1
|
Signorini C, Pannuzzo G, Graziano ACE, Moretti E, Collodel G, Cardile V. Dietary Supplementation with n-3 Polyunsaturated Fatty Acids Delays the Phenotypic Manifestation of Krabbe Disease and Partially Restores Lipid Mediator Production in the Brain-Study in a Mouse Model of the Disease. Int J Mol Sci 2024; 25:7149. [PMID: 39000257 PMCID: PMC11241235 DOI: 10.3390/ijms25137149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Lipid mediators from fatty acid oxidation have been shown to be associated with the severity of Krabbe disease (KD), a disorder linked to mutations in the galactosylceramidase (GALC) gene. This study aims to investigate the effects of n-3 polyunsaturated fatty acid (PUFA) supplementation on KD traits and fatty acid metabolism using Twitcher (Tw) animals as a natural model for KD. Wild-type (Wt), heterozygous (Ht), and affected Tw animals were treated orally with 36 mg n-3 PUFAs/kg body weight/day from 10 to 35 days of life. The end product of PUFA peroxidation (8-isoprostane), the lipid mediator involved in the resolution of inflammatory exudates (resolvin D1), and the total amount of n-3 PUFAs were analyzed in the brains of mice. In Tw mice, supplementation with n-3 PUFAs delayed the manifestation of disease symptoms (p < 0.0001), and in the bran, decreased 8-isoprostane amounts (p < 0.0001), increased resolvin D1 levels (p < 0.005) and increased quantity of total n-3 PUFAs (p < 0.05). Furthermore, total brain n-3 PUFA levels were associated with disease severity (r = -0.562, p = 0.0001), resolvin D1 (r = 0.712, p < 0.0001), and 8-isoprostane brain levels (r = -0.690, p < 0.0001). For the first time in a natural model of KD, brain levels of n-3 PUFAs are shown to determine disease severity and to be involved in the peroxidation of brain PUFAs as well as in the production of pro-resolving lipid mediators. It is also shown that dietary supplementation with n-3 PUFAs leads to a slowing of the phenotypic presentation of the disease and restoration of lipid mediator production.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (G.C.)
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.P.); (V.C.)
| | | | - Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (G.C.)
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (E.M.); (G.C.)
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (G.P.); (V.C.)
| |
Collapse
|
2
|
Chen DK, Metherel AH, Rezaei K, Parzanini C, Chen CT, Ramsden CE, Horowitz M, Faurot KR, MacIntosh B, Zamora D, Bazinet RP. Analysis of omega-3 and omega-6 polyunsaturated fatty acid metabolism by compound-specific isotope analysis in humans. J Lipid Res 2023; 64:100424. [PMID: 37572791 PMCID: PMC10507585 DOI: 10.1016/j.jlr.2023.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
Natural variations in the 13C:12C ratio (carbon-13 isotopic abundance [δ13C]) of the food supply have been used to determine the dietary origin and metabolism of fatty acids, especially in the n-3 PUFA biosynthesis pathway. However, n-6 PUFA metabolism following linoleic acid (LNA) intake remains under investigation. Here, we sought to use natural variations in the δ13C signature of dietary oils and fatty fish to analyze n-3 and n-6 PUFA metabolism following dietary changes in LNA and eicosapentaenoic acid (EPA) + DHA in adult humans. Participants with migraine (aged 38.6 ± 2.3 years, 93% female, body mass index of 27.0 ± 1.1 kg/m2) were randomly assigned to one of three dietary groups for 16 weeks: 1) low omega-3, high omega-6 (H6), 2) high omega-3, high omega-6 (H3H6), or 3) high omega-3, low omega-6 (H3). Blood was collected at baseline, 4, 10, and 16 weeks. Plasma PUFA concentrations and δ13C were determined. The H6 intervention exhibited increases in plasma LNA δ13C signature over time; meanwhile, plasma LNA concentrations were unchanged. No changes in plasma arachidonic acid δ13C or concentration were observed. Participants on the H3H6 and H3 interventions demonstrated increases in plasma EPA and DHA concentration over time. Plasma δ13C-EPA increased in total lipids of the H3 group and phospholipids of the H3H6 group compared with baseline. Compound-specific isotope analysis supports a tracer-free technique that can track metabolism of dietary fatty acids in humans, provided that the isotopic signature of the dietary source is sufficiently different from plasma δ13C.
Collapse
Affiliation(s)
- Daniel K Chen
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Adam H Metherel
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Kimia Rezaei
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Camilla Parzanini
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Chuck T Chen
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
| | - Christopher E Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA
| | - Mark Horowitz
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA
| | - Keturah R Faurot
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Beth MacIntosh
- Department of Physical Medicine and Rehabilitation, Program on Integrative Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA; Metabolic and Nutrition Research Core, UNC Medical Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Daisy Zamora
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging and National Institute on Alcohol Abuse and Alcoholism, NIH, Baltimore, MD, USA; Department of Psychiatry, UNC School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Richard P Bazinet
- Temerty Faculty of Medicine, Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Borasio F, De Cosmi V, D’Oria V, Scaglioni S, Syren MLE, Turolo S, Agostoni C, Coniglio M, Molteni M, Antonietti A, Lorusso ML. Associations between Dietary Intake, Blood Levels of Omega-3 and Omega-6 Fatty Acids and Reading Abilities in Children. Biomolecules 2023; 13:biom13020368. [PMID: 36830737 PMCID: PMC9952928 DOI: 10.3390/biom13020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Lower levels of omega-3 polyunsaturated fatty acids (PUFAs) have been described in individuals with reading difficulties, but the degree and the nature of such deficiencies as well as the role of nutrition are a matter of debate. The aim of the present study was to investigate the associations between PUFA blood levels, nutritional status, and reading/writing/phonological awareness performances in 42 school-age children with varying levels of reading ability. Significant correlations were found between PUFA levels (specific omega-6/omega-3 ratios), the ratio of omega-6-derived calories to the total amount of calories and reading scores. Mediation analysis showed a mediating effect of fatty acids on the association between reading speed scores and nutritional status. Moderation analysis, moreover, showed that the associations of omega-6/omega-3 ratios in the blood and Kcal omega-6/Kcal total in dietary intake were moderated by reading speed performances. Results of the mediation and moderation models confirm that the associations of dietary intake with PUFA levels in the blood vary depending on learning abilities. Reading skills appear to be sensitive to the effects of a complex set of favorable conditions related to the presence of higher omega-3 blood levels. These conditions may reflect the action of dietary as well as genetic and epigenetic mechanisms.
Collapse
Affiliation(s)
- Francesca Borasio
- Scientific Institute IRCSS E. Medea, Unit of Child Psychopathology, 23842 Bosisio Parini, Italy
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Valentina De Cosmi
- Department of Clinical and Community Sciences, University of Milan, 20122 Milan, Italy
| | - Veronica D’Oria
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Anestesia e Terapia Intensiva Donna-Bambino, 20122 Milan, Italy
| | - Silvia Scaglioni
- Fondazione De Marchi, Department of Pediatrics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Stefano Turolo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, SC Nephrology Dialysis and Pediatric Transplantation, 20122 Milan, Italy
| | - Carlo Agostoni
- Department of Clinical and Community Sciences, University of Milan, 20122 Milan, Italy
- SC Pediatria-Immunoreumatologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Marilena Coniglio
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, SC Child and Adolescent Neuropsychiatry, 20122 Milan, Italy
| | - Massimo Molteni
- Scientific Institute IRCSS E. Medea, Unit of Child Psychopathology, 23842 Bosisio Parini, Italy
| | - Alessandro Antonietti
- Department of Psychology, Catholic University of the Sacred Heart, 20123 Milan, Italy
| | - Maria Luisa Lorusso
- Scientific Institute IRCSS E. Medea, Unit of Child Psychopathology, 23842 Bosisio Parini, Italy
- Correspondence:
| |
Collapse
|
4
|
de Melo MFFT, de Souza MA, de Cássia Ramos do Egypto Queiroga R, Soares JKB. Functionality of bioactive lipids in cognitive function. BIOACTIVE LIPIDS 2023:169-190. [DOI: 10.1016/b978-0-12-824043-4.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Herrmann M, Simstich S, Fauler G, Hofer E, Fritz-Petrin E, Herrmann W, Schmidt R. The relationship between plasma free fatty acids, cognitive function and structural integrity of the brain in middle-aged healthy humans. Aging (Albany NY) 2021; 13:22078-22091. [PMID: 34554925 PMCID: PMC8507298 DOI: 10.18632/aging.203573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022]
Abstract
Background: The cerebral composition of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) is believed to influence cognitive function and structural damage of the aging brain. However, existing data is inconsistent. Materials and Methods: This retrospective study explored the association between free plasma PUFA concentrations, cognitive function and brain structure atrophy in a well-characterized community-dwelling cohort of elderly individuals without stroke and dementia. Ten different fatty acids were analyzed in stored plasma samples from 391 non-demented elderly individuals by gas chromatography mass spectrometry. Neuropsychiatric tests capturing memory, executive function and visuopractical skills were performed in all participants. Brain atrophy was assessed by MRI in a subset of 167 individuals. Results: Higher plasma concentrations of free ω-6 PUFAs (p = 0.042), and, in particular, linoleic acid (p = 0.01), were significantly associated with lower executive function. No significant association existed between ω-3 PUFA concentrations and cognitive functioning. The volume of the frontal lobes was inversely associated with ω-6 PUFAs, whereas ω-3 PUFAs were positively related with temporal lobe volumes. All associations did not withstand correction for multiple comparisons. Conclusions: Our study suggests subtle effects of PUFA imbalances on cognition and brain structure. Yet the observed associations are weak and unlikely to be of clinical relevance. The brain regions that seem to be most sensitive to imbalances of ω-3 and ω-6 PUFAs are the frontal and temporal lobes.
Collapse
Affiliation(s)
- Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Sebastian Simstich
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Günter Fauler
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Eva Fritz-Petrin
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | | | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Folick A, Koliwad SK, Valdearcos M. Microglial Lipid Biology in the Hypothalamic Regulation of Metabolic Homeostasis. Front Endocrinol (Lausanne) 2021; 12:668396. [PMID: 34122343 PMCID: PMC8191416 DOI: 10.3389/fendo.2021.668396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
In mammals, myeloid cells help maintain the homeostasis of peripheral metabolic tissues, and their immunologic dysregulation contributes to the progression of obesity and associated metabolic disease. There is accumulating evidence that innate immune cells also serve as functional regulators within the mediobasal hypothalamus (MBH), a critical brain region controlling both energy and glucose homeostasis. Specifically, microglia, the resident parenchymal myeloid cells of the CNS, play important roles in brain physiology and pathology. Recent studies have revealed an expanding array of microglial functions beyond their established roles as immune sentinels, including roles in brain development, circuit refinement, and synaptic organization. We showed that microglia modulate MBH function by transmitting information resulting from excess nutrient consumption. For instance, microglia can sense the excessive consumption of saturated fats and instruct neurons within the MBH accordingly, leading to responsive alterations in energy balance. Interestingly, the recent emergence of high-resolution single-cell techniques has enabled specific microglial populations and phenotypes to be profiled in unprecedented detail. Such techniques have highlighted specific subsets of microglia notable for their capacity to regulate the expression of lipid metabolic genes, including lipoprotein lipase (LPL), apolipoprotein E (APOE) and Triggering Receptor Expressed on Myeloid Cells 2 (TREM2). The discovery of this transcriptional signature highlights microglial lipid metabolism as a determinant of brain health and disease pathogenesis, with intriguing implications for the treatment of brain disorders and potentially metabolic disease. Here we review our current understanding of how changes in microglial lipid metabolism could influence the hypothalamic control of systemic metabolism.
Collapse
Affiliation(s)
- Andrew Folick
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Suneil K. Koliwad
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Martin Valdearcos
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
7
|
Barrera C, Valenzuela R, Rincón MA, Espinosa A, López-Arana S, González-Mañan D, Romero N, Vargas R, Videla LA. Iron-induced derangement in hepatic Δ-5 and Δ-6 desaturation capacity and fatty acid profile leading to steatosis: Impact on extrahepatic tissues and prevention by antioxidant-rich extra virgin olive oil. Prostaglandins Leukot Essent Fatty Acids 2020; 153:102058. [PMID: 32007744 DOI: 10.1016/j.plefa.2020.102058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023]
Abstract
The administration of iron induces liver oxidative stress and depletion of long-chain polyunsaturated fatty acids (LCPUFAs), n-6/n-3 LCPUFA ratio enhancement and fat accumulation, which may be prevented by antioxidant-rich extra virgin olive oil (AR-EVOO) supplementation. Male Wistar rats were subjected to a control diet (50 mg iron/kg diet) or iron-rich diet (IRD; 200 mg/kg diet) with alternate AR-EVOO for 21 days. Liver fatty acid (FA) analysis was performed by gas-liquid chromatography (GLC) after lipid extraction and fractionation, besides Δ-5 desaturase (Δ-5 D) and Δ6-D mRNA expression (qPCR) and activity (GLC) measurements. The IRD significantly (p < 0.05) increased hepatic total fat, triacylglycerols, free FA contents and serum transaminases levels, with diminution in those of n-6 and n-3 LCPUFAs, higher n-6/n-3 ratios, lower unsaturation index and Δ5-D and Δ6-D activities, whereas the mRNA expression of both desaturases was enhanced over control values, changes that were prevented by concomitant AR-EVOO supplementation. N-6 and n-3 LCPUFAs were also decreased by IRD in extrahepatic tissues and normalized by AR-EVOO. In conclusion, AR-EVOO supplementation prevents IRD-induced changes in parameters related to liver FA metabolism and steatosis, an effect that may have a significant impact in the treatment of iron-related pathologies or metabolic disorders such as non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Cynthia Barrera
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile
| | - Rodrigo Valenzuela
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile.
| | - Miguel A Rincón
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Alejandra Espinosa
- Department of Medical Technology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Sandra López-Arana
- Department of Nutrition, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, Santiago 70000, Chile
| | | | - Nalda Romero
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmacy, University of Chile, Santiago, Chile
| | - Romina Vargas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Lehner A, Staub K, Aldakak L, Eppenberger P, Rühli F, Martin RD, Bender N. Fish consumption is associated with school performance in children in a non-linear way: Results from the German cohort study KiGGS. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 2020:2-11. [PMID: 31976073 PMCID: PMC6970346 DOI: 10.1093/emph/eoz038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022]
Abstract
Introduction How the long-chain fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in the diet permitted human brain evolution, and how much our brains need today to function optimally are still hot topics for debate. DHA and EPA are considered as semi-essential because only insufficient amounts can be produced from other nutrients, such that they must be ingested with the diet. However, the Dietary Reference Intake of DHA and EPA, or of fish containing these fatty acids, has not yet been established. Eating fish is often recommended and generally considered beneficial for health and cognitive development in children and adolescents. For this study, data from a large cohort study were analysed to assess the association between fish consumption and cognitive school performance in children and adolescents. Methods Data from the German cohort of children and adolescent health KiGGS, which was conducted 2003-06 and included more than 17 000 children, were analysed. Ordered logistic regressions were performed to test for associations between fish intake and school performance. Potential confounders were included in the models. Results A statistically significant association was found between an intake of 8 g of fish per day and the probability of increasing the final grade in German [odds ratio (OR) 1.193, 95% confidence interval (CI) 1.049-1.358] and mathematics (OR 1.16, 95% CI 1.022-1.317) by one point, compared to no or very limited fish consumption. For the outcome German, higher levels of fish intake also showed a positive effect. These relationships were not linear but tended to decrease again at higher doses of fish. Discussion Our result confirms previous reports of a positive association between fish intake and school performance. Interestingly, this relationship was not linear but tended to decrease again in the highest categories of fish intake. We hypothesize that mercury or other pollutants in the fish could be detrimental at high levels. As only half of all children met the minimal fish intake recommendations, fish consumption should be promoted more strongly in children to meet the minimal requirements of long-chain polyunsaturated fatty acids. Lay Summary Polyunsaturated fatty acids like DHA and EPA that are present in fish are essential for a healthy human brain development. We found a U-shaped association between fish intake and school performance in children. We hypothesize that mercury or other pollutants in the fish could be detrimental at high intake levels.
Collapse
Affiliation(s)
- A Lehner
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - K Staub
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - L Aldakak
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - P Eppenberger
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - F Rühli
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - R D Martin
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Integrative Research Center, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - N Bender
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Alashmali SM, Lin L, Trépanier MO, Cisbani G, Bazinet RP. The effects of n-6 polyunsaturated fatty acid deprivation on the inflammatory gene response to lipopolysaccharide in the mouse hippocampus. J Neuroinflammation 2019; 16:237. [PMID: 31775778 PMCID: PMC6882015 DOI: 10.1186/s12974-019-1615-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/09/2019] [Indexed: 01/27/2023] Open
Abstract
Background Neuroinflammation is thought to contribute to psychiatric and neurological disorders such as major depression and Alzheimer’s disease (AD). N-6 polyunsaturated fatty acids (PUFA) and molecules derived from them, including linoleic acid- and arachidonic acid-derived lipid mediators, are known to have pro-inflammatory properties in the periphery; however, this has yet to be tested in the brain. Lowering the consumption of n-6 PUFA is associated with a decreased risk of depression and AD in human observational studies. The purpose of this study was to investigate the inflammation-modulating effects of lowering dietary n-6 PUFA in the mouse hippocampus. Methods C57BL/6 male mice were fed either an n-6 PUFA deprived (2% of total fatty acids) or an n-6 PUFA adequate (23% of total fatty acids) diet from weaning to 12 weeks of age. Animals then underwent intracerebroventricular surgery, in which lipopolysaccharide (LPS) was injected into the left lateral ventricle of the brain. Hippocampi were collected at baseline and following LPS administration (1, 3, 7, and 14 days). A microarray (n = 3 per group) was used to identify candidate genes and results were validated by real-time PCR in a separate cohort of animals (n = 5–8 per group). Results Mice administered with LPS had significantly increased Gene Ontology categories associated with inflammation and immune responses. These effects were independent of changes in gene expression in any diet group. Results were validated for the effect of LPS treatment on astrocyte, cytokine, and chemokine markers, as well as some results of the diets on Ifrd2 and Mfsd2a expression. Conclusions LPS administration increases pro-inflammatory and lipid-metabolizing gene expression in the mouse hippocampus. An n-6 PUFA deprived diet modulated inflammatory gene expression by both increasing and decreasing inflammatory gene expression, without impairing the resolution of neuroinflammation following LPS administration.
Collapse
Affiliation(s)
- Shoug M Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdul Aziz University, Jeddah, Saudi Arabia.,Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lin Lin
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giulia Cisbani
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Joffre C, Rey C, Layé S. N-3 Polyunsaturated Fatty Acids and the Resolution of Neuroinflammation. Front Pharmacol 2019; 10:1022. [PMID: 31607902 PMCID: PMC6755339 DOI: 10.3389/fphar.2019.01022] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
In the past few decades, as a result of their anti-inflammatory properties, n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFAs), have gained greater importance in the regulation of inflammation, especially in the central nervous system (in this case known as neuroinflammation). If sustained, neuroinflammation is a common denominator of neurological disorders, including Alzheimer’s disease and major depression, and of aging. Hence, limiting neuroinflammation is a real strategy for neuroinflammatory disease therapy and treatment. Recent data show that n-3 LC-PUFAs exert anti-inflammatory properties in part through the synthesis of specialized pro-resolving mediators (SPMs) such as resolvins, maresins and protectins. These SPMs are crucially involved in the resolution of inflammation. They could be good candidates to resolve brain inflammation and to contribute to neuroprotective functions and could lead to novel therapeutics for brain inflammatory diseases. This review presents an overview 1) of brain n-3 LC-PUFAs as precursors of SPMs with an emphasis on the effect of n-3 PUFAs on neuroinflammation, 2) of the formation and action of SPMs in the brain and their biological roles, and the possible regulation of their synthesis by environmental factors such as inflammation and nutrition and, in particular, PUFA consumption.
Collapse
Affiliation(s)
- Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| | - Charlotte Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France.,ITERG, Nutrition Health and Lipid Biochemistry Department, Canéjan, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France.,Université de Bordeaux 2, Bordeaux, France
| |
Collapse
|
11
|
Taha AY, Hennebelle M, Yang J, Zamora D, Rapoport SI, Hammock BD, Ramsden CE. Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary linoleic acid. Prostaglandins Leukot Essent Fatty Acids 2018; 138:71-80. [PMID: 27282298 PMCID: PMC5106341 DOI: 10.1016/j.plefa.2016.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/08/2016] [Accepted: 05/09/2016] [Indexed: 12/16/2022]
Abstract
Linoleic acid (LA, 18:2n-6) is the most abundant polyunsaturated fatty acid in the North American diet and is a precursor to circulating bioactive fatty acid metabolites implicated in brain disorders. This exploratory study tested the effects of increasing dietary LA on plasma and cerebral cortex metabolites derived from LA, its elongation-desaturation products dihomo-gamma linolenic (DGLA, 20:3n-6) acid and arachidonic acid (AA, 20:4n-6), as well as omega-3 alpha-linolenic (α-LNA, 18:3n-3), eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). Plasma and cortex were obtained from rats fed a 0.4%, 5.2% or 10.5% energy LA diet for 15 weeks and subjected to liquid chromatography tandem mass spectrometry analysis. Total oxylipin concentrations, representing the esterified and unesterified pool, and unesterified oxylipins derived from LA and AA were significantly increased and EPA metabolites decreased in plasma at 5.2% or 10.5% energy LA compared to 0.4% energy LA. Unesterified plasma DHA metabolites also decreased at 10.5% energy LA. In cortex, total and unesterified LA and AA metabolites increased and unesterified EPA metabolites decreased at 5.2% or 10.5% LA. DGLA and α-LNA metabolites did not significantly change in plasma or cortex. Dietary LA lowering represents a feasible approach for targeting plasma and brain LA, AA, EPA or DHA-derived metabolite concentrations.
Collapse
Affiliation(s)
- Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA.
| | - Marie Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Jun Yang
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA, USA
| | - Daisy Zamora
- Department of Psychiatry, University of North Carolina-Chapel Hill, NC, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology & UCD Comprehensive Cancer Center, University of California-Davis, Davis, CA, USA
| | - Christopher E Ramsden
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA; Department of Physical Medicine and Rehabilitation, University of North Carolina-Chapel Hill, NC, USA
| |
Collapse
|
12
|
Zeinsteger PA, Barberón JL, Leaden PJ, Palacios A. Antioxidant properties of Calendula officinalis L. (Asteraceae) on Fe2+-initiated peroxidation of rat brain mitochondria. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2254-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Chianese R, Coccurello R, Viggiano A, Scafuro M, Fiore M, Coppola G, Operto FF, Fasano S, Laye S, Pierantoni R, Meccariello R. Impact of Dietary Fats on Brain Functions. Curr Neuropharmacol 2018; 16:1059-1085. [PMID: 29046155 PMCID: PMC6120115 DOI: 10.2174/1570159x15666171017102547] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/24/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adequate dietary intake and nutritional status have important effects on brain functions and on brain health. Energy intake and specific nutrients excess or deficiency from diet differently affect cognitive processes, emotions, behaviour, neuroendocrine functions and synaptic plasticity with possible protective or detrimental effects on neuronal physiology. Lipids, in particular, play structural and functional roles in neurons. Here the importance of dietary fats and the need to understand the brain mechanisms activated by peripheral and central metabolic sensors. Thus, the manipulation of lifestyle factors such as dietary interventions may represent a successful therapeutic approach to maintain and preserve brain health along lifespan. METHODS This review aims at summarizing the impact of dietary fats on brain functions. RESULTS Starting from fat consumption, nutrient sensing and food-related reward, the impact of gut-brain communications will be discussed in brain health and disease. A specific focus will be on the impact of fats on the molecular pathways within the hypothalamus involved in the control of reproduction via the expression and the release of Gonadotropin-Releasing Hormone. Lastly, the effects of specific lipid classes such as polyunsaturated fatty acids and of the "fattest" of all diets, commonly known as "ketogenic diets", on brain functions will also be discussed. CONCLUSION Despite the knowledge of the molecular mechanisms is still a work in progress, the clinical relevance of the manipulation of dietary fats is well acknowledged and such manipulations are in fact currently in use for the treatment of brain diseases.
Collapse
Affiliation(s)
- Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberto Coccurello
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Andrea Viggiano
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy
| | - Marika Scafuro
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marco Fiore
- Institute of Cell Biology and Neurobiology, National Research Council (C.N.R.), Rome, Italy.,Fondazione S. Lucia (FSL) IRCCS, Roma, Italy
| | - Giangennaro Coppola
- Department of Medicine, Surgery and Scuola Medica Salernitana, University of Salerno, Baronissi, SA, Italy.,UO Child and Adolescent Neuropsychiatry, Medical School, University of Salerno, Salerno, Italy
| | | | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sophie Laye
- INRA, Bordeaux University, Nutrition and Integrative Neurobiology, UMR, Bordeaux, France
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Meccariello
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
14
|
Chan P, Suridjan I, Mohammad D, Herrmann N, Mazereeuw G, Hillyer LM, Ma DWL, Oh PI, Lanctôt KL. Novel Phospholipid Signature of Depressive Symptoms in Patients With Coronary Artery Disease. J Am Heart Assoc 2018; 7:JAHA.117.008278. [PMID: 29730646 PMCID: PMC6015327 DOI: 10.1161/jaha.117.008278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background Depression in patients with coronary artery disease (CAD) is associated with increased cardiovascular morbidity. Given the proinflammatory actions of phospholipids, aberrant phospholipid metabolism may be an etiological mechanism linking CAD and depression. Our primary objective was to identify a phospholipid biomarker panel that characterizes CAD patients with significant depressive symptoms from those without. Methods and Results We performed a targeted lipidomic analysis on CAD patients with significant depressive symptoms (n=37, Center for Epidemiologic Studies Depression score ≥16) and those without (n=49). Phospholipid species were selected using partial least‐square discriminant analysis, and the ability of the resulting model to discriminate between groups was evaluated using receiver operator characteristic curves. Biosignature scores were calculated from this model, and analyses of covariance were performed to compare intergroup differences in biosignature scores, with adjustment for clinical differences between patients. Those with significant depressive symptoms had lower cardiopulmonary fitness, more prevalent history of depression, and a greater number of vascular risk factors. A model of 10 phospholipid species had an area under the curve value of 0.84 (95% confidence interval 0.72‐0.95), sensitivity of 0.73, and specificity of 0.71. This model passed permutation testing (n=1000, P<0.001). Biosignature scores were higher in those with significant depressive symptoms after adjustment for potential confounders (F[1.86]=14.39, P<0.0005). Conclusions The present findings support the role of proinflammatory phospholipid species in the presence of depression in CAD patients from the CAROTID trial (Coronary Artery Disease Randomized Omega‐3 Trial in Depression). Future investigations should aim to replicate findings in larger data sets and clarify possible pathophysiological mechanisms. Clinical Trial Registration URL: https://www.clinicaltrials.gov. Unique identifier: NCT00981383.
Collapse
Affiliation(s)
- Parco Chan
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada
| | | | - Dana Mohammad
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada
| | - Nathan Herrmann
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Graham Mazereeuw
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Ontario, Canada
| | - Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada
| | - Paul I Oh
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,University Health Network at Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Sunnybrook Research Institute, Toronto, Ontario, Canada .,Department of Pharmacology and Toxicology, University of Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Ontario, Canada.,University Health Network at Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Fish oil feeding attenuates neuroinflammatory gene expression without concomitant changes in brain eicosanoids and docosanoids in a mouse model of Alzheimer's disease. Brain Behav Immun 2018; 69:74-90. [PMID: 29109025 DOI: 10.1016/j.bbi.2017.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Neuroinflammation is a recognized hallmark of Alzheimer's disease, along with accumulation of amyloid-β plaques, neurofibrillary tangles and synaptic loss. n-3 polyunsaturated fatty acids (PUFA) and molecules derived from them, including eicosapentaenoic acid-derived eicosanoids and docosahexaenoic acid-derived docosanoids, are known to have both anti-inflammatory and pro-resolving properties, while human observational data links consumption of these fatty acids to a decreased risk of Alzheimer's disease. Few studies have examined the neuroinflammation-modulating effects of n-3 PUFA feeding in an Alzheimer's disease-related model, and none have investigated whether these effects are mediated by changes in brain eicosanoids and docosanoids. Here, we use both a fat-1 transgenic mouse and a fish oil feeding model to study the impact of increasing tissue n-3 PUFA on neuroinflammation and the production of pro-inflammatory and pro-resolving lipid mediators. METHODS Fat-1 mice, transgenic animals that can convert n-6 to n-3 PUFA, and their wildtype littermates were fed diets containing either fish oil (high n-3 PUFA) or safflower oil (negligible n-3 PUFA) from weaning to 12 weeks. Animals then underwent intracerebroventricular infusion of either amyloid-β 1-40 or a control peptide. Hippocampi were collected from non-surgery and surgery animals 10 days after infusion. Microarray was used to measure enrichment of inflammation-associated gene categories and expression of genes involved in the synthesis of lipid mediators. Results were validated by real-time PCR in a separate cohort of animals. Lipid mediators were measured via liquid chromatography tandem mass spectrometry. RESULTS Fat-1 and wildtype mice fed fish oil had higher total hippocampal DHA than wildtype mice fed the safflower oil diet. The safflower-fed mice, but not the fat-1 or fish oil-fed mice, had significantly increased expression in gene ontology categories associated with inflammation in response to amyloid-β infusion. These effects were independent of changes in the expression of genes involved in the synthesis of eicosanoids or docosanoids in any group. Gene expression was replicated upon validation in the wildtype safflower and fish oil-fed, but not the fat-1 mice. Protectin, maresin and D and E series resolvins were not detected in any sample. There were no major differences in levels of other eicosanoids or docosanoids between any of the groups in response to amyloid-β infusion. CONCLUSIONS Fish oil feeding decreases neuroinflammatory gene expression in response to amyloid-β. Neither amyloid-β infusion or increasing brain DHA affects the brain concentrations of specialized pro-resolving mediators in this model, or the concentrations of most other eicosanoids and docosanoids.
Collapse
|
16
|
Meinhart AD, Ferreira da Silveira TF, Rosa de Moraes M, Petrarca MH, Silva LH, Oliveira WS, Wagner R, André Bolini HM, Bruns RE, Filho JT, Godoy HT. Optimization of frying oil composition rich in essential fatty acids by mixture design. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Alashmali SM, Kitson AP, Lin L, Lacombe RJS, Bazinet RP. Maternal dietary n-6 polyunsaturated fatty acid deprivation does not exacerbate post-weaning reductions in arachidonic acid and its mediators in the mouse hippocampus. Nutr Neurosci 2017; 22:223-234. [PMID: 28903622 DOI: 10.1080/1028415x.2017.1372160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The present study examines how lowering maternal dietary n-6 polyunsaturated fatty acids (PUFA) (starting from pregnancy) compared to offspring (starting from post-weaning) affect the levels of n-6 and n-3 fatty acids in phospholipids (PL) and lipid mediators in the hippocampus of mice. METHODS Pregnant mice were randomly assigned to consume either a deprived or an adequate n-6 PUFA diet during pregnancy and lactation (maternal exposure). On postnatal day (PND) 21, half of the male pups were weaned onto the same diet as their dams, and the other half were switched to the other diet for 9 weeks (offspring exposure). At PND 84, upon head-focused high-energy microwave irradiation, hippocampi were collected for PL fatty acid and lipid mediator analyses. RESULTS Arachidonic acid (ARA) concentrations were significantly decreased in both total PL and PL fractions, while eicosapentaenoic acid (EPA) concentrations were increased only in PL fractions upon n-6 PUFA deprivation of offspring, regardless of maternal exposure. Several ARA-derived eicosanoids were reduced, while some of the EPA-derived eicosanoids were elevated by n-6 PUFA deprivation in offspring. There was no effect of diet on docosahexaenoic acid (DHA) or DHA-derived docosanoids concentrations under either maternal or offspring exposure. DISCUSSION These results indicate that the maternal exposure to dietary n-6 PUFA may not be as important as the offspring exposure in regulating hippocampal ARA and some lipid mediators. Results from this study will be helpful in the design of experiments aimed at testing the significance of altering brain ARA levels over different stages of life.
Collapse
Affiliation(s)
- Shoug M Alashmali
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - Alex P Kitson
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - Lin Lin
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - R J Scott Lacombe
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| | - Richard P Bazinet
- a Department of Nutritional Sciences, Faculty of Medicine , University of Toronto , Toronto , Canada
| |
Collapse
|
18
|
Do Omega-3/6 Fatty Acids Have a Therapeutic Role in Children and Young People with ADHD? J Lipids 2017; 2017:6285218. [PMID: 28951787 PMCID: PMC5603098 DOI: 10.1155/2017/6285218] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/08/2017] [Indexed: 12/01/2022] Open
Abstract
Background Attention deficit hyperactivity disorder (ADHD) is a debilitating behavioural disorder affecting daily ability to function, learn, and interact with peers. This publication assesses the role of omega-3/6 fatty acids in the treatment and management of ADHD. Methods A systematic review of 16 randomised controlled trials was undertaken. Trials included a total of 1,514 children and young people with ADHD who were allocated to take an omega-3/6 intervention, or a placebo. Results Of the studies identified, 13 reported favourable benefits on ADHD symptoms including improvements in hyperactivity, impulsivity, attention, visual learning, word reading, and working/short-term memory. Four studies used supplements containing a 9 : 3 : 1 ratio of eicosapentaenoic acid : docosahexaenoic acid : gamma linolenic acid which appeared effective at improving erythrocyte levels. Supplementation with this ratio of fatty acids also showed promise as an adjunctive therapy to traditional medications, lowering the dose and improving the compliance with medications such as methylphenidate. Conclusion ADHD is a frequent and debilitating childhood condition. Given disparaging feelings towards psychostimulant medications, omega-3/6 fatty acids offer great promise as a suitable adjunctive therapy for ADHD.
Collapse
|
19
|
Schipper L, Oosting A, Scheurink AJW, van Dijk G, van der Beek EM. Reducing dietary intake of linoleic acid of mouse dams during lactation increases offspring brain n-3 LCPUFA content. Prostaglandins Leukot Essent Fatty Acids 2016; 110:8-15. [PMID: 27255638 DOI: 10.1016/j.plefa.2016.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/24/2016] [Accepted: 05/02/2016] [Indexed: 01/03/2023]
Abstract
Omega (n-)3 and n-6 long chain polyunsaturated fatty acids (LCPUFA) accumulation in the infant brain after birth is strongly driven by dietary supply of n-3 and n-6 LCPUFAs and their C18 precursors through breast milk or infant formula. n-3 LCPUFA accretion is associated with positive effects on neurodevelopmental outcome whereas high n-6 LCPUFA accumulation is considered disadvantageous. Maternal diet is crucial for breast milk fatty acid composition. Unfortunately, global increases in linoleic acid (C18:2n-6; LA) intake have dramatically increased n-6 LCPUFA and reduced n-3 LCPUFA availability for breastfed infants. We investigated the effects of reducing maternal dietary LA, or increasing n-3 LCPUFA, during lactation on milk and offspring brain fatty acids in mice. Offspring brain n-3 LCPUFA was higher following both interventions, although effects were mediated by different mechanisms. Because of competitive interactions between n-3 and n-6 fatty acids, lowering maternal LA intake may support neurodevelopment in breastfed infants.
Collapse
Affiliation(s)
- L Schipper
- Nutricia Research, Danone Nutricia Early Life Nutrition, Utrecht, The Netherlands.
| | - A Oosting
- Nutricia Research, Danone Nutricia Early Life Nutrition, Utrecht, The Netherlands
| | - A J W Scheurink
- GELIFES, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - G van Dijk
- GELIFES, Groningen Institute for Evolutionary Life Sciences, University of Groningen, The Netherlands
| | - E M van der Beek
- Nutricia Research, Danone Nutricia Early Life Nutrition, Utrecht, The Netherlands
| |
Collapse
|