combination with standard laboratory tests in patients with newly diagnosed GM as potential prognostic markers in VTE. Materials and Methods In the present study, 11 patients with newly diagnosed GM and 10 healthy volunteers were analyzed. EVs were counted and their cellular origin was determined (CytoFlex B4-R2-V2, Beckman Coulter, United States), as well as thrombin generation test (TGT) (Diagnostica Stago SAS, France) was performed. Results In patients with GM, the relative abundance of the CD41 + EVs (platelet-derived)—and CD105 + EVs (endothelial-derived) was significantly higher than in the control group (44.3 [40.5; 52.4] vs. 27.2 [22.9; 31.0]%, p = 0.002, and 5.4 [4.8; 7.8] vs. 1.9 [1.5; 2.8]%, p = 0.0003, respectively). The D-dimer level was higher in patients with GM compared with the control group (0.46 [0.38; 1.85] vs. 0.36 [0.27; 0.40] μg/ml FEU, p = 0.03, respectively). There was a trend toward an increase in the peak thrombin and velocity index (VI) in the GM group (p = 0.06). During the follow-up period, two patients (18%) developed thrombosis, had tumor sizes of more than 5 cm, thrombocytopenia, increased VI, and D-dimer. Conclusion Analysis of platelet-derived EVs, platelet count, and TGT in combination with D-dimer assessment could improve the stratification of patients prone to VTE, which needs to be confirmed in a larger sample.
Collapse
Affiliation(s)
- Olga Melnichnikova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
- *Correspondence: Olga Melnichnikova,
| | - Yulia Zhilenkova
- Department of Laboratory Medicine and Genetics, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Olga Sirotkina
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Ekaterina Zolotova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Konstantin Pishchulov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Malik Tastanbekov
- Department of Neurosurgery, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Artem Paltsev
- Department of Neurosurgery, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Maria Simakova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
20
|
Peraramelli S, Zhou Q, Zhou Q, Wanko B, Zhao L, Nishimura T, Leung TH, Mizuno S, Ito M, Myles T, Stulnig TM, Morser J, Leung LL. Thrombin cleavage of osteopontin initiates osteopontin's tumor-promoting activity. J Thromb Haemost 2022; 20:1256-1270. [PMID: 35108449 PMCID: PMC9289821 DOI: 10.1111/jth.15663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Osteopontin (OPN) is a multifunctional proinflammatory matricellular protein overexpressed in multiple human cancers and associated with tumor progression and metastases. Thrombin cleavage of OPN reveals a cryptic binding site for α4 β1 and α9 β1 integrins. METHODS Thrombin cleavage-resistant OPNR153A knock-in (OPN-KI) mice were generated and compared to OPN deficient mice (OPN-KO) and wild type (WT) mice in their ability to support growth of melanoma cells. Flow cytometry was used to analyze tumor infiltrating leukocytes. RESULTS OPN-KI mice engineered with a thrombin cleavage-resistant OPN had reduced B16 melanoma growth and fewer pulmonary metastases than WT mice. The tumor suppression phenotype of the OPN-KI mouse was identical to that observed in OPN-KO mice and was replicated in WT mice by pharmacologic inhibition of thrombin with dabigatran. Tumors isolated from OPN-KI mice had increased tumor-associated macrophages with an altered activation phenotype. Immunodeficient OPN-KI mice (NOG-OPN-KI) or macrophage-depleted OPN-KI mice did not exhibit the tumor suppression phenotype. As B16 cells do not express OPN, thrombin-cleaved fragments of host OPN suppress host antitumor immune response by functionally modulating the tumor-associated macrophages. YUMM3.1 cells, which express OPN, showed less tumor suppression in the OPN-KI and OPN-KO mice than B16 cells, but its growth was suppressed by dabigatran similar to B16 cells. CONCLUSIONS Thrombin cleavage of OPN, derived from the host and the tumor, initiates OPN's tumor-promoting activity in vivo.
Collapse
Affiliation(s)
- Sameera Peraramelli
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Qi Zhou
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Qin Zhou
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Bettina Wanko
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Lei Zhao
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Toshihiko Nishimura
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Thomas H. Leung
- Department of Dermatology, University of Pennsylvania School of Medicine, PA 19104, USA
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Trans-Border Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals (CIEA), Kawasaki, Japan
| | - Timothy Myles
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas M. Stulnig
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University Vienna, Vienna, Austria
- Third Medical Department and Karl Landsteiner Institute for Metabolic Diseases and Nephrology, Clinic Hietzing, Vienna, Austria
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Lawrence L.K. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
21
|
Antoniak S, Phungphong S, Cheng Z, Jensen BC. Novel Mechanisms of Anthracycline-Induced Cardiovascular Toxicity: A Focus on Thrombosis, Cardiac Atrophy, and Programmed Cell Death. Front Cardiovasc Med 2022; 8:817977. [PMID: 35111832 PMCID: PMC8801506 DOI: 10.3389/fcvm.2021.817977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Anthracycline antineoplastic agents such as doxorubicin are widely used and highly effective component of adjuvant chemotherapy for breast cancer and curative regimens for lymphomas, leukemias, and sarcomas. The primary dose-limiting adverse effect of anthracyclines is cardiotoxicity that typically manifests as cardiomyopathy and can progress to the potentially fatal clinical syndrome of heart failure. Decades of pre-clinical research have explicated the complex and multifaceted mechanisms of anthracycline-induced cardiotoxicity. It is well-established that oxidative stress contributes to the pathobiology and recent work has elucidated important central roles for direct mitochondrial injury and iron overload. Here we focus instead on emerging aspects of anthracycline-induced cardiotoxicity that may have received less attention in other recent reviews: thrombosis, myocardial atrophy, and non-apoptotic programmed cell death.
Collapse
Affiliation(s)
- Silvio Antoniak
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Blood Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Silvio Antoniak
| | - Sukanya Phungphong
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, United States
- Zhaokang Cheng
| | - Brian C. Jensen
- Cardiology Division, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
22
|
Shim YJ, Chatterjee V, Swaidani S, Alluri RK, Kundu S, Merkulova A, Angelini D, You D, Whitney SA, Feener EP, Barnard J, Schmaier AH, Khorana AA, McCrae KR. Polyphosphate expression by cancer cell extracellular vesicles mediates binding of factor XII and contact activation. Blood Adv 2021; 5:4741-4751. [PMID: 34597365 PMCID: PMC8759128 DOI: 10.1182/bloodadvances.2021005116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023] Open
Abstract
Extracellular vesicles (EV) have been implicated in diverse biological processes, including intracellular communication, transport of nucleic acids, and regulation of vascular function. Levels of EVs are elevated in cancer, and studies suggest that EV may stimulate thrombosis in patients with cancer through expression of tissue factor. However, limited data also implicate EV in the activation of the contact pathway of coagulation through activation of factor XII (FXII) to FXIIa. To better define the ability of EV to initiate contact activation, we compared the ability of EV derived from different cancer cell lines to activate FXII. EV from all cell lines activated FXII, with those derived from pancreatic and lung cancer cell lines demonstrating the most potent activity. Concordant with the activation of FXII, EV induced the cleavage of high molecular weight kininogen (HK) to cleaved kininogen. We also observed that EVs from patients with cancer stimulated FXII activation and HK cleavage. To define the mechanisms of FXII activation by EV, EV were treated with calf intestinal alkaline phosphatase or Escherichia coli exopolyphosphatase to degrade polyphosphate; this treatment blocked binding of FXII to EVs and the ability of EV to mediate FXII activation. In vivo, EV induced pulmonary thrombosis in wild-type mice, with protection conferred by a deficiency in FXII, HK, or prekallikrein. Moreover, pretreatment of EVs with calf intestinal alkaline phosphatase inhibited their prothrombotic effect. These results indicate that polyphosphate mediates the binding of contact factors to EV and that EV-associated polyphosphate may contribute to the prothrombotic effects of EV in cancer.
Collapse
Affiliation(s)
- Young Jun Shim
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Victor Chatterjee
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Shadi Swaidani
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Ravi Kumar Alluri
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Suman Kundu
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | - Alona Merkulova
- Division of Hematology/Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Dana Angelini
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Dewen You
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
| | | | | | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH
| | - Alvin H. Schmaier
- Division of Hematology/Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH
| | - Alok A. Khorana
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Keith R. McCrae
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH
- Department of Hematology/Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
23
|
Chang CH, Pauklin S. Extracellular vesicles in pancreatic cancer progression and therapies. Cell Death Dis 2021; 12:973. [PMID: 34671031 PMCID: PMC8528925 DOI: 10.1038/s41419-021-04258-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/08/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer (PC) is one of the leading causes of cancer-related death worldwide due to delayed diagnosis and limited treatments. More than 90% of all pancreatic cancers are pancreatic ductal adenocarcinoma (PDAC). Extensive communication between tumour cells and other cell types in the tumour microenvironment have been identified which regulate cancer hallmarks during pancreatic tumorigenesis via secretory factors and extracellular vesicles (EVs). The EV-capsuled factors not only facilitate tumour growth locally, but also enter circulation and reach distant organs to construct a pre-metastatic niche. In this review, we delineate the key factors in pancreatic ductal adenocarcinoma derived EVs that mediate different tumour processes. Also, we highlight the factors that are related to the crosstalk with cancer stem cells/cancer-initiating cells (CSC/CIC), the subpopulation of cancer cells that can efficiently metastasize and resist currently used chemotherapies. Lastly, we discuss the potential of EV-capsuled factors in early diagnosis and antitumour therapeutic strategies.
Collapse
Affiliation(s)
- Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Windmill Road, OX3 7LD, Oxford, UK.
| |
Collapse
|
24
|
Zifkos K, Dubois C, Schäfer K. Extracellular Vesicles and Thrombosis: Update on the Clinical and Experimental Evidence. Int J Mol Sci 2021; 22:ijms22179317. [PMID: 34502228 PMCID: PMC8431093 DOI: 10.3390/ijms22179317] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) compose a heterogenous group of membrane-derived particles, including exosomes, microvesicles and apoptotic bodies, which are released into the extracellular environment in response to proinflammatory or proapoptotic stimuli. From earlier studies suggesting that EV shedding constitutes a cellular clearance mechanism, it has become evident that EV formation, secretion and uptake represent important mechanisms of intercellular communication and exchange of a wide variety of molecules, with relevance in both physiological and pathological situations. The putative role of EVs in hemostasis and thrombosis is supported by clinical and experimental studies unraveling how these cell-derived structures affect clot formation (and resolution). From those studies, it has become clear that the prothrombotic effects of EVs are not restricted to the exposure of tissue factor (TF) and phosphatidylserines (PS), but also involve multiplication of procoagulant surfaces, cross-linking of different cellular players at the site of injury and transfer of activation signals to other cell types. Here, we summarize the existing and novel clinical and experimental evidence on the role and function of EVs during arterial and venous thrombus formation and how they may be used as biomarkers as well as therapeutic vectors.
Collapse
Affiliation(s)
- Konstantinos Zifkos
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, D-55131 Mainz, Germany;
| | - Christophe Dubois
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l’Agriculture, l’alimentation et l’Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), F-13380 Marseille, France;
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, D-55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
25
|
Pang M, Zhao F, Yu P, Zhang X, Xiao H, Qiang W, Zhu H, Zhao L. The significance of coagulation and fibrinolysis-related parameters in predicting postoperative venous thrombosis in patients with breast cancer. Gland Surg 2021; 10:1439-1446. [PMID: 33968695 DOI: 10.21037/gs-21-117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To explore the expression level of coagulation and fibrinolysis-related indexes in the plasma of breast cancer patients after surgery, and explore their predictive value for deep venous thrombosis (DVT). Methods From May 2016 to May 2019, 63 patients with lower extremity DVT after radical mastectomy in our hospital were selected as the thrombus group, and 69 patients without venous thrombosis after radical mastectomy were selected as the control group. The levels of D-dimer (D-D) and fibrinolytic product (FDP) were measured by latex enhanced immunoturbidimetry, Fibrinogen (FIB) levels were measured using the von Clauss method, thrombin antithrombin complex (TAT) and thrombomodulin (TM) levels were measured by enzyme-linked immunosorbent assay (ELISA), and the evaluation value of coagulation markers on tumor thrombosis was analyzed by receiver operating characteristic curve (ROC) curve analysis. Results There were significant differences in blood pressure, platelet count (PLT) level, diabetes history, and tumor metastasis between the two groups (P<0.05). The levels of PT, D-D, FDP, TAT, and TM in the thrombus group were significantly higher than those in control group (P<0.05). The area under the curve (AUC) of D-D, FDP, and TAT were 0.790, 0.881, and 0.672, respectively and there was a marked difference among the indexes (P<0.05). The AUC of FDP was the largest, and the sensitivity and diagnostic value of FDP were the highest. Conclusions The plasma levels of FDP, D-D, TAT, and TM in breast cancer patients with DVT after radical mastectomy were significantly increased, which is related to imbalanced coagulation and fibrinolysis functioning in patients. FDP had the highest predictive value for DVT after radical mastectomy.
Collapse
Affiliation(s)
- Mengyu Pang
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Fenglian Zhao
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Pengyue Yu
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohua Zhang
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Hexin Xiao
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Wang Qiang
- Business Department, Sekisui Medical Technology (China) Ltd., Beijing, China
| | - Hongquan Zhu
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Liyan Zhao
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Rosas M, Slatter DA, Obaji SG, Webber JP, Alvarez-Jarreta J, Thomas CP, Aldrovandi M, Tyrrell VJ, Jenkins PV, O’Donnell VB, Collins PW. The procoagulant activity of tissue factor expressed on fibroblasts is increased by tissue factor-negative extracellular vesicles. PLoS One 2020; 15:e0240189. [PMID: 33031441 PMCID: PMC7544082 DOI: 10.1371/journal.pone.0240189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is critical for the activation of blood coagulation. TF function is regulated by the amount of externalised phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the surface of the cell in which it is expressed. We investigated the role PS and PE in fibroblast TF function. Fibroblasts expressed 6-9 x 104 TF molecules/cell but had low specific activity for FXa generation. We confirmed that this was associated with minimal externalized PS and PE and characterised for the first time the molecular species of PS/PE demonstrating that these differed from those found in platelets. Mechanical damage of fibroblasts, used to simulate vascular injury, increased externalized PS/PE and led to a 7-fold increase in FXa generation that was inhibited by annexin V and an anti-TF antibody. Platelet-derived extracellular vesicles (EVs), that did not express TF, supported minimal FVIIa-dependent FXa generation but substantially increased fibroblast TF activity. This enhancement in fibroblast TF activity could also be achieved using synthetic liposomes comprising 10% PS without TF. In conclusion, despite high levels of surface TF expression, healthy fibroblasts express low levels of external-facing PS and PE limiting their ability to generate FXa. Addition of platelet-derived TF-negative EVs or artificial liposomes enhanced fibroblast TF activity in a PS dependent manner. These findings contribute information about the mechanisms that control TF function in the fibroblast membrane.
Collapse
Affiliation(s)
- Marcela Rosas
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - David A. Slatter
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Samya G. Obaji
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Jason P. Webber
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jorge Alvarez-Jarreta
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Christopher P. Thomas
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Maceler Aldrovandi
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Victoria J. Tyrrell
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Peter V. Jenkins
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Valerie B. O’Donnell
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| | - Peter W. Collins
- Institute of Infection and Immunity, and Systems Immunity Research Institute, School of Medicine Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
27
|
Chang PMH. Pulmonary embolism: A warning sign of occult malignancy. J Chin Med Assoc 2020; 83:693-694. [PMID: 32568966 DOI: 10.1097/jcma.0000000000000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Peter Mu-Hsin Chang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
28
|
Quaglia M, Dellepiane S, Guglielmetti G, Merlotti G, Castellano G, Cantaluppi V. Extracellular Vesicles as Mediators of Cellular Crosstalk Between Immune System and Kidney Graft. Front Immunol 2020; 11:74. [PMID: 32180768 PMCID: PMC7057849 DOI: 10.3389/fimmu.2020.00074] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are known immune-modulators exerting a critical role in kidney transplantation (KT). EV bioactive cargo includes graft antigens, costimulatory/inhibitory molecules, cytokines, growth factors, and functional microRNAs (miRNAs) that may modulate expression of recipient cell genes. As paracrine factors, neutrophil- and macrophage-derived EVs exert immunosuppressive and immune-stimulating effects on dendritic cells, respectively. Dendritic cell-derived EVs mediate alloantigen spreading and modulate antigen presentation to T lymphocytes. At systemic level, EVs exert pleiotropic effects on complement and coagulation. Depending on their biogenesis, they can amplify complement activation or shed complement inhibitors and prevent cell lysis. Likewise, endothelial- and platelet-derived EVs can exert procoagulant/prothrombotic effects and also promote endothelial survival and angiogenesis after ischemic injury. Kidney endothelial- and tubular-derived EVs play a key role in ischemia-reperfusion injury (IRI) and during the healing process; additionally, they can trigger rejection by inducing both alloimmune and autoimmune responses. Endothelial EVs have procoagulant/pro-inflammatory effects and can release sequestered self-antigens, generating a tissue-specific autoimmunity. Renal tubule-derived EVs shuttle pro-fibrotic mediators (TGF-β and miR-21) to interstitial fibroblasts and modulate neutrophil and T-lymphocyte influx. These processes can lead to peritubular capillary rarefaction and interstitial fibrosis-tubular atrophy. Different EVs, including those from mesenchymal stromal cells (MSCs), have been employed as a therapeutic tool in experimental models of rejection and IRI. These particles protect tubular and endothelial cells (by inhibition of apoptosis and inflammation-fibrogenesis or by inducing autophagy) and stimulate tissue regeneration (by triggering angiogenesis, cell proliferation, and migration). Finally, urinary and serum EVs represent potential biomarkers for delayed graft function (DGF) and acute rejection. In conclusion, EVs sustain an intricate crosstalk between graft tissue and innate/adaptive immune systems. EVs play a major role in allorecognition, IRI, autoimmunity, and alloimmunity and are promising as biomarkers and therapeutic tools in KT.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Sergio Dellepiane
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- Division of Hematology/Medical Oncology, Icahn School of Medicine at Mount Sinai Hospital, The Tisch Cancer Institute, New York, NY, United States
| | - Gabriele Guglielmetti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), Novara, Italy
- Center for Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
- *Correspondence: Vincenzo Cantaluppi
| |
Collapse
|
29
|
Cui S, Li H. [Perioperative Venous Thromboembolism (VTE) Prophylaxis in Thoracic Cancer Patients: Chinese Experts Consensus - Interpretation of Perioperative Hypercoagulable State]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2019; 22:752-756. [PMID: 31874669 PMCID: PMC6935033 DOI: 10.3779/j.issn.1009-3419.2019.12.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Venous thromboembolism (VTE) is a common perioperative complication of lung cancer and a major cause of unexpected death in hospital. The clinical risk factors of VTE include: patients' factors (advanced age, obesity, etc.), tumor-related factors (classification, staging, etc.), treatment-related factors (chemotherapy, surgery, etc.). In addition, tumor cells express cancer procoagulant (CP), tissue factor (TF), inflammatory factors or activate platelets, inflammatory cells and other related cells, directly or indirectly activate the coagulation process, and cause blood hypercoagulable state, thus promote the occurrence of VTE. At the same time, the relevant biomarkers can also reflect the perioperative coagulation status of patients, which is helpful to more accurately identify high-risk subgroups to establish more accurate and targeted anticoagulation strategies to prevent thrombosis in lung cancer patients.
Collapse
Affiliation(s)
- Songping Cui
- Department of Thoracic Surgery, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China
| | - Hui Li
- Department of Thoracic Surgery, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100020, China
| |
Collapse
|