1
|
Kumar V, Stewart JH. Obesity, bone marrow adiposity, and leukemia: Time to act. Obes Rev 2024; 25:e13674. [PMID: 38092420 DOI: 10.1111/obr.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2023] [Accepted: 11/13/2023] [Indexed: 02/28/2024]
Abstract
Obesity has taken the face of a pandemic with less direct concern among the general population and scientific community. However, obesity is considered a low-grade systemic inflammation that impacts multiple organs. Chronic inflammation is also associated with different solid and blood cancers. In addition, emerging evidence demonstrates that individuals with obesity are at higher risk of developing blood cancers and have poorer clinical outcomes than individuals in a normal weight range. The bone marrow is critical for hematopoiesis, lymphopoiesis, and myelopoiesis. Therefore, it is vital to understand the mechanisms by which obesity-associated changes in BM adiposity impact leukemia development. BM adipocytes are critical to maintain homeostasis via different means, including immune regulation. However, obesity increases BM adiposity and creates a pro-inflammatory environment to upregulate clonal hematopoiesis and a leukemia-supportive environment. Obesity further alters lymphopoiesis and myelopoiesis via different mechanisms, which dysregulate myeloid and lymphoid immune cell functions mentioned in the text under different sequentially discussed sections. The altered immune cell function during obesity alters hematological malignancies and leukemia susceptibility. Therefore, obesity-induced altered BM adiposity, immune cell generation, and function impact an individual's predisposition and severity of leukemia, which should be considered a critical factor in leukemia patients.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Frank D, Patnana PK, Vorwerk J, Mao L, Gopal LM, Jung N, Hennig T, Ruhnke L, Frenz JM, Kuppusamy M, Autry R, Wei L, Sun K, Mohammed Ahmed HM, Künstner A, Busch H, Müller H, Hutter S, Hoermann G, Liu L, Xie X, Al-Matary Y, Nimmagadda SC, Cano FC, Heuser M, Thol F, Göhring G, Steinemann D, Thomale J, Leitner T, Fischer A, Rad R, Röllig C, Altmann H, Kunadt D, Berdel WE, Hüve J, Neumann F, Klingauf J, Calderon V, Opalka B, Dührsen U, Rosenbauer F, Dugas M, Varghese J, Reinhardt HC, von Bubnoff N, Möröy T, Lenz G, Batcha AMN, Giorgi M, Selvam M, Wang E, McWeeney SK, Tyner JW, Stölzel F, Mann M, Jayavelu AK, Khandanpour C. Germ line variant GFI1-36N affects DNA repair and sensitizes AML cells to DNA damage and repair therapy. Blood 2023; 142:2175-2191. [PMID: 37756525 PMCID: PMC10733838 DOI: 10.1182/blood.2022015752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
ABSTRACT Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.
Collapse
Affiliation(s)
- Daria Frank
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Jan Vorwerk
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Lianghao Mao
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Lavanya Mokada Gopal
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Noelle Jung
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Thorben Hennig
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Leo Ruhnke
- Department of Internal Medicine I, University Hospital Dresden, Technical University Dresden, Dresden, Germany
| | - Joris Maximillian Frenz
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Maithreyan Kuppusamy
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Robert Autry
- Hopp Children’s Cancer Center, Heidelberg, Germany
| | - Lanying Wei
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Kaiyan Sun
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Helal Mohammed Mohammed Ahmed
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | | | | | | | - Longlong Liu
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yahya Al-Matary
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Subbaiah Chary Nimmagadda
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Fiorella Charles Cano
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Felicitas Thol
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Gudrun Göhring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Jürgen Thomale
- Institute of Cell Biology, University Hospital Essen, Essen, Germany
| | - Theo Leitner
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technische Universität München, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research, School of Medicine, Technische Universität München, Munich, Germany
- Department of Medicine II, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | | | | | | | - Wolfgang E. Berdel
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Jana Hüve
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Felix Neumann
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Refined Laser Systems GmbH, Münster, Germany
| | - Jürgen Klingauf
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Virginie Calderon
- Bioinformatic Core Facility, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Aarif M. N. Batcha
- Institute of Medical Data Processing, Biometrics and Epidemiology, Faculty of Medicine, Ludwig Maximilians University Munich, Munich, Germany
- Data Integration for Future Medicine, Ludwig Maximilian University Munich, Munich, Germany
| | - Marianna Giorgi
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Murugan Selvam
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Eunice Wang
- Roswell Park Comprehensive Cancer Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Shannon K. McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR
| | - Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR
| | - Friedrich Stölzel
- Department of Internal Medicine I, University Hospital Dresden, Technical University Dresden, Dresden, Germany
- Department of Medicine II, Division for Stem Cell Transplantation and Cellular Immunotherapy, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein Kiel, Christian Albrecht University Kiel, Kiel, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
| | - Ashok Kumar Jayavelu
- Proteomics and Cancer Cell Signaling Group, Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center and Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany
- Hopp Children’s Cancer Center, Heidelberg, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University Cancer Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Kheirkhah Rahimabad P, Jones AD, Zhang H, Chen S, Jiang Y, Ewart S, Holloway JW, Arshad H, Eslamimehr S, Bruce R, Karmaus W. Polymorphisms in Glutathione S-Transferase ( GST) Genes Modify the Effect of Exposure to Maternal Smoking Metabolites in Pregnancy and Offspring DNA Methylation. Genes (Basel) 2023; 14:1644. [PMID: 37628696 PMCID: PMC10454475 DOI: 10.3390/genes14081644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Maternal smoking in pregnancy (MSP) affects the offspring's DNA methylation (DNAm). There is a lack of knowledge regarding individual differences in susceptibility to exposure to MSP. Glutathione S-transferase (GST) genes are involved in protection against harmful oxidants such as those found in cigarette smoke. This study aimed to test whether polymorphisms in GST genes influence the effect of MSP on offspring DNAm. Using data from the Isle of Wight birth cohort, we assessed the association of MSP and offspring DNAm in 493 mother-child dyads (251 male, 242 female) with the effect-modifying role of GST gene polymorphism (at rs506008, rs574344, rs12736389, rs3768490, rs1537234, and rs1695). MSP was assessed by levels of nicotine and its downstream metabolites (cotinine, norcotinine, and hydroxycotinine) in maternal sera. In males, associations of hydroxycotinine with DNAm at cg18473733, cg25949550, cg11647108, and cg01952185 and norcotinine with DNAm at cg09935388 were modified by GST gene polymorphisms (p-values < 0.05). In females, associations of hydroxycotinine with DNAm at cg12160087 and norcotinine with DNAm at cg18473733 were modified by GST gene polymorphisms (p-values < 0.05). Our study emphasizes the role of genetic polymorphism in GST genes in DNAm's susceptibility to MSP.
Collapse
Affiliation(s)
- Parnian Kheirkhah Rahimabad
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (P.K.R.); (H.Z.); (Y.J.); (S.E.)
| | - A. Daniel Jones
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, USA;
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (P.K.R.); (H.Z.); (Y.J.); (S.E.)
| | - Su Chen
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Yu Jiang
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (P.K.R.); (H.Z.); (Y.J.); (S.E.)
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK;
- The David Hide Asthma and Allergy Research Centre, Isle of Wight, Newport PO30 5TG, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Hampshire, Southampton SO16 6YD, UK
| | - Shakiba Eslamimehr
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (P.K.R.); (H.Z.); (Y.J.); (S.E.)
| | - Robert Bruce
- Department of Anesthesiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health Sciences, School of Public Health, University of Memphis, Memphis, TN 38111, USA; (P.K.R.); (H.Z.); (Y.J.); (S.E.)
| |
Collapse
|
4
|
Xie X, Patnana PK, Frank D, Schütte J, Al-Matary Y, Künstner A, Busch H, Ahmed H, Liu L, Engel DR, Dührsen U, Rosenbauer F, Von Bubnoff N, Lenz G, Khandanpour C. Dose-dependent effect of GFI1 expression in the reconstitution and the differentiation capacity of HSCs. Front Cell Dev Biol 2023; 11:866847. [PMID: 37091981 PMCID: PMC10113925 DOI: 10.3389/fcell.2023.866847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
GFI1 is a transcriptional repressor and plays a pivotal role in regulating the differentiation of hematopoietic stem cells (HSCs) towards myeloid and lymphoid cells. Serial transplantation of Gfi1 deficient HSCs repopulated whole hematopoietic system but in a competitive setting involving wild-type HSCs, they lose this ability. The underlying mechanisms to this end are poorly understood. To better understand this, we used different mouse strains that express either loss of both Gfi1 alleles (Gfi1-KO), with reduced expression of GFI1 (GFI1-KD) or wild-type Gfi1/GFI1 (Gfi1-/GFI1-WT; corresponding to the mouse and human alleles). We observed that loss of Gfi1 or reduced expression of GFI1 led to a two to four fold lower number of HSCs (defined as Lin-Sca1+c-Kit+CD150+CD48-) compared to GFI1-WT mice. To study the functional influence of different levels of GFI1 expression on HSCs function, HSCs from Gfi1-WT (expressing CD45.1 + surface antigens) and HSCs from GFI1-KD or -KO (expressing CD45.2 + surface antigens) mice were sorted and co-transplanted into lethally irradiated host mice. Every 4 weeks, CD45.1+ and CD45.2 + on different lineage mature cells were analyzed by flow cytometry. At least 16 weeks later, mice were sacrificed, and the percentage of HSCs and progenitors including GMPs, CMPs and MEPs in the total bone marrow cells was calculated as well as their CD45.1 and CD45.2 expression. In the case of co-transplantation of GFI1-KD with Gfi1-WT HSCs, the majority of HSCs (81% ± 6%) as well as the majority of mature cells (88% ± 10%) originated from CD45.2 + GFI1-KD HSCs. In the case of co-transplantation of Gfi1-KO HSCs with Gfi1-WT HSCs, the majority of HSCs originated from CD45.2+ and therefore from Gfi1-KO (61% ± 20%); however, only a small fraction of progenitors and mature cells originated from Gfi1-KO HSCs (<1%). We therefore in summary propose that GFI1 has a dose-dependent role in the self-renewal and differentiation of HSCs.
Collapse
Affiliation(s)
- Xiaoqing Xie
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Daria Frank
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Judith Schütte
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Yahya Al-Matary
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Axel Künstner
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Helal Ahmed
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Longlong Liu
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Daniel R. Engel
- Department of Immunodynamics, Institute for Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Frank Rosenbauer
- Institute for Molecular Tumor Biology, University Hospital Münster, Münster, Germany
| | - Nikolas Von Bubnoff
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein, University of Lübeck, Lübeck, Germany
- *Correspondence: Cyrus Khandanpour,
| |
Collapse
|
5
|
Vorwerk J, Sun K, Frank D, Neumann F, Hüve J, Budde PM, Liu L, Xie X, Patnana PK, Ahmed HMM, Opalka B, Lenz G, Jayavelu AK, Khandanpour C. Presence of the GFI1-36N single nucleotide polymorphism enhances the response of MLL-AF9 leukemic cells to CDK4/6 inhibition. Front Oncol 2022; 12:903691. [PMID: 36003783 PMCID: PMC9393725 DOI: 10.3389/fonc.2022.903691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
The zinc finger protein Growth Factor Independence 1 (GFI1) acts as a transcriptional repressor regulating differentiation of myeloid and lymphoid cells. A single nucleotide polymorphism of GFI1, GFI1-36N, has a prevalence of 7% in healthy Caucasians and 15% in acute myeloid leukemia (AML) patients, hence most probably predisposing to AML. One reason for this is that GFI1-36N differs from the wildtype form GFI1-36S regarding its ability to induce epigenetic changes resulting in a derepression of oncogenes. Using proteomics, immunofluorescence, and immunoblotting we have now gained evidence that murine GFI1-36N leukemic cells exhibit a higher protein level of the pro-proliferative protein arginine N-methyltransferase 5 (PRMT5) as well as increased levels of the cell cycle propagating cyclin-dependent kinases 4 (CDK4) and 6 (CDK6) leading to a faster proliferation of GFI1-36N leukemic cells in vitro. As a therapeutic approach, we subsequently treated leukemic GFI1-36S and GFI1-36N cells with the CDK4/6 inhibitor palbociclib and observed that GFI1-36N leukemic cells were more susceptible to this treatment. The findings suggest that presence of the GFI1-36N variant increases proliferation of leukemic cells and could possibly be a marker for a specific subset of AML patients sensitive to CDK4/6 inhibitors such as palbociclib.
Collapse
Affiliation(s)
- Jan Vorwerk
- Department of Medicine A, Hematology, Hemostaseology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Kaiyan Sun
- Department of Medicine A, Hematology, Hemostaseology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Daria Frank
- Department of Medicine A, Hematology, Hemostaseology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Felix Neumann
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
- Evorion Biotechnologies GmbH, Münster, Germany
| | - Jana Hüve
- Fluorescence Microscopy Facility Münster, Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany
| | - Paulina Marie Budde
- Department of Medicine A, Hematology, Hemostaseology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Longlong Liu
- Department of Medicine A, Hematology, Hemostaseology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Xiaoqing Xie
- Department of Medicine A, Hematology, Hemostaseology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Pradeep Kumar Patnana
- Department of Medicine A, Hematology, Hemostaseology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Helal Mohammed Mohammed Ahmed
- Department of Medicine A, Hematology, Hemostaseology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Hemostaseology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Ashok Kumar Jayavelu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Munich, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology, and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Leukemia, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Hemostaseology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, University of Lübeck, Lübeck, Germany
- *Correspondence: Cyrus Khandanpour,
| |
Collapse
|
6
|
GFI1 regulates hair cell differentiation by acting as an off-DNA transcriptional co-activator of ATOH1, and a DNA-binding repressor. Sci Rep 2022; 12:7793. [PMID: 35551236 PMCID: PMC9098437 DOI: 10.1038/s41598-022-11931-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
GFI1 is a zinc finger transcription factor that is necessary for the differentiation and survival of hair cells in the cochlea. Deletion of Gfi1 in mice significantly reduces the expression of hundreds of hair cell genes: this is a surprising result, as GFI1 normally acts as a transcriptional repressor by recruiting histone demethylases and methyltransferases to its targets. To understand the mechanisms by which GFI1 promotes hair cell differentiation, we used CUT&RUN to identify the direct targets of GFI1 and ATOH1 in hair cells. We found that GFI1 regulates hair cell differentiation in two distinct ways—first, GFI1 and ATOH1 can bind to the same regulatory elements in hair cell genes, but while ATOH1 directly binds its target DNA motifs in many of these regions, GFI1 does not. Instead, it appears to enhance ATOH1’s transcriptional activity by acting as part of a complex in which it does not directly bind DNA. Second, GFI1 can act in its more typical role as a direct, DNA-binding transcriptional repressor in hair cells; here it represses non-hair cell genes, including many neuronal genes. Together, our results illuminate the function of GFI1 in hair cell development and hair cell reprogramming strategies.
Collapse
|
7
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Solomon M, DeLay M, Reynaud D. Phenotypic Analysis of the Mouse Hematopoietic Hierarchy Using Spectral Cytometry: From Stem Cell Subsets to Early Progenitor Compartments. Cytometry A 2020; 97:1057-1065. [PMID: 32449586 DOI: 10.1002/cyto.a.24041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/25/2020] [Accepted: 04/29/2020] [Indexed: 12/28/2022]
Abstract
Phenotypic analysis by flow cytometry is one of the most utilized primary tools to study the hematopoietic system. Here, we present a complex panel designed for spectral flow cytometry that allows for the in-depth analysis of the mouse hematopoietic stem and progenitor compartments. The developed panel encompasses the hematopoietic stem cell (HSC) compartment, an array of multipotent progenitors with early marks of lineage specification and a series of progenitors associated with lymphoid, granulo-macrophagic, megakaryocytic and erythroid lineage commitment. It has a built-in redundancy for key markers known to decipher the fine architecture of the HSC compartment by segregating subsets with different functional potential. As a resource, we used this panel to provide a snapshot view of the evolution of these phenotypically defined hematopoietic compartments during the life of the animals. We show that by using a spectral cytometer, this panel is compatible with the analysis of GFP-expressing gene-reporter mice across the hematopoietic system. We leverage this tool to determine how previously described markers such as CD150, CD34, CD105, CD41, ECPR, and CD49b define specific HSC subsets and confirm that high expression of the transcription factor Gfi1 is a hallmark of the most primitive HSC compartment. Altogether, our results provide a convenient protocol to obtain in one analysis a more extensive view of the hematopoietic architecture in mouse models. Our results could also serve as a base for further development of high-end panels leveraging spectral flow cytometry beyond the 15-fluorochrome panel presented in this report. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Michael Solomon
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Monica DeLay
- Cytek Biosciences, Fremont, California, 94538, USA
| | - Damien Reynaud
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
9
|
Daniel MG, Sachs D, Bernitz JM, Fstkchyan Y, Rapp K, Satija N, Law K, Patel F, Gomes AM, Kim HS, Pereira CF, Chen B, Lemischka IR, Moore KA. Induction of human hemogenesis in adult fibroblasts by defined factors and hematopoietic coculture. FEBS Lett 2019; 593:3266-3287. [PMID: 31557312 DOI: 10.1002/1873-3468.13621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Transcription factor (TF)-based reprogramming of somatic tissues holds great promise for regenerative medicine. Previously, we demonstrated that the TFs GATA2, GFI1B, and FOS convert mouse and human fibroblasts to hemogenic endothelial-like precursors that generate hematopoietic stem progenitor (HSPC)-like cells over time. This conversion is lacking in robustness both in yield and biological function. Herein, we show that inclusion of GFI1 to the reprogramming cocktail significantly expands the HSPC-like population. AFT024 coculture imparts functional potential to these cells and allows quantification of stem cell frequency. Altogether, we demonstrate an improved human hemogenic induction protocol that could provide a valuable human in vitro model of hematopoiesis for disease modeling and a platform for cell-based therapeutics. DATABASE: Gene expression data are available in the Gene Expression Omnibus (GEO) database under the accession number GSE130361.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Sachs
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey M Bernitz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Yesai Fstkchyan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katrina Rapp
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Namita Satija
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth Law
- Rocket Pharmaceuticals Ltd, New York, NY, USA
| | - Foram Patel
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andreia M Gomes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Huen-Suk Kim
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos-Filipe Pereira
- Division of Molecular Medicine and Gene Therapy, Lund University, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Sweden
| | - Benjamin Chen
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ihor R Lemischka
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine, New York, NY, USA
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Möröy T, Khandanpour C. Role of GFI1 in Epigenetic Regulation of MDS and AML Pathogenesis: Mechanisms and Therapeutic Implications. Front Oncol 2019; 9:824. [PMID: 31508375 PMCID: PMC6718700 DOI: 10.3389/fonc.2019.00824] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/12/2019] [Indexed: 01/12/2023] Open
Abstract
Growth factor independence 1 (GFI1) is a DNA binding zinc finger protein, which can mediate transcriptional repression mainly by recruiting histone-modifying enzymes to its target genes. GFI1 plays important roles in hematopoiesis, in particular by regulating both the function of hematopoietic stem- and precursor cells and differentiation along myeloid and lymphoid lineages. In recent years, a number of publications have provided evidence that GFI1 is involved in the pathogenesis of acute myeloid leukemia (AML), its proposed precursor, myelodysplastic syndrome (MDS), and possibly also in the progression from MDS to AML. For instance, expression levels of the GFI1 gene correlate with patient survival and treatment response in both AML and MDS and can influence disease progression and maintenance in experimental animal models. Also, a non-synonymous single nucleotide polymorphism (SNP) of GFI1, GFI1-36N, which encodes a variant GFI1 protein with a decreased efficiency to act as a transcriptional repressor, was found to be a prognostic factor for the development of AML and MDS. Both the GFI1-36N variant as well as reduced expression of the GFI1 gene lead to genome-wide epigenetic changes at sites where GFI1 occupies target gene promoters and enhancers. These epigenetic changes alter the response of leukemic cells to epigenetic drugs such as HDAC- or HAT inhibitors, indicating that GFI1 expression levels and genetic variants of GFI1 are of clinical relevance. Based on these and other findings, specific therapeutic approaches have been proposed to treat AML by targeting some of the epigenetic changes that occur as a consequence of GFI1 expression. Here, we will review the well-known role of Gfi1 as a transcription factor and describe the more recently discovered functions of GFI1 that are independent of DNA binding and how these might affect disease progression and the choice of epigenetic drugs for therapeutic regimens of AML and MDS.
Collapse
Affiliation(s)
- Tarik Möröy
- Department of Hematopoiesis and Cancer, Institut de Recherches Cliniques de Montréal, Montreal, QC, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC, Canada.,Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| |
Collapse
|
11
|
Tang Q, Xu M, Xu J, Xie X, Yang H, Gan L. Gfi1-GCE inducible Cre line for hair cell-specific gene manipulation in mouse inner ear. Genesis 2019; 57:e23304. [PMID: 31077553 DOI: 10.1002/dvg.23304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 01/16/2023]
Abstract
Tissue-specific inducible Cre recombinase mouse lines allow precise genetic manipulations in spatiotemporal manners and are pivotal for functional studies of genes during development and in adults. Growth factor independence 1 (GFI1) is an essential transcription factor expressed in the hair cells of mouse inner ear and Gfi1 locus serves as an excellent anchor site to drive the expression of inducible Cre recombinase in mouse inner hair cells. In this study, we have generated Gfi1-P2A-GFP-CreERT2 (Gfi1-GCE) knock-in mouse line by in-frame fusion of a self-cleaving GCE to the C-terminus of GFI1. We have shown that as predicted, the expression of GCE and GFI1 was detected specifically in the cytosol and nuclei of hair cells, respectively, of uninduced Gfi1-GCE mice, suggesting the successful cleavage and simultaneous expression of GFI1 and GCE. In addition, the in-frame fusion of the self-cleaving GCE does not interrupt the function of Gfi1 in the inner ear. Administration of tamoxifen leads to nuclear translocation of GCE and results in an efficient activation of tdTomato reporter gene expression specifically in most hair cells throughout development and in adults. Thus, this inducible Gfi1-GCE mouse line is a highly efficient Cre deleter and is suitable for gene manipulation in developing and adult inner ear hair cells.
Collapse
Affiliation(s)
- Qi Tang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
| | - Mei Xu
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York.,Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiadong Xu
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York.,Institute of Life Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaoling Xie
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
| | - Hua Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, New York
| |
Collapse
|
12
|
A novel regulatory circuit between p53 and GFI1 controls induction of apoptosis in T cells. Sci Rep 2019; 9:6304. [PMID: 31004086 PMCID: PMC6474872 DOI: 10.1038/s41598-019-41684-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/13/2019] [Indexed: 01/09/2023] Open
Abstract
Here we demonstrate a mode of reciprocal regulation between GFI1 and p53 that controls the induction of apoptosis in T cells. We show that GFI1 prevents induction of p53 dependent apoptosis by recruiting LSD1 to p53, which leads to the demethylation of its C-terminal domain. This is accompanied by a decrease of the acetylation of lysine 117 within the core domain of the murine p53 protein, which is required for transcriptional induction of apoptosis. Our results support a model in which the effect of GFI1’s regulation of methylation at the c-terminus of p53 is ultimately mediated through control of acetylation at lysine 117 of p53. We propose that GFI1 acts prior to the occurrence of DNA damage to affect the post-translational modification state and limit the subsequent activation of p53. Once activated, p53 then transcriptionally activates GFI1, presumably in order to re-establish the homeostatic balance of p53 activity. These findings have implications for the activity level of p53 in various disease contexts where levels of GFI1 are either increased or decreased.
Collapse
|
13
|
Morales-Martinez M, Valencia-Hipolito A, Vega GG, Neri N, Nambo MJ, Alvarado I, Cuadra I, Duran-Padilla MA, Martinez-Maza O, Huerta-Yepez S, Vega MI. Regulation of Krüppel-Like Factor 4 (KLF4) expression through the transcription factor Yin-Yang 1 (YY1) in non-Hodgkin B-cell lymphoma. Oncotarget 2019; 10:2173-2188. [PMID: 31040909 PMCID: PMC6481341 DOI: 10.18632/oncotarget.26745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Krüppel-Like Factor 4 (KLF4) is a member of the KLF transcription factor family, and evidence suggests that KLF4 is either an oncogene or a tumor suppressor. The regulatory mechanism underlying KLF4 expression in cancer, and specifically in lymphoma, is still not understood. Bioinformatics analysis revealed two YY1 putative binding sites in the KLF4 promoter region (-950 bp and -105 bp). Here, the potential regulation of KLF4 by YY1 in NHL was analyzed. Mutation of the putative YY1 binding sites in a previously reported system containing the KLF4 promoter region and CHIP analysis confirmed that these binding sites are important for KLF4 regulation. B-NHL cell lines showed that both KLF4 and YY1 are co-expressed, and transfection with siRNA-YY1 resulted in significant inhibition of KLF4. The clinical implications of YY1 in the transcriptional regulation of KLF4 were investigated by IHC in a TMA with 43 samples of subtypes DLBCL and FL, and all tumor tissues expressing YY1 demonstrated a correlation with KLF4 expression, which was consistent with bioinformatics analyses in several databases. Our findings demonstrated that KLF4 can be transcriptionally regulated by YY1 in B-NHL, and a correlation between YY1 expression and KLF4 was found in clinical samples. Hence, both YY1 and KLF4 may be possible therapeutic biomarkers of NHL.
Collapse
Affiliation(s)
- Mario Morales-Martinez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México.,Unidad de Posgrado, Facultad de Medicina Universidad Nacional Autónoma de México, México City, México
| | - Alberto Valencia-Hipolito
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México
| | - Gabriel G Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México.,Unidad de Posgrado, Facultad de Medicina Universidad Nacional Autónoma de México, México City, México
| | - Natividad Neri
- Department of Hematology, Oncology Hospital, National Medical Center, IMSS, México City, México
| | - Maria J Nambo
- Department of Hematology, Oncology Hospital, National Medical Center, IMSS, México City, México
| | - Isabel Alvarado
- Servicio de Anatomía Patológica, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, México City, México
| | - Ivonne Cuadra
- Servicio de Anatomía Patológica, Hospital de Oncología, Centro Médico Nacional Siglo XXI, IMSS, México City, México
| | - Marco A Duran-Padilla
- Servicio de Patología, Hospital General de México "Eduardo Liceaga", Facultad de Medicina de la UNAM, México City, México
| | - Otoniel Martinez-Maza
- Department of Obstetrics and Gynecology, Jonsson Comprehensive Cancer Center, UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México "Federico Gómez" S.S.A, México City, México
| | - Mario I Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, México City, México.,Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, California, USA
| |
Collapse
|
14
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
15
|
Chen MS, Lo YH, Chen X, Williams CS, Donnelly JM, Criss ZK, Patel S, Butkus JM, Dubrulle J, Finegold MJ, Shroyer NF. Growth Factor-Independent 1 Is a Tumor Suppressor Gene in Colorectal Cancer. Mol Cancer Res 2019; 17:697-708. [PMID: 30606770 DOI: 10.1158/1541-7786.mcr-18-0666] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/20/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022]
Abstract
Colorectal cancer is the third most common cancer and the third leading cause of cancer death in the United States. Growth factor-independent 1 (GFI1) is a zinc finger transcriptional repressor responsible for controlling secretory cell differentiation in the small intestine and colon. GFI1 plays a significant role in the development of human malignancies, including leukemia, lung cancer, and prostate cancer. However, the role of GFI1 in colorectal cancer progression is largely unknown. Our results demonstrate that RNA and protein expression of GFI1 are reduced in advanced-stage nonmucinous colorectal cancer. Subcutaneous tumor xenograft models demonstrated that the reexpression of GFI1 in 4 different human colorectal cancer cell lines inhibits tumor growth. To further investigate the role of Gfi1 in de novo colorectal tumorigenesis, we developed transgenic mice harboring a deletion of Gfi1 in the colon driven by CDX2-cre (Gfi1F/F; CDX2-cre) and crossed them with ApcMin/+ mice (ApcMin/+; Gfi1F/F; CDX2-cre). Loss of Gfi1 significantly increased the total number of colorectal adenomas compared with littermate controls with an APC mutation alone. Furthermore, we found that compound (ApcMin/+; Gfi1F/F; CDX2-cre) mice develop larger adenomas, invasive carcinoma, as well as hyperplastic lesions expressing the neuroendocrine marker chromogranin A, a feature that has not been previously described in APC-mutant tumors in mice. Collectively, these results demonstrate that GFI1 acts as a tumor suppressor gene in colorectal cancer, where deficiency of Gfi1 promotes malignancy in the colon. IMPLICATIONS: These findings reveal that GFI1 functions as a tumor suppressor gene in colorectal tumorigenesis.
Collapse
Affiliation(s)
- Min-Shan Chen
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Yuan-Hung Lo
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Xi Chen
- Department of Public Health Sciences, University of Miami, Miami, Florida
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University, Nashville, Tennessee
| | - Jessica M Donnelly
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas
| | - Zachary K Criss
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Shreena Patel
- Department of Pediatrics, Section of Gastroenterology, Hepatology, and Nutrition, Baylor College of Medicine, Houston, Texas
| | - Joann M Butkus
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.,Summer Undergraduate Research Training Program, Baylor College of Medicine, Houston Texas.,Susquehanna University, Selinsgrove, Pennsylvania
| | - Julien Dubrulle
- Integrated Microscopy Core, Baylor College of Medicine, Houston, Texas
| | - Milton J Finegold
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Noah F Shroyer
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas. .,Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas.,Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
16
|
Reduced expression but not deficiency of GFI1 causes a fatal myeloproliferative disease in mice. Leukemia 2018; 33:110-121. [PMID: 29925903 PMCID: PMC6326955 DOI: 10.1038/s41375-018-0166-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/25/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Growth factor independent 1 (Gfi1) controls myeloid differentiation by regulating gene expression and limits the activation of p53 by facilitating its de-methylation at Lysine 372. In human myeloid leukemia, low GFI1 levels correlate with an inferior prognosis. Here, we show that knockdown (KD) of Gfi1 in mice causes a fatal myeloproliferative disease (MPN) that could progress to leukemia after additional mutations. Both KO and KD mice accumulate myeloid cells that show signs of metabolic stress and high levels of reactive oxygen species. However, only KO cells have elevated levels of Lysine 372 methylated p53. This suggests that in contrast to absence of GFI1, KD of GFI1 leads to the accumulation of myeloid cells because sufficient amount of GFI1 is present to impede p53-mediated cell death, leading to a fatal MPN. The combination of myeloid accumulation and the ability to counteract p53 activity under metabolic stress could explain the role of reduced GF1 expression in human myeloid leukemia.
Collapse
|
17
|
Loss of murine Gfi1 causes neutropenia and induces osteoporosis depending on the pathogen load and systemic inflammation. PLoS One 2018; 13:e0198510. [PMID: 29879182 PMCID: PMC5991660 DOI: 10.1371/journal.pone.0198510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023] Open
Abstract
Gfi1 is a key molecule in hematopoietic lineage development and mutations in GFI1 cause severe congenital neutropenia (SCN). Neutropenia is associated with low bone mass, but the underlying mechanisms are poorly characterized. Using Gfi1 knock-out mice (Gfi1-ko/ko) as SCN model, we studied the relationship between neutropenia and bone mass upon different pathogen load conditions. Our analysis reveals that Gfi1-ko/ko mice kept under strict specific pathogen free (SPF) conditions demonstrate normal bone mass and survival. However, Gfi1-ko/ko mice with early (nonSPF) or late (SPF+nonSPF) pathogen exposure develop low bone mass. Gfi1-ko/ko mice demonstrate a striking rise of systemic inflammatory markers according to elevated pathogen exposure and reduced bone mass. Elevated inflammatory cytokines include for instance Il-1b, Il-6, and Tnf-alpha that regulate osteoclast development. We conclude that low bone mass, due to low neutrophil counts, is caused by the degree of systemic inflammation promoting osteoclastogenesis.
Collapse
|
18
|
Marneth AE, Botezatu L, Hönes JM, Israël JCL, Schütte J, Vassen L, Lams RF, Bergevoet SM, Groothuis L, Mandoli A, Martens JHA, Huls G, Jansen JH, Dührsen U, Berg T, Möröy T, Wichmann C, Lo MC, Zhang DE, van der Reijden BA, Khandanpour C. GFI1 is required for RUNX1/ETO positive acute myeloid leukemia. Haematologica 2018; 103:e395-e399. [PMID: 29674496 DOI: 10.3324/haematol.2017.180844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Anna E Marneth
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Judith M Hönes
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany.,Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Germany
| | - Jimmy C L Israël
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Judith Schütte
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Lothar Vassen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Robert F Lams
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Laura Groothuis
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Amit Mandoli
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, The Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany
| | - Tobias Berg
- Department of Medicine II-Hematology/Oncology, Goethe University, Frankfurt/Main, Germany
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), Hematopoiesis and Cancer Research Unit, and Université de Montréal, Canada
| | - Christian Wichmann
- Department of Transfusion Medicine, Cell Therapeutics and Hemostaseology, Ludwig-Maximilian University Hospital, Munich, Germany
| | - Mia-Chia Lo
- Department of Pathology & Division of Biological Sciences, University of California San Diego, La Jolla, USA
| | - Dong-Er Zhang
- Department of Pathology & Division of Biological Sciences, University of California San Diego, La Jolla, USA
| | - Bert A van der Reijden
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Germany .,Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Germany
| |
Collapse
|
19
|
Cheng B, Tang S, Zhe N, Ma D, Yu K, Wei D, Zhou Z, Lu T, Wang J, Fang Q. Low expression of GFI-1 Gene is associated with Panobinostat-resistance in acute myeloid leukemia through influencing the level of HO-1. Biomed Pharmacother 2018; 100:509-520. [DOI: 10.1016/j.biopha.2018.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 02/07/2023] Open
|
20
|
Hönes JM, Thivakaran A, Botezatu L, Patnana P, Castro SVDC, Al-Matary YS, Schütte J, Fischer KBI, Vassen L, Görgens A, Dührsen U, Giebel B, Khandanpour C. Enforced GFI1 expression impedes human and murine leukemic cell growth. Sci Rep 2017; 7:15720. [PMID: 29147018 PMCID: PMC5691148 DOI: 10.1038/s41598-017-15866-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/01/2017] [Indexed: 01/20/2023] Open
Abstract
The differentiation of haematopoietic cells is regulated by a plethora of so-called transcription factors (TFs). Mutations in genes encoding TFs or graded reduction in their expression levels can induce the development of various malignant diseases such as acute myeloid leukaemia (AML). Growth Factor Independence 1 (GFI1) is a transcriptional repressor with key roles in haematopoiesis, including regulating self-renewal of haematopoietic stem cells (HSCs) as well as myeloid and lymphoid differentiation. Analysis of AML patients and different AML mouse models with reduced GFI1 gene expression levels revealed a direct link between low GFI1 protein level and accelerated AML development and inferior prognosis. Here, we report that upregulated expression of GFI1 in several widely used leukemic cell lines inhibits their growth and decreases the ability to generate colonies in vitro. Similarly, elevated expression of GFI1 impedes the in vitro expansion of murine pre-leukemic cells. Using a humanized AML model, we demonstrate that upregulation of GFI1 expression leads to myeloid differentiation morphologically and immunophenotypically, increased level of apoptosis and reduction in number of cKit+ cells. These results suggest that increasing GFI1 level in leukemic cells with low GFI1 expression level could be a therapeutic approach.
Collapse
Affiliation(s)
- Judith M Hönes
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Aniththa Thivakaran
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Pradeep Patnana
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Symone Vitoriano da Conceição Castro
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, 70040-020, Brazil
| | - Yahya S Al-Matary
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Judith Schütte
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Karen B I Fischer
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lothar Vassen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
21
|
Sengupta SM, Smith AK, Grizenko N, Joober R. Locus-specific DNA methylation changes and phenotypic variability in children with attention-deficit hyperactivity disorder. Psychiatry Res 2017; 256:298-304. [PMID: 28662467 DOI: 10.1016/j.psychres.2017.06.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 04/06/2017] [Accepted: 06/14/2017] [Indexed: 12/22/2022]
Abstract
Maternal smoking during pregnancy is the most commonly cited risk factor for ADHD. While the causal relation between this factor and ADHD is debated, several lines of evidence suggest that it modulates the severity of ADHD, particularly through higher association with conduct disorder (CD). We hypothesized that maternal smoking during pregnancy may be associated with differential methylation in selected genes in children with ADHD. DNA extracted from peripheral blood was used to examine methylation between 25 children exposed, and 22 children not exposed to maternal smoking during pregnancy. Three genes (AHRR, CYP1A1, GFI1) were selected based on previous results observed in the general population. Regression analysis was conducted between methylation levels in these candidate genes and: (a) total number of ADHD and CD symptoms; (b) birth weight. Significant differences in methylation were observed in each of the candidate genes between children exposed and not exposed to maternal smoking during pregnancy. Methylation at the selected sites showed significant association with specific phenotypes. Significant correlations were observed between methylation within AHRR and number of CD symptoms; GFI1 and number of ADHD symptoms and GFI1 and birth weight. These initial results may have important clinical implications if confirmed in a larger independent sample.
Collapse
Affiliation(s)
- Sarojini M Sengupta
- Douglas Mental Health University Institute, Verdun, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| | - Alicia K Smith
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Natalie Grizenko
- Douglas Mental Health University Institute, Verdun, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Ridha Joober
- Douglas Mental Health University Institute, Verdun, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Miller GE, Borders AE, Crockett AH, Ross KM, Qadir S, Keenan-Devlin L, Leigh AK, Ham P, Ma J, Arevalo JM, Ernst LM, Cole SW. Maternal socioeconomic disadvantage is associated with transcriptional indications of greater immune activation and slower tissue maturation in placental biopsies and newborn cord blood. Brain Behav Immun 2017; 64:276-284. [PMID: 28434870 PMCID: PMC5493326 DOI: 10.1016/j.bbi.2017.04.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Children from economically disadvantaged families experience worse cognitive, psychiatric, and medical outcomes compared to more affluent youth. Preclinical models suggest some of the adverse influence of disadvantage could be transmitted during gestation via maternal immune activation, but this hypothesis has not been tested in humans. It also remains unclear whether prenatal interventions can mitigate such effects. To fill these gaps, we conducted two studies. Study 1 characterized the socioeconomic conditions of 79 women during pregnancy. At delivery, placenta biopsies and umbilical blood were collected for transcriptional profiling. Maternal disadvantage was associated with a transcriptional profile indicative of higher immune activation and slower fetal maturation, particularly in pathways related to brain, heart, and immune development. Cord blood cells of disadvantaged newborns also showed indications of immaturity, as reflected in down-regulation of pathways that coordinate myeloid cell development. These associations were independent of fetal sex, and characteristics of mothers (age, race, adiposity, diabetes, pre-eclampsia) and babies (delivery method, gestational age). Study 2 performed the same transcriptional analyses in specimens from 20 women participating in CenteringPregnancy, a group-based psychosocial intervention, and 20 women in traditional prenatal care. In both placenta biopsies and cord blood, women in CenteringPregnancy showed up-regulation of transcripts found in Study 1 to be most down-regulated in conjunction with disadvantage. Collectively, these results suggest socioeconomic disparities in placental biology are evident at birth, and provide clues about the mechanistic origins of health disparities. They also suggest the possibility that psychosocial interventions could have mitigating influences.
Collapse
Affiliation(s)
- Gregory E. Miller
- Department of Psychology and Institute for Policy Research, Northwestern University, Evanston IL
| | - Ann E. Borders
- Department of Obstetrics & Gynecology, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston IL
| | - Amy H. Crockett
- Department of Obstetrics & Gynecology, Greenville Hospital System University Medical Center, Greenville SC
| | - Kharah M. Ross
- Department of Psychology and Institute for Policy Research, Northwestern University, Evanston IL
| | - Sameen Qadir
- Department of Obstetrics & Gynecology, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston IL
| | - Lauren Keenan-Devlin
- Department of Obstetrics & Gynecology, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston IL
| | - Adam K. Leigh
- Department of Psychology and Institute for Policy Research, Northwestern University, Evanston IL
| | - Paula Ham
- Department of Psychology and Institute for Policy Research, Northwestern University, Evanston IL
| | - Jeffrey Ma
- Division of Hematology-Oncology, UCLA AIDS Institute, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Norman Cousins Center, UCLA School of Medicine, Los Angeles CA
| | - Jesusa M.G. Arevalo
- Division of Hematology-Oncology, UCLA AIDS Institute, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Norman Cousins Center, UCLA School of Medicine, Los Angeles CA
| | - Linda M. Ernst
- Department of Pathology, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston IL
| | - Steve W. Cole
- Division of Hematology-Oncology, UCLA AIDS Institute, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Norman Cousins Center, UCLA School of Medicine, Los Angeles CA
| |
Collapse
|
23
|
Su D, Wang X, Campbell MR, Porter DK, Pittman GS, Bennett BD, Wan M, Englert NA, Crowl CL, Gimple RN, Adamski KN, Huang Z, Murphy SK, Bell DA. Distinct Epigenetic Effects of Tobacco Smoking in Whole Blood and among Leukocyte Subtypes. PLoS One 2016; 11:e0166486. [PMID: 27935972 PMCID: PMC5147832 DOI: 10.1371/journal.pone.0166486] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
Tobacco smoke exposure dramatically alters DNA methylation in blood cells and may mediate smoking-associated complex diseases through effects on immune cell function. However, knowledge of smoking effects in specific leukocyte subtypes is limited. To better characterize smoking-associated methylation changes in whole blood and leukocyte subtypes, we used Illumina 450K arrays and Reduced Representation Bisulfite Sequencing (RRBS) to assess genome-wide DNA methylation. Differential methylation analysis in whole blood DNA from 172 smokers and 81 nonsmokers revealed 738 CpGs, including 616 previously unreported CpGs, genome-wide significantly associated with current smoking (p <1.2x10-7, Bonferroni correction). Several CpGs (MTSS1, NKX6-2, BTG2) were associated with smoking duration among heavy smokers (>22 cigarettes/day, n = 86) which might relate to long-term heavy-smoking pathology. In purified leukocyte subtypes from an independent group of 20 smokers and 14 nonsmokers we further examined methylation and gene expression for selected genes among CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, and CD2+ T cells. In 10 smokers and 10 nonsmokers we used RRBS to fine map differential methylation in CD4+ T cells, CD8+ T cells, CD14+, CD15+, CD19+, and CD56+ natural killer cells. Distinct cell-type differences in smoking-associated methylation and gene expression were identified. AHRR (cg05575921), ALPPL2 (cg21566642), GFI1 (cg09935388), IER3 (cg06126421) and F2RL3 (cg03636183) showed a distinct pattern of significant smoking-associated methylation differences across cell types: granulocytes> monocytes>> B cells. In contrast GPR15 (cg19859270) was highly significant in T and B cells and ITGAL (cg09099830) significant only in T cells. Numerous other CpGs displayed distinctive cell-type responses to tobacco smoke exposure that were not apparent in whole blood DNA. Assessing the overlap between these CpG sites and differential methylated regions (DMRs) with RRBS in 6 cell types, we confirmed cell-type specificity in the context of DMRs. We identified new CpGs associated with current smoking, pack-years, duration, and revealed unique profiles of smoking-associated DNA methylation and gene expression among immune cell types, providing potential clues to hematopoietic lineage-specific effects in disease etiology.
Collapse
Affiliation(s)
- Dan Su
- Environmental Genomics Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| | - Xuting Wang
- Environmental Genomics Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| | - Michelle R Campbell
- Environmental Genomics Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| | - Devin K Porter
- Environmental Genomics Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| | - Gary S Pittman
- Environmental Genomics Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| | - Brian D Bennett
- Integrated Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| | - Ma Wan
- Environmental Genomics Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| | - Neal A Englert
- Environmental Genomics Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| | - Christopher L Crowl
- Environmental Genomics Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| | - Ryan N Gimple
- Environmental Genomics Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| | - Kelly N Adamski
- Environmental Genomics Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| | - Zhiqing Huang
- Duke University School of Medicine, Durham, NC, 27708, United States of America
| | - Susan K Murphy
- Duke University School of Medicine, Durham, NC, 27708, United States of America
| | - Douglas A Bell
- Environmental Genomics Group, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, United States of America
| |
Collapse
|
24
|
Desnues B, Macedo AB, Ordoñez-Rueda D, Roussel-Queval A, Malissen B, Bruhns P, Malissen M, Alexopoulou L. The transcriptional repressor Gfi1 prevents lupus autoimmunity by restraining TLR7 signaling. Eur J Immunol 2016; 46:2801-2811. [PMID: 27600904 DOI: 10.1002/eji.201646573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/28/2016] [Accepted: 09/03/2016] [Indexed: 01/16/2023]
Abstract
The transcriptional repressor growth factor independence 1 (Gfi1) is important in myeloid and lymphoid differentiation. In the current study we evaluated the involvement of Gfi1 in systemic lupus erythematosus (SLE). We found that Genista mice, which carry a hypomorphic mutation in the gfi1 gene or Gfi1-deficient (Gfi1-/- ) mice develop signs of spontaneous lupus autoimmunity, including increased serum levels of IgM and IgG2a, autoantibodies against RNA and DNA, glomerular immunodeposits and increased frequencies of plasmablasts, germinal center (GC) B cells and age-associated B cells (ABCs). On the contrary, Genista mice deprived of TLR7 did not show any of these phenotypes, suggesting that the observed lupus autoimmunity in Genista mice is TLR7-dependent. Moreover, Genista mice showed an increased activation of dendritic cells (DCs), B and T cells that was dependent on TLR7 for DCs and B cells, but not for T cells. Upon TLR7 or TLR4 stimulation Genista DCs produced increased amounts of TNF, IL-6 and IFN-β and showed increased NF-κB phosphorylation and IRF7 nuclear translocation, suggesting that Gfi1 controls the NF-κB and type I IFN signaling pathway downstream of TLRs. Our data reveal that Gfi1 plays a critical role in the prevention of spontaneous lupus autoimmunity by negatively regulating TLR7 signaling.
Collapse
Affiliation(s)
- Benoit Desnues
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | | | | | | - Pierre Bruhns
- Unité des Anticorps en Thérapie et Pathologie, Département d'Immunologie, Institut Pasteur, Paris, France.,INSERM, U1222, Paris, France
| | - Marie Malissen
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | |
Collapse
|
25
|
Al-Matary YS, Botezatu L, Opalka B, Hönes JM, Lams RF, Thivakaran A, Schütte J, Köster R, Lennartz K, Schroeder T, Haas R, Dührsen U, Khandanpour C. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner. Haematologica 2016; 101:1216-1227. [PMID: 27390361 PMCID: PMC5046651 DOI: 10.3324/haematol.2016.143180] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/07/2016] [Indexed: 12/31/2022] Open
Abstract
The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia.
Collapse
Affiliation(s)
- Yahya S Al-Matary
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Lacramioara Botezatu
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Bertram Opalka
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Judith M Hönes
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Robert F Lams
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Aniththa Thivakaran
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Judith Schütte
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Renata Köster
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Klaus Lennartz
- Institute of cell biology (Tumor Research), University Hospital Essen, University of Duisburg-Essen
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University Düsseldorf, University Hospital, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University Düsseldorf, University Hospital, Germany
| | - Ulrich Dührsen
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| | - Cyrus Khandanpour
- Department of Hematology, University Hospital of Essen, West German Cancer Center (WTZ)
| |
Collapse
|
26
|
Sudden infant death syndrome: exposure to cigarette smoke leads to hypomethylation upstream of the growth factor independent 1 (GFI1) gene promoter. Forensic Sci Med Pathol 2016; 12:399-406. [PMID: 27677632 DOI: 10.1007/s12024-016-9812-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 01/01/2023]
Abstract
PURPOSE Smoking during pregnancy has long been known as an important risk factor for sudden infant death syndrome (SIDS). However, the precise relationship between the smoking behavior of the mother and SIDS still remains unclear. In this study, the influence of prenatal smoking exposure on the childrens' DNA methylation state of a CpG island located upstream of the promoter of the growth factor independent 1 (GFI1) gene was analyzed. METHODS Blood samples of well-defined SIDS cases with non-smoking mothers (n = 11), SIDS cases with smoking mothers during pregnancy (n = 11), and non-SIDS cases (n = 6) were obtained from a previous study and methylation states were determined by bisulfite sequencing. RESULTS Significant hypomethylation was observed in this CpG island in SIDS cases with cigarette smoke exposure compared to non-exposed cases. The strongest effect in this CpG island was observed for 49 CpG sites located within a transcription factor binding site. Coding for a transcriptional repressor, GFI1 plays an important role in various developmental processes. Alterations in the GFI1 expression might be linked to various conditions that are known to be associated with SIDS, such as dysregulated hematopoiesis and excessive inflammatory response. CONCLUSION Data obtained in this study show that analysis of methylation states in cases of sudden infant death syndrome might provide a further important piece of knowledge toward understanding SIDS, and should be investigated in further studies.
Collapse
|
27
|
Thambyrajah R, Patel R, Mazan M, Lie-a-Ling M, Lilly A, Eliades A, Menegatti S, Garcia-Alegria E, Florkowska M, Batta K, Kouskoff V, Lacaud G. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle 2016; 15:2108-2114. [PMID: 27399214 PMCID: PMC4993433 DOI: 10.1080/15384101.2016.1203491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 10/26/2022] Open
Abstract
The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Rahima Patel
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Milena Mazan
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Michael Lie-a-Ling
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Andrew Lilly
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Alexia Eliades
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Sara Menegatti
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Eva Garcia-Alegria
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | | | - Kiran Batta
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Valerie Kouskoff
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| |
Collapse
|
28
|
GFI1 functions in transcriptional control and cell fate determination require SNAG domain methylation to recruit LSD1. Biochem J 2016; 473:3355-69. [PMID: 27480105 DOI: 10.1042/bcj20160558] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022]
Abstract
Proper hematopoietic cell fate decisions require co-ordinated functions of transcription factors, their associated co-regulators, and histone-modifying enzymes. Growth factor independence 1 (GFI1) is a zinc finger transcriptional repressor and master regulator of normal and malignant hematopoiesis. While several GFI1-interacting proteins have been described, how GFI1 leverages these relationships to carry out transcriptional repression remains unclear. Here, we describe a functional axis involving GFI1, SMYD2, and LSD1 that is a critical contributor to GFI1-mediated transcriptional repression. SMYD2 methylates lysine-8 (K8) within a -(8)KSKK(11)- motif embedded in the GFI1 SNAG domain. Methylation-defective GFI1 SNAG domain lacks repressor function due to failure of LSD1 recruitment and persistence of promoter H3K4 di-methyl marks. Methylation-defective GFI1 also fails to complement GFI1 depletion phenotypes in developing zebrafish and lacks pro-growth and survival functions in lymphoid leukemia cells. Our data show a discrete methylation event in the GFI1 SNAG domain that facilitates recruitment of LSD1 to enable transcriptional repression and co-ordinate control of hematopoietic cell fate in both normal and malignant settings.
Collapse
|
29
|
Kim JH, Baddoo MC, Park EY, Stone JK, Park H, Butler TW, Huang G, Yan X, Pauli-Behn F, Myers RM, Tan M, Flemington EK, Lim ST, Ahn EYE. SON and Its Alternatively Spliced Isoforms Control MLL Complex-Mediated H3K4me3 and Transcription of Leukemia-Associated Genes. Mol Cell 2016; 61:859-73. [PMID: 26990989 DOI: 10.1016/j.molcel.2016.02.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/16/2015] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression. Importantly, alternatively spliced short isoforms of SON are markedly upregulated in acute myeloid leukemia. The short isoforms compete with full-length SON for chromatin occupancy but lack the menin-binding ability, thereby antagonizing full-length SON function in transcriptional repression while not impairing full-length SON-mediated RNA splicing. Furthermore, overexpression of a short isoform of SON enhances replating potential of hematopoietic progenitors. Our findings define SON as a fine-tuner of the MLL-menin interaction and reveal short SON overexpression as a marker indicating aberrant transcriptional initiation in leukemia.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Melody C Baddoo
- Tulane Cancer Center, Tulane University, New Orleans, LA 70112, USA
| | - Eun Young Park
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Joshua K Stone
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Hyeonsoo Park
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Thomas W Butler
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Gang Huang
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaomei Yan
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | | | - Ssang-Taek Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Eun-Young Erin Ahn
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
30
|
Botezatu L, Michel LC, Helness A, Vadnais C, Makishima H, Hönes JM, Robert F, Vassen L, Thivakaran A, Al-Matary Y, Lams RF, Schütte J, Giebel B, Görgens A, Heuser M, Medyouf H, Maciejewski J, Dührsen U, Möröy T, Khandanpour C. Epigenetic therapy as a novel approach for GFI136N-associated murine/human AML. Exp Hematol 2016; 44:713-726.e14. [PMID: 27216773 DOI: 10.1016/j.exphem.2016.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 02/02/2023]
Abstract
Epigenetic changes can contribute to development of acute myeloid leukemia (AML), a malignant disease of the bone marrow. A single-nucleotide polymorphism of transcription factor growth factor independence 1 (GFI1) generates a protein with an asparagine at position 36 (GFI1(36N)) instead of a serine at position 36 (GFI1(36S)), which is associated with de novo AML in humans. However, how GFI1(36N) predisposes to AML is poorly understood. To explore the mechanism, we used knock-in mouse strains expressing GFI1(36N) or GFI1(36S). Presence of GFI1(36N) shortened the latency and increased the incidence of AML in different murine models of myelodysplastic syndrome/AML. On a molecular level, GFI1(36N) induced genomewide epigenetic changes, leading to expression of AML-associated genes. On a therapeutic level, use of histone acetyltransferase inhibitors specifically impeded growth of GFI1(36N)-expressing human and murine AML cells in vitro and in vivo. These results establish, as a proof of principle, how epigenetic changes in GFI1(36N)-induced AML can be targeted.
Collapse
Affiliation(s)
- Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars C Michel
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anne Helness
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Charles Vadnais
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH
| | - Judith M Hönes
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - François Robert
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Lothar Vassen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Aniththa Thivakaran
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yahya Al-Matary
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Robert F Lams
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Judith Schütte
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - André Görgens
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Hind Medyouf
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany; Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
31
|
SUMOylation Regulates Growth Factor Independence 1 in Transcriptional Control and Hematopoiesis. Mol Cell Biol 2016; 36:1438-50. [PMID: 26951200 DOI: 10.1128/mcb.01001-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/20/2016] [Indexed: 01/08/2023] Open
Abstract
Cell fate specification requires precise coordination of transcription factors and their regulators to achieve fidelity and flexibility in lineage allocation. The transcriptional repressor growth factor independence 1 (GFI1) is comprised of conserved Snail/Slug/Gfi1 (SNAG) and zinc finger motifs separated by a linker region poorly conserved with GFI1B, its closest homolog. Moreover, GFI1 and GFI1B coordinate distinct developmental fates in hematopoiesis, suggesting that their functional differences may derive from structures within their linkers. We show a binding interface between the GFI1 linker and the SP-RING domain of PIAS3, an E3-SUMO (small ubiquitin-related modifier) ligase. The PIAS3 binding region in GFI1 contains a conserved type I SUMOylation consensus element, centered on lysine-239 (K239). In silico prediction algorithms identify K239 as the only high-probability site for SUMO modification. We show that GFI1 is modified by SUMO at K239. SUMOylation-resistant derivatives of GFI1 fail to complement Gfi1 depletion phenotypes in zebrafish primitive erythropoiesis and granulocytic differentiation in cultured human cells. LSD1/CoREST recruitment and MYC repression by GFI1 are profoundly impaired for SUMOylation-resistant GFI1 derivatives, while enforced expression of MYC blocks granulocytic differentiation. These findings suggest that SUMOylation within the GFI1 linker favors LSD1/CoREST recruitment and MYC repression to govern hematopoietic differentiation.
Collapse
|
32
|
Botezatu L, Michel LC, Makishima H, Schroeder T, Germing U, Haas R, van der Reijden B, Marneth AE, Bergevoet SM, Jansen JH, Przychodzen B, Wlodarski M, Niemeyer C, Platzbecker U, Ehninger G, Unnikrishnan A, Beck D, Pimanda J, Hellström-Lindberg E, Malcovati L, Boultwood J, Pellagatti A, Papaemmanuil E, Le Coutre P, Kaeda J, Opalka B, Möröy T, Dührsen U, Maciejewski J, Khandanpour C. GFI1(36N) as a therapeutic and prognostic marker for myelodysplastic syndrome. Exp Hematol 2016; 44:590-595.e1. [PMID: 27080012 PMCID: PMC4917888 DOI: 10.1016/j.exphem.2016.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 01/06/2023]
Abstract
Inherited gene variants play an important role in malignant diseases. The transcriptional repressor growth factor independence 1 (GFI1) regulates hematopoietic stem cell (HSC) self-renewal and differentiation. A single-nucleotide polymorphism of GFI1 (rs34631763) generates a protein with an asparagine (N) instead of a serine (S) at position 36 (GFI136N) and has a prevalence of 3%–5% among Caucasians. Because GFI1 regulates myeloid development, we examined the role of GFI136N on the course of MDS disease. To this end, we determined allele frequencies of GFI136N in four independent MDS cohorts from the Netherlands and Belgium, Germany, the ICGC consortium, and the United States. The GFI136N allele frequency in the 723 MDS patients genotyped ranged between 9% and 12%. GFI136N was an independent adverse prognostic factor for overall survival, acute myeloid leukemia-free survival, and event-free survival in a univariate analysis. After adjustment for age, bone marrow blast percentage, IPSS score, mutational status, and cytogenetic findings, GFI136N remained an independent adverse prognostic marker. GFI136S homozygous patients exhibited a sustained response to treatment with hypomethylating agents, whereas GFI136N patients had a poor sustained response to this therapy. Because allele status of GFI136N is readily determined using basic molecular techniques, we propose inclusion of GFI136N status in future prospective studies for MDS patients to better predict prognosis and guide therapeutic decisions. GFI136N is present in about 9%–12% of all Caucasian patients with myelodysplastic syndrome. GFI136N is an independent, adverse prognostic factor for survival. GFI136N patients with myelodysplastic syndrome respond poorly to hypomethylating agents.
Collapse
Affiliation(s)
- Lacramioara Botezatu
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Lars C Michel
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hideki Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Thomas Schroeder
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology and Oncology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bert van der Reijden
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Anne E Marneth
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Saskia M Bergevoet
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Bartlomiej Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Marcin Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Niemeyer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Uwe Platzbecker
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Gerhard Ehninger
- Department of Internal Medicine I, University Hospital TU Dresden, Dresden, Germany
| | - Ashwin Unnikrishnan
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Dominik Beck
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - John Pimanda
- Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jacqueline Boultwood
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrea Pellagatti
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Elli Papaemmanuil
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Philipp Le Coutre
- Medical Department with Focus on Hematology/Oncology Charite Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Jaspal Kaeda
- Medical Department with Focus on Hematology/Oncology Charite Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Bertram Opalka
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal (IRCM), Hematopoiesis and Cancer Research Unit, and Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jaroslaw Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Cyrus Khandanpour
- Department of Hematology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
33
|
GFI1 as a novel prognostic and therapeutic factor for AML/MDS. Leukemia 2016; 30:1237-45. [DOI: 10.1038/leu.2016.11] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/08/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022]
|
34
|
From cytopenia to leukemia: the role of Gfi1 and Gfi1b in blood formation. Blood 2015; 126:2561-9. [PMID: 26447191 DOI: 10.1182/blood-2015-06-655043] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022] Open
Abstract
The DNA-binding zinc finger transcription factors Gfi1 and Gfi1b were discovered more than 20 years ago and are recognized today as major regulators of both early hematopoiesis and hematopoietic stem cells. Both proteins function as transcriptional repressors by recruiting histone-modifying enzymes to promoters and enhancers of target genes. The establishment of Gfi1 and Gfi1b reporter mice made it possible to visualize their cell type-specific expression and to understand their function in hematopoietic lineages. We now know that Gfi1 is primarily important in myeloid and lymphoid differentiation, whereas Gfi1b is crucial for the generation of red blood cells and platelets. Several rare hematologic diseases are associated with acquired or inheritable mutations in the GFI1 and GFI1B genes. Certain patients with severe congenital neutropenia carry mutations in the GFI1 gene that lead to the disruption of the C-terminal zinc finger domains. Other mutations have been found in the GFI1B gene in families with inherited bleeding disorders. In addition, the Gfi1 locus is frequently found to be a proviral integration site in retrovirus-induced lymphomagenesis, and new, emerging data suggest a role of Gfi1 in human leukemia and lymphoma, underlining the role of both factors not only in normal hematopoiesis, but also in a wide spectrum of human blood diseases.
Collapse
|
35
|
Yao H, Goldman DC, Fan G, Mandel G, Fleming WH. The Corepressor Rcor1 Is Essential for Normal Myeloerythroid Lineage Differentiation. Stem Cells 2015; 33:3304-14. [PMID: 26119982 DOI: 10.1002/stem.2086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Based on its physical interactions with histone-modifying enzymes, the transcriptional corepressor Rcor1 has been implicated in the epigenetic regulation blood cell development. Previously, we have demonstrated that Rcor1 is essential for the maturation of definitive erythroid cells and fetal survival. To determine the functional role of Rcor1 in steady-state hematopoiesis in the adult, we used a conditional knockout approach. Here, we show that the loss of Rcor1 expression results in the rapid onset of severe anemia due to a complete, cell autonomous block in the maturation of committed erythroid progenitors. By contrast, both the frequency of megakaryocyte progenitors and their capacity to produce platelets were normal. Although the frequency of common lymphoid progenitors and T cells was not altered, B cells were significantly reduced and showed increased apoptosis. However, Rcor1-deficient bone marrow sustained normal levels of B-cells following transplantation, indicating a non-cell autonomous requirement for Rcor1 in B-cell survival. Evaluation of the myelomonocytic lineage revealed an absence of mature neutrophils and a significant increase in the absolute number of monocytic cells. Rcor1-deficient monocytes were less apoptotic and showed ∼100-fold more colony-forming activity than their normal counterparts, but did not give rise to leukemia. Moreover, Rcor1(-/-) monocytes exhibited extensive, cytokine-dependent self-renewal and overexpressed genes associated with hematopoietic stem/progenitor cell expansion including Gata2, Meis1, and Hoxa9. Taken together, these data demonstrate that Rcor1 is essential for the normal differentiation of myeloerythroid progenitors and for appropriately regulating self-renewal activity in the monocyte lineage.
Collapse
Affiliation(s)
- Huilan Yao
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Devorah C Goldman
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Oregon Stem Cell Center, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Guang Fan
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, USA
| | - Gail Mandel
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA.,Howard Hughes Medical Institute, Portland, Oregon, USA
| | - William H Fleming
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA.,Oregon Stem Cell Center, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
36
|
Küpers LK, Xu X, Jankipersadsing SA, Vaez A, la Bastide-van Gemert S, Scholtens S, Nolte IM, Richmond RC, Relton CL, Felix JF, Duijts L, van Meurs JB, Tiemeier H, Jaddoe VW, Wang X, Corpeleijn E, Snieder H. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol 2015; 44:1224-37. [PMID: 25862628 PMCID: PMC4588868 DOI: 10.1093/ije/dyv048] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2015] [Indexed: 01/06/2023] Open
Abstract
Background: We examined whether the effect of maternal smoking during pregnancy on birthweight of the offspring was mediated by smoking-induced changes to DNA methylation in cord blood. Methods: First, we used cord blood of 129 Dutch children exposed to maternal smoking vs 126 unexposed to maternal and paternal smoking (53% male) participating in the GECKO Drenthe birth cohort. DNA methylation was measured using the Illumina HumanMethylation450 Beadchip. We performed an epigenome-wide association study for the association between maternal smoking and methylation followed by a mediation analysis of the top signals [false-discovery rate (FDR) < 0.05]. We adjusted both analyses for maternal age, education, pre-pregnancy BMI, offspring’s sex, gestational age and white blood cell composition. Secondly, in 175 exposed and 1248 unexposed newborns from two independent birth cohorts, we replicated and meta-analysed results of eight cytosine-phosphate-guanine (CpG) sites in the GFI1 gene, which showed the most robust mediation. Finally, we performed functional network and enrichment analysis. Results: We found 35 differentially methylated CpGs (FDR < 0.05) in newborns exposed vs unexposed to smoking, of which 23 survived Bonferroni correction (P < 1 × 10-7). These 23 CpGs mapped to eight genes: AHRR, GFI1, MYO1G, CYP1A1, NEUROG1, CNTNAP2, FRMD4A and LRP5. We observed partial confirmation as three of the eight CpGs in GFI1 replicated. These CpGs partly mediated the effect of maternal smoking on birthweight (Sobel P < 0.05) in meta-analysis of GECKO and the two replication cohorts. Differential methylation of these three GFI1 CpGs explained 12–19% of the 202 g lower birthweight in smoking mothers. Functional enrichment analysis pointed towards activation of cell-mediated immunity. Conclusions: Maternal smoking during pregnancy was associated with cord blood methylation differences. We observed a potentially mediating role of methylation in the association between maternal smoking during pregnancy and birthweight of the offspring. Functional network analysis suggested a role in activating the immune system.
Collapse
Affiliation(s)
| | - Xiaojing Xu
- Georgia Regents University, Augusta, Georgia, USA
| | | | | | | | - Salome Scholtens
- Departments of Epidemiology, LifeLines Cohort Study, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Janine F Felix
- Departments of Epidemiology, Pediatrics, The Generation R Study Group and
| | | | - Joyce B van Meurs
- Internal Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Vincent W Jaddoe
- Departments of Epidemiology, Pediatrics, The Generation R Study Group and
| | | | | | | |
Collapse
|
37
|
Qu X, Nyeng P, Xiao F, Dorantes J, Jensen J. Growth Factor Independence-1 ( Gfi1) Is Required for Pancreatic Acinar Unit Formation and Centroacinar Cell Differentiation. Cell Mol Gastroenterol Hepatol 2014; 1:233-247.e1. [PMID: 28247862 PMCID: PMC5301134 DOI: 10.1016/j.jcmgh.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The genetic specification of the compartmentalized pancreatic acinar/centroacinar unit is poorly understood. Growth factor independence-1 (Gfi1) is a zinc finger transcriptional repressor that regulates hematopoietic stem cell maintenance, pre-T-cell differentiation, formation of granulocytes, inner ear hair cells, and the development of secretory cell types in the intestine. As GFI1/Gfi1 is expressed in human and rodent pancreas, we characterized the potential function of Gfi1 in mouse pancreatic development. METHODS Gfi1 knockout mice were analyzed at histological and molecular levels, including qRT-PCR, in situ hybridization, immunohistochemistry, and electron microscopy. RESULTS Loss of Gfi1 impacted formation and structure of the pancreatic acinar/centroacinar unit. Histologic and ultrastructural analysis of Gfi1-null pancreas revealed specific defects at the level of pancreatic acinar cells as well as the centroacinar cells (CACs) in Gfi1-/- mice when compared with wild-type littermates. Pancreatic endocrine differentiation, islet architecture, and function were unaffected. Organ domain patterning and the formation of ductal cells occurred normally during the murine secondary transition (E13.5-E14.5) in the Gfi1-/- pancreas. However, at later gestational time points (E18.5), expression of cellular markers for CACs was substantially reduced in Gfi1-/- mice, corroborated by electron microscopy imaging of the acinar/centroacinar unit. The reduction in CACs was correlated with an exocrine organ defect. Postnatally, Gfi1 deficiency resulted in severe pancreatic acinar dysplasia, including loss of granulation, autolytic vacuolation, and a proliferative and apoptotic response. CONCLUSIONS Gfi1 plays an important role in regulating the development of pancreatic CACs and the function of pancreatic acinar cells.
Collapse
Key Words
- BPL, Bauhinia purpurea lectin
- BrdU, bromodeoxyuridine
- CACs, centroacinar cells
- Centroacinar Cells
- Claudin 10
- DIG, digoxigenin
- EM, electron micrographs
- Gfi1, growth factor independence-1
- Growth Factor Independence-1 (Gfi1)
- PBS, phosphate-buffered saline
- SD, standard deviation
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling
- TipPC, tip progenitor cells
- TrPC, trunk progenitor cells
- WT, wild type
- qRT-PCR, quantitative real-time polymerase chain reaction
- rER, rough endoplasmic reticulum
Collapse
Affiliation(s)
- Xiaoling Qu
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio
| | - Pia Nyeng
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio,Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
| | - Fan Xiao
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jorge Dorantes
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio
| | - Jan Jensen
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio,Correspondence Address correspondence to: Jan Jensen, PhD, Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195.
| |
Collapse
|
38
|
Kim W, Klarmann KD, Keller JR. Gfi-1 regulates the erythroid transcription factor network through Id2 repression in murine hematopoietic progenitor cells. Blood 2014; 124:1586-96. [PMID: 25051963 PMCID: PMC4155270 DOI: 10.1182/blood-2014-02-556522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/22/2014] [Indexed: 12/11/2022] Open
Abstract
Growth factor independence 1 (Gfi-1) is a part of the transcriptional network that regulates the development of adult hematopoietic stem and progenitor cells. Gfi-1-null (Gfi-1(-/-)) mice have reduced numbers of hematopoietic stem cells (HSCs), impaired radioprotective function of hematopoietic progenitor cells (HPCs), and myeloid and erythroid hyperplasia. We found that the development of HPCs and erythropoiesis, but not HSC function, was rescued by reducing the expression of inhibitor of DNA-binding protein 2 (Id2) in Gfi-1(-/-) mice. Analysis of Gfi-1(-/-);Id2(+/-) mice revealed that short-term HSCs, common myeloid progenitors (CMPs), erythroid burst-forming units, colony-forming units in spleen, and more differentiated red cells were partially restored by reducing Id2 levels in Gfi-1(-/-) mice. Moreover, short-term reconstituting cells, and, to a greater extent, CMP and megakaryocyte-erythroid progenitor development, and red blood cell production (anemia) were rescued in mice transplanted with Gfi-1(-/-);Id2(+/-) bone marrow cells (BMCs) in comparison with Gfi-1(-/-) BMCs. Reduction of Id2 expression in Gfi-1(-/-) mice increased the expression of Gata1, Eklf, and EpoR, which are required for proper erythropoiesis. Reducing the levels of other Id family members (Id1 and Id3) in Gfi-1(-/-) mice did not rescue impaired HPC function or erythropoiesis. These data provide new evidence that Gfi-1 is linked to the erythroid gene regulatory network by repressing Id2 expression.
Collapse
Affiliation(s)
- Wonil Kim
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kimberly D Klarmann
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jonathan R Keller
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
39
|
Sourvinos G, Morou A, Sanidas I, Codruta I, Ezell SA, Doxaki C, Kampranis SC, Kottakis F, Tsichlis PN. The downregulation of GFI1 by the EZH2-NDY1/KDM2B-JARID2 axis and by human cytomegalovirus (HCMV) associated factors allows the activation of the HCMV major IE promoter and the transition to productive infection. PLoS Pathog 2014; 10:e1004136. [PMID: 24830456 PMCID: PMC4022736 DOI: 10.1371/journal.ppat.1004136] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 04/07/2014] [Indexed: 12/26/2022] Open
Abstract
Earlier studies had suggested that epigenetic mechanisms play an important role in the control of human cytomegalovirus (HCMV) infection. Here we show that productive HCMV infection is indeed under the control of histone H3K27 trimethylation. The histone H3K27 methyltransferase EZH2, and its regulators JARID2 and NDY1/KDM2B repress GFI1, a transcriptional repressor of the major immediate-early promoter (MIEP) of HCMV. Knocking down EZH2, NDY1/KDM2B or JARID2 relieves the repression and results in the upregulation of GFI1. During infection, the incoming HCMV rapidly downregulates the GFI1 mRNA and protein in both wild-type cells and in cells in which EZH2, NDY1/KDM2B or JARID2 were knocked down. However, since the pre-infection levels of GFI1 in the latter cells are significantly higher, the virus fails to downregulate it to levels permissive for MIEP activation and viral infection. Following the EZH2-NDY1/KDM2B-JARID2-independent downregulation of GFI1 in the early stages of infection, the virus also initiates an EZH2-NDY1/ΚDM2Β-JARID2-dependent program that represses GFI1 throughout the infection cycle. The EZH2 knockdown also delays histone H3K27 trimethylation in the immediate early region of HCMV, which is accompanied by a drop in H3K4 trimethylation that may contribute to the shEZH2-mediated repression of the major immediate early HCMV promoter. These data show that HCMV uses multiple mechanisms to allow the activation of the HCMV MIEP and to prevent cellular mechanisms from blocking the HCMV replication program.
Collapse
Affiliation(s)
- George Sourvinos
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- Laboratory of Virology, Medical School, University of Crete, Heraklion, Crete, Greece
- * E-mail: (GS); (PNT)
| | - Antigoni Morou
- Laboratory of Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Ioannis Sanidas
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Ignea Codruta
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Scott A. Ezell
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Christina Doxaki
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Sotirios C. Kampranis
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- Laboratory of Biochemistry, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Filippos Kottakis
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Philip N. Tsichlis
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail: (GS); (PNT)
| |
Collapse
|
40
|
Abstract
Most heritable anemias are caused by mutations in genes encoding globins, red blood cell (RBC) membrane proteins, or enzymes in the glycolytic and hexose monophosphate shunt pathways. A less common class of genetic anemia is caused by mutations that alter the functions of erythroid transcription factors (TFs). Many TF mutations associated with heritable anemia cause truncations or amino acid substitutions, resulting in the production of functionally altered proteins. Characterization of these mutant proteins has provided insights into mechanisms of gene expression, hematopoietic development, and human disease. Mutations within promoter or enhancer regions that disrupt TF binding to essential erythroid genes also cause anemia and heritable variations in RBC traits, such as fetal hemoglobin content. Defining the latter may have important clinical implications for de-repressing fetal hemoglobin synthesis to treat sickle cell anemia and β thalassemia. Functionally important alterations in genes encoding TFs or their cognate cis elements are likely to occur more frequently than currently appreciated, a hypothesis that will soon be tested through ongoing genome-wide association studies and the rapidly expanding use of global genome sequencing for human diagnostics. Findings obtained through such studies of RBCs and associated diseases are likely generalizable to many human diseases and quantitative traits.
Collapse
|
41
|
Mohapatra C, Patra SK, Panda RP, Mohanta R, Saha A, Saha JN, Das Mahapatra K, Jayasankar P, Barman HK. Gene structure and identification of minimal promoter of Pou2 expressed in spermatogonial cells of rohu carp, Labeo rohita. Mol Biol Rep 2014; 41:4123-32. [PMID: 24566687 DOI: 10.1007/s11033-014-3283-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/13/2014] [Indexed: 12/16/2022]
Abstract
Mammalian Pou5f1 is a known transcriptional regulator involving maintenance of embryonic and spermatogonial stem cells. Little is known about teleost Pou2, an ortholog of mammalian Pou5f1. Evidences of discrepancy in expression pattern between fish species were documented. To better understand, we have cloned and characterized Pou2 gene of farmed rohu carp, Labeo rohita. It contained five exons with an open reading frame of 1419 bp long, translatable to 472 aa. A bipartite DNA binding domain termed POU domain, comprising of POU-specific and POU-homeo sub-domains, was identified. Rohu Pou2 is highly conserved with zebrafish counterpart, as evidenced by 92% overall sequence identity of deduced protein. The POU domain remained highly conserved (showing more than 90% identities) within fish species. Even though there is a divergence between Pou2 and Pou5f1, the common POU-specific domain remained conserved throughout eukaryotes indicating their possible involvements in common trans-activation pathway(s) between mammals and non-mammals. In support, we have provided evidence that Pou2 is indeed abundantly expressed in proliferating rohu spermatogonial cells and hence participates in stem cell maintenance. Its mRNA accumulation in the ovary supported about its maternal transmission with possible regulatory roles during embryogenesis. The 5'-flanking region (~2.7 kb) of rohu Pou2 was sequenced and computational analysis detected several putative regulatory elements. These elements have been conserved among fish species analysed. Luciferase assay identified a mammalian-type 'TATA-less promoter' capable of driving Pou2 gene transcription. These findings will help for future studies in elucidating participatory role of fish Pou2 in male germ cell development.
Collapse
Affiliation(s)
- Chinmayee Mohapatra
- Fish Genetics and Biotechnology Division, Central Institute of Freshwater Aquaculture, Indian Council of Agricultural Research, Kausalyaganga, Bhubaneswar, 751002, Odisha, India
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhao L, Ye P, Gonda TJ. The MYB proto-oncogene suppresses monocytic differentiation of acute myeloid leukemia cells via transcriptional activation of its target gene GFI1. Oncogene 2013; 33:4442-9. [PMID: 24121275 DOI: 10.1038/onc.2013.419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/14/2013] [Accepted: 09/02/2013] [Indexed: 12/20/2022]
Abstract
The MYB gene is a master regulator of hematopoiesis and contributes to leukemogenesis in several species including humans. Although it is clear that MYB can promote proliferation, suppress apoptosis and block differentiation, the identities of the MYB target genes that mediate these effects have only been partially elucidated. Several studies, including our own, have collectively identified substantial numbers of MYB target genes, including candidates for each of these activities; however, functional validation, particularly in the case of differentiation suppression, has lagged well behind. Here we show that GFI1, which encodes an important regulator of hematopoietic stem cell (HSC) function and granulocytic differentiation, is a direct target of MYB in myeloid leukemia cells. Chromatin immunoprecipitation and reporter studies identified a functional MYB-binding site in the promoter region of GFI, whereas ectopic expression and small hairpin RNA-mediated knockdown of MYB resulted in concomitant increases and decreases, respectively, in GFI1 expression. We also demonstrate that GFI1, like MYB, can block the induced monocytic differentiation of a human acute myeloid leukemia cell line, and most importantly, that GFI1 is essential for MYB's ability to block monocytic differentiation. Thus, we have identified a target of MYB that is a likely mediator of its myeloid differentiation-blocking activity, and which may also be involved in MYB's activities in regulating normal HSC function and myeloid differentiation.
Collapse
Affiliation(s)
- L Zhao
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - P Ye
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| | - T J Gonda
- 1] The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia [2] School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, Queensland, Australia
| |
Collapse
|
43
|
Potential roles for Gfi1 in the pathogenesis and proliferation of glioma. Med Hypotheses 2013; 80:629-32. [PMID: 23466061 DOI: 10.1016/j.mehy.2013.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 01/27/2013] [Accepted: 02/07/2013] [Indexed: 11/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a major form of adult brain tumour with relatively poor prognosis and high mortality. Temozolomide (TMZ)-based chemotherapy following neurosurgery and radiotherapy has been suggested as the first line of treatment and is proven to effectively prolong overall survival and enhance patient quality of life. However, not all patients benefit from this treatment because of drug resistance. Even patients with TMZ-sensitive GBM may become resistant, which is partly due to the restoration of activity of the DNA repair enzyme O(6)-methylguanine-DNA-methyltransferase (MGMT); thus, patients cannot evade eventual tumour recurrence. The cellular activity of MGMT is the most important determinant of TMZ-resistance. However, some patients with a low level of activated MGMT are also TMZ-resistant. The aberrant expression of HOXA9, one of the 39 class I homeobox genes, is a marker of poor prognosis, and its level gradually increases with histologic malignant progression, shorter time to overall survival (OS) and free progression survival (FPS) in glioma patients, which further supports an oncogenic role for HOXA9 in gliomas. The HOXA9-PI3K signalling pathway is an important mechanism in GBM that is independent of MGMT promoter methylation status. The DNA binding sites of growth factor independent-1 (Gfi1) can overlap with the HOXA9 promoter through the "AATC" versus "GATT" core sequence. The competition for this binding site inhibits the expression of HOXA9 and induces different transcriptional outcomes, which suggests a new direction for investigation of the mechanism underlying targeted therapy of malignant gliomas.
Collapse
|
44
|
The human GFI136N variant induces epigenetic changes at the Hoxa9 locus and accelerates K-RAS driven myeloproliferative disorder in mice. Blood 2012; 120:4006-17. [PMID: 22932805 DOI: 10.1182/blood-2011-02-334722] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The coding single nucleotide polymorphism GFI136N in the human gene growth factor independence 1 (GFI1) is present in 3%-7% of whites and increases the risk for acute myeloid leukemia (AML) by 60%. We show here that GFI136N, in contrast to GFI136S, lacks the ability to bind to the Gfi1 target gene that encodes the leukemia-associated transcription factor Hoxa9 and fails to initiate histone modifications that regulate HoxA9 expression. Consistent with this, AML patients heterozygous for the GFI136N variant show increased HOXA9 expression compared with normal controls. Using ChipSeq, we demonstrate that GFI136N specific epigenetic changes are also present in other genes involved in the development of AML. Moreover, granulomonocytic progenitors, a bone marrow subset from which AML can arise in humans and mice, show a proliferative expansion in the presence of the GFI136N variant. In addition, granulomonocytic progenitors carrying the GFI136N variant allele have altered gene expression patterns and differ in their ability to grow after transplantation. Finally, GFI136N can accelerate a K-RAS driven fatal myeloproliferative disease in mice. Our data suggest that the presence of a GFI136N variant allele induces a preleukemic state in myeloid precursors by deregulating the expression of Hoxa9 and other AML-related genes.
Collapse
|
45
|
Abstract
OBJECTIVE This study investigated the utility of advanced computational techniques to large-scale genome-based data to identify novel genes that govern murine pancreatic development. METHODS An expression data set for mouse pancreatic development was complemented with high-throughput data analyzer to identify and prioritize novel genes. Quantitative real-time polymerase chain reaction, in situ hybridization, and immunohistochemistry were used to validate selected genes. RESULTS Four new genes whose roles in the development of murine pancreas have not previously been established were identified: cystathionine β-synthase (Cbs), Meis homeobox 1, growth factor independent 1, and aldehyde dehydrogenase 18 family, member A1. Their temporal expression during development was documented. Cbs was localized in the cytoplasm of the tip cells of the epithelial chords of the undifferentiated progenitor cells at E12.5 and was coexpressed with the pancreatic and duodenal homeobox 1 and pancreas-specific transcription factor, 1a-positive cells. In the adult pancreas, Cbs was localized primarily within the acinar compartment. CONCLUSIONS In silico analysis of high-throughput microarray data in combination with background knowledge about genes provides an additional reliable method of identifying novel genes. To our knowledge, the expression and localization of Cbs have not been previously documented during mouse pancreatic development.
Collapse
|
46
|
Khandanpour C, Kosan C, Gaudreau MC, Dührsen U, Hébert J, Zeng H, Möröy T. Growth factor independence 1 protects hematopoietic stem cells against apoptosis but also prevents the development of a myeloproliferative-like disease. Stem Cells 2011; 29:376-85. [PMID: 21732494 DOI: 10.1002/stem.575] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The regulation of gene transcription is elementary for the function of hematopoietic stem cells (HSCs). The transcriptional repressor growth factor independence 1 (Gfi1) restricts HSC proliferation and is essential to maintain their self-renewal capacity and multipotency after transplantation. In addition, Gfi1(-/-) HSCs are severely compromised in their ability to compete with wild-type (wt) HSCs after transplantation. We now report that Gfi1 protects HSCs against stress-induced apoptosis, probably, by repressing the proapoptotic target gene Bax, since irradiated Gfi1(-/-) HSCs display higher expression of Bax and show a higher rate of apoptosis than wt HSCs. This protective function of Gfi1 appears to be functionally relevant since Gfi1(-/-) HSCs that express Bcl-2, which antagonizes the effects of Bax, regain their ability to self renew and to initiate multilineage differentiation after transplantation. Surprisingly, Gfi1(-/-) xBcl-2 transgenic mice also show a strong, systemic expansion of Mac-1(+) Gr-1(-) myeloid cells in bone marrow and peripheral lymphoid organs. These cells express high levels of the proleukemogenic transcription factor Hoxa9 and, in older mice, appear as atypical monocytoid-blastoid cells in the peripheral blood. As a result of this massive expansion of myeloid cells, all Gfi1(-/-) xBcl-2 mice eventually succumb to a myeloproliferative-like disease resembling a preleukemic state. In summary, our data demonstrate that Gfi1's ability to protect against apoptosis is essential for HSC function. In addition, our finding show that Gfi1 prevents the development of myeloproliferative diseases and provides evidence how Gfi1 deficiency could be linked to myeloid leukemia.
Collapse
Affiliation(s)
- Cyrus Khandanpour
- Institut de recherches cliniques de Montréal (IRCM), Université de Montréal, Montréal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Möröy T, Khandanpour C. Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. Semin Immunol 2011; 23:368-78. [PMID: 21920773 DOI: 10.1016/j.smim.2011.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
T- and B-lymphocytes are important elements in the immune defense repertoire of higher organisms. The development and function of lymphoid cells is regulated at many levels one being the control of gene expression by transcription factors. The zinc finger transcriptional repressor Gfi1 has emerged as a factor that is critically implicated in the commitment of precursor cells for the lymphoid lineage. In addition, Gfi1 controls distinct stages of early T- or B-lymphoid development and is also critical for their maturation, activation and effector function. From many years of work, a picture emerges in which Gfi1 is part of a complicated, but well orchestrated network of interdependent regulators, most of which impinge on lymphoid development and activation by transcriptional regulation. Biochemical studies show that Gfi1 is part of a large DNA binding multi-protein complex that enables histone modifications, but may also control alternative pre mRNA splicing. Many insights into the biological role of Gfi1 have been gained through the study of gene deficient mice that have defects in B- and T-cell differentiation, in T-cell selection and polarization processes and in the response of mature B- and T-cells towards antigen. Most importantly, the defects seen in Gfi1 deficient mice also point to roles of Gfi1 in diseases of the immune system that involve auto-immune responses and acute lymphoid leukemia and lymphoma.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut de recherches cliniques de Montréal - IRCM, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
| | | |
Collapse
|
48
|
Lee JH, Ulrich B, Cho J, Park J, Kim CH. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:1778-87. [PMID: 21768398 DOI: 10.4049/jimmunol.1003919] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Progesterone, a key female sex hormone with pleiotropic functions in maintenance of pregnancy, has profound effects on regulation of immune responses. We report in this work a novel function of progesterone in regulation of naive cord blood (CB) fetal T cell differentiation into key T regulatory cell (Treg) subsets. Progesterone drives allogeneic activation-induced differentiation of CB naive, but not adult peripheral blood, T cells into immune-suppressive Tregs, many of which express FoxP3. Compared with those induced in the absence of progesterone, the FoxP3(+) T cells induced in the presence of progesterone highly expressed memory T cell markers. In this regard, the Treg compartment in progesterone-rich CB is enriched with memory-type FoxP3(+) T cells. Moreover, CB APCs were more efficient than their peripheral blood counterparts in inducing FoxP3(+) T cells. Another related function of progesterone that we discovered was to suppress the differentiation of CB CD4(+) T cells into inflammation-associated Th17 cells. Progesterone enhanced activation of STAT5 in response to IL-2, whereas it decreased STAT3 activation in response to IL-6, which is in line with the selective activity of progesterone in generation of Tregs versus Th17 cells. Additionally, progesterone has a suppressive function on the expression of the IL-6 receptor by T cells. The results identified a novel role of progesterone in regulation of fetal T cell differentiation for promotion of immune tolerance.
Collapse
Affiliation(s)
- Jee H Lee
- Laboratory of Immunology and Hematopoiesis, Department of Comparative Pathobiology, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
49
|
GABP transcription factor is required for myeloid differentiation, in part, through its control of Gfi-1 expression. Blood 2011; 118:2243-53. [PMID: 21705494 DOI: 10.1182/blood-2010-07-298802] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
GABP is an ets transcription factor that regulates genes that are required for myeloid differentiation. The tetrameric GABP complex includes GABPα, which binds DNA via its ets domain, and GABPβ, which contains the transcription activation domain. To examine the role of GABP in myeloid differentiation, we generated mice in which Gabpa can be conditionally deleted in hematopoietic tissues. Gabpa knockout mice rapidly lost myeloid cells, and residual myeloid cells were dysplastic and immunophenotypically abnormal. Bone marrow transplantation demonstrated that Gabpα null cells could not contribute to the myeloid compartment because of cell intrinsic defects. Disruption of Gabpa was associated with a marked reduction in myeloid progenitor cells, and Gabpα null myeloid cells express reduced levels of the transcriptional repressor, Gfi-1. Gabp bound and activated the Gfi1 promoter, and transduction of Gabpa knockout bone marrow with Gfi1 partially rescued defects in myeloid colony formation and myeloid differentiation. We conclude that Gabp is required for myeloid differentiation due, in part, to its regulation of the tran-scriptional repressor Gfi-1.
Collapse
|
50
|
Genome-wide CTCF distribution in vertebrates defines equivalent sites that aid the identification of disease-associated genes. Nat Struct Mol Biol 2011; 18:708-14. [PMID: 21602820 DOI: 10.1038/nsmb.2059] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/15/2011] [Indexed: 11/09/2022]
Abstract
Many genomic alterations associated with human diseases localize in noncoding regulatory elements located far from the promoters they regulate, making it challenging to link noncoding mutations or risk-associated variants with target genes. The range of action of a given set of enhancers is thought to be defined by insulator elements bound by the 11 zinc-finger nuclear factor CCCTC-binding protein (CTCF). Here we analyzed the genomic distribution of CTCF in various human, mouse and chicken cell types, demonstrating the existence of evolutionarily conserved CTCF-bound sites beyond mammals. These sites preferentially flank transcription factor-encoding genes, often associated with human diseases, and function as enhancer blockers in vivo, suggesting that they act as evolutionarily invariant gene boundaries. We then applied this concept to predict and functionally demonstrate that the polymorphic variants associated with multiple sclerosis located within the EVI5 gene impinge on the adjacent gene GFI1.
Collapse
|